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ABSTRACT

In this note, it is proven that if R is a right noetherian ring with idRo R < ∞

and Ext
i≥1
R
(M, F) = 0 for any left R-module F with �nite �at dimension, then

M is Gorenstein projective; if R is a left noetherian ring with idRR < ∞ and

M is a Gorenstein projective left R-module, then Ext
i≥1
R
(M, F) = 0 for any left

R-module F with �nite �at dimension.
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1. Introduction

Throughout this paper, R is an associative ring with identity, ModR is the category of le� R-modules.
For a moduleM ∈ ModR, we denote the �at, injective and projective dimensions ofM by fdRM, idRM
and pdRM, respectively.

Recall that a le�R-moduleM is called cotorsion [5] if Ext1R(F,M) = 0 for any �at le�R-module F; and
M is called strongly cotorsion [11] if Ext1R(X,M) = 0 for any le� R-module X with �nite �at dimension.
A right R-module N is called strongly torsionfree [11] if TorR1 (N,X) = 0 for any le� R-module X with
�nite �at dimension.

A complex

X : · · · −→ Xi+1
∂Xi+1

−−−→ Xi

∂Xi
−−→ Xi−1 −→ · · ·

is called acyclic if the homology complex H(X) is the zero complex. We use the notations Zi(X) for the
kernel of di�erential ∂Xi and Ci(X) for the cokernel of the di�erential ∂Xi+1. Recall from [6] that an acyclic
complex P of projective R-modules is called a complete projective resolution, if the complex HomR(P,Q)
is acyclic for every projectiveR-moduleQ. AnR-moduleM is calledGorenstein projective if there exists a
complete projective resolution P such that C0(P) ∼= M. An acyclic complex F of �at R-modules is called
a complete �at resolution, if the complex I⊗R F is acyclic for every injective R-module I. An R-moduleN
is called Gorenstein �at if there exists a complete �at resolution F such that C0(F) ∼= N. A complex U of
injective R-modules is called a complete injective resolution if it is acyclic, and the complex HomR(J,U)
is acyclic for every injective R-module J. An R-module E is called Gorenstein injective if there exists a
complete injective resolution U such that Z0(U) ∼= E.

In [8], Huang proved that if R is a Gorenstein ring with the injective envelope of RR �at, then a le�
R-module isGorenstein injective if and only if it is strongly cotorsion, and a rightR-module isGorenstein
�at if and only if it is strongly torsionfree. In fact, in [10, Corollary 5.9], it is shown that for every module
Mwith a le� injective resolution, one has Exti≥1

R (F,M) = 0 for everyR-module F of �nite �at dimension.
In particular, every Gorenstein injectivemodule is strongly cotorsion. Therefore, it is not hard to see that
if R is a right noetherian ring with idRoR < ∞, then a le� R-module is Gorenstein injective if and only
if it is strongly cotorsion, and a right R-module is Gorenstein �at if and only if it is strongly torsionfree.

CONTACT Dejun Wu wudj@lut.cn; wudj2007@gmail.com Department of Applied Mathematics, Lanzhou University of
Technology, Lanzhou, 730050 Gansu, China.

© 2017 Taylor & Francis

https://doi.org/10.1080/00927872.2017.1344687
https://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2017.1344687&domain=pdf&date_stamp=2018-02-06
mailto:wudj@lut.cn
mailto:wudj2007@gmail.com


COMMUNICATIONS IN ALGEBRA® 1301

It is natural to consider the situation of Gorenstein projective modules. In this note, we prove that
if R is a le� noetherian ring with idRR < ∞ and M is a Gorenstein projective le� R-module, then
Exti≥1

R (M, F) = 0 for any le� R-module F with �nite �at dimension; if R is a right noetherian ring

with idRoR < ∞ and Exti≥1
R (M, F) = 0 for any le� R-module F with �nite �at dimension, then M is

Gorenstein projective.

2. Main results

We list the following lemma for later use.

Lemma 2.1.

(1) [9, Proposition 1] For a right noetherian ring R,

idRoR = sup{fdRI|I ∈ ModR is injective}.

(2) [3, Theorem 3.8] For a le� noetherian ring R,

idRR = sup{idRM|M ∈ ModR with fdRM < ∞}.

We also need to recall the following de�nitions.

De�nition 2.2. [4] LetA be a full subcategory of ModR. A morphism f : X → Y in ModR with X ∈ A

is called an A-precover of Y if for any morphism g : X′ → Y in ModR with X′ ∈ A, there exists a
morphism h : X′ → X such that the following diagram commutes:

X′

g

��

h

��~
~

~

~

X
f

// Y .

A homomorphism f : X → Y is said to be right minimal if an endomorphism h : X → X is an
automorphism whenever f = �. An A-precover f : X → Y is called an A-cover if f is right minimal;
A is called covering if every module in ModR has anA-cover. Dually, the notions of anA-preenvelope, a
le� minimal homomorphism and anA-envelope are de�ned.

2.3 ([7, Proposition 2.3]). Every R-module has a projective resolution, so to prove that a module M is
Gorenstein projective it su�ces to verify the following:
(1) Exti≥1

R (M,P) = 0 for every projective R-module P.
(2) M has a co-proper right projective resolution. That is, there exists an acyclic complex of R-modules

X = 0 → M → P1 → P2 → · · · with each Pi projective, such that HomR(X,Q) is acyclic for every
projective R-module Q.

Theorem 2.4.

(1) Let R be a le� noetherian ring with idRR < ∞. If M is a Gorenstein projective le� R-module, then

Exti≥1
R (M, F) = 0 for any le� R-module F with �nite �at dimension.

(2) Let R be a right noetherian ring with idRoR < ∞ and M a le� R-module. If Exti≥1
R (M, F) = 0 for any

le� R-module F with �nite �at dimension, then M is Gorenstein projective.

Proof.
(1) Let F be a le� R-module with �nite �at dimension. By Lemma 2.1(2), one has idRF < ∞. Hence

the result follows from [2, Lemma 2.1].
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(2) Let R be a right noetherian ring with idRoR < ∞ and M a le� R-module. There exists an exact
sequence

0 −→ M −→ E −→ X −→ 0

such that E is an injective module and X = Coker(M → E). Since every module has a �at cover [1,
Theorem 3], one has the following exact sequence

0 // K // F
α

// E // 0,

where α : F → E is a �at cover and K = Kerα. Now consider the following pull-back diagram:

0 0




y





y

0 −−−−→ K −−−−→ D −−−−→ M −−−−→ 0
∥

∥

∥





y





y

0 −−−−→ K −−−−→ F −−−−→ E −−−−→ 0




y





y

X X




y





y

0 0

By Lemma 2.1(1), one has fdRE < ∞ and so fdRK < ∞ by the exactness of the middle row in the above
diagram. Hence Ext1R(M,K) = 0. It yields that the exact sequence

0 −→ K −→ D −→ M −→ 0

in the above diagram splits. Thus one get a monomorphismM → F. Consequently, it follows from [6,
Proposition 6.5.1] that there exists an exact sequence

0 // M
ϕ

// F′ // Y // 0

such that ϕ : M → F′ is a �at preenvelope and Y = Cokerϕ. Next we show that ϕ is an F(R)-
preenvelope, where F(R) denotes the full subcategory consisting of modules of �nite �at dimensions.

Let ψ : M → L be an R-homomorphism such that fdRL is �nite. Consider the short exact sequence

0 → K → F′′ π
−→ L → 0 in which π : F′′ → L is a �at cover. Clearly, K is of �nite �at dimension and

so Exti≥1
R (M,K) = 0 by hypothesis. Thus, one has the following exact sequence

0 −→ HomR(M,K) −→ HomR(M, F′′) −→ HomR(M, L) −→ 0.

Therefore, there exists an R-homomorphism h : M → F′′ such that πh = ψ . Since ϕ : M → F′ is a �at
preenvelope, there is an R-homomorphism g : F′ → F′′ such that h = gϕ. Thus, one has πgϕ = ψ and
so ϕ is an F(R)-preenvelope.

Next we show that there exists a monic P(R)-preenvelope M → P with P projective, where P(R)
denotes the full subcategory consisting of modules of �nite projective dimensions. Let 0 → A → P →

F′ → 0 be an exact sequence such that P is projective andA = Ker(P → F′). Clearly, one has fdRA < ∞

and so Exti≥1
R (M,A) = 0. Hence one has the following exact sequence

0 −→ HomR(M,A) −→ HomR(M,P) −→ HomR(M, F′) −→ 0.

Therefore, there exists a monic P(R)-preenvelopeM → P with P projective.
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Now consider the following exact sequence

0 // M
β

// P // C // 0,

where β is a P(R)-preenvelope, P is a projective R-module and C = Cokerβ . Let Q be a projective
R-module. Applying the functor HomR(−,Q) to the above exact sequence, one has Exti≥1

R (C,Q) = 0 as

β : M → P is a P(R)-preenvelope and Exti≥1
R (M,Q) = 0.

It remains to show that Exti≥1
R (C,B) = 0 for any le� R-module B with �nite �at dimension. Let B be

a le� R-module with fdRB < ∞. Applying the functor HomR(−,Q) to the exact sequence 0 → M →

P → C → 0, one has the following exact sequence

0 −→ Ext1R(M,B) −→ Ext2R(C,B) −→ 0.

By assumption, one has Ext1R(M,B) = 0 and so Exti≥2
R (C,B) = 0. Consider the following exact sequence

0 // Z // P′
γ

// B // 0,

where P′ is a projectivemodule and Z = Ker γ . Note that fdRZ < ∞. Applying the functor HomR(C,−)
to the above exact sequence, one has the following exact sequence

0 = Ext1R(C,P
′) −→ Ext1R(C,B) −→ Ext2R(C,Z) = 0.

Thus Ext1R(C,B) = 0. Now proceeding in this manner, one could get the desired co-proper right
projective resolution ofM. This completes the proof.

Recall that a le� and right noetherian ring R is called Gorenstein if idRR < ∞ and idRoR < ∞. Now
the following result is an immediate consequence of Theorem 2.4.

Corollary 2.5. Let R be a Gorenstein ring. Then a le� R-module M is Gorenstein projective if and only if

Exti≥1
R (M, F) = 0 for any le� R-module F with �nite �at dimension.
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