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Abstract—Exploiting the nature of broadcast and the relaying
capability of wireless devices, cooperative communication is
becoming a promising technology to increase the channel capacity
in wireless networks. In cooperative communication, the scheme
for assigning relay nodes to users plays a critical role in the
resulting channel capacity. A significant challenge is how to make
the scheme robust to selfish and cheating behavior of users while
guaranteeing the social optimal system capacity. In this paper,
we design an integrated optimal relay assignment scheme called
HERA for cooperative networks. To avoid system performance
degradation due to the selfish relay selections by the source
nodes, we propose a payment mechanism for charging the source
nodes to induce them to converge to the optimal assignment. To
prevent relay nodes from manipulating the relay assignmentby
reporting transmission power untruthfully, we propose a payment
mechanism to pay them for providing relaying service. We also
show that HERA is budget-balanced, meaning that the payment
collected from source nodes is no smaller than the payment paid
to relay nodes.

Index Terms—Relay assignment, cooperative communication,
truthful auction.

I. I NTRODUCTION

T HROUGH cooperative relaying from wireless devices
(generally called relay nodes), cooperative communi-

cation (CC) [5] has been shown to have the potential to
increase the channel capacity between two wireless devices.
The essence of CC is to exploit the nature of broadcast and the
relaying capability of other nodes to achieve spatial diversity.
Two primary CC modes have been commonly used,Amplify-
and-Forward (AF) and Decode-and-Forward(DF) [5], de-
pending on how the relay node processes the received signal
and transmits to the destination. Because an improper choice
of the relay node for a source-destination pair can result in
an even smaller capacity than that under direct transmission,
the assignment of relay nodes plays a critical role in the
performance of CC [1–3, 12, 21].

We consider the following scenario in this paper. In a
wireless network, there are a number of source nodes and
corresponding destination nodes. Other wireless devices in
the network can function as relay nodes. We are interested
in designing a relay assignment scheme, such that the total
capacity under the assignment is maximized.

We call the network with CC thecooperative network.
Designing a relay assignment scheme for cooperative networks
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is very challenging for the following reasons.
∙ System Performance: A relay assignment scheme should

provide a relay assignment algorithm, which appropri-
ately assigns relay nodes to source nodes such that the
system capacity is maximized. The system capacity is the
sum of the capacity of all source nodes.

∙ Selfish Behavior: Usually, wireless devices in cooperative
networks are not owned by a single entity, but by many
profit-maximizing independent entities. Therefore, even
if an optimal relay assignment algorithm is developed,
an individual source node may not want to follow the
assignment, given the fact that it can improve its own
capacity by selecting a different relay node. This selfish
behavior can result in system performance degradation.

∙ Potential Cheating: As to relay nodes, most of the proto-
cols in cooperative networks assume that all the wireless
devices are cooperative, and in particular willing to
participate in cooperative communications as relay nodes.
However, the voluntary cooperativeness assumption may
not be true in reality as relaying data for other network
nodes can consume energy and other resources of the
relay node. A naive solution is to make payments to the
participating relay nodes as an incentive. The question
arising from this naive solution is how much a relay node
should be paid for helping with the cooperative commu-
nication. A simple payment mechanism is vulnerable to
the dishonest behavior of relay nodes, in the sense that
a relay node can profit from lying about its true relaying
capability, e.g. transmission power.

In this paper, we design an integrated optimal relay assign-
ment scheme for cooperative networks, called HERA, named
after the Goddess of Marriage in Greek Mythology.To the
best of our knowledge, HERA is the first relay assign-
ment scheme for cooperative networks, which considers
both selfish and cheating behavior of network entities
while guaranteeing socially optimal system performance.
HERA is composed of three components: 1) an optimal relay
assignment algorithm, 2) a payment mechanism for source
nodes, and 3) a payment mechanism for relay nodes. HERA
is a centralized scheme, where a system administrator is
responsible for collecting the payment from the source nodes
and paying the relay nodes. HERA provides the following key
features:

∙ HERA guarantees to find a relay assignment for the
source nodes, such that the total capacity is maximized.
The system model considered in this paper allows a
relay node to be shared by multiple source nodes. Hence
it is more general compared with the model in [12],
where each relay node is restricted to be assigned to
only one source node. Our assignment algorithm works



regardless of which CC mode is used in the network. It
is also independent of the relation between the number
of source nodes and that of the relay nodes. In addition,
our algorithm can guarantee that the achieved capacity
of each source node under the assignment is no less than
that achieved by direct transmission.

∙ HERA provides a payment mechanism to charge source
nodes for using relaying service from the relay nodes.
To cope with the selfish behavior of source nodes, our
payment mechanism is designed in a way such that the
system possesses aStrictly Dominant Strategy Equilib-
rium (SDSE), where each selfish source node plays the
strategy that brings the maximum utility regardless of
others’ strategies. Furthermore, the SDSE achieves the
socially optimal system capacity.

∙ HERA also provides a payment mechanism to pay relay
nodes for providing relaying service. To prevent relay
nodes from lying about their relaying ability (e.g. trans-
mission power) to gain profits, the payment mechanism
uses a VCG-based payment formula to calculate the
payment. Under this payment mechanism, reporting true
relaying ability is the dominant strategy for each relay
node. In other words, the relay node can maximize
its payment received from the system administrator by
reporting its true relaying ability.

∙ Finally, from the perspective of the system administrator,
HERA assures that the system administrator will not
run the system with any loss. In other words, the total
payment collected from source nodes is at least as much
as the total payment paid to relay nodes.

The remainder of this paper is organized as follows. In
Section II, we give a brief review of the related work in the
literature. In Section III, we describe the system model con-
sidered in this paper. In Section IV, we present a polynomial
time optimal algorithm to solve the relay assignment problem.
In Section V, we study the selfish behavior of source nodes
and design a payment mechanism to charge source nodes for
using relaying service. In Section VI, we consider the potential
cheating relay nodes in the system, design another payment
mechanism to pay relay nodes for providing relaying service
and prove the desired properties of the designed mechanism.
We present our extensive experimental results in Section VII.
We conclude this paper in Section VIII.

II. RELATED WORK

In this section, we briefly review the related work on
cooperative communication (CC), with the focus on relay
assignment.

In [1], Bletsaset al. proposed a novel scheme to select
the best relay node for a single source node from a set
of available relays. However, this cannot be extended to a
network consisting multiple source nodes, which is the model
studied in this paper.

Some efforts have been made on the relay assignment or re-
lay selection problem in cooperative networks. In [2], Caiet al.
studied the problem of relay selection and power allocation
for AF wireless relay networks. They first considered a simple

network with only one source node, and then extended it to the
multiple-source case. The proposed algorithm is an effective
heuristic, but offers no performance guarantee. Xuet al. [17]
studied a similar problem with a different objective, whichis
to minimize the total power consumption of the network. In
[7], Ng and Yu jointly considered the relay node selection,
cooperative communication and resource allocation for utility
maximization in a cellular network. However, the algorithmis
heuristic and not polynomial, as pointed out by Sharmaet al.
[12].

In [12], Sharmaet al. studied the relay assignment problem
in a network environment, such that the minimum capacity
among all source nodes is maximized. Following this work,
Zhang et al. [20] considered the relay assignment problem
with interference mitigation. In both models in [12] and [20],
a relay node is restricted to be assigned to at most one source
node. In contrast, our model in this paper is more general in
the sense that it allows multiple source nodes to share the same
relay node. In addition, different from [12], our objectiveis
to maximize the total capacity of all pairs. Although Zhang
et al. [20] had the same objective as ours, they only provided
a heuristic algorithm.

There are few studies on the scheme design for cooperative
communications in the networking literature, among which the
works in [4, 13, 14, 19] are most related to our work. In [13],
Shastry and Adve proposed a pricing-based system to stimu-
late the cooperation via payment to the relay nodes. The goal
in their scheme is to ensure both the access point and the relay
nodes benefit from cooperation. In [14], Wanget al.employed
a buyer/seller Stackelberg game, where a single buyer triesto
buy services from multiple relays. The buyer announces its
selection of relays and the required transmission power, then
the relays ask proper prices to maximize their profits. In [4],
Huang et al. proposed two auction mechanisms, which are
essentially repeated games. In each auction mechanism, each
user iteratively updates its bid to maximize its own utility
function with the knowledge of others’ previous bids. With
a common drawback, none of the above works guarantees
the optimal system capacity or considers truthfulness of relay
nodes. In [19], Yanget al. designed a truthful auction scheme
for cooperative communications, which satisfies truthfulness,
individual rationality, and budget balance properties. Similarly,
the scheme cannot guarantee the optimal system capacity.

III. SYSTEM MODEL

We consider a static wireless network. There is a set
S = {s1, s2, ⋅ ⋅ ⋅ , sn} of n source nodes and a setD =
{d1,d2, ⋅ ⋅ ⋅ ,dn} of corresponding destination nodes, where
si transmits todi. Other nodes in the network function as
relay nodes. We assume that there is a collectionℛ =
{r1, r2, . . . , rm} of m relay nodes. As in [12], we assume that
orthogonal channels are available in the network (e.g. using
OFDMA) to mitigate interference. We further assume that
each node is equipped with a single transceiver and can either
transmit or receive at a time. LetP s

i denote the transmission
power of source nodesi and P r

j denote the transmission
power of relay noderj . Let P s = (P s

1 , P
s
2 , . . . , P

s
n) and



P r = (P r
1 , P

r
2 , . . . , P

r
m). When nodeu transmits a signal to

nodev with powerPu, the signal-to-noise ratio (SNR) at node
v, denoted asSNRuv, is SNRuv = Pu

N0⋅∣∣u,v∣∣�
, whereN0 is

the abient noise,∣∣u, v∣∣ is the Euclidean distance betweenu
and v, and� is the path loss exponent which is between2
and4 in general.

For the transmission model, we assume that each source
node has an option to use cooperative communication (CC)
with the help of a relay node. A recent work by Zhaoet al.
[21] showed that it is sufficient for a source node to choose the
best relay node even when multiple relay nodes are availableto
achieve full diversity. Therefore, it is reasonable to assume that
each source node will either transmit directly or use CC with
the help of only one relay node. When source nodes transmits
to destination noded directly, the achievable capacity is
cDT (s, d) = W log2(1+SNRsd), whereW is the bandwidth
of the channel. There are two different CC modes,Amplify-
and-Forward(AF) and Decode-and-Forward(DF) [5]. Let r
denote the relay node andPr be the transmission power ofr.
The achievable capacity froms to d under the AF mode is

cAF (s, r, d)=
W

2
log2

(

1+SNRsd +
SNRsr ⋅ SNRrd

SNRsr+SNRrd+1

)

.

The achievable capacity froms to d under the DF mode is

cDF (s, r, d) =
W

2
min{ log2(1 + SNRsr),

log2(1 + SNRsd + SNRrd)}.

Note that, for givens and d, both cAF and cDF are
functions of Pr, ∣∣s, r∣∣ and ∣∣r, d∣∣. Thus whether a source
node can obtain larger capacity by using CC than it can
by transmitting directly depends on the relay node assigned.
The scheme designed in this paper isindependentof the CC
mode. We usecR to denote the achievable capacity under
CC. Let S̄ = S ∪ {s0} and ℛ̄ = ℛ ∪ {r0}, where s0 is
a virtual source nodeand r0 is a virtual relay node. Let
A = {(s1, rj1), (s2, rj2 ), . . . , (sn, rjn)} ⊆ S × ℛ̄ denote a
relay assignment. If(si, rj) ∈ A, relay noderj is assigned
to source nodesi under assignmentA. If (si, r0) ∈ A, si

transmits todi directly under the relay assignmentA. Note
that it is possible to have(si, rj), (sk, rj) ∈ A, for si ∕= sk.
This is a major difference between our model and the model
in [12], where a relay node is assigned to at most one source
node. Since we do not enforce such constraints, our model is
more general.

Now let us consider the case where the same relay node
is assigned to multiple source nodes. In this case, we use
Sj to denote the set of source nodes being assignedrj , i.e.,
Sj = {si∣(si, rj) ∈ A}. Note thatSj is dependent on relay
assignmentA. We assume thatrj equally provides service
to all the source nodes employing it. This can be achieved
for example by using a reservation-based TDMA scheduling.
The relay node serves each source node in a round-robin
fashion. Each frame is dedicated to a single source node for
CC. Each source node gets served everynj frames, where
nj = ∣Sj ∣. Therefore, the average achievable capacity for each

source nodesi ∈ Sj is
cR(si,rj,P

r
j ,di)

nj
. Let c(si, rj ,A, P r)

denote the achievable capacity ofsi under relay assignmentA,

where(si, rj) ∈ A. Hereafter we also omitdi in the capacity
expression.Thus we have

c(si, rj ,A, P
r) =

{

cR(si,rj ,P
r
j )

nj
, if rj ∕= r0,

cDT (si), if rj = r0.

In the expressions above, we takeP r (or P r
j ) as a param-

eter, because a relay node may lie about its transmission
power in the problem to be studied in Section VI. We will
explain it in detail later. We define thesystem capacity,
denoted byC(S,ℛ,A, P r), corresponding to relay assign-
ment A and transmission powerP r, as the total capac-
ity of all the source nodes inS, i.e., C(S,ℛ,A, P r) =
∑

si∈S,(si,rj)∈A c(si, rj ,A, P r).
The ultimate goal in the design of the relay assignment

scheme can be defined as the following optimization problem.
Definition 1: (Relay Assignment Problem (RAP)): Given
S, D, ℛ, andP r, the Relay Assignment Problemseeks for a
relay assignmentA such thatC(S,ℛ,A, P r) is maximized
among all possible relay assignments. □

RAP is different from the problem studied in [12], whose
objective is to maximize the minimum capacity among
all source nodes. LetA∗(S,D,ℛ, P r) be the optimal so-
lution to RAP. For notational simplicity, we useA∗ to
denoteA∗(S,D,ℛ, P r) and C to denoteC(S,ℛ,A, P r)
when the context is clear. Correspondingly,C∗ denotes
C(S,ℛ,A∗, P r). In the next section, we focus on designing
an optimal algorithm to solve RAP.

IV. A N OPTIMAL RELAY ASSIGNMENT ALGORITHM

Due to the possibility of sharing a common relay node
among multiple source nodes, solving RAP becomes a chal-
lenging task. Nonetheless, we can design a polynomial time
optimal algorithm to solve RAP by exploiting some special
properties of the problem.

The design of the optimal algorithm for RAP is based on
Lemma 1 and Lemma 2. Due to space limitations, all the
proofs in this section are omitted and can be found in [18].

Lemma 1: Let A be a relay assignment, where relay
node rj ∈ ℛ is assigned tonj > 1 source nodes. Let
si ∈ Sj be the source node with the minimumcR, i.e.,
cR(si, rj , P

r
j ) = minsk∈Sj

cR(sk, rj , P
r
j ). If we let si transmit

to the destinationdi directly, instead of usingrj , while
keeping others the same, the total capacity will be increased.
That is C(S,ℛ,A′, P r) > C(S,ℛ,A, P r), whereA′ =
A ∖ {(si, rj)} ∪ {(si, r0)}. □

According to Lemma 1, we can always improve the system
capacity if there exists a relay node shared by more than one
source node in the current relay assignment. Unfortunately, the
example in [18, Section 4.A] shows that this procedure may
lead to alocal optimum. Nonetheless, Lemma 1 implies a nice
property pertaining to the optimal relay assignment for RAP.

Lemma 2: Let A∗ be an optimal solution to RAP. Each
relay node is assigned to at most one source node inA∗. □

Surprisingly, although our model allows multiple source
nodes to share a common relay node, an optimal relay assign-
ment preferably assigns a relay node to at most one source
node to achieve the maximum system capacity. On the other



hand, we know that each source node will either employ
a relay node for CC or transmit to the destination directly,
but not both at the same time. This one-to-one matching
relation in the optimal solution indicates that we can transform
any instance of RAP into that of theMaximum Weighted
Bipartite Matching(MWBM) problem [15] and solve it using
corresponding algorithms.

Now we are ready to present our optimal algorithm for RAP.
The pseudo-code is illustrated in Algorithm 1.

Algorithm 1 : ASGMNT(S,ℛ,D, P r)

Construct a setU of n vertices corresponding toS;1

Construct a setV of n+m vertices corresponding to2

D ∪ℛ;
Construct a setℰ of edges, where(si, v) ∈ ℰ if v = di3

or v ∈ ℛ;
for i = 1 to n do4

w(si,di)← cDT (si);5

end6

for ∀si ∈ U and∀rj ∈ ℛ do7

w(si, rj)← cR(si, rj , P
r
j );8

end9

Apply an MWBM algorithm to find a maximum10

weighted matchingℳ∗ in graphG = (U ,V , w);
A∗ ← ∅;11

for (si, v) ∈ℳ∗ do12

if v ∈ ℛ then A∗ ← A∗ ∪ {(si, v)};13

else A∗ ← A∗ ∪ {(si, r0)};14

end15

return A∗.16

The correctness and the computational complexity of Algo-
rithm 1 are guaranteed by Theorem 1.

Theorem 1: Algorithm 1 guarantees to find an optimal
relay assignmentA∗(S,ℛ,D, P r) for RAP in time bounded
by O(n2m).

V. M ECHANISM DESIGN FORSELFISH USERS

System capacity maximization is only desirable from a
global point of view, not from the point of view of an individ-
ual selfish user. Yet most wireless devices in the network are
owned by independent profit-maximizing entities. In this sec-
tion, we use the termselectioninstead ofassignment, because
selection is from the user’s point of view while assignment
is from the system’s point of view. When selfish users have
their own preferences on relay selection, several questions may
arise: Is there astable state, where no user has the incentive to
deviate from its current selection? How can users reach sucha
state? If the system performance is not optimized in the stable
state, how can the system administrator exert influence on the
relay selection to achieve social optimum? These questions
will be the focus of this section.

A. Strategic Game Model and Game Theory Concepts

To study the relay selection problem with selfish enti-
ties, we model it by a game, calledRelay Selection Game

(RSG). In this game, the source nodes areplayers, because
they make relay selections. Thestrategy of each player
is its relay selection
i ∈ ℛ̄. The strategy profile
 =
(
1, 
2, . . . , 
n) is a vector of all players’ strategies. Let

−i = (
1, . . . , 
i−1, 
i+1, . . . , 
n) denote the strategy profile
excluding playersi’s strategy. Hence,
 = (
i, 
−i) is a
strategy profile wheresi plays
i and others play
−i. Given
a strategy profile
, we can construct the corresponding relay
assignmentA = {(s1, 
1), (s2, 
2), . . . , (sn, 
n)}. Given a
relay assignmentA = {(s1, rj1), (s2, rj2), . . . , (sn, rjn)}, we
have the corresponding strategy profile
, where
i = rji for
eachsi ∈ S. In this game, each playersi selects a strategy
i
to maximize its ownutility, which is defined as its achieved ca-
pacity us

i (
) = c(si, 
i,A, P
r). If us

i (
i, 
−i) > us
i (


′
i, 
−i),

we say that playersi prefers
i to 
′
i when others play
−i .

A strategy
i is called abest responsestrategy of player
si if it maximizes si’s utility function when others play

−i, i.e., us

i (
i, 
−i) ≥ us
i (


′
i, 
−i) for any 
′

i ∈ ℛ̄. A
strategy profile
ne = (
ne

1 , 
ne
2 , . . . , 
ne

n ) is called aNash
Equilibrium (NE) [9], if for every playersi ∈ S, we have
us
i (


ne
i , 
ne

−i) ≥ us
i (
i, 


ne
−i) for any 
i ∈ ℛ̄. In other words,

every player is playing its best response strategy in an NE
and therefore has no incentive to deviate from its current
strategy unilaterally. A stronger concept than best response
strategy isstrictly dominant strategy[10]. A strategy
i is
called a strictly dominant strategy of playersi if it gives
strictly larger utility than any other strategy regardlessof
the strategies others play. Correspondingly, a strategy profile

sd = (
sd

1 , 
sd
2 , . . . , 
sd

n ) is called aStrictly Dominant Strat-
egy Equilibrium(SDSE), if∀si ∈ S, ∀
−i, ∀
i ∕= 
sd

i , we have
ui(


sd
i , 
−i) > ui(
i, 
−i). Obviously, an SDSE is an NE, but

not vice versa. If a game has an SDSE, then the SDSE is the
unique NE of the game.

B. Nonoptimality of Nash Equilibrium

As a motivation to the design of our payment mechanism,
we show that an NE of RSG is not necessarily social optimal.
Note that RSG is closely related to theCongestion Gamein-
troduced by Rosenthal [11]. Specifically, RSG can be reduced
to theCongestion Game with Player-specific Payoff Function,
which was studied by Milchtaich [6]. Due to space limitations,
we make reference to [6] for the existence proof of NE and
the algorithm for computing an NE. This does not degrade the
rigor of our paper, as the result in this subsection only serves
as amotivationto the design of our payment mechanism.

s1 s2 s3 ⋅ ⋅ ⋅ sn

r0 1 1 1 ⋅ ⋅ ⋅ 1
r1 10 1 1 ⋅ ⋅ ⋅ 5
r2 10 10 1 ⋅ ⋅ ⋅ 1
r3 1 5 10 ⋅ ⋅ ⋅ 1
r4 1 1 5 ⋅ ⋅ ⋅ 1
...

...
...

...
...

...
rm 1 1 1 ⋅ ⋅ ⋅ 10

(a) Cne = 10 + 5(n− 1)

s1 s2 s3 ⋅ ⋅ ⋅ sn

r0 1 1 1 ⋅ ⋅ ⋅ 1
r1 10 1 1 ⋅ ⋅ ⋅ 5
r2 10 10 1 ⋅ ⋅ ⋅ 1
r3 1 5 10 ⋅ ⋅ ⋅ 1
r4 1 1 5 ⋅ ⋅ ⋅ 1
...

...
...

...
...

...
rm 1 1 1 ⋅ ⋅ ⋅ 10

(b) C∗ = 10n

TABLE I: An example withPOA =
10+5(n−1)

10n
≈

1
2

A common concept to quantify how the selfish behavior



of players can affect the social performance is calledPrice
of Anarchy (POA), which is defined asPOA = min
ne

Cne

C∗
,

whereCne is the system capacity when players are playing NE
strategy
ne. Recall thatC∗ is the optimal system capacity. A
simple example in Table I shows that the selfishness of players
can degrade the system performance by half.

C. Mechanism Design to Achieve Social Optimality

To achieve the optimal relay assignment, we need to exert
influence on players’ selection of relay nodes. Here we require
players to make payments for using relaying service.

As in many existing scheme designs, we assumevirtual
currencyexists in the system. Each source node (player) needs
to pay certain amount of currency to the administrator based
on its relay node selection. In particular, given the strategy
profile 
 and the correspondingA, we define the payment of
playersi as

psi =

⎧















⎨















⎩

c(si, 
i,A, P r) +

⎛

⎝g(
i, 

∗
i )−

1
n−1

∑

k ∕=i

g(
k, 

∗
k)

⎞

⎠ ,

if 
i ∕= r0,

g(
i, 

∗
i )−

1
n−1

∑

k ∕=i g(
k, 

∗
k),

if 
i = r0.

Here g(
i, 

∗
i ) = l ⋅ ∣x − y∣, where
i = rx and 
∗

i = ry,
l = maxsi∈S cDT (si) + " and " > 0 is a constant. In other
words, g(
i, 
∗

i ) is equal tol times the difference between
the indices of the relay node selected bysi and the relay
node assigned in the optimal solution. Intuitively, a source
node needs to pay for using relaying service if it selects a
relay node. Each source node also pays (or receives) a penalty
(resp. bonus) depending on how much more (resp. less) it
deviates from the optimal strategy
∗ than others. Here
∗ is
the strategy profile corresponding to the optimal solutionA∗

of RAP computed by Algorithm 1. The utility of playersi is
then defined as

us
i (
i, 
−i) = c(si, 
i,A, P

r)− psi . (1)

A similar payment mechanism was also used by Wuet al. to
solve a different problem [16]. We call the Relay Selection
Game with utility function (1) theIncentive-added Relay
Selection Game(IRSG). Next we prove that
∗ is an SDSE
in IRSG.

Theorem 2: Let 
∗ be the strategy profile corresponding
to the optimal solutionA∗ of RAP. Then
∗ is an SDSE for
IRSG. Therefore,
∗ is the unique NE of IRSG. □

Proof: To prove this theorem, it suffices to prove that
∀si ∈ S, ∀
−i, ∀
i ∕= 
∗

i , we must haveus
i (


∗
i , 
−i) >

us
i (
i, 
−i). Plugging the paymentpsi into (1), we have

us
i (
i, 
−i) =

⎧















⎨















⎩

1
n−1

∑

k ∕=i g(
k, 

∗
k)− g(
i, 


∗
i ),

if 
i ∕= r0,

cDT (si)−

⎛

⎝g(
i, 

∗
i )−

1
n−1

∑

k ∕=i

g(
k, 

∗
k)

⎞

⎠ ,

if 
i = r0.

Assume playersi plays strategies
∗
i and
i ∕= 
∗

i , respectively.
We consider all the possible cases:

Case 1: 
∗
i ∕= r0 and
i ∕= r0.

us
i (


∗
i , 
−i)− us

i (
i, 
−i) = g(
i, 

∗
i )− g(
∗

i , 

∗
i )

= g(
i, 

∗
i ) > 0,

where the second equality and the last inequality follow from
the definition ofg(⋅, ⋅) and the assumption that
i ∕= 
∗

i .
Case 2: 
∗

i ∕= r0 and
i = r0.

us
i (


∗
i , 
−i)− us

i (
i, 
−i) = g(
i, 

∗
i )− cDT (si)− g(
∗

i , 

∗
i )

= g(
i, 

∗
i )− cDT (si) > 0,

where the last inequality follows from the definition ofg(⋅, ⋅).
Case 3: 
∗

i = r0 and
i ∕= r0.

us
i (


∗
i , 
−i)− us

i (
i, 
−i) = cDT (si) + g(
i, 

∗
i )− g(
∗

i , 

∗
i )

= cDT (si) + g(
i, 

∗
i ) > 0.

We have proved that
∗ is an SDSE of IRSG. Hence,
∗ is
the unique NE of IRSG.

VI. M ECHANISM DESIGN TOPREVENT RELAY NODES

FROM CHEATING

Relay nodes involved in the final assignment help source
nodes with cooperative communications at the cost of their
own energy and other resources. Without an attractive in-
centive, a relay node may not be willing to participate in
cooperative communications. A naive solution to this problem
is to pay each relay node the achieved capacity of cooperative
communications involving it (while the relay assignmentA
is computed based on the reported transmission power, the
achieved capacity is computed based on the true transmission
power and the relay assignmentA). However, such a simple
payment mechanism could result in relay nodes’ lying about
their transmission power. For example, a relay node would
not be selected if it reports its transmission power honestly,
but could be selected if it reports a larger transmission power
instead. Likewise, a relay node would be assigned to cooperate
with a source node, resulting in a small capacity, if it reports
its transmission power honestly. But it could cooperate with
another source node by lying, resulting in a larger capacity.
These two examples are shown in Fig. 1. In both examples,
the relay node receives a larger payment by lying about its
transmission power.

s1

r2r1

5 3

s1

r2r1

5 6(3)

(a)r2 increases its payment from0 to
3. The system capacity is decreased
from 5 to 3.

s1 s2

r1 r2

4 36 2

s1 s2

r1 r2

4 6(3)6 3(2)

(b) r2 increases its payment from2
to 3. The system capacity is decreased
from 8 to 7.

Fig. 1: Examples showing that a relay node can increase its payment
by lying. Solid links represent the relay assignment. The numbers
beside the links represent the achieved capacities calculated based on
reported transmission power (outside the parentheses) andbased on
the true transmission power (inside the parentheses) if it is different
from the reported transmission power.

Obviously, the dishonest behavior of relay nodes may in-
fluence the relay assignment and further degrade the system



performance. Hence it is essential to design a payment mech-
anism such that every relay node will report its transmission
power truthfully to maximize its payment.

A. Necessary Concepts

In the conventional terminology of mechanism design [8],
every agenti has its private informationti called its type,
which is only known to itself. Lett = (t1, t2, . . . , tm) be
the type profile consisting of types from all the agents. Each
agenti plays a strategy�i ∈ Λi (reports a value of its type),
whereΛi is its strategy space. Let� = (�1, �2, . . . , �m) be
the strategy profile consisting of strategies from all the agents.
Similarly, we have�−i = (�1, . . . , �i−1, �i+1, . . . , �m) and
� = (�i, �−i). A mechanism then provides anoutput func-
tion o = o(�1, �2, . . . , �m) and a paymentfunction pi =
pi(�1, �2, . . . , �m) for each agenti based on the reported
profile. For each outputo, each agent has a valuationvi(ti, o).
Then the utility of agenti is ui(ti, o) = vi(ti, o) + pi. All the
agents are assumed to berational, in the sense that each agent
will always maximize its utility by playing the best strategy.
A strategy�i is called adominant strategyof agenti if it
maximizesi’s utility no matter what strategies others play.
A payment mechanism istruthful (or strategyproof, incentive
compatible), if reporting true type is a dominant strategy for
each agent. A payment mechanism satisfiesindividual ratio-
nality, if the agent’s utility of participating in the mechanism
is guaranteed to be non-negative when the agent reports its
type truthfully. In this paper, we design a VCG-based payment
mechanism [8].

B. Design Details

In our design, we assume that each relay noderj is
an agent and the type ofrj is its transmission powerP r

j .
Before the relay assignment, each relay noderj reports a
transmission powerTj , which may or may not be equal to
P r
j . Let P r = (P r

1 , P
r
2 , . . . , P

r
m) be the true transmission

power profile andT = (T1, T2, . . . , Tm) the reported trans-
mission powerprofile. ASGMNT(S,D,ℛ, T ) (illustrated in
Algorithm 1) is then applied to compute an optimal relay
assignmentA∗(T ), which is optimal with respect toT . Ac-
cording to Lemma 2, each relay noderj is assigned to at most
one source node underA∗(T ). UnderA∗(T ), let �j(T ) ∈ S̄
denote the source node, to whichrj is assigned. If�j(T ) = s0,
it indicates thatrj is not assigned to any source node. Let
�(T ) = (�1(T ), �2(T ), . . . , �m(T )) be the source nodes
corresponding to all the relay nodes inℛ. Let Ψ(S,ℛ, T )
denote the optimal capacity of the system consisting ofS
andℛ based onT , i.e., Ψ(S,ℛ, T ) = C(S,ℛ,A∗(T ), T ).
Let S−si = S ∖ {si}, ℛ−rj = ℛ ∖ {rj}, and T−j =
(T1, . . . , Tj−1, Tj+1, . . . , Tm). We define the payment to relay
noderj (for a givenT ) by the following

prj(T )=

⎧



⎨



⎩

0, �j(T ) = s0,

c(�j(T ), rj,A∗(T ), P r)− (Ψ(S,ℛ−rj , T−j)

−Ψ(S−�j(T ),ℛ−rj , T−j)), o/w,

(2)

where c(�j(T ), rj,A
∗(T ), P r) is the achieved capacity in

the cooperative communication, andΨ(S,ℛ−rj , T−j) −

Ψ(S−�j(T ),ℛ−rj , T−j) is a charge determined by the system
administrator, based onT .

Before proving the properties of the designed payment
mechanism, we note the fact that

c(�j(T ), rj ,A
∗(T ), P r) + Ψ(S−�j(T ),ℛ−rj , T−j)

= C(S,ℛ,A(T ′), T ′), (3)

where T ′ = (P r
j , T−j) and A(T ′) is some relay assign-

ment for the RAP instance given by(S,D,ℛ, T ′). The in-
tuition behind this fact is that, after the optimal assignment
A∗(T ) is computed, the values ofc(�j(T ), rj ,A∗(T ), P r)
andΨ(S−�j(T ),ℛ−rj , T−j) are independent ofTj, and only
dependent onT ′. In addition, their sum is the system capacity
underA(T ′), which may be different fromA∗(T ′). Similarly,
if relay noderj reports its true transmission powerP r

j and
other relay nodes reportT−j, we have

c(�j(T
′), rj ,A

∗(T ′), P r) + Ψ(S−�j(T ′),ℛ−rj , T−j)

= C(S,ℛ,A∗(T ′), T ′). (4)

Theorem 3: The payment mechanism to pay relay nodes
defined in (2) is individually rational. □

Proof: Let rj be any relay node andT ′ = (P r
j , T−j).

Then the payment to relay noderj is

prj(T
′)

= c(�j(T
′), rj ,A

∗(T ′), P r) + Ψ(S−�j(T ′),ℛ−rj , T−j)

−Ψ(S,ℛ−rj , T−j)

= C(S,ℛ,A∗(T ′), T ′)−Ψ(S,ℛ−rj , T−j) (5)

= C(S,ℛ,A∗(T ′), T ′)− C(S,ℛ−rj ,A
∗(T−j), T−j)

≥ 0,

where (5) follows from (4). This completes the proof.
Theorem 4: The payment mechanism to pay relay nodes

defined in (2) is truthful. □

Proof: Assumerj reports a transmission powerTj ∕= P r
j .

Let T ′ = (P r
j , T−j). Then the difference between its received

payment and that when reporting truthfully is

prj(T
′)− prj(T )

= c(�j(T
′), rj ,A

∗(T ′), P r) + Ψ(S−�j(T ′),ℛ−rj , T−j)

−
(

c(�j(T ), rj ,A
∗(T ), P r) + Ψ(S−�j(T ),ℛ−rj , T−j)

)

= C(S,ℛ,A∗(T ′), T ′)− (c(�j(T ), rj ,A
∗(T ), P r)

+Ψ(S−�j(T ),ℛ−rj , T−j)
)

(6)

= C(S,ℛ,A∗(T ′), T ′)− C(S,ℛ,A(T ′), T ′) (7)

≥ 0, (8)

where (6) follows from (4), (7) follows from (3), and (8)
follows from the optimality ofA∗(T ′).

In Section V, we designed a payment mechanism to charge
source nodes for using relaying service. In this section, we
designed another payment mechanism to pay relay nodes
for providing relaying service. A question arising naturally
is whether HERA isbudget-balanced. That is, whether the
payment collected from all the source nodes is enough to
pay all the relay nodes. The following theorem confirms the
budget-balance property of HERA.



Theorem 5: HERA is budget-balanced. □

Proof: By Theorem 2, we know that all the source
nodes will follow the optimal relay assignment. LetT =
(T1, T2, . . . , Tm) be the reported transmission power profile.
Let 
∗ be the strategy profile of source nodes corresponding to
A∗(T ). Therefore, the total payment collected from all source
nodes is

ps =
∑

si∈S

psi =
∑

si∈S,
∗

i
∕=r0

c(si, 

∗
i ,A

∗(T ), P r). (9)

The total payment paid to all the relay nodes is

pr =
∑

rj∈ℛ

prj

=
∑

rj∈ℛ,�j(T ) ∕=s0

c(�j(T ), rj ,A
∗(T ), P r)

−
∑

rj∈ℛ,�j(T ) ∕=s0

(

Ψ(S,ℛ−rj , T−j)−Ψ(S−�j(T ),ℛ−rj , T−j)
)

,

where the second equality follows the fact that
∑

si∈S,
∗

i
∕=r0

c(si, 

∗
i ,A

∗(T ), P r)

=
∑

rj∈ℛ,�j(T ) ∕=s0
c(�j(T ), rj ,A∗(T ), P r).

The profit of the administrator is

ps − pr

=
∑

rj∈ℛ,�j(T ) ∕=s0

(

Ψ(S,ℛ−rj , T−j)−Ψ(S−�j(T ),ℛ−rj , T−j)
)

≥0, (10)

where (10) follows from the fact thatΨ(S,ℛ−rj , T−j) −
Ψ(S−�j(T ),ℛ−rj , T−j) ≥ 0.

VII. E VALUATIONS

A. Experiment Setup

We considered a wireless network, where wireless nodes
are randomly distributed in a1000m × 1000m square. We
followed the same parameter settings as in [12]. The only
exception was the transmission power, which in our setting is
uniformly distributed over(0, 1], i.e.,P s

i , P
r
j ∈ (0, 1] Watt for

all si ∈ S andrj ∈ ℛ. We set the bandwidthW to 22 MHz for
all channels. For the transmission model, we assumed that the
path loss exponent� = 4 and the abient noiseN0 = 10−10.
In most of the experiments, we varied bothn andm from 50
to 400 with increment of50. For each setting, we randomly
generated100 instances and averaged the results.

1) Assignment Algorithm:Since this paper is the first work
on the design of relay assignment scheme for cooperative
networks with the objective to maximize the total capacity,
we compared our algorithm with the algorithms listed below.

∙ Greedy Assignment Algorithm (Greedy):This algorithm
proceeds iteratively. In each iteration, it greedily assigns
a relay node to the source node or lets the source node
transmit directly, such that the system capacity under the
current assignment is maximized.

∙ Direct Transmission Algorithm (DT):In this algorithm,
each source node transmits to its destination directly.
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Fig. 2: Comparison among relay assignment algorithms. For (a),n =

200. For (b),m = 200.
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Fig. 3: Impact of selfish behavior of source nodes on system capacity.
For (a),n = 200. For (b),m = 200. The maximum and minimum
values among 100 random instances are shown as error bars.

The system capacity under this assignment isC =
∑

si∈S cDT (si). DT serves as a lower bound of the sys-
tem capacity of the network under any relay assignment.

∙ ORA [12]: The basic idea ofORA is to adjust the
assignment iteratively, starting from any arbitrary initial
assignment. In each iteration,ORA identifies the source
node with currently minimum capacity among all the
source nodes and searches a better relay node for it.
AlthoughORA is not intentionally designed for RAP, we
include it in the comparison for the sake of completeness.

2) Cheating Report Distribution:We assume that a relay
node can cheat by reporting a transmission power larger than
its true transmission power. IfP r

j is the transmission power
of relay noderj , then its reported transmission power isP r

j +
�, where � is a random number uniformly distributed over
(Δ,Δ+ 1] andΔ is a parameter.

The performance metrics in the experiments include the sys-
tem capacity and the number of cooperative communications.

B. Evaluation of Assignment Algorithms

Fig. 2 shows the system capacity under the assignments
returned by different algorithms. As expected, HERA has the
best performance whileDT has the worst. Surprisingly, the
performance ofGreedy is only slightly worse than that of
HERA, especially whenm > n. The reason is that some
source nodes may not need to compete with other source nodes
for their best relay nodes. Therefore, we may have the same
assignment for these source nodes in both HERA andGreedy.
Another observation is that when the number of relay nodes
exceeds that of the source nodes, the system capacity tends to
keep the same.

C. Impact of Selfishness on System Performance

We have shown in an example in Section V that thePOA
of the Relay Selection Game can be as small as1

2 . We turn to
evaluate how the selfish behavior of source nodes affects the
system performance in randomly generated networks. Fig. 3
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Fig. 4: Number of source nodes using CC. For (a),n = 200. For (b),
m = 200. The maximum and minimum values among 100 random
instances are shown as error bars.
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Fig. 5: Impact of cheating behavior of relay nodes on system capacity
wheren = m = 50. For (a),Δ = 4.

plots the capacities of the systems when HERA is applied and
when it is not. We note that the degradation of NE over HERA
decreases with the increase ofm, as shown in Fig. 3(a). This is
because source nodes do not need to compete with each other
for relay nodes when there are enough relay nodes. Another
observation is that the degradation becomes worse with the
increase ofn, as shown in Fig. 3(b). This can be explained
by the same reason above, as source nodes sharing the same
relay node can improve the system capacity if one of them
changes to direct transmission. Fig. 4 illustrates the number
of source nodes using CC in both HERA and NE. We observe
that, when the number of relay nodes is more than that of the
source nodes, there are more source nodes competing relay
nodes for CC in NE than there are in HERA. This verifies our
analysis on the results shown in Fig. 3.

D. Impact of Cheating on System Performance

Next we focus on the impact of cheating behavior of relay
nodes on system performance. Fig. 5 shows the system degra-
dation due to the cheating behavior in a network consisting
of 50 source nodes and 50 relay nodes. In Fig. 5(a), we
set Δ = 4. Our first observation is that when the number
of cheating relay nodes is small, the system performance is
not affected significantly. This is because a small number of
cheating relay nodes will unlikely affect the matching process
in the algorithm. Another observation is that the degradation
increases with the increase of the number of cheating relay
nodes, which is as expected.

We then evaluate the impact of parameterΔ. Intuitively, the
largerΔ is, the more a relay node can untruthfully report its
transmission power. Fig. 5(b) shows the system performance
degradation in the networks with different values ofΔ. We see
that the degradation increases when the value ofΔ increases.
The reason is that a relay node reporting a large transmission
power has a high probability to be selected in the relay
assignment. However, its true transmission power may be very
small. Hence the final system capacity is degraded.

VIII. C ONCLUSIONS

In this paper, we designed HERA, an integrated optimal
relay assignment scheme for cooperative networks. It is com-
posed of three components: an optimal relay assignment algo-
rithm, a payment mechanism to charge source nodes for using
relaying service, and a payment mechanism to pay relay nodes
for proving relaying service. HERA induces selfish source
nodes to converge to the optimal assignment and prevents relay
nodes from reporting transmission power untruthfully to gain
profit. In addition, HERA satisfies budget-balance property,
which means the payment collected from source nodes is no
less than the payment paid to relay nodes.
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