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Epidemiological studies of traffic-related air pollution typically estimate exposures at residential locations only; however, if study subjects spend time away

from home, exposure measurement error, and therefore bias, may be introduced into epidemiological analyses. For two study areas (Vancouver, British

Columbia, and Southern California), we use paired residence- and mobility-based estimates of individual exposure to ambient nitrogen dioxide, and apply

error theory to calculate bias for scenarios when mobility is not considered. In Vancouver, the mean bias was 0.84 (range: 0.79–0.89; SD: 0.01), indicating

potential bias of an effect estimate toward the null by B16% when using residence-based exposure estimates. Bias was more strongly negative (mean:

0.70, range: 0.63–0.77, SD: 0.02) when the underlying pollution estimates had higher spatial variation (land-use regression versus monitor interpolation).

In Southern California, bias was seen to become more strongly negative with increasing time and distance spent away from home (e.g., 0.99 for 0–2 h

spent at least 10 km away, 0.66 for Z10 h spent at least 40 km away). Our results suggest that ignoring daily mobility patterns can contribute to bias

toward the null hypothesis in epidemiological studies using individual-level exposure estimates.
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Introduction

Accurately measuring or estimating exposure to outdoor air

pollution can be a challenge for epidemiological studies of

large populations, especially given peoples’ tendency to move

about over time through changing pollution concentrations.

When logistics and costs preclude personal monitoring,

surrogates of personal exposure are used, which may

introduce error into epidemiological analyses.

The magnitude of error in health effect estimates that is

caused by the use of a surrogate exposure measure depends in

part on study design. Time-series studies of acute effects are

relatively insensitive to exposure error (Zeger et al., 2000;

Sheppard et al., 2005). Similarly, cohort studies that include

multiple communities, assign exposure based on community-

average pollution concentration, and consider long-term

health effects are relatively unaffected by a lack of personal

exposure measures (Berhane et al., 2004). In both cases, the

error introduced by using the surrogate measure is of

Berkson type (i.e., true exposures vary about the assigned

mean exposure for the group), which has been shown to

widen the confidence interval, but not alter the magnitude or

direction of the effect estimate (Armstrong, 1998). However,

when variability in pollution concentrations (and exposures)

is higher within community than between community, there

is potential for exposure misclassification and underestima-

tion of health effects (Navidi and Lurmann, 1995; Jerrett

et al., 2005; Wilson et al., 2005; Miller et al., 2007).

A growing number of studies of long-term effects of

exposure to air pollutants use model-based estimates of

ambient (outdoor) pollution to better capture within-community

variability in exposure (Hoek et al., 2008; Nordling

et al., 2008). For this approach, exposure is assumed to equal

the outdoor concentration at subjects’ residential locations.

Often, for reasons of confidentiality, only the postal codes or

census areas of subjects’ residences are available. Hereafter,

we use the term ‘‘residence’’ to indicate any of these potential

geographic identifiers. Recent literature using this app-

roach emphasizes increasingly high-resolution estimates to

better characterize concentrations at residential locations.

However, if study subjects spend time away from home F
for example, at work, school, or shopping F this approachReceived 1 November 2009; accepted 12 February 2010
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may lead to errors in individual exposure estimates. In this

study, we argue that these errors are classical (i.e., the

surrogate measure varies around the true exposure), rather

than Berkson (true exposures vary about the assigned mean),

and therefore have the potential to bias health effect estimates

toward the null (Armstrong, 1998). Little or no extant

research investigates bias caused by daily mobility. Our study

explores the potential magnitude of this bias.

Evidence for the effect of mobility on exposure levels can

be found in empirical studies that compare personal

monitoring with ambient monitoring at subjects’ residences.

A study of nitrogen dioxide (NO2) in Portage, Wisconsin,

correlated personal exposure with outdoor NO2 at residence,

full-time worker status, and commute distance (Quackenboss

et al., 1986). In Helsinki, Kousa et al. (2001) found that

work locations downtown were one of the strongest

predictors of personal exposure to NO2; other predictors

included outdoor concentrations at residential or central

locations. Nethery et al. (2008) compared personal exposure

monitoring of NO2 with land-use regression (LUR) estimates

of outdoor concentrations developed by Henderson et al.

(2007). The weak but statistically significant correlation

between personal monitoring and LUR estimates at the

residential postal code (Pearson’s r¼ 0.18) was improved

when LUR concentrations at subjects’ work locations were

included (Pearson’s r¼ 0.28). The preceding examples focus

on NO2, which shows relatively high spatial variability

within communities because of its association with vehicle

emissions. As expected, daily mobility is of less concern for

exposure estimation when pollutant concentrations are

spatially homogeneous. For example, Strand et al. (2006)

report that for sulfate, children’s personal exposure was

highly correlated with home indoor (r¼ 0.94) and with

school outdoor (r¼ 0.92) concentrations. Sulfate has no

major indoor sources and typically is not expected to vary

significantly at scales o100–1000 km (Gilliland et al., 2005).

Exposure simulation studies provide an opportunity to

explore how mobility affects exposure estimates. Setton et al.

(2008) used census-based work flow estimates and

high-resolution (LUR) estimates of annual average NO2

concentrations developed by Henderson et al. (2007) to

simulate census tract-specific exposure distributions for

working people in Metro Vancouver. They show that

although time spent at residential locations contributes most

to exposure differences among census tracts, time spent at

work locations contributes most to within-census tract

variability in exposures. Marshall et al. (2006) combined

geocoded origin–destination survey records (n¼ 25,064) for

California’s South Coast Air Basin (SoCAB), time-varying

outdoor concentrations estimates from the CAMx air

dispersion model, and a mobility-based exposure model that

accounts for time spent indoors, outdoors, and in vehicles.

Their results show that average inhalation intake rates are

higher for mobility-based estimates than for residence-only

estimates. Increases were higher for butadiene and particulate

hexavalent chromium (30 and 27%, respectively) than for

ozone, benzene, and fine particulate matter emitted by diesel

engines (2, 5, and 8%, respectively).

Using results obtained from the study by Setton et al.

(2008) for Metro Vancouver and from Marshall et al. (2006)

and Marshall (2008) for Southern California, we investigate

the potential bias in relative risk estimates associated with

using outdoor pollution levels at the residential address only

as exposure measurements versus estimates that incorporate

time spent away from homes. We examine three hypotheses

specific to mobile populations: (1) ignoring daily mobility

(e.g., using residence-only exposure estimates) will contribute

to negative bias in effect estimates; (2) increasing spatial

variation in pollution estimates will lead to stronger negative

bias; and (3) negative bias will be stronger as distance and

time spent away from residence increases.

Methods

Metro Vancouver
Metro Vancouver (population: 2.1 million; study area:

B60� 60 km2) is a relatively low-pollution urban area in

southwestern British Columbia. The exposure data set was

produced to investigate spatial variability and mobility effects

on exposures; see Setton et al. (2008). For each of 382 census

tracts, microenvironment simulation produced two distribu-

tions (n¼ 10,000 each) of time-weighted, seasonally adjusted

estimates of annual exposure to NO2: one distribution

assumes that all time is spent at the residential location; the

other distribution incorporates time spent away from home

and associated changes in pollution levels. Time–activity

patterns from the CHAPS (Canadian Human Activity

Pattern Survey) with weekday work were used to simulate

exposures for ‘‘workers’’ in each census tract. Work flow data

obtained from the 2001 census reporting were used to

identify work destination census tracts; records reporting the

same census tract for work and residence were defined as

‘‘non-mobile’’ and were omitted from the simulation. Time

spent neither at work nor at home was assumed to be within

5 km of the residential census tract centroid. Although

incorporated in the algorithm to estimate exposure, record-

specific information on the maximum distance and time away

from home is not retained in the output; therefore, analysis of

the impact of increasing time and distance away from home

cannot be conducted with the Metro Vancouver data set. We

used two approaches for estimating spatial variability in

annual average NO2 concentrations: LUR (Figure 1a)

(Henderson et al., 2007) and inverse-distance weighted

(IDW) interpolation of monitoring station data (Figure 1b)

(Setton et al., 2008). For each pollution estimate (IDW and

LUR), we created 10,000 population samples (each with

n¼ 382), by randomly selecting a single estimate from each
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of the census tract distributions, then calculating the

associated bias.

Southern California
The SoCAB (population: 15.9 million; study area:

B70� 120 km2) is an urban environment in Southern

California well known for its poor air quality. The exposure

data set consists of transportation survey records for

25,064 individuals residing in the SoCAB who participated

in the Southern California Association of Governments

(SCAG) year-2000 transportation survey (SCAG F Southern

California Association of Government, 2003). Survey

respondents recorded travel activities (such as type of

activity, start and end time, location for trips) for 24-h periods;

SCAG geocoded all travel activities (the latitude and longitude

of trip origins and destinations). Each individual record and

trip was spatially and temporally linked to hourly concentra-

tion estimates (grid cells: 2� 2km2) from the commercially

available CAMx dispersion model. As with the Vancouver data

set, two exposure estimates were generated per person: one

incorporating mobility and the other assuming that subjects

spent all time at their residential locations. Annual average

NO2 concentrations produced by the CAMx model are shown

in Figure 2.

The SCAG database contains a 1-day record for most

(85%) individuals and a 2-day record for the remaining
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Figure 1. Annual average nitrogen dioxide concentrations, Metro Vancouver: (a) land-use regression, (b) inverse distance weighting of the 16
monitoring stations.
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(15%) individuals. To avoid overrepresentation for some

individuals, we deleted all second-day records. Records

reporting zero for maximum distance traveled, but with

larger than zero values in time spent away from home (148

records or 0.6%) were deleted as incomplete. Given our

interest in exploring bias associated with mobile populations,

records indicating no time spent away from home (6369

records or 25%) were considered as non-mobile and deleted,

leaving 18,547 mobility records for our analysis. We created

10,000 samples (each with n¼ 3600, approximating a 20%

sample of the full data set) and calculated the bias associated

with each. In addition, because the SoCAB data set includes

time spent away from home and distance from home, we

explored the effect on bias of increasing time and distance

away from home locations. To do so, we calculated bias for

subsamples of records showing specific ranges of time and

distance from home (see below).

Comparison of the Two Data sets
The data sets used in this study have been developed for

different purposes and by different methods, and so are

dissimilar in the following ways: (1) the SoCAB data

represent actual individuals, with travel information identify-

ing real trip origins, destinations, and time spent away from

home for all mobile individuals. The Metro Vancouver data

set uses a Monte Carlo approach to simulate representative

work-related time–activity patterns; results represent the

distribution of possible exposures per census tract, rather

than any specific individuals, for workers. (2) The SoCAB

data provide a 1-day estimate of travel patterns and pollutant

exposures per person, whereas the Vancouver estimates are

annual averages. The two methods differ; we do not expect

the results to be directly comparable. Rather, both

approaches provide distinct yet meaningful information

about bias factors attributable to mobility.

Calculation of a Bias Factor
General classical error theory suggests that:

Z ¼ X þ E ð1Þ

where Z is the value of the surrogate (or observed) measure,

X the true value, and E the error in measuring X (Armstrong,

1990). For our calculations, we assume that residence-only-

based estimates of exposure are analogous to Z (the typically

used surrogate measure) and that the mobility-based

estimates are closer to X (true measures, such as might be

collected using personal monitoring). Therefore, error E for

each individual equals Z (the residence-only estimate) minus

X (the mobility estimate).

For the classical error model, E is assumed to be

independent of X, but in our data sets, E shows varying

degrees of positive correlation with X. Therefore, we use the

following equation, provided in the study by Wacholder

(1995), to calculate the bias factor expected in regression
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Figure 2. Annual average nitrogen dioxide concentrations, South Coast Air Basin.
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coefficients of simple linear models in the presence of the

correlation between E and X:

BIAS ¼ s2 þ f
s2 þ 2fþ o2 ð2Þ

where, s2 is the variance of X, f the covariance of (X, E),

and o2 the variance of E (Wacholder, 1995). Equation (2)

provides a multiplier that would apply to the relative risk

estimate produced using the surrogate (residence-only)

exposure estimates. For example, if Eq. (2) yields the value

0.75, then the bias due to the use of the surrogate (residence-

only) measure is negative and the relative risk is being

underestimated by 25%.

Results

For Metro Vancouver, the mean bias associated with using

residence-only NO2 estimates is 0.70 (range: 0.63–0.77;

SD: 0.02) for the LUR approach and 0.84 (range: 0.79–0.89;

SD: 0.01) for the IDWapproach (Table 1).

Biases for subsamples of the SoCAB data set with selected

combinations of time and distance away from home are

shown in Figure 3. Bias is negative (Eq. (2) values are o1.0)

and increases in magnitude (Eq. (2) values are increasingly

o1.0) with increasing time and distance spent away from

home locations, from 0.99 for 0–2 h spent at least 10 km

away to 0.61 for Z10 h spent at least 40 km away. For the

entire SoCAB data set (n¼ 18,547), the overall bias is 0.93

(range: 0.91–0.95; SD: 0.005).

Our results support all three hypotheses: ignoring daily

mobility (e.g., using residence-only exposure estimates)

contributes to negative bias in effect estimates; increasing

spatial variation in pollution estimates leads to stronger

negative bias; and negative bias is stronger as distance and

time spent away from residence increases.

Discussion

Ignoring geographic mobility through the use of residence-

only exposure estimates produced negative bias in all of our

data sets, a condition which occurs when the variance of the

‘‘true’’ (mobility-based) estimate is smaller than that of the

surrogate (residence-only) estimate, given the classical error

model (Armstrong, 1990). In both data sets, residential

locations of the subjects (real or simulated) are well dispersed

geographically; therefore, the variance of the residential-only

exposure estimates reflects the spatial variability of the

pollution map. The mobility-based exposures are based on

time-weighted averages of concentrations from various

locations in the study area, and therefore represent spatially

averaged concentrations, resulting in mobility-based expo-

sure data sets with lower variation than the associated

residence-only data sets.

In Metro Vancouver, bias was more strongly negative for

the LUR approach than for the IDW monitoring-based

approach; given that spatial variability in NO2 concentra-

tions is greater for LUR than for the monitoring approach;

this result supports our intuitive hypothesis that stronger

negative bias will exist when pollution variability is high.

Although this result is derived in this study from different

methods to map one pollutant (NO2), we expect that the

same result would apply when comparing pollutants with

different levels of spatial variability.

Finally, we expected that negative bias will be stronger

with increasing distance and time spent away from home.

That hypothesis is well supported by the analysis of the

SoCAB data set. This finding illustrates the importance of

understanding the mobility characteristics of a population

used for epidemiological studies of outdoor air pollution

impacts on population health.

To our knowledge, the analyses presented in this study are

the first to explore the effect of using residence-only-based

estimates of ambient air pollution concentrations as exposure

measures for large cohort-based epidemiological studies,

instead of mobility-based measures. In a somewhat analo-

gous scenario based on empirical data (concentrations

measured at school-only versus personal monitors),

Van Roosbroeck et al. (2008) report the unadjusted

(exposure measured as the ambient concentration of NO2

and soot at school locations) and adjusted (based on

Table 1. Descriptive statistics for bias calculation results

Sample Mean Median SD Min Max Range

Metro Vancouver, LUR 0.70 0.70 0.02 0.62 0.78 0.16

Metro Vancouver, IDW 0.84 0.85 0.013 0.80 0.90 0.10
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Figure 3. Calculated bias and its dependence on time and distance
spent away from home, South Coast Air Basin.
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regression calibration with personal monitoring data) pre-

valence ratios for four respiratory conditions in school

children in the Netherlands. For NO2, the bias factor

apparent in the prevalence ratios ranges from 0.33 to 0.54.

This suggests a stronger negative bias than our results. Our

results are limited to ambient exposures only; the impact of

capturing exposure to indoor sources of NO2 at the children’s

home locations may contribute to the increased bias detected

in their study.

Our study is limited by the use of data sets that were

developed for other purposes, and so we cannot fully explore

the hypotheses put forth. We note that the overall bias

calculated for the SoCAB data (n¼ 18,547) is relatively weak

in comparison with that of the Metro Vancouver data set. We

identify this as an opportunity for further investigation, in the

event that the data sets can be made more directly

comparable. However, as a first step, the analyses presented

in this study provide useful information and suggest future

research avenues that may be fruitful in developing a deeper

understanding of when it is most advisable to incorporate

mobility-based estimates in epidemiological analyses.

Although these results support our hypothesis that

ignoring mobility results in negative bias, they also suggest

more complex relationships that depend on the spatial

distribution of the sample population in relation to the

spatial distribution of pollution. In both study areas, the

sample populations are well dispersed spatially. This may not

always be the case in epidemiology studies. For example, a

sample population that is clustered near a single point source

of pollution might have similar exposures based on residential

locations, but more variable mobility-based exposures when

considered as a group. In this case, the Berkson error may

dominate (‘‘true’’ measures vary around residence-only

measures), in which case, no negative bias would occur.

Another scenario could reflect a spatially dispersed study

population, but a pollution map that is dominated by a large

point source in one area. Only those subjects traveling away

from or into the ‘‘hot spot’’ would have mobility-based

exposures much different than their residence-based esti-

mates, with likely unpredictable effects on the variability of

the residence-only and mobility-based exposures. These

hypotheses are presented in this study as potential avenues

for future simulation studies.

In conclusion, our study illustrates that negative bias due

to ignoring mobility can occur in simple linear models of

exposure to outdoor air pollution and health effects, and that

bias may be stronger as the spatial variability of pollution

concentrations or of peoples’ locations increase. Gilliland

et al. (2005) suggest that high spatial variability (r50m to

4 km) is expected for NO2 and nitric oxide, elemental carbon,

organics including polycyclic aromatic hydrocarbons, and

metals, such as hexavalent chromium, cadmium, lead,

beryllium, nickel, arsenic, iron, and manganese. Epidemio-

logical studies of these pollutants can show the greatest

benefits from incorporating information on mobility in

exposure estimates. Bias may also become more strongly

negative as the geographic mobility (time and distance

away from home) of the study population increases;

however, the spatial pattern of pollution may modify

this effect, especially if a few discrete ‘‘hot spots’’ of pollution

are present in the study area. Future research on how

different patterns of pollution modify bias due to geographic

mobility is warranted, as is research on the potential bias

related to ignoring mobility in more complex health effects

models.
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