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Abstract

The Internet of Things (IoT) is an ubiquitous system connecting many
different devices – the things – which can be accessed from the distance.
With the possibility to monitor and control the physical environment from
the distance, that is the IoT contains cyber-physical systems (CPS), the
two concepts of dependability and security get deeply intertwined. The
increasing level of dynamicity, heterogeneity, and complexity adds to the
system’s vulnerability, and challenges its ability to react to faults. This
paper summarizes state-of-the-art of existing surveys on anomaly detec-
tion, fault-tolerance and self-healing and adds a number of other methods
applicable to achieve resilience in an IoT. We particularly focus on non-
intrusive methods ensuring data integrity in the network. Furthermore,
this paper presents the main challenges to build a resilient IoT for CPS. It
further summarizes our solutions, work-in-progress and future work to this
topic for the project “Trustworthy IoT for CPS”. Eventually, this frame-
work is applied to the selected use case of a smart sensor infrastructure
in the transport domain.

1 Introduction

Cyber-physical systems (CPS) [1–4] are the new emerging smart information
and communications technology (ICT) that are deeply affecting our society in
several application domains. Examples include unmanned aerial vehicles (UAV),
wireless sensor networks, (semi-) autonomous cars [5], vehicular networks [3] and
a new generation of sophisticated life-critical and networked medical devices [6].

CPS consist of collaborative computational entities that are tightly interact-
ing with physical components through sensors and actuators. They are usually
federated as a system-of-systems communicating with each other and with the
humans over the Internet of Things (IoT), a network infrastructure enabling
the interoperability of these embedded devices.
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As the advent of Internet has revolutionized the communication between
humans, so the CPS and IoT are reshaping the way in which we perceive and
interact with our physical world. This comes at a price: these systems are
becoming so pervasive in our daily life that failures and security vulnerabilities
can be the cause of fatal accidents, undermining their trustworthiness in the
public eye. Fig. 1 depicts the evolution of embedded systems, their goals and
requirements.
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Figure 1: A brief history of computer systems and its roadmap towards resilient
IoT for CPS.

Over the last years, popular mainstream newspapers have published several
articles about CPS that are recalled from the market due to software and/or
hardware bugs. For example in 2015, The New York Times published the
news [7] about the finding of a software bug in Boeing 787 that could cause
“the plane power control units to shut down power generators if they were pow-
ered without interruption for 248 days”. The Washington Post has recently
published an article [8] about Fiat Chrysler Automobiles NV recalling over 4.8
million U.S. vehicles for a defect that prevents drivers from shutting off cruise
control, placing them in a potential hazard. The recent accident of Uber’s self-
driving vehicle killing a pedestrian held a world wide appeal in the press [9],
raising several concerns about the safety and trustworthiness of this technology.

With the connection to the Internet, security becomes another crucial factor
that is intertwined with safety (“if it’s not secure it’s not safe” [10]). The
tight interaction between the software and the physical components in CPS
enables cyber-attacks to have catastrophic physical consequences. The Guardian
reported last year [11] that over half a million pacemakers has been recalled by
the American Food and Drug Administration due to fears that hackers could
exploit cyber security flaws to deplete their batteries or to alter the patient’s
heartbeat. In 2015 the BBC announced [12] that the black-out of the Ukraine
power grid was the consequence of a malware installed on computer systems
at power generation firms, enabling the hackers to get remote access to these
computers. In the same year two hackers have proved in front of the media [13]
that they could hijack a Jeep over the internet.

The rise of IoT, that is forecast to grow to 75 billions of devices in 2025 (Fig. 2),
is exacerbating the problem, by providing an incredibly powerful platform to
amplify these cyber-attacks. An example is the MIRAI botnet that in 2016
have exploited more than 400000 devices connected through the IoT as a vehi-
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cle to launch some of the most potent distributed denial-of-service (DDoS) in
history [14].
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Figure 2: Internet of Things (IoT) connected devices installed worldwide from
2015 to 2025 (in billions) [15].

Managing and monitoring such ultra large scale system is becoming ex-
tremely challenging. A desired property to achieve/enforce for this, is to be
resilient : the service delivery (or functionality) that can justifiably be trusted
persists, when facing changes [16]. In other words, the system shall remain safe
and secure in the advent of faults and threats (see Fig. 3 for some examples in
the automotive domain). Furthermore the resilience mechanisms have to evolve
and adapt with the system, meaning the system shall remain resilient in the
presence of faults probably not even considered during design time [10,16].

This paper gives an overview on the state-of-the-art (SotA) to resilience for
the IoT. Methods from surveys are summarized and complemented with recent
publications. Due to the expected heterogeneous architecture we specifically
target non-intrusive methods which reason and act in the communication net-
work or at the interfaces of the IoT devices. In particular, we want to focus on
the possibilities to fulfill following requirements regarding resilience:

• R1: Detection of faulty, attacked or failed components during
runtime in an IoT. Faulty or already failed components shall be detected
to be able to maintain or recover to a healthy system state providing
correct system services.

• R2: Maintain reliability and integrity of information in an IoT.
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Figure 3: Exemplary faults and threats in a connected vehicle.

Ensure the reliability (continuity of correct service) and integrity (absence
of improper system alterations) [17] of the communicated information in
a dynamic and heterogeneous system.

We further demonstrate our solutions to ensure resilience for the information
collected and employed by the IoT.

The rest of the paper is organized as follows. Section 2 gives an overview of
related roadmaps and surveys used for the SotA summary. Section 3 introduces
resilience, fault types and fault examples. Section 4 collects SotA methods and
techniques for failure detection and recovery. Section 5 discusses challenges to
resilience in IoT. Section 6 presents our solutions to this topic. Section 7 finally
concludes the paper with a discussion of our solution and future work.

2 Related Work

Recent surveys on the IoT review definitions, state IoT and research chal-
lenges or discuss technologies to enable interoperability and management of
the IoT [18–21]. Wollschlaeger et al. [20] address IoT SotA and challenges fo-
cusing on the communication network and its management. They argue that
the IoT is build using consumer electronics using the current Ethernet standard
whereas industrial IoT (IIoT) needs real-time, reliable and efficient communi-
cation which is still under development (Ethernet TSN, 5G networks). Ray [21]
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surveys IoT enabling technologies and states the desired functionality of an IoT
including self-adaptation and intelligent decision making. However, the survey
only goes into details of available architectures with a focus on applications and
security. Sfar et al. [22] recently published a roadmap to security in IoT. It
surveys technologies to ensure privacy, trust and authentication.

Resilience has been denoted and discussed as a challenge in IoT [10,18,20,23],
however, has mostly been studied in general or in other areas of computer
science [16,17,24–30].

Notably, Avizienis et al. [17] published an early and very detailed classifi-
cation of fault-tolerant techniques and defines the attributes of resilience. The
terminology used within this paper is adopted from Avizienis et al. [17], La-
prie [16] and Ceccarelli et al. [4].

Section 4.1 (“reason”) mainly summarizes the techniques given in surveys
on anomaly detection [31, 32]. However, the majority of surveys to “anomaly
detection” tackle intrusion detection [33, 34] (e.g., based on machine learning
/ data mining [32] or computational intelligence [35]). We therefore add other
methods to reason about failures: runtime verification [36, 37] and fault local-
ization [38–41]. Chandola et al. [31] provides an essential survey of anomaly
detection which studies the types of anomalies, the used methods from the
applications perspective and elaborate on the different techniques (models, as-
sumptions, complexity, advantages, limitations). Isermann [42] surveys fault
detection and fault-tolerance methods from control theory (e.g., parameter es-
timation of process and signal models). Surveys on intrusion detection [33, 34]
contain beside anomaly detection also signature-based or misuse detection (that
is the detection of bad behavior encoded in signatures) and specification-based
detection (cf. runtime monitoring). The self-healing surveys [25,43] also include
an overview and techniques to fault detection and diagnosis.

The software engineering community provides two main roadmaps on self-
adaptation [24,27]. These discuss the different aspects of self-adaptation and its
research challenges, e.g., requirements engineering, design, models or life-cycles.
Section 4.2 (“act”) collects SotA from [17,25,28,29,43,44]. The authors in [25,43]
provide a thorough survey on self-healing and classifications of the techniques.
Papp and Exarchakos [28] focus on the design and testing for reconfigurable net-
worked embedded systems, however, include an overview of methods and types
of runtime network reconfiguration. Ghosh et al. [43] provide a broad overview
about fault-tolerance, self-healing and health maintenance (fault-prevention).
The authors additionally include health maintenance beside detection and re-
covery. We focus on fault-tolerance or self-healing approaches applicable for
resilient CPS in IoT. The authors in [44] describe simple fault-tolerance meth-
ods (e.g., check-pointing, process migration or restart/replication) for the grid
(but can be applied for some CPS in general). Weyns [29] guides the reader
through the evolution of self-adaptation. He gives an overview to architectures,
runtime models and basic approaches of self-adaptive systems, including adap-
tation considering goals, requirements and uncertainties.

In this paper we focus on runtime fault detection and recovery, however,
fault prevention and health maintenance is another branch of self-healing [43].
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Similar detection and recovery methods play a significant role to keep the system
healthy, e.g., preemptive anomaly detection [45], redundancy, diversity and fault
containment [26,43].

3 Background

CPS are susceptible to failures due to the non-determinism of a complex envi-
ronment, uncertain and/or incomplete observations, unreliable hardware, design
errors or inappropriate usage. Additionally, the components of an IoT are vul-
nerable by distant attackers due to the devices’ connection to the Internet.

3.1 Failures and Threats

A failure is an event that occurs when a system deviates from its intended
behavior. The failure manifests due to an unintended state - the error - of one
or more components of the system. The cause of an error is called the fault [17].

A failure manifests in a wrong content or timing (early, late or no message at
all) of the intended service. Components may contain an error detection mech-
anism and additionally suppress wrong outputs. Such components are called
fail-silent. Some components may automatically stop their execution on failures
or halt crash, so-called fail-stop components. However, an erroneous component
may provide wrong outputs, i.e., the service is erratic (e.g., babbling) which can
cause other services to fail. In the worst case the behavior/output of the failed
component is inconsistent to different observers (Byzantine failure) [17,26].

Faults can be distinguished regarding different aspects [17, 26]. The source
of a fault may be internal or external. Internal faults may be of physical na-
ture (e.g., broken component connector) or introduced by the design (soft-
ware/hardware bug). External faults originate from the environment (e.g.,
noise, radiation) or inputs (e.g., wrong usage of the system, intrusion). Faults
can be classified into transient and permanent faults. Although a transient fault
manifests only for a short period of time, it can cause an error and might lead to
a permanent failure. Physical faults (internal/environmental) and inputs may
be transient or permanent. Design faults are always permanent.

Security has been a topic since the beginning of computer networks identi-
fying vulnerabilities (that is an internal fault enabling an attacker to alter the
system [17]) and avoiding or mitigating malicious attacks in devices. However,
in CPS additional vulnerabilities arise given the connection to the physical do-
main and the uncertain behavior of the physical environment [46]. A possible
attack scenario (that is a malicious external fault) is often referred to as threat.

Table 1 summarizes the main types of faults and gives examples of possible
faults and threats.
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Table 1: Main classifications of faults with examples.
Fault Type Examples

Physical Broken connector, radiation, noise, interference, power
transients, power-down or short generated by an at-
tacker, material theft (e.g., copper), denial-of-service by
jamming / signal interference

Development Hardware production defect, hardware design error (“er-
rata”), software bug in program or data (memory leaks,
accumulation of round-off errors, wrong set of param-
eters), unforeseen circumstances (of the system and/or
its environment), vulnerabilities

Interaction Input mistake, message collision, spoofing (obscure
identity), modify information with a Trojan horse, no or
late message delivery (e.g., by replay attack), denial-of-
service by flooding (e.g., bomb of connection requests),
hacked sensor producing inaccurate or false data causing
incorrect control decisions and actuator actions

Permanent Design faults, broken connector, noise, stuck-at ground
voltage due to a short, logic bomb carried by a virus
slowing down or crashing the system

Transient Radiation, power transients, input mistake, intrusion
attempt (via vulnerabilities, e.g., heating the RAM to
trigger memory errors)

3.2 From Robustness to Resilience

Given the vast possibilities of faults (Table 1) we desire the IoT for CPS to
be dependable and secure throughout its life-cycle. Avizienis [17] defines the
system’s property dependability to be the combination of following attributes:
availability (readiness for correct service), reliability (continuity of correct ser-
vice), safety (absence of catastrophic consequences), integrity (absence of im-
proper system alterations), maintainability (ability to undergo modifications and
repairs). Security includes availability, integrity and confidentiality (the absence
of unauthorized disclosure of information).

Robustness can be considered as another attribute of dependability. It has
its roots in the control theory or CPS where a system is called robust if it
continues to function properly under faults of stochastic nature (e.g., noise). In
recent work on the concepts of cyber-physical systems-of-systems (CPSoS) [4]
robustness is extended to consider also security issues in CPS as well: Robustness
is the dependability with respect to external faults (including malicious external
actions).

A fault-tolerant system recovers from faults to ensure the ongoing service [17],
i.e., achieving dependability and robustness of a system.

The term resilience is often used by the security community to describe
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the resistance to attacks (malicious faults). Laprie [16] defines resilience for
an ubiquitous, large-scale, evolving system: Resilience is “The persistence of
service delivery that can justifiably be trusted, when facing changes.”. He builds
upon the definition of dependability by giving the following short definition of
resilience “The persistence of dependability when facing changes.”.

An ubiquitous, heterogeneous, complex system-of-systems will typically evolve
over time raising the need for the dependability and security established dur-
ing design time to scale up. We therefore find the definition of resilience from
Laprie [16] the best fit to express the needs of an IoT for CPS. A resilient IoT
ensures the functionality when facing also unexpected failures. Moreover, it
scales dependability and security when it comes to functional, environmental
and technological changes [47].

3.3 Ensure Resilience - a Process Perspective

We believe that the IoT needs self-adaptation techniques to achieve resilience
in an evolving system.

Many adaptation techniques consider a (control) loop of monitor, analyze,
plan and execute using a knowledge base (MAPE-K) [48]. The software engi-
neering community [24] uses similar phases: collect information about the envi-
ronment and derive internal system properties, analyze the observations, decide
how to adapt to reach a desired state and finally act. Psaier and Dustdar [25]
define following three phases for self-healing: the detection of an alternation in
the normal behavior, the diagnosis analyzes the root cause and plans a recovery
strategy and finally the recovery. Kounev et al. [30] summarize self-awareness
as learn, reason and act. We agree that learning is an essential part specifically
in an evolving systems (e.g., IoT) and therefore use the phases reason and act
to distinguish the building blocks enabling a resilient IoT.

4 Methods

There are various on- and offline approaches, methods or algorithms to achieve
resilience in a system. Developers may try to prevent faults (e.g., by an ap-
propriate design, encryption or consensus), tolerate faults (e.g., by switching to
a redundant component or another pre-defined configuration), remove/mitigate
faults (e.g., isolate faulty components to avoid the propagation of faults) or
forecast faults (e.g., to estimate the severity or consequences of a fault) [17].
We focus on techniques typically applied during runtime in an automatic way.

Apart from traditional fault-tolerance like backup hardware/software com-
ponents or checkpointing and restarting, self-healing is a promising approach
which is related to self-adaptation and self-awareness. Self-aware systems learn
the models of the system itself and its environment to reason and act (e.g.,
self-healing) in accordance to higher-level goals (e.g., availability) [30]. The key
feature of self-* techniques is learning which is also performed during runtime
to evolve the models (for better performance or to cope with system changes).
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The following two sections give an overview about fault-tolerance methods
split into reason (cf. detect, diagnose) and act (cf. recover) upon failures. They
summarize background and terminology, highly-cited surveys (≥100 citations
according to Google Scholar), recent surveys (≥2015), recent approaches not
part of surveys / additional work, and examples (see distribution in Table 3)
given the keywords in Table 2. Note that we tried to cite original publications
and no derivations of basic fault-tolerant techniques.

Table 2: Keywords used to find research to reason and act upon faults.
Reason Act
anomaly detection, fault detection,
security in CPS, intrusion detection,
runtime monitoring, runtime verifi-
cation, self-awareness

self-healing, self-adaptation, soft-
ware adaptation, runtime reconfig-
uration, fault-tolerance, fault recov-
ery, dependability, resilience

Table 3: Collection and distribution of references per publication type
(ordered by publication year, ascending).

Type Reason Act

Background /
Terminology

[17] [42] [31] [36] [37] [17] [16] [24] [26] [4] [30]
[29]

Highly-cited
surveys

[42] [31] [34] [33] [48] [43] [24] [25]

Recent surveys [37] [32] [46] [28] [49] [50] [51]
Additional [52] [36] [53] [37] [54] [37] [55] [56] [57] [58] [59]
Exemplary [60] [61] [62] [63] [64] [65]

[66] [67] [68] [69] [70] [71]
[72] [73] [74] [75] [76] [77]
[78] [79] [80] [81] [82] [83]
[84] [85] [86] [87] [88] [89]

[90] [91] [92] [93] [94]
[95] [96] [97] [98] [99] [100]
[101] [102] [103] [104] [105]
[106] [107] [108] [109] [110]
[111] [112]

4.1 Reason

Anomaly detection is the process to identify an abnormal behavior or pattern.
The abnormal behavior or service failure (e.g., wrong state, wrong message
content) is caused by a fault [17], e.g., a random failure, a design error or
an intruder. Though this definition probably complies with all fault detection
mechanisms listed in this section, the various communities use different keywords
depending on the application or type of the mechanism. The related term
monitoring is used in the field of runtime verification to refer to the act of
observing and evaluating temporal behaviors [37]. In the security domain the
phrase intrusion detection is used for reasoning about threats.

The detection method can be roughly separated w.r.t. the fault behavior to
tackle and knowledge used to compare to the actual behavior (Fig. 4). Halting
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Figure 4: A taxonomy of methods for fault detection.

failures (fail-stop or fail-silent behavior) can be detected by simple methods like
watchdogs or timeouts. Faults that manifest in erratic or inconsistent values
need a behavior specification, model or replica to compare against (we therefore
focus on these methods).

The expected or faulty behavior is represented either via formal models or
specifications (runtime verification) [36,37], signatures describing attack behav-
iors [33, 34], learned models (classification, statistics) [31, 33, 34, 42], clusters or
the data instances itself (nearest-neighbor) [31,34].

Another field of reasoning about failures is the root cause analysis or fault
localization which identifies the reason why a fault occurs (e.g., a vulnerability
of the system or the first failed component which caused other components to
fail due to fault propagation).

4.1.1 Redundancy

Additional information sources can detect many types of attacks [85]. A sim-
ple method to verify a message’s content or intermediate result is plausibility
checking or majority voting [26], e.g., by comparing a received message’s con-
tent against redundant information sources (see also “agreement” in Sec. 4.2).
Nevertheless, redundancy is typically the last resort to increase the resilience or
to ensure a specific level of dependability because it is costly when it is added
explicitly (e.g., triple modular redundancy often deployed in the avionics [26]).

In hardware, fault detection by redundancy is also known as lockstep execu-
tion where typically two computational units run the same operations in parallel
to detect faults [63]. When three replicas are used, the fault can be masked by
majority voting (under the assumption that only one component can fail at the
same time), see also TMR in Section 4.2.

However, some techniques exploit implicit or functional redundancy that is
already available in the system. For instance, [53] combines anomaly detection
with sensor fusion. Their approach uses a particle filter fusing data of different
sensors and simultaneously calculating a value of trust of the information sources
derived from the normalization factor, i.e., the sum of weights of the particles.
When the weights of the particles are high, the information source match the
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prediction and are rated trustworthy. The authors in [87] propose to use hard-
wired local data of an automotive ECU to check the plausibility of a received
control input. Our method presented in Section 6 is based and relies upon
implicit (and explicit) redundancy too.

4.1.2 Specification

CPS model 

 !x = fq x( )

q2
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q0

Specification in Signal Temporal Logic 
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Execution 
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Figure 5: Specification-based monitoring can be employed either during the
CPS execution or at design-time during the CPS model simulation.

Verification of Safety Properties The IoT generally consists of spatially
distributed and networked CPS. At design time, the CPS behavior can be mod-
eled using hybrid systems, a mathematical framework that combines discrete
transition systems capturing the computational behavior of the software com-
ponent with continuous (often stochastic and nonlinear) ordinary differential
equations (ODEs) describing the behavior of the physical substratum with which
the software component is deeply intertwined.

Although there has been a great effort in literature to provide efficient com-
putational techniques and tools [65,67,72,75,76,78–80] to analyze safety prop-
erties in hybrid systems, the exhaustive verification (i.e., model checking) is
in general undecidable [52]. The approaches currently available to check safety
properties are based on generating conservative over-approximations of the state
variables dynamics called flow pipes [89] and on checking whether those intersect
the unsafe regions of interest. However, these methods are generally limited to
small scale CPS models. This limitation becomes more evident when we want
to study more complex emergent behaviors, which result from the interactions
among system components and that can be observed only by taking in consid-
eration large scale CPS.

Hybrid systems are approximation models of the real CPS behavior and so
their analysis may be not always faithful due to inevitable approximations errors
(especially of the physical behavior) in the modeling phase. Furthermore, CPS
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models are not always available for intellectual property issues and indeed CPS
need to be studied as black box systems where we are not able to observe the
internal behavior.

Runtime Verification A complementary approach to exhaustive verification
is to equip CPS with monitors that verify the correctness of their execution.
Monitoring consists in observing the evolution of the discrete and continuous
variables characterizing the CPS behavior and deciding whether the observed
trace of values is good or bad. As Fig 5 illustrates, these traces can be obtained
by simulating the CPS design or can be observed during the CPS execution
through the instrumentation of the system under test (SUT) (more details con-
cerning instrumentation techniques can be found in [113]).

Runtime verification (RV) [37] is a specification-based monitoring technique
that decides whether an observed trace of a SUT conforms to rigorous require-
ments written in a formal specification language. The main idea of RV consists
in providing efficient techniques and tools that enable the automatically gener-
ation of software- or hardware-based monitor [82, 88] from a requirement. RV
can provide useful information about the behavior of the monitored system, at
the price of a limited execution coverage.

RV is nowadays a very well-established technique widely employed in both
academia and industry both before system deployment, for testing, verification,
and after deployment to ensure reliability, safety, robustness and security.

A typical example of formal specification language is the Linear Temporal
Logic (LTL) introduced by Pnueli in [61]. LTL provides a very concise and
elegant logic-based language to specify sequences of Boolean propositions and
their relations at different points in time. LTL considers only the temporal order
of the events and not the actual point in time at which they really occur. For
example, it is not possible to specify that a property should hold after one unit
of time and before three and a half units of time.

Real-time temporal logics [62] overcome these limits by embedding a contin-
uous time interval in the until temporal operator. Signal Temporal Logic [66,74]
is a popular example of a real-time temporal logic suitable to reason about real-
time requirements for CPS which has been proposed for detection of threats [77].

Falsification-based analysis and Parameter synthesis As illustrated in
Fig.5, the Boolean semantics of STL decides whether a signal is correct or
not with respect to a given specification. However, this answer is not always
informative enough to reason about the CPS behavior, since the continuous
dynamics of these systems are expected to be tolerant with respect to the value
of certain parameters, the initial conditions and the external inputs.

Several researchers have proposed [69,70] to address this issue by defining a
quantitative semantics for STL. This semantics replaces the binary satisfaction
relation with a quantitative robustness degree function that returns a real value
(see Fig.5) indicating how far is a signal from satisfying or violating a specifica-
tion. The positive and negative sign of the robustness value indicates whether
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the formula is respectively satisfied or violated.
The notion of STL robustness was exploited in several tools [71, 73] for fal-

sification analysis [81] and parameter synthesis [68,86] of CPS models. On one
hand, trying to minimize the robustness [73] is suitable to search counterexam-
ples in the input space that violates (falsifies) the specification. On the other
hand, maximizing the robustness [71] can be used to tune the parameters of the
system to improve its resilience. To this end, a global optimization engine is
employed to systematically guide the search.

Signature-based Intrusion Detection Signature-based intrusion detection
compares pre-defined behavior (known as golden behavior or signature) to iden-
tify the the abnormal event during runtime [33]. Though these techniques effec-
tively identify the intrusion with a small number of false positives they require
a precisely calibrated signature [54]. Therefore, such techniques are not feasible
if designers and IP providers are not trusted. Such misuse-based intrusion de-
tection typically cannot handle zero-day attacks that are new unknown attacks.
It is therefore often combined with anomaly detection (e.g., in [83]).

4.1.3 Anomaly-based

Statistics In statistical anomaly detection the data is fit into a statistical
model. If a test instance occurs in the low probability region of the model, i.e.,
it is unlikely to be generated by the model, then it is claimed to be an anomaly.
Statistical models can be specified with parameters when the underlying dis-
tribution is known (e.g., is Gaussian). The parameters are trained by machine
learning algorithms [31] or estimation [42] describing the correct behavior of
the system. The inverse of the test instance’s probability to be generated can
directly be used as anomaly score. Statistical tests can also be used to label or
score a test instance (e.g., box plot rule).

The model can be expressed by the data itself, e.g., in a histogram, by kernel
functions or particles, which is typically used when the distribution of the data
is unknown. The test instances or samples may be evaluated by statistical
hypothesis tests. For instance, the Wilcoxon signed-rank test [60] compares
two related samples to determine if they have the same underlying distribution
(which is unknown and does not have to be the normal distribution).

The principal component analysis (PCA) is used to project the data to lower
dimensions, i.e., it reduces the dimensionality of the data to a set of uncorrelated
variables. A test instance can be marked anomalous when the projection on the
components result in a high variance meaning that the test instance does not
fit the typical correlation of the data.

However, simple tests, Gaussian models and histograms are nowadays mostly
replaced by (deep) neural networks which stand out handling multivariate and
non-linear data.

Machine Learning or Data Mining Typical anomaly detection techniques
based on machine learning can be used with data where no domain knowledge

13



is available (e.g., black-box components like IP cores). The models may be up-
dated during operation. When the desired behavior is known it can be expressed
as formal model (specification-based monitoring).

Classification-based anomaly detection learns a model (SVM, neural net-
work, Bayesian networks, rules or decision trees) given labeled training data
(e.g., states and observations of the system) to cluster the test data into normal
classes and anomalies or outliers [31]. Instead of labeling a test instance to a
class, one may use scores representing the likelihood of a test instance being
an anomaly. For instance, the authors in [84] use recurrent neural networks to
detect anomalies in real-time data. The network models short and long term
patterns of time series and serves as a prediction model of the data. The error
between predicted and actual value serves as an anomaly score.

Nearest-neighbor-based detection techniques measure the distance from a
data instance under test to k neighbors to identify anomalies. Different metrics
(e.g., euclidean distance) are applied to specify an anomaly score - that is the
likelihood of a data instance to be an anomaly. Another approach is to measure
the density that is the number of instances in the area specified by the data
instance under test given a radius. The Nearest-Neighbor’s complexity increases
with the power of two of the number of data instances. Unsupervised.

Data instances are first distributed into clusters (by clustering algorithms,
e.g., expectation maximization, k-means, self-organizing maps, many of which
use distance or density measures). An anomaly is a data instance that does not
fit into any cluster.

Information-theoretic By investigating the information content described
by, e.g., the entropy of the information, one may draw conclusion about anoma-
lies in the data (for information-theoretic measures characterizing regularity in
data see [64]). When the entropy exceeds a threshold the test instance is marked
as anomaly. The threshold is defined by the set of anomalies. In highly irregular
data the gap between threshold and maximum entropy may be low (the set of
true anomalies is small).

4.1.4 Fault-Localization

When the fault detection only gives us the information about a failure happened
in a subsystem, we need means to identify the exclusive part causing the failure.

This is often performed by root cause analysis [114] or fault-localization [38–
41, 115–117]. In the software engineering community there is a considerable
amount of literature about (semi-)automatic techniques assisting the developer
to localize and to explain program bugs (for a comprehensive survey we refer
the work in [41]). A well-established statistical approach, is the spectrum-based
fault-localization (SFL) [39], a technique that provides a ranking of the program
components that are most likely responsible for the observed fault.

This approach has been employed recently also to localize faults in Simulink/Stateflow
CPS models [38, 40, 115–117], displaying a similar accuracy with the same
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method applied to software systems [116]. Although the classical SFL is ag-
nostic to the nature of the oracle and only requires to know whether the system
passes or not a specific test case, in [38], the authors have introduced a novel
approach where the oracle is a specification-based monitor. This enables to
leverage the trace diagnostic method proposed in [118] and to obtain more in-
formation (for example the segment of time where the fault occurred) about the
failed tests improving the fault-localization.

Often this approach is only applied offline for debugging processes, however,
it can be used to isolate a failed HW/SW component from the system to avoid
fault propagation or trigger its recovery.

4.2 Act

Broadly speaking, a system can be adapted by changing the parameters or the
structure (architecture) of the system [24,30]. Following four action types of pos-
sible re-configurations are defined by [28] (splitting structural adaptation into
further classes): re-parameterization to change the parameters of a component,
re-instantiation to create and remove components, rewiring to redirect con-
nections between components or relocation to migrate functionality to another
platform. The latter three action types require redundancy to some extent. We
extend and refine these types below (Fig. 6).

Act

Re-Parameterization

Runtime Enforcement

Redundancy

Optimization

Rule-based

Re-Instantiation

Replacement

Agreement

Rewiring

Relocation

Figure 6: A taxonomy of methods for recovery.

The adaptation can be applied on different architectural levels of the system.
For instance, the change of the clock speed or other hardware parameters is the
re-parameterization on the physical level of a device. Changing the sender or
receiver of a task is rewiring on the task level.

4.2.1 Re-Parameterization

In general, a re-parameterization (or reconfiguration) switches to another con-
figuration of one or more components that is typically no longer the optimal set-
ting, i.e., the quality of service is decreased (graceful degradation). Adaptation
of parameters requires knowledge about the underlying algorithm of the erro-
neous component and is therefore typically performed by the component itself
or within a subsystem. The configuration can be selected by optimization [94],
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or a reasoner based on a set of rules, an ontology or a logic program [28]. Ap-
proaches from the control theory use state observers or estimators to derive
parameters to mitigate stochastic faults [42]. For instance, an adaptive Kalman
filter (AKF) [90] changes its filter parameters during runtime based on the in-
puts. For instance, the measurement covariance can be increased when an input
signal gets worse or even permanently fails (cf.: a traditional KF or state esti-
mator mitigates noise including transient failures only).

4.2.2 Runtime Enforcement

Runtime enforcement [56,59] merges runtime verification with adaptation. This
powerful technique ensures that a program conforms to its specification. A so-
called enforcer acts on the interface of a component changing inputs or outputs
to comply with a set of formal properties. The enforcer uses an automaton
and/or rules to correct the IO in case of faults. This approach has been pioneered
by the work of Schneider [92] on security automata which halt the program
whenever it deviates from a safety requirement. Since then, there has been a
great effort in the RV community to define new enforcement mechanisms with
primitives [95,98,99,105,108] or that support more expressive specifications [101,
102,110].

4.2.3 Redundancy

Redundant components ensure availability (passive) and increase reliability (ac-
tive). Failed components can be re-instantiated, replaced by spares, mitigated
by voting or fusion, rewired or relocated [25,28].

Re-Instantiation or Restart A straightforward fault-tolerance method is
to restart a failed software component. The tasks or the system typically saves
checkpoints or output messages of components on a periodic basis to roll back to
a healthy state [103]. The restart might be combined with a re-parameterization.
Checkpointing/restart techniques are well studied for operating systems [119]
and may be applied on fog nodes or cloud servers. The primary/backup ap-
proach activates a typically aperiodic backup task if the primary task fails [91].

Replacement or Cold/Hot Spares The simplex architecture [93] considers
two redundant subsystems. The high-dependable subsystem jumps in when the
high-performance subsystem fails. Triple modular redundancy (TMR) replicates
HW and/or SW components to mask failures (through a voter, i.e., includes
detection). The replicates are in the best (but most costly) case diverse w.r.t.
their design such that also design and input errors can be masked [26]. Such
hardware redundancy is typically added during design time and used in closed,
non-elastic systems. However, an IoT orchestrator can maintain a directory of
available services and redirect resource requests if necessary.

Implicit redundancy like related observations in a system (in contrast to
traditional redundancy that is the explicit replication of components) can be
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exploited by structural adaptation. A substitute component is instantiated to
replace the failed component which includes also rewiring and possibly also a
relocation [104,111] (see Sec. 6 for an example).

Agreement / Voting or Fusion Byzantine failures (inconsistent failures to
different observers) typically caused by malicious attacks can be detected and
tolerated using replicas (here: redundant services on different nodes of a dis-
tributed system) by agreement or consensus on the outputs [55]. The output
of redundant components can be combined or fused, e.g., via filters or fuzzy
logic [49]. However, through recent implementations and usage in cryptocur-
rencies [96,100] the attention is shifted towards smart contracts and blockchains
which ensure authentication and integrity of data [50, 51, 57, 58]. Basically, a
blockchain is a series of data records each attached by a cryptographically secure
hash function which makes it computationally infeasible to alter the blockchain.
However, blockchains suffer from complexity, energy consumption and latency
and therefore currently cannot be used for real-time anomaly detection or ap-
plied by simple nodes with low computational power [58]. However, it is already
examined to manage access to data (authorization), purchase devices or com-
puting power or manage public-key infrastructure in the IoT [57,109,112].

Rewiring or Redirection Broken links in mesh networks are typically re-
configured using graph theory considering node properties and application re-
quirements [106]. A software component may route the task flow to a recovery
routine [25].

Relocation Migration of software components or tasks are studied in the field
of resource optimization, utilization and dynamic scheduling on (virtual) ma-
chines. Optimization algorithms [94], multi-agent systems [97] or reinforcement
learning [107] find a new task configuration utilizing resources in case of a plat-
form failure. Tasks may also be migrated in advance when the health state
decreases [103]. Cloud applications boost and emerge new technologies like con-
tainerization, resource-centric architectures and microservices which ease service
orchestration in complex and elastic systems. Dragoni et al. [120] prognoses in-
creased dependability using microservices which focus on small, independent
and scalable function units (cf. fault containment units in Kopetz [26]), how-
ever, security remains a concern.

5 Challenges

Self-healing and IoT have their own challenges. For instance, critical issues in
IoT are: interoperability, resource limitations, security and privacy or power
consumption [18, 23, 121, 122]. In self-healing, development of behavior predic-
tion models, data/log storage, validation of the recovery or latency are challeng-
ing [25,43,123].
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However, in comparison to intrusion detection in cloud applications or re-
configuration in CPS, the techniques enabling resilience for IoT will have to
cope with the following main challenges (among others):

• C1: Resource Limitations. The majority of IoT components are
resource-constrained devices. The developer often has to trade off power,
time and costs against resilience. Typical small IoT devices like commer-
cial off-the-shelf (COTS) microcontrollers may provide insufficient capa-
bilities.

Some technologies might therefore need hardware implementations (e.g.,
RV monitor) or should be designed as a lightweight and fully distributed,
layered, or clustered service (e.g., a monitor per subsystem).

• C2: Interoperability and Complexity. The IoT is a large dynamic
network of heterogeneous components.

For instance, COTS or components protected by intellectual property (IP)
may not provide a proper specification of its behavior for some of the
detection and adaptation methods. Furthermore, new devices or subsys-
tems may introduce unknown interfaces (here: unknown to the resilience-
enabling technologies).

So to reliably monitor and heal the IoT over time, the mechanisms shall
be itself self-adaptive.

The devices of a CPS are specified during design time having a specific
application in mind. Things of an IoT will most likely be shared between
applications while different fog/cloud applications might request different
QoS of the devices, e.g., regarding dependability.

The methods therefore must also consider and combine the requirements
of different applications and the value of trust of the information (e.g.,
used to derive actions).

Due to the vast size of an IoT a central mechanism most likely will not
be able to cope with all the input data necessary to achieve resilience
(considering memory and time constraints).

• C3: Real-Time and Scalability. One major shift from sensor networks
to the IoT is the control and manipulation of actuators from the distance,
i.e., the IoT comprises a cyber-physical system. The CPS typically has to
satisfy time constraints (rates, deadlines) in order to function correctly.

In such real-time applications the probing of information by a monitor
or changes in the system (e.g., connection of new things, updates, recov-
ery) shall not influence the timing behavior of the CPS. Furthermore, the
timeliness to detect and react to critical failures has to be considered.

However, the complexity and dynamicity of the network will leave the door
ajar for some faults, e.g., physical faults, design errors or zero-day malware.
Therefore a proper never-give-up strategy [26] to cope with unconsidered failures
has to be developed.
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6 Case Study: Resilient Smart Mobility

We present the current status and future directions of our solutions on an au-
tomotive use case. The IoT will most likely contain many heterogeneous com-
ponents with different capabilities of resilience. We therefore want to focus
on the integrity and reliability of the information communicated between the
components (things, fog, cloud).

Let’s consider vehicles driving on a highway (Fig. 7). Radar sensors are
mounted along the street and form a collaborative sensor field. In order to
improve object detection and classification, a multi-object tracking scheme is
employed, which uses subsequent sensor measurements in the form of prediction
and update cycles to estimate vehicle locations. The tracking data can be used
for, e.g., traffic congestion forecast or accident investigations. A set of radar
sensors is connected to a fog node, that is a computing unit and IoT gateway in
the near area of the sensors. The tracker - a software component running on a fog
node - tracks the vehicles on the road segment covered by the associated radars.
Some vehicles (e.g., autonomous cars) are equipped with distance sensors like
radar, lidar or depth cameras. The fog node(s) of these cars can connect to near
fog nodes of the street (directly over a vehicular network called VANET, or via
the mobile network over the cloud).

We assume the IoT infrastructure (things, fog, cloud, network) is given and
propose methods to increase the resilience of the IoT.

Failures of the radar sensors in our example will lead to inaccurate or even
unusable tracking results. Failure scenarios like communication crashes and
dead batteries (fail-silent, fail-stop) are relatively easy to handle (e.g., watch-
dog/timeout). However, the sensor measurements received by the tracker run-
ning in the fog node may be erroneous due to noise (e.g., communication line,
aging), environmental influences (e.g., dirtying of the radar) or a security breach
(e.g., hacked fog node that collects data of a group of sensors). To detect a fail-
ure of the sensor one has to create particular failure models for each possible
hazard (c.f., aging, dirtying and a security breach). A simple method detecting
a faulty sensor value in different failure scenarios is to check against other in-
formation sources, i.e., exploit redundancy. However, explicit redundancy that
is replicating observation components is costly.

Self-healing can be applied to react also to failures not specifically consid-
ered during design-time. A very promising way of achieving self-healing is
through structural adaptation (SHSA), by replacing a failed component with
a substitute component by exploiting implicit redundancy (or functional and
temporal redundancy) [124]. We use a knowledge base [104,111] modeling rela-
tionships among system variables given that certain implicit redundancy exists
in the system and extract a substitute from that knowledge base using guided
search (Sec. 6.2). The knowledge base can also be used to monitor the system
by comparing the information of variables against each other, i.e., to detect
failures (Sec. 6.1).

SHSA can be encapsulated in separate components listening and acting on
the communication network of the IoT, e.g., as tasks monitor, diagnose and
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Figure 7: Visualization of the use case.

recover running on a fog node (Fig. 8).
SHSA monitors the information communicated between components (typi-

cally the sensor measurements or filtered/estimated observations), identifies the
failed component and replaces messages of the failed component delivering an
erroneous output by spawning a substitute software component. SHSA consid-
ers the currently available information in the network, i.e., can be applied in
dynamic systems like the IoT (components may be added and removed during
runtime). The knowledge base, in particular the relationships between the com-
municated information, can be defined by the application’s domain expert or
learned (approximated by, e.g., neural networks, SVMs or polynomial functions,
see also [124]).

Alternatively, the monitor and diagnose task may be installed in the cloud
analyzing the logged tracks to trigger maintenance of radar sensors. The re-
quirements needed by SHSA regarding the architecture of the system (e.g.,
communication network) and a reference implementation of SHSA can be found
in [124].
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Figure 8: Overview of the self-healing components and proposed integration
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6.1 Reason

In our future work we want to use the SHSA knowledge base described below
to perform plausibility checks upon related information.

As our focus is the adaptation in the software cyber-part of a CPS (cf. dy-
namic reconfiguration of an FPGA), we assume that each physical component
comprises at least one software component (e.g., the driver of the radar in the
vehicle) and henceforth consider software components only. The CPS imple-
ments some functionality – a desired service (e.g., collision avoidance). The
subset of components implementing the CPS’ objectives are called controllers.

6.1.1 SHSA Knowledge Base [111]

A system can be characterized by properties referred to as variables (e.g., the
position and velocity of a tracked vehicle). The values of system variables
are communicated between components typically via message-based interfaces.
Such transmitted data that is associated to a variable, we denote as information
atom, short itom [125]. A variable can be provided by different components si-
multaneously (e.g., two radars with overlapping field of view). Each software
component executes a program that uses input itoms and provides output it-
oms. An itom is needed, when it is input of a controller. A variable is provided
when at least one corresponding itom can be received.

Variables are related to each other. A relation is a function or program (e.g.,
math, pseudo code or executable python code) to evaluate an output variable
from a set of input variables.

The knowledge base is a bipartite directed graph (which may also contain
cycles) with independent sets of variables and relations of a CPS. Variables and
relations are the nodes of the graph. Edges specify the input/output interface
of a relation. For instance, Fig. 9 models the relationships between the variables
in the tracking use case (only relevant nodes, relationships and edge directions
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Figure 10: An exemplary scenario from the use case. Visualization of it-
oms variable|itom from the knowledge base in Fig. 9.

for the scenario in Fig. 10 are shown).
A proper data association identifies which itoms or measurements represent

the same variable, e.g., links the different position itoms (x, y, v)|∗ to each other.
For instance, the GPS position (x, y, v)|GPS of a vehicle (transmitted by the
vehicle itself) has to be linked to the corresponding radar track (x, y, v)|radar
(provided by the radar).

Subsequently, the redundant itoms can be used, e.g., to monitor a radar
sensor, to substitute a failed radar or to increase the accuracy of a tracking
application by sensor fusion.
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6.1.2 Fault Detection by Redundancy (work-in-progress)

An itom has failed, when the itom deviates from the specification. Our moni-
tor uses the knowledge base to perform a plausibility check in every time step
to identify a failed itom. The automatic setup of a runtime monitor follows
successive procedure:

• Select the variable to be monitored (typically the corresponding variable
to the itom under test), e.g., the position of a vehicle.

• Collect the provided itoms (e.g., simply subscribe to all available mes-
sages). Note, the availability of variables may change from time to time
which should trigger a new setup of the monitor.

• Extract relations of the monitored variable and available variables from
the knowledge base (similar to the search of valid substitutions in Sec. 6.2).

monitor

status

radar track
(x, y, v)

∫
predecessor radar track

(x′, y′, v′), t′, t

+

vehicle behind
(x/, y/, v/), (dx, dy)

Figure 11: A monitor checking the position of a vehicle using different itoms.
The itoms are first transferred into the common domain (here: position of the
vehicle (x, y, v)) and compared against each other.

The instantiated monitor for the position of a vehicle is depicted in Fig. 11.
At each time step the relations are executed to bring the available itoms (pro-
vided variables) into the common domain (variable to be monitored) where the
values are compared against each other. The monitor returns the fault status or
a confidence / health / trust value for each itom used in the plausibility check.

The confidence may be expressed by a distance metric or error between
the itoms in the common domain. The trust or confidence of a radar may be
accumulated from the individual confidence values of the tracked vehicles, i.e.,
the vehicles in the field of view of the radar. As soon as the confidence falls below
a specific threshold for a specific amount of time the status of the respective
itom is classified as failed.

The monitor can identify failed itoms in the common domain, however, when
the output of a relation mismatches in the common domain, all inputs of the
relation are marked faulty. To avoid additional monitors (a monitor for each
input variable is necessary to identify the failed itom) a fault localization can
be performed.
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6.1.3 Fault Localization [38]

The engineers often design CPS using the MathWorkstm Simulink toolset to
model their functionalities. These models are generally complex hybrid systems
that are often impossible to analyze only by using the reachability analysis tech-
niques described before. A popular technique to find bugs in Simulink/Stateflow
models is falsification-based testing [71,73,126]. This approach consists in mon-
itoring an STL property over traces produced by systematically simulating the
CPS design using different set of test cases. For each generated trace the mon-
itor returns a real-value that provides an indication as how far the trace is
from violation. This information can be used to guide the test case genera-
tion to find an input sequence that would falsify the specification. However,
this approach does not provide any information concerning which is the failed
component and the precise moment in time that is responsible for the observed
violation. To overcome this shortcoming, in [38] Bartocci et al. have recently in-
troduced a new procedure that aids designers in debugging Simulink/Stateflow
hybrid system models, guided by STL specifications. This approach combines
a trace diagnostics [118] technique that localizes time segments and interface
variables contributing to the property violations, a slicing method [127] that
maps these time segments to the internal states and transitions of the model
and a spectrum-based fault-localization method [39] that produces a ranking of
the internal states and/or transitions that are most likely to explain the fault.

6.2 Act

A failed itom can be replaced by a function of related itoms. To this end, the
knowledge base is searched for relationships using provided variables and spawns
a substitute.

6.2.1 Replacement [111]

The substitute search algorithm traverses the knowledge base (Fig. 9) from the
failed but needed information as root to find a valid substitution.

A substitution of a variable is a connected acyclic sub-graph of the knowledge
base with following properties: i) The output variable is the only sink of the
substitution. ii) Each variable has zero or one relationship as predecessor. iii)
All input variables of a relation must be included (it follows that the sources of
the substitution graph are variables only).

A substitution is valid if all sources are provided, otherwise the substitution is
invalid (Fig. 12). Only a valid substitution can be instantiated (to a substitute)
by concatenating the relationships which take the selected itoms as input (e.g.,
best itoms of the source variables).

Substitutions can be found by depth-first search of the knowledge base with
the failed variable as root. The search may stop as soon as all unprovided
variables are substituted [104]. In [111] we present a guided search approach
using a performance measure for substitutions.
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Figure 12: A valid substitution for the failed street radar. Old data from the
predecessor radar is used to forward estimate the position of the vehicles.

The result of the search - the substitution - is instantiated in a substi-
tute [124]. In particular, the substitute subscribes to the input itoms and con-
catenates the functions or programs from the relationships. The substitute then
periodically publishes the output. To avoid inconsistencies and fault propaga-
tion, the failed component (probably publishing erratic messages) should be
shut down as soon as possible.

7 Conclusion

This paper summarizes the state-of-the-art of anomaly detection / runtime mon-
itoring and adaptation to react to failures in IoT for CPS, presents the main
challenges these methods have to cope with and proposes a solution on an au-
tomotive example. The SHSA knowledge base presented in Section 6 describes
implicit and explicit redundancy in a communication network. It can therefore
be exploited to monitor, replace or fuse information.

Because our approach is based on redundancy it can handle various fault
scenarios. Especially permanent faults in the IoT can be detected and recov-
ered given some redundancy exists. As long as the failed components can be
isolated and replaced by redundant information the methods can handle physi-
cal, development or interaction faults manifested as failures at the components’
interfaces.

The monitor tackles the requirement on fault detection (R1) by voting over
redundant information. An additional fault localization identifies and triggers a
disconnection of the failed component to avoid fault propagation. The substitu-
tion replaces failed information with redundant one. Thus, fault localization and
substitution recovers from the faulty behavior achieving reliability and integrity
of the communicated information (R2).

The individual IoT devices might not have the resources to implement self-
healing (C1) nor a common understanding of the information or access to rele-
vant redundancy (C2). Under some constraints (bounded or static SHSA knowl-
edge base, estimation of the worst-case execution time of relationships) our ap-
proach is suitable for real-time applications [104]. Furthermore, solutions to
increase scalability have to be investigated (C3). In future work we therefore
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want to focus on a distributed approach of the mechanism (e.g., by splitting
the knowledge base for subsystems, or monitor in a distributed fashion like
agreement protocols do).
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