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ABSTRACT 

18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET) is well 

established in the field of oncology for diagnosis and staging purposes, while 

increasingly is being used for therapy response assessment and prognosis. Many 

quantitative indices can be used to characterize tumors in 18F-FDG PET images, such as 

the maximum of standardized radiotracer uptake (SUVmax), metabolically active tumor 

volume (MATV), total lesion glycolysis (TLG) or more recently proposed intra-tumor 

uptake heterogeneity features. Although most PET data considered within this context 

concerns the analysis of activity distribution images obtained from one 

static acquisition, parametric images generated from dynamic acquisitions and 

reflecting radiotracer kinetics may provide additional information. The purpose of this 

study was to quantify differences between volumetric, uptake and heterogeneity 

features extracted from static and parametric PET images in non-small cell lung 

carcinoma (NSCLC) in order to provide insight on the potential added value of 

parametric images. Methods: Dynamic 18F-FDG PET/CT acquisitions were performed in 

twenty therapy-naive NSCLC patients planned for primary surgical resection. Both 

static and parametric PET images were analyzed with quantitative parameters (MATV, 

SUVmax, SUVmean, heterogeneity) extracted from the segmented tumors. Differences 

were investigated using Spearman’s rank correlation coefficients (rs) and Bland-Altman 

analysis. Results: MATV was slightly smaller in static images (-2±7%), but the difference 

was not significant (p=0.14). All derived parameters, including those characterizing 

tumor functional heterogeneity, were highly correlated between static and parametric 

images (rs=0.70-0.98, p≤0.0006) exhibiting differences of <±25%. Conclusion: In NSCLC 

primary tumors, parametric and static baseline 18F-FDG PET images provided highly 
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correlated quantitative features for both standard (MATV, SUVmax, SUVmean) and 

heterogeneity quantification. Consequently, heterogeneity quantification on 

parametric images does not seem to provide significant complementary information 

compared to static SUV images. 
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INTRODUCTION 

 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET) 

is increasingly used for tumor detection, initial staging, treatment monitoring and 

planning, therapeutic response evaluation, and prognosis (1-4). Within this context 

quantitative features can be used from either baseline PET images or by comparison 

between pre- and per/post-treatment scans. The maximum of standardized uptake 

value (SUVmax) from static images (55-65 mins after injection) is the most commonly 

used, although it does not provide a comprehensive tumor characterization and may 

therefore be limited for all clinical applications (5,6). Additional standard features 

include mean SUV (SUVmean), the metabolically active tumor volume (MATV) and total 

lesion glycolysis (TLG, defined as MATV x SUVmean) (7). Most 18F-FDG PET derived 

features are sensitive to physiological parameters such as body composition and blood 

glucose concentration that may add confounding factors in inter and/or intra patient 

comparisons (8). Recently, PET intra-tumor heterogeneity characterization has 

demonstrated a potential added predictive and prognostic value over simple SUV 

measurements (9,10). However, these studies have to date been exclusively based on 

static PET acquisitions. Whereas static whole body 18F-FDG PET acquisitions are the 

most commonly used in clinical practice, an alternative consists in analyzing radiotracer 

kinetics to provide fully quantitative information (10), such as the metabolic rate of 

glucose (MRGlu). Amongst kinetic models, Patlak analysis is considered as a gold 

standard for modelling tissue time-activity concentration (TAC) curves derived from 

dynamic 18F-FDG PET images (11,12). 

 The fully quantitative parameters derived using such approaches have been 

previously shown to be useful in patient management (13), with observed differences 
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between static SUV and parametric MRGlu images (14,15). Firstly, SUV images reflect 

only the total activity, without any distinction between metabolized and 

unmetabolized 18F-FDG uptake. In the Patlak analysis, the time integral of the input TAC 

divided by the plasma concentration is plotted on the horizontal axis versus the activity 

on the vertical axis, while SUV approximates this integral by normalizing static activity 

concentrations using patient weight and injected dose.  

 Cheebsumon, et al. observed different MATVs when delineated in static or 

dynamic 18F-FDG images (16), whereas Visser, et al. observed that MRGlu maps led to 

significantly smaller MATVs than SUV-based images (17). The magnitude of these 

differences can be explained by the delineation methodology used. Threshold-based 

methods have been previously shown to lack robustness relative to varying image 

properties (noise, contrast) (18), which is the case for static vs. parametric PET images 

(17). 

 The potential interest of dynamic imaging for the characterization of intra-

tumor heterogeneity based on texture analysis has not been previously evaluated. A 

recent review referred to the potential of features derived from parametric maps 

calculated using kinetic analysis in conjunction with the temporal evolution of intra-

tumor tracer uptake distribution (19), without an explicit evaluation in a given patient 

cohort. The present study aims to assess the potential complementary value of 

dynamic acquisitions and derived quantitative parametric images for intra-tumor 

heterogeneity characterization using 18F-FDG PET. Our main objective was to quantify 

the potential differences between newly proposed intra-tumor heterogeneity 

characterization features from static SUV and parametric MRGlu  18F-FDG PET images 

derived using the Patlak linearisation approach (11). For comparison purposes, the 
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analysis was extended to other standard PET image derived indices such as SUVmax, 

SUVmean, TLG and MATV.  

 

MATERIALS AND METHODS 

Patients 

 Twenty therapy-naive patients with limited-stage non-small cell lung carcinoma 

(NSCLC) and planned for primary surgical resection, were prospectively recruited. 

Tumors with at least 30 mm maximum diameter were considered in order to reduce 

the potential impact of partial volume effects (PVE) and respiratory motion on the 

quantitative measurements considered (20). The study was approved by the Medical 

Ethics Review Committee of The Radboud University Nijmegen Medical Centre and all 

patients gave a written informed consent. Patient characteristics are summarized in 

Table 1. 

 

18F-FDG PET Acquisitions and Image Reconstruction 

 All 20 patients underwent a dynamic PET acquisition in list-mode for 60 min 

using a Biograph Duo scanner (Siemens Healthcare) in a single bed position (159 mm 

axial length) after intravenous injection of an average 3.3 MBq/kg using an infusion 

pump (8 mL 18F-FDG at 0.2 mL/s followed by 40 mL saline flush at 8.0 mL/s). A low-dose 

CT acquisition (40 mA and 130 kV) over the same area covered by the PET scan, was 

used for PET attenuation correction and anatomical reference. The CT transaxial matrix 

size was 512x512 (0.98x0.98 mm2), while the CT slice width was 3 mm. 

 PET data were reconstructed using a 45-frame protocol (10s delay after 18F-FDG 

injection, 16×5s, 4x10s, 4×20s, 4×30s, 4x60s, 4x120s, 1x150s and 8×300s). Each of the 
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45 frames was reconstructed using ordered subsets expectation maximization in two 

dimensions (OSEM 2D) with 4 iterations and 16 subsets in a 256×256×53 image matrix 

(voxel size 2.65×2.65×3.00mm3) followed by post-filtering with an isotropic 5mm full-

width-at-half-maximum (FWHM) 3D Gaussian filter. CT based attenuation correction 

using a bilinear transformation of Hounsfield units to the PET energy attenuation 

values, a delayed window based randoms correction, single scatter simulation based 

scatter correction and decay correction were applied. No partial volume or respiratory 

motion corrections were considered.  

 The last time frame of the dynamic series (55-60min post-injection (p.i.)) was 

used to generate the SUV images. All voxel values [Bq/mL] were normalized to the 

administered activity [Bq] per body weight [g]. Residual activity in the infusion system 

was accounted for (i.e. SUV [g/mL]). 

 MRGlu values were calculated on a voxel-by-voxel basis, deriving MRGlu 

parametric maps, based on the standard 2-compartment 18F-FDG model with trapping 

in the linear approximation (Patlak analysis) (12) according to: 

= + 	 , = ,  

where, K1, k2, and k3 are the three rate constants of the two compartment model, Ki 

[ml/g/min] is the 18F-FDG influx constant, Cp,glu is the plasma glucose concentration, and 

LCFDG is the lumped constant (=1). For the tissue TAC curves, the images from frames 

38-45 (i.e. 20-60 min p.i.) were used, since for all tumors investigated the Patlak curves 

approached a straight line at 15-20 min p.i.. An image derived input function (plasma 

TAC) was determined by considering the mean activity concentration in a manually 
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drawn 3D volume of interest in the thoracic ascending aorta (whole blood). No plasma 

to whole blood ratio or PVE corrections were applied. Voxelwise Ki values were 

subsequently determined by linear regression analysis on the Inveon Research 

Workplace version 3 (Siemens Healthcare, Knoxville, USA), using the tissue TAC and the 

image-derived whole-blood TAC. Using the derived parametric images the Metabolic 

Rate Volume (MRV = MRGlumean × volume), used to denote the parametric equivalent 

of TLG in SUV images, was also derived for each tumor volume.  

 

Image Analysis 

 For all patients, the primary tumor MATV was delineated on the static SUV and 

parametric PET images. The automatic Fuzzy Locally Adaptive Bayesian (FLAB) 

algorithm previously validated for accuracy, robustness and reproducibility in PET 

(21,22), was used to minimize the delineation approach impact on the extracted 

features. From these delineated volumes, the following features were extracted from 

both static and parametric images:  MATV, maximum value (SUVmax and Kimax), 

metabolic volume products (TLG and MRV), and heterogeneity parameters, including 

the area under the curve of the cumulative intensity histogram (CIHAUC) (23) and 

textural features at both local and regional scales using previously optimized 

parameters (quantization into 64 grey-levels) (24). CIHAUC is calculated by considering 

all tumor voxels, consequently providing a global quantification of the tumor 

heterogeneity. Local heterogeneity features were computed using a single co-

occurrence matrix over all 13 spatial directions in 3D (20). They highlight intensity 

variations between contiguous voxels at the local scale and include homogeneity (H), 
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entropy (E) and dissimilarity (D). Regional heterogeneity measurements were 

computed using matrices that link groups of intra-tumor voxels with similar intensity. 

They include high intensity emphasis (HIE) and zone percentage (ZP) (24). Most 

heterogeneity textural features used in this study were chosen according to previously 

published results regarding their reproducibility (25) and robustness to both functional 

tumor volume delineation approaches and PVE (18,26).  

 

Statistical Analysis 

 Statistical analysis was performed using the MedCalcTM software, (MedCalc 

Software, Belgium). The statistics of each parameter’s distribution in both images were 

reported using the 1st and 3rd quartile, as well as the median. The Kolmogorov-Smirnov 

test was used to assess the normality of distributions. The agreement between 

parameters from static and parametric images was assessed using the Spearman’s rank 

coefficient (ρ) and differences were quantified using a Bland-Altman analysis, reporting 

the mean±SD and 95% confidence intervals (CI) of the differences and the upper (UL) 

and lower limits (LL) defined as 1.96 × standard deviation (SD) after a log 

transformation applied to parameters with a non- normal distribution. Note that for 

SUVmax (or Kimax) and TLG (or MRV), only correlation coefficients are reported, since the 

measures are not directly comparable between the two image types given the 

differences in units. P-values <0.05 were considered significant throughout the 

analyses.  

 

RESULTS 
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 Figure 1 shows delineated tumor examples in both images including differences 

in the corresponding image indices considered. All features were normally distributed 

with the exception of MATV and TLG/MRV (Table 2). MATVs measured on static and 

parametric images were highly correlated (rs=0.96, p<0.0001, 95%CI 0.90-0.99) (Table 

3). Slightly smaller MATVs were obtained on static compared to the corresponding 

parametric images, with non-statistically significant differences (-2±7%, p=0.14, upper 

limits (UL) and lower limits (LL) of +11% and -15% respectively) (Table 3, Figure 2A). The 

smallest and largest absolute volume differences were 0 cm3 and 26.5 cm3 respectively, 

which was obtained for a very large tumor (>145 cm3 vs 115 cm3 in the parametric vs 

static images).  

As Figure 2B shows SUVmax and Kimax were highly correlated (rs=0.9, p<0.0001, 95% CI 

0.76-0.99). Similarly, TLG and MRV were highly correlated with a Spearman’s rank 

correlation coefficient of 0.98 (95% CI 0.94-0.99, p<0.0001, Figure 2C). Intra-tumor 

heterogeneity parameters on the static and parametric images were also correlated (rs 

between 0.7 and 0.91, p≤0.0006), with <21% SD and UL/LL within the ±40% range, 

which are similar to the physiological reproducibility limits previously measured on 

test-retest baseline PET images for such parameters (22, 25). The heterogeneity 

parameters showing the lowest variability with respect to static vs. parametric PET 

images were entropy (0.3±2.1%, UL/LL of +3.8/-4.4%, Figure 2D) and zone percentage 

(+1.0±3.7%, UL/LL of +8.2%/-6.1%, Figure 2E). Homogeneity led to slightly larger 

differences (+0.6±11.9%, UL/LL of +24.0%/-22.7%), whereas dissimilarity had a similar 

behavior as CIHAUC with 16-17% SD, and UL/LL around ±30-35% (Figure 2F). Finally, the 

parameter that exhibited the largest difference was HIE with +0.3±20.9% (UL/LL of 

+41.3%/-40.6%, Table 3). 
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DISCUSSION 

 There is currently an increasing interest in PET intra-tumor heterogeneity 

characterization and its potential added value for diagnosis, therapy response and 

survival analysis. It has already been already shown that in NSCLC, intra-tumor 

heterogeneity in whole body static 18F-FDG PET has a complementary prognostic value 

relative to the metabolic functional volume (20,27), but also a predictive value in the 

case of exclusive chemotherapy treatment (28). On the other hand, there are a number 

of unanswered questions concerning the robustness of these heterogeneity 

parameters and their underlying biological significance. Some of these features, 

including those used in this study, have been shown to be robust to physiological 

reproducibility (25,29). In terms of their biological significance,  we have previously 

shown that tumor blood flow highly correlated with different scale tumor 

heterogeneity indices extracted from 18F-FDG PET images in colorectal cancer (30). In 

order to further evaluate the robustness of intra-tumor heterogeneity characterization 

in 18F-FDG PET for NSCLC, the goal of this study was for the first time ever to compare 

intra-tumor heterogeneity parameters between standard static acquisitions and 

quantitative parametric 18F-FDG PET images. The underlying goal of this original 

comparison was to provide some insight into the potential added information that 

parametric images may give relative to standard clinical PET acquisitions.  

Firstly, the use of a robust delineation approach allowed to overcome potential 

robustness issues previously observed (21) in the determination of MATVs measured 

in static vs. parametric PET images (-2±7% and limits between 11-15%). The observed 

variations are well within the range of upper and lower physiological reproducibility 
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limits previously determined for FLAB at ±30% (22), and substantially lower than those 

previously reported using less robust delineation methods based on fixed thresholding 

(17). Fixed thresholding has been shown to lack robustness and be very sensitive to 

tumor contrast (31). The higher contrast in parametric images (32) may consequently 

explain such MATV differences that were not observed in the present study using a 

more robust delineation algorithm.  

We also found that maximum intensity (SUVmax and Kimax) as well as total 

activity (TLG and MRV) measurements were highly correlated between static and 

parametric images (rs≥0.9). This is in line with previously reported results for renal cell 

carcinoma metastases by Freedman, et al. (14) and for breast cancer by Doot, et al. 

(33). Both found a high correlation (r>0.95) between SUVmax and Kimax on baseline 18F-

FDG PET scans. 

 Most of the uptake heterogeneity features considered in the present study 

showed high correlation (rs≥0.7, p≤0.0006) when obtained using static or parametric 

PET images, with differences <±25% range, except for HIE (±40%) and dissimilarity 

(±30%). In particular, entropy and zone percentage values were very similar (<±5% and 

<±9% respectively), providing further evidence for the robustness of these parameters 

in intra-tumor heterogeneity characterization (18, 26). The highest differences 

associated with HIE may be explained by its previously demonstrated lower robustness 

to PVE (mean difference of -20.6±18.8 between PVE and non-PVE corrected images) 

(18). 

 Our results suggest that the observed differences in quantitative 

measurements of intra-tumor heterogeneity between static and parametric 18F-FDG 

images can be mostly attributed to variabilities in image characteristics and noise 
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rather than substantial differences in the actual intra-tumor uptake spatial distribution 

(Figure 1). This in turn supports the hypothesis that with respect to intra-tumor 

heterogeneity characterization the parametric images provide similar information to 

static SUV images on a 18F-FDG PET baseline scan.  

 Based on the Patlak analysis assumptions and the use of the baseline scan only, 

the hypotheses in this work are that the unmetabolized component of 18F-FDG is 

negligible at later times and the ratio of the injected dose / patient weight is 

proportional to the area under the curve of the arterial input function. If one considers 

the comparison between a baseline scan and an early or late scan, for instance within 

the context of early/late therapy response monitoring, the conclusions may be 

different. Although beyond the objectives of this work, in such a comparative 

framework parametric images may eventually provide useful additional information. 

For example, it has been previously demonstrated within the context of early therapy 

response prediction in locally advanced breast cancer that dynamic PET scans provided 

clinical added value over static SUV measurements, leading to significantly higher 

predictive accuracy (34). This study was however based on the comparison of SUV 

measurements only and did not include more advanced tumor characterization metrics 

(volume, heterogeneity). 

Our study is limited by the small number of patients and the consideration of 

NSCLC patients with large lesions (> 3cm). Despite the limited number of patients, the 

small mean parameter differences observed suggest that similar information on tumor 

heterogeneity can be derived from the static and parametric baseline 18F-FDG PET 

images. Given these small differences a more substantial patient cohort is needed to 
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confirm the statistical significance of these results. Concerning the limit on the lesions’ 

size it was chosen to reduce the influence of both respiratory motion and PVE. Previous 

studies have shown variabilities on heterogeneity features as a result of respiratory 

gating (35,36), although no statistically significant differences were seen on the PET 

heterogeneity parameters considered in this study (37). In addition, the majority of the 

lesions in this study (85%) were located in the upper lung lobes which are less 

influenced by respiratory motion.  

The choice of NSCLC can be also a limitation since the lung tissue is mostly 

metabolically non active, thus the background is low, and the fraction of unmetabolized 

18F-FDG is also very low. Our present conclusions for NSCLC cannot therefore be 

extended to pathologies in tissues with higher background levels (e.g. liver metastases) 

or near “reservoirs” of metabolic inactive 18F-FDG, for example in urine or even blood 

(especially in end stage renal failure patients).  

 Although the high correlation between features extracted from static and 

parametric PET images suggest that there is no significant complementary information 

to be derived from parametric 18F-FDG PET images, further validation studies are 

required in order to compare the actual predictive or prognostic value of static vs. 

parametric images for patient response or overall survival in NSCLC.  

 

CONCLUSIONS 

 In NSCLC, parametric and static SUV 18F-FDG PET images provided similar and 

highly correlated tumor derived characterization parameters considering a single 

baseline scan. More specifically similar correlation and small differences were found 
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for metrics such as entropy and zone percentage quantifying intra-tumor uptake spatial 

distribution heterogeneity. Despite the limited number of patients and the lack of 

consideration for respiratory motion, the present study suggests that there does not 

seem to be any added value from dynamic 18F-FDG PET acquisitions considering the 

role of intra-tumor heterogeneity analysis on a single baseline 18F-FDG PET image 

within the context of patient management in NSCLC. 
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Figure 1: Three different tumor examples with parametric Ki and SUV images in the 
upper and middle row respectively and differences between the two images in the 
bottom row. Examples 1, 2 and 3 correspond to cases with small, medium and large 
differences between parametric Ki and static SUV images respectively. 
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Figure 2: Bland-Altman plot of MATV (logarithmic transformation) (A), CIHAUC (B), 

SUVmax/maximum Ki (C), TLG/MRV (logarithmic transformation) (D), Entropy (E), ZP (F). 

For each graph mean value, +/- 1.96 standard deviation (SD) and 95% confidence 

interval for the mean of differences is reported. 
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Tables 

Parameter: Value: 
Male [%]: 70 
Mean age {range} [year]: 63.4 {44.3-77.8} 
Mean body mass {stdev} [kg]: 78.2 {15.1} 
Mean BMI {stdev} [kg/m2]: 26.0 {5.3} 
Mean mass activity {stdev} [MBq/kg]: 3.32 {0.42}* 
Median serum glucose level {range} [mmol/L]: 5.3 {4.5-7.7} 
Location [%]: 

- Right upper lobe 
- Right middle lobe 
- Right lower lobe 
- Left upper lobe 
- Left lower lobe 

 
50 
5 
0 
35 
10 

Treatment  [%]: 
- Lobectomy R0 
- Pneumonectomy R0 

 
85 
15 

Histology (NSCLC) [%]: 
- Squamous Cell carcinoma 
- Adenocarcinoma 

- No mucinous differentiation 
- Partially mucinous 
- Mucinous differentiation 

- Sarcomatoid pleiomorph carcinoma 
- Neuro-endocrine carcinoma 

 
60 
30 
 20 
 5 
 5 
5 
5 

Differentiation [%]: 
- Poor 
- Moderate 
- Unknown 

 
55 
30 
15 

Mean Histological tumor diameter {range} [mm] 52.3 {15.0-85.0}** 
TNM-classification [%] : 

- T2N0M0 (stage IB) 
- T3N0M0 (stage IIB) 
- T2N1M0 (stage IIB) 

 
30 
30 
40 

 

Table 1 : Patient characteristics (n=20). BMI : body mass index ; R0 : resection margins free of 
tumor ; stdev: standard-deviation; *p=0.193 for a 2-tailed one-sample t-test compared with 
reference mass activity of 3.45MBq/kg; **one lesion was smaller than 30mm at final histology, 
it was larger than 30mm at CT due to surrounding organizing pneumoni
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 Parametric  Static  

  25% median 75% normality 25% median 75% normality 

MATV (cm3) 18.43 49.51 82.47 0,01 18.83 35.39 81.29 0.006 

CIHAUC 0.27 0.30 0.35 >0.10 0.28 0.33 0.38 >0.10 

Entropy (E) 4.52 4.69 5.18 >0.10 6.46 6.72 7.08 >0.10 

Homogeneity (H) 0.51 0.55 0.56 0,0083 0.22 0.25 0.28 >0.10 

Dissimilarity (D) 2.03 2.22 2.48 >0.10 4.86 6.07 7.26 >0.10 
High intensity 
emphasis (HIE) 854 1108 1229 >0.10 514 661 800 >0.10 

Zone percentage (ZP) 0.41 0.47 0.51 >0.10 0.82 0.86 0.88 >0.10 

SUVmax/Kimax 0.05 0.06 0.07 0.06 9.41 12.41 14.96 >0.10 

TLG/MRIV 161 448 1074 0,0002 1,13E+05 2,29E+05 5,14E+05 0.0001 
 

Table 2: Statistics and normality (Kolmogorov-Smirnov test) for features derived from static and parametric 18F-FDG PET images  
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  Bland-Altman analysis 

Spearman rank correlation   % difference P-value 

LL 95% CI for LL UL 95% CI for UL  Mean SD (H0: Mean=0) rs p-value 95% CI 

MATV (cm3)* -2.31 6.64 0.14 -15.32 -20.72 to -9.91 10.71 5.30 to 16.11 0.96 <0.0001 0.90 to 0.99 

CIHAUC 2.39 16.52 0.53 -29.99 -43.43 to -16.55 34.77 21.33 to 48.21 0.75 0.0002 0.45 to 0.89 

Entropy (E) -0.30 2.09 0.53 -4.39 -6.09 to -2.69 3.80 2.10 to 5.49 0.91 <0.0001 0.78 to 0.96 

Homogeneity (H) 0.64 11.91 0.81 -22.71 -32.40 to -13.02 23.99 14.30 to 33.68 0.70 0.0006 0.38 to 0.87 

Dissimilarity (D) -1.13 16.30 0.76 -33.08 -46.34 to -19.82 30.82 17.55 to 44.08 0.78 <0.0001 0.52 to 0.91 
High intensity 
emphasis (HIE) 0.32 20.89 0.95 -40.63 -57.63 to -23.63 41.27 24.27 to 58.26 0.77 0.0001 0.51 to 0.91 

Zone percentage (ZP) 1.04 3.65 0.22 -6.11 -9.07 to -3.14 8.18 5.22 to 11.15 0.74 0.0002 0.44 to 0.89 

SUVmax/Kimax - - - - - - - 0.90 <0.0001 0.76 to 0.96 

TLG/MRV* - - - - - - - 0.98 <0.0001 0.94 to 0.99 
 
Table 3: Results from the Bland-Altman analysis (*TLG/MRV and MATV were log transformed) and the Spearman rank correlation, between features 
from static and parametric 18F-FDG PET images 
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