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The terrestrial sediments known as “loess” 
represent an important archive of paleocli-
matic variability. Mineral material mobilized 
by wind at the ground surface was trans-
ported over distances from a few hundred 
to thousands of kilometers and deposited 
back on the ground where it underwent a 
gradual transformation into loess sediment. 
The largest loess deposits are found in the 
Northern Hemisphere, primarily because the 
continental surface is much larger than in the 
Southern Hemisphere. Depending on their 
location on the globe (Fig. 1), the deposits 
have formed under the influence of different 
climate factors, and contain more or less 
detailed records of regional climate change. 
Here we review the current knowledge about 
the three main loess regions of the Northern 
Hemisphere. The many underlying references 
are provided in an extensive online archive of 
references, listed by regions.

European loess
An almost continuous loess band stretches, 
along approximately 50°N, from western 
Europe to the Dnieper valley in Ukraine. In 
this band, loess sequences mainly record 
the North-Atlantic millennial-scale climate 
changes of the last glaciation (between ca. 
110-15 ka BP): the Dansgaard-Oeschger (DO) 
events and Heinrich stadials (Rousseau et al. 
2007, 2011). The DO events correspond in the 
Northern Hemisphere to abrupt warmings, of 
about 10°C in Greenland within 50-100 years, 
and are followed by a more gradual return to 
cold (stadial) conditions. The Heinrich stadials 
represent particularly cold climate episodes 
caused by massive iceberg discharges from 
the Northern Hemisphere ice sheets known 
as Heinrich events.

Multidisciplinary loess studies and detailed 
chronological analyses indicate a strong 
correlation between these climate variations 
and European loess sedimentation. In the 
50°N European loess band, the alternating 
warm and cold episodes are clearly imprinted 
in the stratigraphy as a succession of doublets 
of paleosol-loess units, in particular during 
marine isotope stages 3 and 2 (between 
approx. 60-15 ka BP). The soils were formed 
during the relatively warm North-Atlantic 
phases (Greenland interstadials) associated 
with DO events, when the eolian sedimenta-
tion was reduced or even absent. The degree 

of development of each soil depended on 
the duration of the corresponding warm epi-
sode. The loess units correspond to the cold 
North-Atlantic phases (Greenland stadials 
and Heinrich stadials), when the dust cycle 
was very active and the sedimentation rates 
were high. Other loess deposits can be found 
in Europe at lower latitudes, but the millennial 
climate variations represented by the alterna-
tion of paleosols and loess units are absent in 
the stratigraphy, suggesting drier conditions 
than in the 50°N loess band.

Recent studies have employed numerical 
modeling to investigate the mechanistic link 
between the North-Atlantic millennial climate 

signal and the loess sedimentation variations 
in Europe around 50°N (Sima et al. 2009, 
2013). These studies focused on variations in 
dust mobilization, reasonably assuming that 
the deposition fluxes strongly depended on 
the emission fluxes. An important aspect of 
modeling the formation of loess deposits in 
Europe is to identify the geographical areas 
that were potentially subject to deflation dur-
ing glacial times, but are not anymore under 
present-day climate conditions.

For Western Europe, data-based studies have 
shown that the continental shelf that emerged 
during glacials (when sea-level dropped), 
especially in the English Channel and the 

The glacial-interglacial and orbital-timescale oscillations imprinted in loess records have been studied for a long time. 
Researchers have recently started to investigate millennial and sub-millennial variations by means of high-resolution 
field studies and data analyses combined with modeling experiments.
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Figure 1: The Northern Hemisphere ice-sheets (in light blue) and glaciers (dark blue dots) at the Last Glacial 
Maximum (map compiled by Jürgen Ehlers, available at www.qpg.geog.cam.ac.uk/lgmextent.html), the 
schematic location of the polar jet stream (blue arrows), wind patterns (black arrows) generated by the presence 
of the ice sheets (Kutzbach 1987), and (labeled) the loess regions discussed in the text.

www.qpg.geog.cam.ac.uk/lgmextent.html
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North Sea, used to be a strong dust deflation 
area. Transported from there by westerly 
winds, fine material must have reached loess 
deposits located many hundreds of kilome-
ters away, together with coarser material from 
nearer sources, such as large river valleys 
or periglacial outwash plains. Modeling 
results (Sima et al. 2009) point to vegetation 
changes in response to the millennial climate 
variations as a key factor in modulating dust 
emission, and hence ultimately also in con-
trolling loess sedimentation (Fig. 2). They also 
show the strong seasonality of the dust cycle. 
Dust emission was mainly active in spring-
time when the snow cover had melted, the 
topsoil layer had begun to thaw, the surface 
winds were still strong (even though weaker 
than in winter), and the vegetation had not 
yet developed enough to completely protect 
the surface from wind erosion. The colder 
the climate, the later the emission season 
started, and the later it ended. Numerical 
experiments generated about one month of 
delay for a given region between the warmest 
(“Greenland interstadial”) and the coldest (“H 
stadial”) simulated climate state.

For Eastern Europe, previous data-based 
studies only suggested the general direction 
in which the source areas should have been 
located with respect to the investigated 
loess deposits. Numerical modeling results 
(Sima et al. 2013) now show the likely dust 
source areas (Fig. 2). They also suggest that 
Heinrich stadials, even though generally 
colder and drier than the other stadials, were 
not necessarily dustier. Dust storms appeared 
to be generally less frequent during Heinrich 
stadials, but individual events could become 
stronger than during non-Heinrich stadials. 
These modeling results are in agreement with 
findings of relatively coarser-grained layers 
in loess sequences interpreted as Heinrich-
Stadial signature.

Asian loess
In the eastern part of Eurasia, the sedimen-
tation in the Chinese Loess Plateau (Fig. 1), 
which commenced about 22 Ma ago, strongly 
depended on fluctuations of the Southeast 
Asian monsoon. Initial investigations on loess 
sequences from this area have identified or-
bital timescale variations related to changes 
in the three astronomical parameters: eccen-
tricity, obliquity, and precession. Some series 
from the north of the Chinese Loess Plateau 
also exhibit particle-size variations with mil-
lennial frequency, similar to the DO oscilla-
tions observed in North Atlantic records. A 
correlation, mainly based on luminescence 
dates, has been established between inter-
vals of coarse loess layers and Greenland 
stadials (without particularly distinguishing 
the Heinrich stadials), while intervals of fine-
grained loess were associated with the DO 
warming events. The grain size changes are 
interpreted as reflecting variations in the 
strength of the atmospheric circulation during 
the SE Asian winter monsoon over the deserts 
of Mongolia and northern China, the main 
dust suppliers to the Chinese Loess Plateau.

The Chinese loess sequences do not contain 
any paleosols related to DO events, because 
the corresponding climate is too dry to allow 

pedogenesis. Alternating paleosol-loess units 
similar to those observed in Europe along 
50°N can, however, be found in Siberian loess 
deposits north of Lake Baikal. The available 
radiocarbon dates allow the Siberian paleo-
sols to be correlated with the DO events and 
suggest that the impact of the North-Atlantic 
millennial climate variations reached at least 
as far east as Lake Baikal.

North American loess
The North American loess deposits have 
recorded various influences, mostly related 
to climate changes originating in the North 
Atlantic and Pacific regions. According 
to climate simulations run with an Earth 

system model of intermediate complexity, 
the eastern part of North America should 
have been affected by the DO and Heinrich 
abrupt climate changes, but very few loess 
deposits can be found there to verify this 
model result. On the other hand, modeling 
results indicate that much of the Great Plains, 
where the thickest North American loess 
deposits are located, and the western part of 
the continent were not influenced by DO and 
Heinrich events. Indeed, the succession of 
paleosol-loess units in sediments in the state 
of Illinois, 120 km south of the Laurentide ice 
sheet margin at its maximum extent, is inter-
preted (using radiocarbon dates) as reflecting 
sub-millennial timescale inflow of air from the 
Gulf of Mexico, with a periodicity of about 
450±100 yr. Loess sequences located further 
west, mainly in the state of Nebraska, show 
bedded mineral layers corresponding to 
even finer timescales. These were formed as 
a result of the transport of material during the 
Last Glacial Termination (~23-12 ka BP) from 
nearby areas, including the outwash areas of 
the southwest margin of the Laurentide ice 
sheet and the east margin of the Cordilleran 
ice sheet.

Outlook
Many loess deposits, especially across the 
Northern Hemisphere, have recorded past 
climate changes at millennial and sub-millen-
nial timescales. Some loess sequences also 
contain evidence of particularly strong dust 
events with a much shorter characteristic 
timescale. Thus, during Marine Isotopic Stage 
5, European sequences (especially from 
Central Europe) have recorded dust storms 
of continental magnitude in response to 
atmospheric blocking episodes (Rousseau et 
al. 2013). More effort is needed, on the data 
side, to better quantify the past dust-cycle 
variations at these different timescales, and 
on the modeling side, to more realistically 
simulate them.
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