
Recommender Systems for Online Video Game Platforms: the
Case of STEAM

Germán Cheuque
IMFD &

Pontificia Universidad Católica
Santiago, Chile
gacheuque@uc.cl

José Guzmán
Pontificia Universidad Católica

Santiago, Chile
jaguzman6@uc.cl

Denis Parra
IMFD &

Pontificia Universidad Católica
Santiago, Chile

dparra@ing.puc.cl

ABSTRACT
The world of video games has changed considerably over the recent
years. Its diversification has dramatically increased the number of
users engaged in online communities of this entertainment area,
and consequently, the number and types of games available. This
context of information overload underpins the development of rec-
ommender systems that could leverage the information that the
video game platforms collect, hence following the trend of new
games coming out every year. In this work we test the potential
of state-of-the-art recommender models based respectively on Fac-
torization Machines (FM), deep neural networks (DeepNN) and
one derived from the mixture of both (DeepFM), chosen for their
potential of receiving multiple inputs as well as different types of
input variables. We evaluate our results measuring the ranking
accuracy of the recommendation and the diversity/novelty of a
recommendation list. All the algorithms achieve better results than
a baseline based on implicit feedback (Alternating Least Squares
model). The best performing algorithm is DeepNN, the high order
interactions are more important than the low order ones for this
recommendation task. We also analyze the effect of the sentiment
extracted directly from game reviews, and find that it is not as
relevant for recommendation as one might expect. We are the first
in studying the aforementioned recommender systems over the
context of online video game platforms, reporting novel results
which could be used as baseline in future works.

KEYWORDS
Recommender System; Factorization Machines; Deep Neural Net-
works; Deep Factorization Machines; Novelty; Diversity

ACM Reference Format:
Germán Cheuque, José Guzmán, and Denis Parra. 2019. Recommender Sys-
tems for Online Video Game Platforms: the Case of STEAM. In Companion
Proceedings of the 2019 World Wide Web Conference (WWW ’19 Companion),
May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3308560.3316457

1 INTRODUCTION
According to the European Mobile Game Market, in 2016 over 2.5
billion people spent part of their time playing video games. The

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6675-5/19/05.
https://doi.org/10.1145/3308560.3316457

huge number of adepts have made the video game industry one of
the most valued in the world. In 2017 alone this industry grew by
10.7% in earnings, achieving over $116 billion. One of the biggest
reasons behind this success is the high diversification that this
industry has had over latest years. We can now find multiple plat-
forms dedicated to games, an enormous number of genres and
game’ categories and even platforms that provide social interaction
between players. This adaptability has generated a huge number
of items with different attributes that are able to attract diverse
users. An example of adaptation is the STEAM1 platform, a com-
pany dedicated to the digital distribution of video games which
allows users to buy, see, share opinions, play on-line, play off-line,
compete and cooperate across the platform and games. Over 10 mil-
lion people connect to the STEAM server each hour to play video
games. However, the fact of having such a variety of products and
so many users, makes it difficult to choose a particular new game
some user like. Also, according to STEAM registries of 2014, about
37% of games purchased have never been played by the users who
bought them. This context creates a need for recommender systems,
which are systems able to make relevant personalized suggestions
[8], alerting users to unknown games as well as new releases.

Playing video games is a recurrent activity, in this sense that is it
more similar to music listening than to movie watching. A preferred
game is played many times, but users also want to discover new
games. This represents a double challenge for the industry: the
need for video games which encourage users to return, as well as
helping users find novel games which will be consumed as much
as those already liked. Our intuition is that the great number of
features available in the STEAM platform allows us to explore in-
teractions between items’ features, as well as between users and
their preferences. These relations make it reasonable to argue that
it is possible to face the second challenge. Being able to develop an
algorithm which addresses the aforementioned challenges could
generate great benefits for the industry, the community of users
and even for game developers, by predicting what the users want
the most as well as promoting new releases.

To achieve these goals, we test three state-of-the-art algorithms
based on different recommendation paradigms that can be used
with different types of input data:

• Recommender System (RecSys) based on Collaborative Fil-
tering (CF) that uses the ALS (Alternating Least Squares)
algorithm for making recommendation based on implicit
feedback [4]. We use it as a baseline.

1https://store.steampowered.com/

https://doi.org/10.1145/3308560.3316457
https://doi.org/10.1145/3308560.3316457
https://store.steampowered.com/

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA Germán Cheuque, José Guzmán, and Denis Parra

• RecSys based on Factorization Machines [10] that benefits
from a huge amount of data, context and features from users,
items and purchases.

• RecSys based on FM and deep learning techniques (DeepNN
and DeepFM [3]), where we introduce sentiment analysis to
decode information contained on reviews.

We argue that feeding our models solely with the item prefer-
ence history of users (implicit feedback [4, 7]) should be enough to
make a good baseline recommendation model. Moreover, we think
that adding content and contextual information could be effectively
used by the FM and DeepNN models to improve ranking and nov-
elty performance performance, due to interaction effects. However,
the combination of both in a joint model (DeepFM) could either
produce an improvement or rather be just redundant with respect
to DeepNN.

Our contributions are the following: (i) We are the first in studying
the aforementioned state-of-the-art recommender systems on the
context of video games, reporting novel results to be used as base-
lines in future works, (ii) in addition to ranking accuracy, we report
and analyze results about novelty and diversity of recommenda-
tions, which is critical in the online video game industry, and (iii)
we are the first in analyzing the impact of using sentiment analysis
of the textual reviews over the quality, novelty and diversity of
recommendations of online video games.

This work is organized as follows: Section 2 presents a discussion
of the state of the art, the studies that inspired our work. In section
3 we present the Materials (datasets) and the methods (recommen-
dation models) used in this work. Section 4 shows the experimental
methodology and evaluation metrics to measure the performance
of our systems, while in section 5 we present a sensitivity analysis
of parameters. Section 6 shows our most relevant results and finally,
section 7 discusses our conclusions and ideas for future work.

2 RELATEDWORK
Numerous are the studies that address the recommendation prob-
lem, however just a few have emerged in the video game industry.
The video game purchase platforms or in the video game communi-
ties an interesting places to develop and test the potential of existing
recommender systems. Despite this, there are some notable studies
whose application could be relevant for the introduced context.

Bertens et al. 2018 [1], for example, tries to measure the perfor-
mance of two recommender systems based on the idea of prediction
of the next most likely item to buy. The paper works over the behav-
ior of Japaneses card players of the game Age of Ishtaria taking into
consideration their play time, daily progress and purchase history.
They test two models: the first one is called Extremely Randomized
Trees (ERT), which is a randomized version of the decision tree
algorithm. This method has the advantage of being computationally
efficient due to its high parallelization ability, and it also has the
property of preventing overfitting. The second one corresponds to
an algorithm based on deep neural networks, with the particularity
of being built as a recurrent network because of the sential property
of data. Both algorithms show very similar results, with ERT being

the one with better performance in both train time and scalability.

Quadrana et al. 2018 [9] propose a recommender system based on
attention to a sence of events as one of the best approximations to
solve the recommendation task on the introduced context. They
survey multiple developed models, considering different tasks and
goals to achieve. On their discussion, they highlight the poten-
tial of neural networks for the recommendation task. Although
their discussion is relevant to the video game industry context, they
emphasize their implementations to be tested on the in session atten-
tion context. One relevant approximation of this type of application
can be found in Wan et al. 2018 [13] where the authors study the so
called monotonically behavior chains concept that is understood as
a sence of events that account for a more explicit preference that a
user has about an item. This chain is constructed from implicit and
abundant information to a more explicit and limited information.
The novelty of the publication lies on the capability of introducing
a new paradigm to face the recommendation task and being able to
prove its potential over different datasets, including one about video
games from STEAM. Their improvement in performance went from
1% to 28% with respect to Most Popular method, depending on the
dataset.

Due to the context of networks and interactions that exist in video
game platforms, recommender systems based on graphs could be
very useful as a modeling approach. In this topic, Shams et al. (2016)
[11] is one of the most recent studies. In this publication they intro-
duce the method GRank to correctly model the priorities of users
and to discriminate better the relevant connections between nodes.

In this work, we propose to develop a recommender system for
games based on state-of-the-art techniques, by comparing the re-
sults of implicit feedback collaborative filtering [4], factorization
machines [10] and deep neural networks [3]. Unlike previous work,
our system leverages interactions between users and items by mix-
ing up implicit information from users and features from items,
considering implicit information as playtime and explicit informa-
tion like opinions, within reviews. In addition, we evaluate beyond
prediction or ranking accuracy, we use the metrics proposed by
Vargas and Castells [12] to measure novelty and diversity, since
these metrics are critical for the continuous and diverse releases in
the game industry.

3 MATERIALS AND METHODS
3.1 Materials: The Dataset
To carry out the implementation of the mentioned recommender
systems (discussed in detail on the next section) and evaluate its
predictive ability we work over three datasets, obtained from the
collection shared by J. McAuley2. The first one consists of the pur-
chase history of Australian users of the STEAM platform, a database
sorted by user, indicating for each one the list of purchased items
with a small collection of metadata as the playing time. The second
dataset contains the opinion that different users on the platform
have about the available items, this opinion serves as a review for

2http://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data

http://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data

RecSys for Online Video Game Platforms: the Case of STEAM WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA

the whole community. The third and last dataset gives us detailed
information about different features of video games, such as the
genres they belong to or their platform availability (as discussed in
[5]). The data is collected between October 2010 to January 2018.

The different datasets are joined with the purpose of creating tuples
of data associated with each pair of item and user. Table 1 shows
a summary of final descriptive statistics. Each tuple consist of 32
features where we find abundant implicit information, as the play-
time, and scarce explicit information as the recommend feature. As
we can see, there is no general rating measure that could be used as
a measure of how much a user likes or prefers an item. Because of
this, our analysis and the model we consider is based on measures
of implicit feedback or made from a combination of information
that we consider useful in making recommendations. The wealth
of information gives us a unique chance of testing different kinds
of data and their explicit and implicit interaction, as well as their
non-linearity.

Special attention is given to playtime, considering the importance
of this variable reported in previous research on recommender
systems [7, 14].

Feature Type Description
user_id Str Unique identifier of a user
item_id Str Unique identifier of item
count Int Number of games purchased by the user

playtime Int Period of time that the game has been
played by a user, in hours

RecCount Int Times that an item has been
recommended

Metacritic Int Valuation of game, agreed to
specialized critic.

GenreIs [Bool] True if the item belongs to one of the
|G| = 13 13 different game genres.
Category [Bool] True if the game belongs to one of the
|C| = 8 8 game categories, e.g.: multi player
Platform [Bool] True if the game is supported by
|P| = 3 one of the 3 listed operative systems.

recommend [Bool] True if user recommends
the item.

review Str Free text which reports the user opinion.
Table 1: Summary of features.

About 5, 153, 209 of tuples are contained in our dataset with a total
of 70, 912 different users and 10, 978 different items (video games)
to choose from. These numbers tell us about a large sparsity of
0.66% seen registries. A large sparsity is not ideal for training a
model of interactions between users and items. Because of this, we
filter the dataset; we believe that densities in the order of 10% could
be useful for our objectives. Our final dataset considers only items
purchased at least 200 times and users with at least 100 purchased
items. A summary of our final database is presented in Table 2.

Descriptive statistic
Number of registries 2,149,858

Number of different users 8,183
Number of different items 2,872

Number of reviews 9,823
Dataset density 9.14%

Average purchases per user 262.72
Average purchases per item 748.55

Average hours played per user 161,317.9
Average hours played per item 476,727.9

Table 2: Summary of statistics of the final database after cut.

With the data filtering, we obtained a new dataset with a density
close to 10%, reducing its original size to a half, but still of a consider-
able size to carry out experiments. We also analyze the distribution
of consumption in the dataset, in order to dismiss potential issues
due to imbalance bias: too few users accounting for too many of the
total transactions. Figure 1 shows that user bias is small: around
67% of them explain the 80% of tuples. However, Figure 2 shows
that a small number of items (40%) are responsible for most records
(80%). This situation encourages to further analyze our systems to
ensure they recommend different kinds of items. To address this
concern, we are going to use novelty and diversity metrics. Further
details are discussed in section 4.

Figure 1: Cumulative sum
of contribution of users to
the number of registries.
Sixty-seven percent of
users explain the 80% of
data.

Figure 2: Cumulative sum
of contribution of items to
the number of registries.
Forty percent of items ex-
plain the 80% of data.

Implicit feedback data. We will work on implicit feedback to
learn user preferences, specifically, using playtime as our proxy
measure. After preliminary analysis of the whole playtime distri-
bution (see Figure 3), we proposed a limit of 5 hours as enough
to differentiate between preference or not. This is indeed a strong
assumption, since the ideal would be knowing the usual playtime of
each game as a more precise measure. But for the sake of simplicity,
we leave this idea for future work. Figures 3 and 4 show distribu-
tions of playtime for the most active users and most purchased
games.

Figure 3 shows small differences on playtime among the most active
users playing video games on STEAM. Meanwhile, most purchased

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA Germán Cheuque, José Guzmán, and Denis Parra

Figure 3: Playtime of most active users.

Figure 4: Playtime of most purchased games.

games show bigger variations on playtime, where we find games
widely played across users and also, games not played at all. When
we see the average playtimes in table 2 we can infer another char-
acteristic about the distribution of user and games. About 161,317.9
hours on average are played per user, while a total a 476,727.85
hours is the average time that an item is played on record history.
Again we find that users have a more homogeneous distribution
compared to items, for which a rather small fraction of items rep-
resent most interactions in the dataset. Although these numbers
could suggest us that a low potential for making both accurate and
diverse recommendation lists, when we apply over our records a
threshold of 5 hours playtime, we find that 46% of database are
over this threshold and, therefore, correspond to relevant items for
recommendation task.

3.2 Methods: Recommender Systems Models
3.2.1 Alternating Least Squares (ALS)..
Under the diversity of models of matrix factorization, the ALSmodel
stands out for being capable of working using implicit feedback [4].

Figure 5: Matrix factorization model representation.

Figure 5 shows the idea under the factorization method, This is, to
find a new representation for user (xu) and items (yi) interactions,
so that a particular preference of an user about an item is given by
the dot product of the latent factor representation of each of them.
An innovation that introduces this algorithm analyzes the implicit
feedback measure through the insertion of two new measures that
represent the preference and confidence that exist behind the uptake
of an item. Preference tells us if an item is consumed or not.

pui =

{
1 ifrui > 0
0 ifrui = 0

(1)

Where rui is some measure of implicit feedback. The second mea-
sure stands for the confidence of that preference,

cui = 1 + α ∗ rui
Where α is a linear scale factor that set more importance to relevant
items, above never played ones. The value α = 40 is usually used as
a result of the original paper [4]. Under these definitions, the search
of latent factor for users and items is made by the optimization of
the following loss function,

miny∗
∑
u,i cui (pui − xTu yi)2 + λ(

∑
u | |xu | |2 +

∑
i | |yi | |2),

the optimization via least squares that give its name to the algorithm
is visible. In this way, subsent updates of latent factors are given by,

xu = (VTV +VT (Cu − I)V + λI)−1VTCup(u)
yi = (UTU +UT (Ci − I)U + λI)−1UTCip(i)

Some relevant parameters like the number of latent factors to use
are selected through analysis in many iterations. In this article, we
used the ALS implementation found in the pyreclab3 recommender
library.

3.2.2 Factorization Machines (FM) .
Factorization Machines (FMs) are a type of model for recommender
systems making latent factor models as easy to use as regression or
SVM models [10]. FMs can deal with different types of inputs, from
continuous to discrete variables, and more importantly, latent factor
models. FMs can model interactions of different orders (order-n)
between these variables [10]. In our case, n = 2was defined because
it has been widely used in this way as it delivers good results while
maintaining a reasonable training time. With this configuration,
the output is a prediction resulting from the linear interaction of
the inputs (order-1) plus that of the latent factors, defined by the
relationships between pairs of inputs (order-2), as observed in the
ation 3.2.2.

3https://github.com/gasevi/pyreclab

https://github.com/gasevi/pyreclab

RecSys for Online Video Game Platforms: the Case of STEAM WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA

y(x) := w0 +
∑n
i=0wixi +

∑n
i=1

∑n
j=i+1 < vi ,vj > xix j

We decided to choose this model because it is a type of system that
can scale quickly, has shown excellent performance when working
with sparse datasets, and supports numerical input data of any
type. These are all features that contribute to the recommendation
process in a company like video games, where product variety and
growth are critical factors in the process.

Figure 6: Factorization Machine Architecture. Image
adapted from [3].

Figure 6 (as in [3]) shows an example of the architecture of a
factorization machine model and the Figure 7 (as in [10]) an exam-
ple of the inputs and outputs that can receive.

Figure 7: Input example of features received by FM. Image
adapted from [10].

3.2.3 DeepFM.
DeepFM is a newer model that seeks to take advantage of the ver-
satility of Factorization Machines to model low-order interactions
between input variables, with the ability to model deeper interac-
tions of Deep Neural Networks (DNN) [3]. To do this, a DNN is
implemented in parallel to the FM and the result of both is joined
on a last node using a sigmoid function, making the output a pre-
diction resulting from the interaction of several orders of inputs
that represents the probability of whether or not a user belongs to
a particular class defined with training tags. In our case, this class
referred to whether the user liked the game or not.

We decided to classify the entries according to their type (user, item,
category, platform, etc.) and to use an embedding of the entries
that gives the same weight to each group, so that the effect of the
“sparse” variables did not interfere in a significant way against the
effect of the other variables. This embedding consisted in generat-
ing several matrices that allowed transforming the Ni variables of
each input class into a fixed K number defined as a model parame-
ter. This idea was taken from the same paper [3] from where the
model information was obtained, providing us with a large part of
its implementation 4, which, for the most part, is made using the
tensorflow library. Figure 8 (as in [3]) shows a representation of all
the components of the model and how they are connected.

Figure 8: Example of the DeepFM Architecture. Image
adapted from [3].

3.2.4 DeepNN.
The novel component of DeepFM is the deep neural network (also
referred to by us as DeepNN) which analyzes in parallel the inter-
actions between users and items. The deep component is a feed-
forward neural network and is used to learn high-order interactions.
A summary of this architecture is shown in Figure 9.

Figure 9: Example of the DeepNN component of the DeepFM
Architecture. Image adapted from [3].

4https://github.com/ChenglongChen/tensorflow-DeepFM

https://github.com/ChenglongChen/tensorflow-DeepFM

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA Germán Cheuque, José Guzmán, and Denis Parra

Its first component is an embedding layer that compresses the input
fields to a low dimensional and dense real-valued vector. Notice
that these fields can be of different lengths while embedding always
returns a codification of same K units of length. We denote the
output of the embedding layer as:

a(0) = [e1, e2, ..., em],
where ei is the i-th field embedded from a total of m fields. These
inputs are fed then to the hidden layers where the features interact.
The forward process is:

a(l+1) = σ (W (l)a(l) + b(l)),
where l is the layer depth and σ is an activation function. The
variables a(l),W (l),b(l) are the output, model weight, and bias of
the l-th layer. Then a last dense vector is generated and these results
are passed throughout a sigmoid function that returns a final output
for the recommendation task.

3.3 Sentiment analysis

One of the most interesting features in our dataset corresponds to
reviews. A review is a piece of text that encloses the opinion that a
user has and gave. However, a piece of text is not useful itself to
feed our models. To solve this, we propose sentiment analysis tech-
niques to transform this opinion to a numeric measure that can give
us a representation about how positive or negative the expressed
idea is. Using it could help the confidence degree obtained from
the explicit recommend feature, being also able to impute it when
those values do not match.We experiment with three different tools.

First we use the open source algorithm Tweetment. This algorithm
exists as a Python library and is capable of making binary senti-
ment classification to labels positively or negatively, represented
by values 1 or 0, respectively. This algorithm is trained over a tweet
database, achieving a F1-score of 69.02% on binary classification
[6]. Another consulted algorithm was SentiWordNet, developed as
an opinion mining application able to classify text in a continuous
range [-1, 1], indicative of how positive or negative is the expressed
idea. This algorithm works using a pre-trained dictionary that syn-
thesize n-grams relations, giving a score about its positiveness,
negativeness and objectiveness, without being exclusive [2]. Fi-
nally, we tried a model base on Neural networks and a word2vec
embedding. This algorithm tries to pay attention on text over the
game in question. However encountered two drawbacks in its de-
velopment: we were able to make just binary classification and also,
the implementation achieved a F1-score lower than Tweetment. We
finally decided to work with SentiWordNet because of the advan-
tage of continuous measure for the sentiment appreciation. This
could be more appropriate for different comment context (jokes,
etc).

4 EXPERIMENTAL METHODOLOGY
The experiments presented the following sections consist of the
training and evaluation of the recommendation models. To ensure
robustness we proceed to make randomized folds of the dataset
(k-folding), applying cross validation techniques to average these
scores. To train ALS algorithm, we use five folds while on FM and

DeepFM we use only three. The testing set was also randomly ob-
tained, however, because of our previous cut on dataset, we have
items that are purchased at least 100 times, so we verify that at
least ten of these purchases stay on test set so we try to predict
the user’s preferences is preference about them and verify what
recommendations our models suggest.

To measure our algorithms performance we use several metrics.
Training time is considered as a relevant measure to give us an idea
about the scalability of the models. Also, we want to measure the
Mean Average Precision (MAP) at the 10th top position in a list. So,
Average Precision is defined as,

AP =
∑
k P@k ∗ rel(k) #r elevant_items

and the Mean average precision measure is given by,
MAP =

∑n
u=1AP(u) #users

Similarly we want to calculate the nDCG measure at the 10th po-
sition of the list. This measure tries to standardize the gain and
utility of a recommendation list through the consideration of the
relevance of items and its ranking position on the list (introducing
a logarithmic discount). The definition of this parameter is a ratio
between the Discounted Cumulative Gain at position k, given by:

DCGk =
∑k
i=1

r el (i)
loд2(1+i)

and its ideal value at position k, also known as Ideal DCG. So the
nDCG measure is given by,

NDCGk =
DCGk
IDCGk

Finally we are interested in measuring how diverse and new are
the recommendation made by our systems. As we have already dis-
cussed, a large number of new games are released each year, making
these metrics very relevant. To measure these quantities we use
similarity based relations between items from a recommendation
list. Details are presented in [12].

Novelty (R|u) =
∑
n, j ∈u disc(n)p(rel |in ,u)p(rel |jn ,u)d(i, j)

Diversity(R|u) = 2
∑
k<n disc(n)disc(k)p(rel |in ,u)d(i,k)

The definitions introduce multiple discount factors, used as loga-
rithmic ones. The d(i,k) term refers to the distance between pairs
of items, this was calculated as a cosine distance. Finally the terms
p(rel |in ,u) refer to the probability that a user u prefers the item in ,
a factor that could be understood as a relevance. This measure is
obtained directly from the output of recommender systems.

5 PARAMETERS SENSITIVITY ANALYSIS
With the purpose of obtaining the best results, we proceed to an-
alyze the different tunable parameter. ALS algorithm has three
parameters that we can change they: The number of latent fac-
tors used to represent the factorization, the number of epochs of
training also refereed to as iterations; finally the λ factor, used for
regularization on ations 3 and 4. The sensitivity analysis is shown
on the next figures.
We finally work with the combination of the best found parame-
ters. We set regularization to 0.01, a number of 500 latent factors
privileging the training time against low improvements over 800.
Also 300 iterations were used for training.

The deep learning models have two tunable parameters. The first
one directly influences the net architecture, referring to the number
of neurons in each layer. The second one is the batch size, that

RecSys for Online Video Game Platforms: the Case of STEAM WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA

Figure 10: Train-
ingwith different
number of latent
factors.

Figure 11: Train-
ingwith different
number of itera-
tions.

Figure 12: Train-
ingwith different
regularization pa-
rameter.

encloses the number of tuples that are analyzed together. The last
one is crucial due its responsibility on the over-fitting and for being
capable to change the learning ratio. Our training produces graph-
ics like the ones shown in figures 13 and 14. The presented score
is measured in terms of the Gini norm, a good metric for binary
classification that is al to ROC-AUC but with a bigger resolution
spectrum.

Figure 13: DNN training
curve.

Figure 14: DeepFM train-
ing curve.

Using those curves and the defined metrics, we produced a sensi-
tivity analysis shown on table 3.

Configu- Time MAP NDCG Novelty Diver-
ration (sec) @10 @10 sity

B1024 HL32x32 2027,52 0,8911 0,9437 0,1667 0,4245
B512 2186,77 0,8940 0,9456 0,1845 0,4967
B256 2692,96 0,8919 0,9440 0,1847 0,4996

HL16x16 1815,70 0,8939 0,9454 0,1815 0,4775
HL8x8 1708,57 0,8941 0,9455 0,1837 0,4869

B512 HL8x8 2180,6 0,8945 0,9458 0,1857 0,5149
Table 3: Sensitivity analysis for DeepFMmodel. We vary the
number of neurons per layer (Hix j) and the batch size (Bn).
We use as a base a default configuration with a batch size of
1024 and 32 neurons by layer.

We can see that when batch size is decreased from 1024 to 512,
we get better results under all metrics. However, if we continue
decreasing this value to 256 the results are slightly worse except for
the Novelty that increased a little. That can be explained because
when we decrease the batch size we generate an over-training on
the training set, and relations are quickly learnedwith a few number
of records. Also, when we decrease the number of neurons by layer
from 32 to 8, we get better results over all metrics. This effect can

be explained because of the number of features on each tuple (32),
so when we use a smaller number of neurons we are forcing an
embedding that benefits from interactions. Finally, we combine
those configurations to create a model with the best performance
for use in the test set.

6 RESULTS
Table 4 shows the results of evaluating all recommender systems
models discussed previously.

Configu- Time MAP NDCG Novelty Diver-
ration (seg) @10 @10 sity
ALS 1421,8 0,107 0,332 - -
FM 1450,86 0,893 0,944 0,176 0,45

DeepNN 1889,58 0,897 0,947 0,186 0,49
DeepFM 2027,52 0,891 0,943 0,167 0,43
FM(WS) 1416,04 0,894 0,945 0,18 0,46

DeepNN(WS) 1866,35 0,897 0,948 0,197 0,54
DeepFM(WS) 1984,17 0,892 0,944 0,19 0,53

Table 4: Test results for everymodel presented, including re-
sults with and without (WS) sentiment analysis considered.

First of all, we see that our baseline model ALS is the fastest to
train, but is the one with the poorest performance in all metrics
discussed. The performance of FM, DNN and DeepFM is close to
eight times better in terms of MAP@10, indicating that the con-
tent and contextual data are very important for this problem, and
implicit co-ocurrances are not enough to yield good results. An-
other important result is that contrary to our assumptions, the
DeepNNmodel achieves better results on all metrics outperforming
FM and even DeepFM that includes this architecture on it. This
could indicate that the high order interactions contributed from
the DeepNN model provide more information than the lower order
ones from the FM, so these interactions are generating noise to
the final result of DeepFM. Although the differences in terms of
MAP@10 and NDCG@10 are small, they are consistently better
for DeepNN. Moreover, novelty and diversity are also better for
DeepNN, showing that even with similar ranking results, the resul-
tant recommendations are more novel and diverse, which are very
important aspects in the game industry.
Another interesting result is that when we do not consider the senti-
ment analysis values generated from reviews, all models show even
better performances against themselves when considering this fea-
ture. A reasonable cause for this is the small proportion of reviews
compared to the total user-game interaction records. The metrics
of Novelty and Diversity also benefit from not including sentiment,
reaching up to 0.54 in terms of diversity for DeepNN without us-
ing sentiment. As we have commented, on in the proposed online
video game problem, it is always better to reach improvements in
diversity and novelty in addition to accurate predictions as assessed
with MAP and NDCG.

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA Germán Cheuque, José Guzmán, and Denis Parra

7 CONCLUSION
In this work we experimented with different options of recommen-
dation systems within the context of video game recommendation,
using a dataset from the company STEAM as a test platform. We
joined three databases that contained information of user purchases,
the hours dedicated to play each item, their social interaction (crit-
ics) and the characteristics of video games. The ALS model was
chosen as the base model for comparison, and tests were carried
out with the models of Factorization Machines (FM), DeepNN and
DeepFM. The latter model uses a deep neural network (DeepNN)
that works in parallel to a layer composed of a FM, to introduce
higher-order interactions between inputs, aiming to improve the
performance of our prediction in terms of factors of novelty, diver-
sity and accuracy.

All themodels studied outperformed theALS baselinemodel. DeepNN
stood out from the rest. Despite being a simplermodel thanDeepFM,
it managed to exploit item-user relationships better, and although
it takes longer than FM and DeepFM to achieve competitive results,
it achieves consistent results over different datasets. Also, it obtains
better results with the evaluated metrics, which implies that the
higher order interactions provided by the DeepNN model provide
more information than the lower order interactions provided by
the FM model. As we argued the non-linear interaction from items
features is leveraged by deep-learning based methods, but interest-
ingly, this difference is better perceived in novelty and diversity
improvements over the lists of recommendations.
In order to obtain additional information, we used the user reviews
with different methods of sentiment analysis, finding a continuous
measure that could further abstract the user’s opinion for the video
game. We conclude that the proportion of available reviews was
not large enough in order to contribute to an improvement of the
results, being translated instead in an effect of noise. Metrics reduce
their value as much in MAP@10 as in NDCG@10 and even in the
measures of Novelty and Diversity.

In future work we plan to perform tests of parameter analysis on the
DNNmodel that gave the best results to see if they can be improved.
We might also conduct a user study to validate the offline results on
a real system, where other variables can have a strong impact on
the final results. Finally, we have recently found that the STEAM
database has been updated by its author. In its last version, a new
dataset of 7,793,069 reviews is present, so we expect for future work
to leverage them for a larger text analysis. This will help us test
whether sentiment analysis and other textual features can indeed
be a useful tool for recommending video games.

8 ACKNOWLEDGEMENTS
This work have been partially funded by Millennium Institute for
Foundational Research on Data (IMFD). We have also been partially
supported by NIC Chile and by Pontificia Universidad Católica de
Chile.

REFERENCES
[1] Paul Bertens, Anna Guitart, Pei Pei Chen, and África Periáñez. 2018. A Machine-

Learning Item Recommendation System for Video Games. arXiv preprint
arXiv:1806.04900 (2018).

[2] Andrea Esuli and Fabrizio Sebastiani. 2007. SentiWordNet: a high-coverage lexical
resource for opinion mining. Evaluation 17 (2007), 1–26.

[3] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence.
AAAI Press, 1725–1731.

[4] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for im-
plicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. Ieee, 263–272.

[5] Wang-Cheng Kang and Julian McAuley. 2018. Self-Attentive Sequential Recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[6] Saif M Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu. 2013. NRC-Canada:
Building the State-of-the-Art in Sentiment Analysis of Tweets. In Proceedings of
the Second Joint Conference on Lexical and Computational Semantics. 321–327.

[7] Denis Parra and Xavier Amatriain. 2011. Walk the talk: analyzing the relation
between implicit and explicit feedback for preference elicitation. In Proceedings of
the 19th international conference on User modeling, adaption, and personalization.
Springer-Verlag, 255–268.

[8] Denis Parra and Shaghayegh Sahebi. 2013. Recommender systems: Sources of
knowledge and evaluation metrics. In Advanced techniques in web intelligence-2.
Springer, 149–175.

[9] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-
Aware Recommender Systems. ACM Comput. Surv. 51, 4, Article 66 (July 2018),
36 pages. https://doi.org/10.1145/3190616

[10] Steffen Rendle. 2012. Factorization machines with libfm. ACM Transactions on
Intelligent Systems and Technology (TIST) 3, 3 (2012), 57.

[11] Bita Shams and Saman Haratizadeh. 2017. Graph-based collaborative ranking.
Expert Systems with Applications 67 (2017), 59–70.

[12] Saúl Vargas and Pablo Castells. 2011. Rank and relevance in novelty and diversity
metrics for recommender systems. In Proceedings of the fifth ACM conference on
Recommender systems. ACM, 109–116.

[13] Mengting Wan and Julian McAuley. 2018. Item recommendation on monotonic
behavior chains. In Proceedings of the 12th ACM Conference on Recommender
Systems. ACM, 86–94.

[14] Xing Yi, Liangjie Hong, Erheng Zhong, Nanthan Nan Liu, and Suju Rajan. 2014.
Beyond clicks: dwell time for personalization. In Proceedings of the 8th ACM
Conference on Recommender systems. ACM, 113–120.

https://doi.org/10.1145/3190616

	Abstract
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 Materials: The Dataset
	3.2 Methods: Recommender Systems Models
	3.3 Sentiment analysis

	4 Experimental Methodology
	5 Parameters sensitivity analysis
	6 Results
	7 Conclusion
	8 Acknowledgements
	References

