Dennis J. N. J. Soemers

Dennis J. N. J. Soemers
Maastricht University | UM · Department of Advanced Computing Sciences

Master of Science

About

50
Publications
4,643
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
180
Citations
Citations since 2016
50 Research Items
180 Citations
20162017201820192020202120220102030
20162017201820192020202120220102030
20162017201820192020202120220102030
20162017201820192020202120220102030
Introduction
Dennis Soemers currently works at the Department of Data Science and Knowledge Engineering, Maastricht University, as a PhD Student. Dennis does research in Artificial Intelligence, with a focus on Search Algorithms, Games & AI, and Reinforcement Learning.
Additional affiliations
September 2020 - December 2020
Meta
Position
  • Research Intern
Description
  • Research Internship during PhD at Maastricht University.
October 2018 - present
Maastricht University
Position
  • PhD Student
Description
  • Working on the Digital Ludeme Project (http://www.ludeme.eu/), supervised by Dr. Cameron Browne.
October 2016 - October 2018
Vrije Universiteit Brussel
Position
  • PhD Student
Description
  • Worked on the C-Cure project (http://www.securit-brussels.be/project/c-cure/), supervised by Prof. Ann Nowé.
Education
September 2014 - July 2016
Maastricht University
Field of study
  • Artificial Intelligence

Publications

Publications (50)
Preprint
This paper proposes using a linear function approximator, rather than a deep neural network (DNN), to bias a Monte Carlo tree search (MCTS) player for general games. This is unlikely to match the potential raw playing strength of DNNs, but has advantages in terms of generality, interpretability and resources (time and hardware) required for trainin...
Preprint
Full-text available
While current General Game Playing (GGP) systems facilitate useful research in Artificial Intelligence (AI) for game-playing, they are often somewhat specialized and computationally inefficient. In this paper, we describe an initial version of a "ludemic" general game system called Ludii, which has the potential to provide an efficient tool for AI...
Preprint
In recent years, state-of-the-art game-playing agents often involve policies that are trained in self-playing processes where Monte Carlo tree search (MCTS) algorithms and trained policies iteratively improve each other. The strongest results have been obtained when policies are trained to mimic the search behaviour of MCTS by minimising a cross-en...
Preprint
Full-text available
In this paper, we use fully convolutional architectures in AlphaZero-like self-play training setups to facilitate transfer between variants of board games as well as distinct games. We explore how to transfer trained parameters of these architectures based on shared semantics of channels in the state and action representations of the Ludii general...
Chapter
Full-text available
Game boards are described in the Ludii general game system by their underlying graphs, based on tiling, shape and graph operators, with the automatic detection of important properties such as topological relationships between graph elements, directions and radial step sequences. This approach allows most conceivable game boards to be described simp...
Chapter
Full-text available
In this paper we present a process for automatically generating manuals for board games within the Ludii general game system. This process requires many different sub-tasks to be addressed, such as English translation of Ludii game descriptions, move visualisation, highlighting winning moves, strategy explanation, among others. These aspects are th...
Chapter
Full-text available
This paper describes three different optimised implementations of playouts, as commonly used by game-playing algorithms such as Monte-Carlo Tree Search. Each of the optimised implementations is applicable only to specific sets of games, based on their rules. The Ludii general game system can automatically infer, based on a game’s description in its...
Preprint
Proof-Number Search (PNS) and Monte-Carlo Tree Search (MCTS) have been successfully applied for decision making in a range of games. This paper proposes a new approach called PN-MCTS that combines these two tree-search methods by incorporating the concept of proof and disproof numbers into the UCT formula of MCTS. Experimental results demonstrate t...
Preprint
Full-text available
There are several different game description languages (GDLs), each intended to allow wide ranges of arbitrary games (i.e., general games) to be described in a single higher-level language than general-purpose programming languages. Games described in such formats can subsequently be presented as challenges for automated general game playing agents...
Article
Full-text available
Combinations of Monte-Carlo tree search and Deep Neural Networks, trained through self-play, have produced state-of-the-art results for automated game-playing in many board games. The training and search algorithms are not game-specific, but every individual game that these approaches are applied to still requires domain knowledge for the implement...
Preprint
Full-text available
In many board games and other abstract games, patterns have been used as features that can guide automated game-playing agents. Such patterns or features often represent particular configurations of pieces, empty positions, etc., which may be relevant for a game's strategies. Their use has been particularly prevalent in the game of Go, but also man...
Preprint
Full-text available
Game boards are described in the Ludii general game system by their underlying graphs, based on tiling, shape and graph operators, with the automatic detection of important properties such as topological relationships between graph elements, directions and radial step sequences. This approach allows most conceivable game boards to be described simp...
Preprint
Full-text available
This paper describes three different optimised implementations of playouts, as commonly used by game-playing algorithms such as Monte-Carlo Tree Search. Each of the optimised implementations is applicable only to specific sets of games, based on their rules. The Ludii general game system can automatically infer, based on a game's description in its...
Preprint
Full-text available
In this paper we present a process for automatically generating manuals for board games within the Ludii general game system. This process requires many different sub-tasks to be addressed, such as English translation of Ludii game descriptions, move visualisation, highlighting winning moves, strategy explanation, among others. These aspects are th...
Preprint
Full-text available
Many games often share common ideas or aspects between them, such as their rules, controls, or playing area. However, in the context of General Game Playing (GGP) for board games, this area remains under-explored. We propose to formalise the notion of "game concept", inspired by terms generally used by game players and designers. Through the Ludii...
Preprint
Full-text available
This paper investigates the performance of different general-game-playing heuristics for games in the Ludii general game system. Based on these results, we train several regression learning models to predict the performance of these heuristics based on each game's description file. We also provide a condensed analysis of the games available in Ludi...
Preprint
Full-text available
Combinations of Monte-Carlo tree search and Deep Neural Networks, trained through self-play, have produced state-of-the-art results for automated game-playing in many board games. The training and search algorithms are not game-specific, but every individual game that these approaches are applied to still requires domain knowledge for the implement...
Preprint
Full-text available
This technical report outlines the fundamental workings of the game logic behind Ludii, a general game system, that can be used to play a wide variety of games. Ludii is a program developed for the ERC-funded Digital Ludeme Project, in which mathematical and computational approaches are used to study how games were played, and spread, throughout hi...
Preprint
Full-text available
This short paper describes an ongoing research project that requires the automated self-play learning and evaluation of a large number of board games in digital form. We describe the approach we are taking to determine relevant features, for biasing MCTS playouts for arbitrary games played on arbitrary geometries. Benefits of our approach include e...
Chapter
Full-text available
Ludii is a new general game system, currently under development, which aims to support a wider range of games than existing systems and approaches. It is being developed primarily for the task of game design, but offers a number of other potential benefits for game and AI researchers, professionals and hobbyists. This paper is based on an interacti...
Preprint
Full-text available
Expert Iteration (ExIt) is an effective framework for learning game-playing policies from self-play. ExIt involves training a policy to mimic the search behaviour of a tree search algorithm - such as Monte-Carlo tree search - and using the trained policy to guide it. The policy and the tree search can then iteratively improve each other, through ex...
Article
Full-text available
Many of the famous single-player games, commonly called puzzles, can be shown to be NP-Complete. Indeed, this class of complexity contains hundreds of puzzles, since people particularly appreciate completing an intractable puzzle, such as Sudoku, but also enjoy the ability to check their solution easily once it’s done. For this reason, using constr...
Preprint
Full-text available
The Digital Ludeme Project (DLP) aims to reconstruct and analyse over 1000 traditional strategy games using modern techniques. One of the key aspects of this project is the development of Ludii, a general game system that will be able to model and play the complete range of games required by this project. Such an undertaking will create a wide rang...
Preprint
Full-text available
Although General Game Playing (GGP) systems can facilitate useful research in Artificial Intelligence (AI) for game-playing, they are often computationally inefficient and somewhat specialised to a specific class of games. However, since the start of this year, two General Game Systems have emerged that provide efficient alternatives to the academi...
Preprint
Full-text available
Many of the famous single-player games, commonly called puzzles, can be shown to be NP-Complete. Indeed, this class of complexity contains hundreds of puzzles, since people particularly appreciate completing an intractable puzzle, such as Sudoku, but also enjoy the ability to check their solution easily once it's done. For this reason, using constr...
Preprint
Full-text available
Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). While its primary aim is to model, play, and analyse the full range of traditional strategy games, Ludii also has the potential to support a wide range of AI research topics and competitions. This paper describes some of the future competitions an...
Conference Paper
Full-text available
Although General Game Playing (GGP) systems can facilitate useful research in Artificial Intelligence (AI) for game-playing, they are often computationally inefficient and somewhat specialised to a specific class of games. However, since the start of this year, two General Game Systems have emerged that provide efficient alternatives to the academi...
Conference Paper
Full-text available
Bien que les systèmes actuels de General Game Playing (GGP) facilitent la recherche en Intelligence Artificielle (IA) autour des jeux, ils sont souvent trop spécialisés et fournissent une capacité de calcul trop faible. Cet article décrit une première version du système ludémique de GGP dénommé LUDII qui apporte un outil efficace à la recherche en...
Conference Paper
Full-text available
The Digital Ludeme Project (DLP) aims to reconstruct and analyse over 1000 traditional strategy games using modern techniques. One of the key aspects of this project is the development of Ludii, a general game system that will be able to model and play the complete range of games required by this project. Such an undertaking will create a wide rang...
Conference Paper
Full-text available
Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). While its primary aim is to model, play, and analyse the full range of traditional strategy games, Ludii also has the potential to support a wide range of AI research topics and competitions. This paper describes some of the future competitions an...
Conference Paper
Full-text available
The Digital Ludeme Project (DLP) aims to reconstruct and analyse over 1000 traditional strategy games using modern techniques. One of the key aspects of this project is the development of Ludii, a general game system that will be able to model and play the complete range of games required by this project. Such an undertaking will create a wide rang...
Preprint
Full-text available
Digital Archaeoludology (DAL) is a new field of study involving the analysis and reconstruction of ancient games from incomplete descriptions and archaeological evidence using modern computational techniques. The aim is to provide digital tools and methods to help game historians and other researchers better understand traditional games, their deve...
Conference Paper
Full-text available
This short paper describes an ongoing research project that requires the automated self-play learning and evaluation of a large number of board games in digital form. We describe the approach we are taking to determine relevant features, for biasing MCTS playouts for arbitrary games played on arbitrary geometries. Benefits of our approach include e...
Conference Paper
Credit card transactions predicted to be fraudulent by automated detection systems are typically handed over to human experts for verification. To limit costs, it is standard practice to select only the most suspicious transactions for investigation. We claim that a trade-off between exploration and exploitation is imperative to enable adaptation t...
Article
Credit card transactions predicted to be fraudulent by automated detection systems are typically handed over to human experts for verification. To limit costs, it is standard practice to select only the most suspicious transactions for investigation. We claim that a trade-off between exploration and exploitation is imperative to enable adaptation t...
Article
Full-text available
This paper showcases the setting and results of the first Two-Player General Video Game AI competition, which ran in 2016 at the IEEE World Congress on Computational Intelligence and the IEEE Conference on Computational Intelligence and Games. The challenges for the general game AI agents are expanded in this track from the single-player version, l...

Network

Cited By

Projects

Project (1)
Project
The Digital Ludeme Project is a five year ERC-funded research project hosted by Maastricht University. This project is a computational study of the world's traditional strategy games throughout recorded human history. It aims to improve our understanding of traditional games using modern AI techniques, to chart their historical development and explore their role in the development of human culture and the spread of mathematical ideas. Website: http://ludeme.eu