
Deqing WangShenyang Institute of Automation
Deqing Wang
Doctor of Philosophy
https://deqing.net/
About
9
Publications
759
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
56
Citations
Citations since 2017
Introduction
Skills and Expertise
Publications
Publications (9)
Nonnegative tensor decomposition is a versatile tool for multiway data analysis, by which the extracted components are nonnegative and usually sparse. Nevertheless, the sparsity is only a side effect and cannot be explicitly controlled without additional regularization. In this paper, we investigated the nonnegative CANDECOMP/PARAFAC (NCP) decompos...
Nonnegative tensor decomposition has become increasingly important for multiway data analysis in recent years. The alternating proximal gradient (APG) is a popular optimization method for nonnegative tensor decomposition in the block coordinate descent framework. In this study, we propose an inexact version of the APG algorithm for nonnegative CAND...
Background
Traditionally, the diagnosis of Parkinson’s disease (PD) has been made based on symptoms. Extensive studies have demonstrated that PD may lead to variation of brain activity in different frequency bands. However, frequency specific dynamic alterations of PD have not yet been explored.
New method
In order to address this gap, a novel spa...
Nonnegative CANDECOMP/PARAFAC (NCP) decomposition is an important tool to process nonnegative tensor. Sometimes, additional sparse regularization is needed to extract meaningful nonnegative and sparse components. Thus, an optimization method for NCP that can impose sparsity efficiently is required. In this paper, we construct NCP with sparse regula...
Background:
Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorg...
Tensor decomposition has been widely employed for EEG signal processing in recent years. Constrained and regularized tensor decomposition often attains more meaningful and interpretable results. In this study, we applied sparse nonnegative CANDECOMP/PARAFAC tensor decomposition to ongoing EEG data under naturalistic music stimulus. Interesting temp...
Computer vision methods can benefit wood processing industry. We propose a method to detect wood surface quality and classify wood samples into sound and defective classes. Gray level histogram statistical features and gray level co-occurrence matrix (GLCM) texture features are extracted from wood surface images and combined for classification. A h...