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Abstract

Gene expression profiling has proven useful in subclassifica-
tion and outcome prognostication for human glial brain
tumors. The analysis of biological significance of the
hundreds or thousands of alterations in gene expression
found in genomic profiling remains a major challenge.
Moreover, it is increasingly evident that genes do not act as
individual units but collaborate in overlapping networks, the
deregulation of which is a hallmark of cancer. Thus, we have
here applied refined network knowledge to the analysis of
key functions and pathways associated with gliomagenesis
in a set of 50 human gliomas of various histogenesis, using
cDNA microarrays, inferential and descriptive statistics, and
dynamic mapping of gene expression data into a functional
annotation database. Highest-significance networks were
assembled around the myc oncogene in gliomagenesis and
around the integrin signaling pathway in the glioblastoma
subtype, which is paradigmatic for its strong migratory and
invasive behavior. Three novel MYC-interacting genes (UBE2C ,
EMP1 , and FBXW7) with cancer-related functions were
identified as network constituents differentially expressed in
gliomas, as was CD151 as a new component of a network that
mediates glioblastoma cell invasion. Complementary, unsu-
pervised relevance network analysis showed a conserved self-
organization of modules of interconnected genes with
functions in cell cycle regulation in human gliomas. This
approach has extended existing knowledge about the organi-
zational pattern of gene expression in human gliomas and
identified potential novel targets for future therapeutic
development. (Cancer Res 2005; 65(19): 8679-89)

Introduction

Gene expression profiling in human gliomas has been a valuable
tool in identifying differentially expressed genes to classify disease
subtypes and patient outcome (1). However, a persistent difficulty
has been the assignment of biological significance to the large
number of genes that have been implicated by such studies, even
when inferential statistics has been used to allocate confidence to
the discovery of regulated genes. There is increasing recognition

that complex biological systems, such as gliomas, adhere to
fundamental organizational principles. Modularity, where cellular
functions are carried out by groups of interacting molecules in
overlapping networks, is a predominant feature of such systems
(2). A major challenge is to map out, understand, and model the
topological and dynamic properties of the various networks that
control cell behavior. The rising awareness of the importance of
molecular networks as organizational patterns in disease states
has fostered the development of corresponding analytic tools (2).
Gene ontology databases in combination with pathway integration
software now allow for dynamic mapping of gene expression data
sets into potential pathway maps based on their functional
annotation and known molecular interactions. Appreciation of the
value of such analysis in cancers is partly founded on the
assumption that cancer cells do not invent new pathways but use
preexisting biological pathways in a modified fashion.
In complex disease states such as gliomas, genes may additionally

interact in new pathways and networks. Therefore, the exploration
of gene expression networks without a priori assumptions may
complement knowledge-based network approaches. Relevance
network analysis (3) is an unsupervised exploratory computational
method that allows individual genes to be directly or indirectly
linked to other genes by offering a method to construct networks of
similarity across gene expression data sets. Here, so-called nodes
with varying degrees of cross-connectivity are displayed, which
represent features that are not only associated pairwise but also in
aggregate. Implicit in the goal of applying such analysis to tumor
gene expression profiles is the notion of correlated expression
patterns of genes with related functions, a high-level self-
organization in gene expression networks of tumor cells (4) and a
scale-free topology of such networks (2).
We present an integrated approach that combines gene

expression profiling in a set of 50 human gliomas of various
histogenesis using a 43,000-element cDNA microarray platform,
inferential statistics, and dynamic mapping of gene expression data
into a functional annotation and pathway database. This
knowledge-based network approach was complemented by an
unsupervised relevance network learning algorithm without any a
priori assumptions. We have captured extended biological pathway
maps associated with gliomagenesis as well as distinct glioma
subtypes. Detailed analysis of the properties of these refined maps
has identified modules of interconnected genes with shared
biological functions in the glioma transcriptome.

Materials and Methods

Tumor samples. Fifty fresh-frozen glioma specimens were collected

under Institutional Review Board–approved guidelines and subjected to
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standard WHO classification (5). Specimens included 31 glioblastomas
(including two gliosarcomas), eight oligodendrogliomas ( five oligodendro-

gliomas and three anaplastic oligodendrogliomas), six anaplastic oligoas-

trocytomas, and five WHO grades 1 to 3 astrocytic tumors. Although 1p and

19q deletion statuses were available for all tumors (Supplementary Fig. 1A ;
ref. 6), a histologic diagnosis was assigned that was not influenced by the

presence or absence of loss of heterozygosity (LOH) 1p and/or LOH 19q.

Except for one infratentorial secondary glioblastoma, all tumors were

located in the cerebral hemispheres (16 frontal, 10 parietal, 14 temporal,
three occipital, two each frontoparietal and temporoparietal, one each

frontotemporal and temporo-occipital). There was no difference in cerebral

location between the histologic subtypes. The patient age ranged from 20 to

79 years (one outlier: 12 years, anaplastic astrocytoma) with a median of
53.5 years. Eleven tumors were from female patients and 39 from male

patients. Tumor samples were disrupted and homogenized using a rotor-

stator homogenizer (Kinematica, Cincinnati, OH). Total RNA was isolated
from each homogenate using the RNeasy Lipid Tissue Kit (Qiagen, Valencia,

CA) and quantified via spectrophotometry. RNA integrity was confirmed

using the Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA). Normal brain

total RNA and universal human reference total RNA were purchased from
Stratagene (La Jolla, CA).

Microarray-based gene expression profiling. An indirect, dendrimer-

based labeling method (7) was used for microarray hybridization that used

the Genisphere 3DNA Array 900 labeling system (Genisphere, Hatfield, PA),

following the procedural protocol provided by the manufacturer without

any modifications. For cDNA synthesis, 3 Ag of tumor/normal brain and

universal human reference total RNA were separately reverse transcribed

using the Cy5- and Cy3-specific Genisphere primers, respectively, and

hybridized together overnight at 65jC to human cDNA microarrays ( from

the Stanford Functional Genomics Facility) containing 41,421 cDNA

elements, corresponding to 27,290 different UniGene cluster IDs. Microarrays

were coated with DyeSaver2 (Genisphere) immediately after the last wash.

Data selection. Microarrays were scanned on a GenePix 4000B scanner

(Axon Instruments, Union City, CA). Primary data collection was done
using GenePix Pro 5.1 software. Raw data were background corrected,

filtered using a flag and background filter (1.5-minimal signal over

background ratio), and normalized by the LOWESS normalization function

using the TIGR MIDAS function of the TM4 microarray software suite.6 The
GoldenPath Human Genome Assembly (National Center for Biotechnology

Information build 34)7 was used to map fluorescent ratios of the arrayed

human cDNAs to chromosomal positions.
Class predictor and relevance network analysis. Genes (n = 6,706)

with expression in 80% of samples and whose expression levels differed by

at least 3-fold, in at least one sample, from their mean expression levels

across all samples were included in downstream statistical analyses. Two-
class, unpaired significance analysis of microarrays (SAM; ref. 8) was used

to identify genes differentially expressed between normal brain and (1) all

50 gliomas, (2) 31 glioblastomas, and (3) 14 oligodendroglia-enriched

tumors. Genes identified with a false discovery rate (FDR) of 0.005 in the
first comparison and with a FDR of 0.001 in each of the second and third

comparisons were deemed significant if they passed a 4-fold change filter.

Principal component analysis was executed in MATLAB (The MathWorks,

Natick, MA). Relevance networks (3) were constructed using the TIGR
MultiExperiment Viewer function of the TM4 microarray software suite.

The similarity of features was computed by comprehensively comparing all

features with each other in a pairwise manner using a modified Pearson
coefficient of correlation as a distance metric as described (3). The

threshold for the minimal Pearson squared value was chosen based on

random permutation testing.

Gene ontology, canonical pathway, and functional network analysis.
Gene ontology, canonical pathway, and functional network analyses were

executed using Ingenuity Pathways Analysis tools (Ingenuity Systems,

Mountain View, CA), a web-delivered application that enables the

discovery, visualization, and exploration of molecular interaction networks
in gene expression data. The gene lists identified by SAM, containing

Genbank accession numbers as clone identifiers as well as d scores, were

uploaded into the Ingenuity pathway analysis. Each clone identifier was

mapped to its corresponding gene object in the Ingenuity pathway
knowledge base. These so-called focus genes were then used as a starting

point for generating biological networks. A score was computed for each

network according to the fit of the original set of significant genes. This

score reflects the negative logarithm of the P that indicates the likelihood
of the focus genes in a network being found together due to random

chance. Using a 99% confidence level, scores of z2 were considered

significant. Significances for biological functions or canonical pathways

were then assigned to each network by determining a P for the enrichment
of the genes in the network for such functions or pathways compared with

the whole Ingenuity pathway knowledge base as a reference set. Right-

tailed Fisher’s exact test was used with a = 0.05. The same statistical
approach was used for gene ontology analyses of the initial gene lists.

Real-time reverse transcription-PCR. Quantitative real-time reverse

transcription-PCR (RT-PCR) reactions were done with the ABI Prism

7900HT Sequence Detection System using SYBR GREEN PCR Master Mix
(Applied Biosystems, Foster City, CA). Primers targeting the transcripts of

BNIP2, CD151, CSDA, EMP1, FBXW7, MYC , and UBE2C genes and the HPRT1

housekeeping gene were designed with the Primer3 program8 and

synthesized at the Stanford PAN Facility ( for sequences, see Supplementary
Table 1). Total RNA was reverse transcribed using the SuperScript first-

strand synthesis system and SuperScript II (both from Invitrogen, Carlsbad,

CA). Thermocycling for each PCR reaction was carried out in a final
volume of 20 AL containing 1 ng of cDNA, forward and reverse primers at

3 Amol/L final concentration, and 1� SYBR GREEN PCR Master Mix. After

10 minutes of initial denaturation at 95jC, the cycling conditions of 40

cycles consisted of denaturation at 95jC for 15 seconds, annealing at 55jC
for 30 seconds, and elongation at 72jC for 30 seconds. All reactions were

done in triplicate. Dissociation curve analysis was done after every run

to confirm the primer specificity. Gene quantities were determined using

standard curves, constructed by five serial dilutions of RT product of
Stratagene universal human reference RNA, and gene expression levels

were reported as ratios of quantities of the target gene and HPRT1 as

the reference gene.

Results

Class predictor analysis identifies genomic signatures of
glioma. Two-class, unpaired SAM was used to identify genes
differentially expressed between normal brain tissue and glioma
tissue or between normal brain and distinct glioma subtypes. SAM
computes a statistic measuring the strength of the relationship
between gene expression and a response variable, while taking into
account the multiple testing nature of a microarray experiment. To
each gene, a (d) score is assigned based on its change in expression
relative to the SD of repeated measurements for that gene. Genes
with scores greater than a threshold, as determined by a tuning
variable d , are deemed potentially significant. The percentage of
such genes identified by chance is the FDR. To estimate the FDR,
nonsense genes are identified by analyzing permutations of the
measurements (8). In addition, we used a fold change variable to
filter for genes changed at least 4-fold. For the analysis of normal
brain versus glioma subtypes, tumors were grouped into 31 pure
glioblastomas and 14 tumors with enrichment for oligodendroglial
morphology ( from now on referred to as oligodendroglial tumors).
The cogrouping of pure oligodendroglial and mixed oligoastroyctic
tumor was based on an apparent coclustering of these tumors in

6 http://www.tigr.org/software/tm4/midas.html.
7 http://genome.ucsc.edu. 8 http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi.
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unsupervised, average-linkage hierarchical cluster analysis. Three
hundred fifty one clones were revealed to be significantly linked to
gliomagenesis (normal brain versus all 50 gliomas: 31 glioblasto-
mas, 14 oligodendrogliomas, and five grade 1-3 astrocytomas;
Fig. 1A), as were 479 and 167 clones to the glioblastoma and
oligodendroglial tumor phenotypes (Fig. 1B), respectively (Sup-
plementary Tables 2-4). The known glioma genes TNC (9, 10),
MYC (11), NES (12), MMP2 (13), SPARC (14), and FOS (15) scored
among the top 20 overexpressed genes in gliomagenesis. As to be
expected by the shared site of tumor origin, there was considerable
overlap in genes (103 clones, Supplementary Table 5) associated
with glioblastoma and oligodendroglial tumor morphology versus
normal brain (Venn diagram, Fig. 1C), all of which were present in
the gliomagenesis data set. Multidimensional scaling using the first
three principal components, a linear projection method that
reduces the complex dimensionality of microarray data to create a
three-dimensional plot that visualizes the relatedness of the
tumors, was then used to test whether the above subsets could
be used to distinguish glioblastoma, oligodendroglial tumor, and

normal brain. This analysis showed a clear separation of all three
groups based on these gene subsets (Fig. 1D).
Gene ontology analysis. The three sets of clones (all 50

gliomas, 31 glioblastoma, and 14 oligodendroglial tumor) identified
by SAM, along with their effective significance as indicated by the
d score, were uploaded into the Ingenuity pathway knowledge base
for analysis of functional annotations. Biological functions were
assigned to each data set by using the knowledge base as a
reference set and a proprietary ontology representing over 300,000
classes of biological objects and consisting of millions of
individually modeled relationships between proteins, genes,
complexes, cells, tissues, small molecules, and diseases. These
semantically encoded relationships are based on a continual,
formal extraction from the public domain literature and cover
>10,300 human genes.9 The biological functions assigned to each
data set are ranked according to the significance of that biological

Figure 1. Class predictor analysis.
Two-class, unpaired SAM identified distinct
subsets of genes differentially expressed
in human gliomas or glioma subtypes
versus normal brain. A, 351 clones
significantly linked to gliomagenesis.
Left,OG, oligodendroglia-enriched tumor;
GBM, glioblastoma; A, WHO grades
1-3 astrocytic tumors; B, normal brain.
Right, normal brain-transformed data.
B, 479 and 167 clones predicting
glioblastoma and oligodendroglial tumor
phenotypes versus normal brain (left),
respectively. Right, centroid graphs
indicating mean gene expression within
oligodendroglial tumor, glioblastoma,
and normal brain (left to right).
Oligodendroglial tumor (yellow ) and
glioblastoma (blue ) signatures.
C, Venn diagram showing the overlap in
genes associated with oligodendroglial
tumor and glioblastoma phenotypes versus
normal brain. D, principal component
analysis showing the clear separation of
glioblastoma, oligodendroglial tumor, and
normal brain based on the above gene
subsets.

9 http://www.ingenuity.com/products/PathwaysKnowledge.pdf.

Network Analysis in Human Glial Brain Tumors

www.aacrjournals.org 8681 Cancer Res 2005; 65: (19). October 1, 2005



function to the data set. A Fisher’s exact test is used to calculate a
P determining the probability that the biological function assigned
to that data set is explained by chance alone. Because our genomic
platform uniformly represents the whole human transcriptome, this
analysis was not biased towards the coverage of our microarrays.
One hundred ninety, 266, and 85 clones of the above subsets of
clones predicting gliomas, glioblastoma, and oligodendroglial
tumor respectively, mapped to corresponding genes in the
knowledge base. Table 1 classifies the genes in each set by function,
including carcinogenesis, cell cycle, cell death, and cellular growth
and proliferation (complete gene listing, Supplementary Table 6).
The sum of 10 tumorigenesis-related functions, the underlying
genes for which we have labeled as cancer genes, accounted for 68%,
65%, and 65% of all biological functions in the glioma, glioblastoma,
and oligodendroglial tumor gene sets, respectively. Because recent
work (16) highlights a role for neural stem cells and developmental
processes in the formation of gliomas, we also searched the sets for
functions related to such processes. A sizable number of genes in

each of the three sets (47%, 41%, and 57% in gliomas, glioblastoma,
and oligodendroglial tumor, respectively) were revealed to have
developmental functions, which partly overlapped with cancer-
related functions. A high percentage (34%) of genes linked
particularly to nervous system development was noted in the
oligodendroglial tumor subgroup (Table 1).
Functional network analysis. To understand how the genes

identified by inferential statistics are related, the empirical data sets
were then placed in the context of present knowledge about path-
ways and molecular interactions, using the Ingenuity knowledge
base. Genes implicated in gliomagenesis as well as the nonoverlap-
ping genes (Fig. 1C) that predicted glioblastoma and oligodendrog-
lial tumor morphology were explored. Genes (n = 172, 228, and 76),
so-called focus genes, were used as the starting point for generat-
ing biological networks in the glioma, glioblastoma, and oligoden-
droglial tumor sets, respectively (see Methods and Materials for
details). Based on these genes, new and expanded pathway maps
and connections and specific gene-gene interactions were inferred,

Table 1. Ontology analysis of genes predicting gliomas and glioma subtypes

Identifier Gliomagenesis Glioblastoma

multiforme

Oligodendroglial

tumors

SAM clones 351 479 167

GAG 190 266 85

Function Significance GAG no. % Significance GAG no. % Significance GAG no. %

Cancer 1.4 � 10�8 to 0.014 68 35.8 1.5 � 10�9 to 0.008 94 35.3 1.3 � 10�5 to 0.026 28 32.9

Cell cycle 5.2 � 10�6 to 0.014 45 23.7 1.6 � 10�4 to 0.007 49 18.4 8.3 � 10�5 to 0.025 9 10.6

Cell death 1.4 � 10�10 to 0.015 75 39.5 1.4 � 10�11 to 0.008 100 37.6 2.2 � 10�4 to 0.026 30 35.3

Cell signaling 2.7 � 10�4 to 0.014 29 15.3 6.4 � 10�5 to 0.004 39 14.7 2.3 � 10�4 to 0.025 12 14.1
Cell-to-cell

signaling and

interaction

1.4 � 10�6 to 0.015 55 29.0 2.2 � 10�11 to 0.007 74 27.8 3.1 � 10�4 to 0.025 22 25.9

Cellular growth

and proliferation

4.1 � 10�10 to 0.015 76 40.0 8.7 � 10�9 to 0.007 93 35.0 1.7 � 10�5 to 0.022 34 40.0

Cellular movement 6.1 � 10�12 to 0.014 56 29.5 3.2 � 10�13 to 0.007 75 28.2 6.9 � 10�7 to 0.027 30 35.3

DNA replication,
recombination,

and repair

5.3 � 10�6 to 0.007 24 12.6 3.1 � 10�5 to 0.004 28 10.5 0.010-0.010 1 1.2

Organismal survival 0.002-0.013 15 7.9 0.004-0.006 39 14.7 0.002-0.021 11 12.9

Tumor morphology 5.6 � 10�6 to 0.010 22 11.6 1.6 � 10�6 to 0.007 27 10.2 2.1 � 10�4 to 0.026 12 14.1
Cancer genes 130 68.4 172 64.7 55 64.7

Cellular
development

5.3 � 10�5 to 0.014 38 20.0 3.5 � 10�4 to 0.007 46 17.3 2.6 � 10�4 to 0.023 19 22.4

Embryonic

development

8.8 � 10�4 to 0.007 20 10.5 8.8 � 10�5 to 0.006 28 10.5 0.010-0.020 13 15.3

NS development
and function

4.0 � 10�4 to 0.013 25 13.2 9.9 � 10�4 to 0.007 32 12.0 6.7 � 10�6 to 0.027 29 34.1

Organ

development

0.009-0.010 38 20.0 9.9 � 10�4 to 0.003 9 3.4 6.7 � 10�6 to 0.020 29 34.1

Organismal
development

2.0 � 10�6 to 0.002 19 10.0 6.5 � 10�6 to 0.003 25 9.3 5.8 � 10�4 to 0.010 8 9.4

Tissue

development

8.4 � 10�6 to 0.014 48 25.3 2.3 � 10�7 to 0.006 64 24.1 0.005-0.023 16 18.8

Developmental
genes

89 46.8 41.4 48 56.5

Abbreviation: GAG, global analysis genes.
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functionally analyzed, and used to build on the existing pathway
knowledge base. To generate networks, the knowledge base was
queried for interactions between focus genes and all other gene
objects stored in the base. The output, displayed graphically as

nodes (genes) and edges (the biological relationship between the
nodes), provided a semantically consistent representation of a num-
ber of biological pathways and functions implicated by the empir-
ical data sets.

Figure 2. Functional network analysis. Top-scoring gliomagenesis (A ) and glioblastoma (B) networks composed of multiple genes, many of which have been
previously implicated in human gliomas. Nodes represent genes, with their shape representing the functional class of the gene product, and edges indicate the biological
relationship between the nodes (see legend). Nodes are color coded according to their d score (red , overexpression; green , underexpression). High-level
functions for each network are reported, as are canonical pathways that were significant in the whole data set. Edges between MYC and MYC-interacting genes
are colored in blue , as are genes implicated in integrin signaling.

Network Analysis in Human Glial Brain Tumors
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Multiple networks were discovered in each of the three data sets.
The ability to rank the networks based on their relevance to the
empirical data sets allowed for rapid prioritization of networks with
highest importance. Based on the computed scores, 8, 10, and 2

networks were found to be significant in the glioma, glioblastoma,
and oligodendroglial tumor data sets, respectively (Supplementary
Table 7). In addition, high-level functions were calculated and
assigned to each network if the significance of the association

Cancer Research
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between the network and the biological function had a P < 0.05.
High-scoring functions in the top-ranking network in each of the
three data sets were related to cellular growth and proliferation
(glioma, P < 0.006 for each feature; Fig. 2A), cellular movement/
invasion (glioblastoma, P < 0.006; Fig. 2B), and cancer (oligoden-
droglial tumor, P < 0.005; Supplementary Fig. 2).
The nodes for the highest scoring networks of the glioma and

glioblastoma data sets were comprised solely of focus genes
(Fig. 2). Both networks included a substantial number of genes that
have been implicated in gliomagenesis based on previous studies in
the literature. For example, the top network in the glioma set
contained the glioma-related genes VEGF (17), CD44 (18), TNC
(9, 10), CTGF (19), TGFBI (20), ID3 (21), CDC2 (22), PTTG1 (23),
CCL2 (24), FN1 (25, 26), MMP2 (13), CSPG2 (27), CYR61 (19, 28),
RUNX1 (29), and SPARC (14). The glioblastoma network included
the glioma-related genes FN1 (25, 26), ITGA3 (30), ITGA5 (31),
IGFBP2 (32), IGFBP3 (33), IGFBP5 (34), CD44 (18), TGFBI (20),
PLAU (25), PLAUR (25), CDC2 (22), VEGF (17), PTTG1 (23), CYR61
(19, 28), and CTGF (19). Several novel genes without previous
implication in gliomas but with evidence in carcinogenesis were
revealed for both networks, such as the oncogene LYN (35) in the
glioblastoma network (Fig. 2B).
The oncogene myc mapped to the core of the top gliomagenesis

network and was revealed as the most prominent interaction
partner within the network (Fig. 2A). The recurrent overexpression
of this gene was associated with amplification of the cognate
MYC locus at 8q24.21 in several of the tumors (Supplementary Fig.
1B-C). Besides genes with established MYC interactions and/or
known functions in gliomas, such as SPARC (14, 36), CD44 (18, 37),
FN1 (25, 26, 38), GAS1 (39, 40), and VEGF (17, 41), novel MYC-
responsive genes were identified. These included the overexpressed
genes UBE2C and EMP1 and the underexpressed gene FBXW7
(Fig. 2A), all of which have reported cancer-related functions.
UBE2C (42) and EMP1 (43) have been implicated in promoting
tumorigenesis and FBXW7 (44) as a tumor suppressor gene.
At the core of the top glioblastoma network were genes that play a

role in integrin signaling, including FN1 (25, 26), ITGA3 (30), ITGA5
(31), PLAU (25), PLAUR (25), CTGF (45), CYR61 (28, 45), and CAV1
(46), as well as insulin-like growth factor (IGF) signaling elements
such as IGFBP2 (32), IGFBP3 (33), IFGBP5 (34), CTGF (IGFBP8 ;
ref. 47), and CYR61 (IGFBP10; ref. 47; Fig. 2B). Accordingly, the
functional analysis for the network revealed a top function in cellular
movement and invasion and a high significance of the canonical
pathways for integrin (P = 0.017) and IGF-I (P = 0.038) signaling. This
extended pathway map newly identified CD151 as a putative factor
in glioblastoma cell invasion (Fig. 2B), a gene that has been shown to
enhance cell motility, invasion, and metastasis of cancer cells (48).
Relevance network analysis. Relevance network analysis was

used as an unsupervised, exploratory learning algorithm to
discover functional relationships between genes in the entire gene
expression data sets (glioblastoma, oligodendroglial tumor, and

brain) based on the assumption that genes with correlated
expression behavior are also functionally related. This analysis
takes into account both positively and negatively correlated gene
expression patterns. Pairwise associations based on squared
Pearson coefficients of correlation were computed, and associa-
tions weaker than 0.8 were removed, leaving genes that were
nonrandomly associated with another and possibly biologically
related. The effect of random chance in the large number of
calculations was empirically determined by random permutation
testing. Associations stronger than those seen in the multiply
permuted data were used to construct networks of highly
correlated genes. This approach identified four relevance networks
with >10 nodes and varying degrees of cross-connectivity
(Supplementary Table 8). One of the networks revealed 101 clones
with overexpression in glioblastoma compared with oligodendrog-
lial tumor and normal brain (Fig. 3A-C). Sixty-nine of these 101
clones were included in the 376 clones identified by SAM to
distinguish glioblastoma from oligodendroglial tumor and nor-
mal brain (Supplementary Table 9), some of which (ITGA3, ITGA5,
PLAUR, LYN, HCLS1, FCGR2B, and MSN) mapped to the top-scoring
glioblastoma knowledge-based functional network (Fig. 2B).
Another cluster of 36 clones, which included UBE2C, showed
highly correlated although not glioblastoma-specific expression
behavior (Fig. 3D). Gene ontology analysis of this network revealed
functions in cell cycle regulation and mitosis for almost any node,
many of which have been also implicated in carcinogenesis.
Deposition of these nodes into the Ingenuity knowledge base
resulted in the formation of a single highly significant network that
included MYC (Fig. 3E) and confirmed top-scoring functions of its
constituents in cell cycle turnover and cell cycle check point
regulation (P < 10�6).
Target gene validation by real-time reverse transcription-

PCR. Several target genes deemed biologically interesting because
of their differential expression in gliomas and/or their interaction
in the knowledge-based network analysis were validated by real-
time RT-PCR analysis in a representative panel of tumors and
normal brain (Fig. 4). This study confirmed a recurrent over-
expression of MYC and the MYC-target genes UBE2C and EMP1
and a persistent underexpression of the MYC regulator FBXW7 in
human gliomas. It also substantiated the up-regulated expression
of the CDK4-interacting Y-box transcription factor CSDA and of
the CD151 gene. Finally, we have validated the CDC42-interacting
BNIP2 gene and CD151, both of which may promote tumor cell
invasion, to be highly expressed in the glioblastoma subtype. The
expression level for each target gene was related to
the housekeeping gene HPRT1 and the ratio was correlated with
the corresponding expression ratio of target versus housekeeping
gene in the microarray experiment. For each of the examined
genes, the real-time RT-PCR results closely mirrored the expression
levels for these genes assessed by microarray analysis (mean
correlation, R = 0.92; Fig. 4).

Figure 3. Relevance network analysis. A-C, glioblastoma (GBM ) characteristic relevance network (A), built upon 101 nodes with overexpression in GBM compared
with oligodendroglial tumor (OG ) and normal brain (B-C ). Sixty-nine of these 101 clones (including ITGA3, ITGA5, PLAUR, LYN, HCLS1, FCGR2B, and MSN, which
mapped to the top-scoring glioblastoma knowledge-based network) were among the 376-clone glioblastoma signature identified by SAM, indicating high-level
self-organization in the data set. The highly nonuniform structure of the network, which includes the coexistence of nodes of widely different cross-connectivity,
indicates a scale-free topology that follows power-law degree distribution. Links in (A), colored in blue , represent elements that are positively correlated; whereas
links, colored in red , represent elements that are negatively correlated. D-E, relevance network of cell cycle regulation in human gliomas, assembled by 36 nodes
(including UBE2C ), most of which have cancer-related functions. Gene ontology analysis of this network revealed functions in cell cycle regulation and mitosis for
almost any node. E, deposition of these nodes into the Ingenuity knowledge base, 21 of which mapped to corresponding gene objects (rose colored), resulted in the
formation of a single highly significant network around MYC and confirmed top-scoring functions of its elements in cell cycle turnover and cell cycle check point
regulation (P < 10�6). Genes included in the top-scoring network in the gliomagenesis network analysis have been colored in red .
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Discussion

We have applied refined computational methods to the genomic
signatures of gliomas to highlight key functional networks. Based
on increasing recognition that a systems approach is necessary to
view the overall molecular events responsible for gliomagenesis, we
have combined large-scale analysis of gene expression with
knowledge-based and relevance network analyses. Complex net-
works involved in tumorigenesis were mapped and subsequently
explored in the context of genes deemed important in glioma-
genesis by inferential statistics for a refined molecular pathway
picture.
Our initial class predictor analysis in combination with gene

ontology assessment has shown the differential expression of a
substantial number of genes annotated to cancer-related and
developmental functions in human gliomas. The latter observation
substantiates recent work (16) that emphasizes multifaceted
mechanisms for the origin and formation of gliomas, in which
neural stem cells have an important role. Based on these genes and
the assumption that glioma cell behavior emerges from the
orchestrated activity of many cellular components that interact
with each other through pairwise interactions, we have identified
distinct molecular networks perturbed in the formation of gliomas,
many of which are extended characterizations of pathways
previously implicated in gliomas. These networks include both
directed and undirected interactions. Directed interactions are
characterized by a well-defined information flow (e.g., from a
transcription factor to the gene it regulates). Undirected inter-
actions do not have an assigned direction (e.g., mutual binding
relationships).
The most significant gliomagenesis network arose around the

myc oncogene, which encodes a basic helix-loop-helix leucine
zipper transcription factor that triggers cell growth and division, in
part through activation of the CDK4/RB/E2F pathway (49, 50). In
line with its involvement in a wide range of malignancies (51),
there is circumstantial evidence that suggests a role of MYC and
deregulation of MYC pathways in gliomagenesis (11, 52). Multiple
epigenetic and genetic mechanisms underlie the frequent over-

expression, overactivation, and accumulation of MYC in human
gliomas, including increased upstream growth factor receptor
tyrosine kinase signaling (53), amplification and rearrangement of
the MYC locus at 8q24.21 (11), inactivation of MYC pathway
antagonists (54), and prolongation of MYC half-life (55). Accord-
ingly, we have observed MYC overexpression in our tumors with
and without concurrent gene copy number alteration. MYC acts as
a sequence-specific DNA-binding protein to facilitate expression of
a wide variety of E-box-containing target genes (56). It has also
been assigned roles in chromatin remodeling of target promoters
(57) and regulation of translation initiation (58).
Our network has identified a number of new MYC-response

genes with cancer-related functions to be differentially expressed
during gliomagenesis. The MYC-up-regulated UBE2C gene (59)
codes for an E2 ubiquitin-conjugating enzyme whose function is
closely linked to the progression of cells through the M phase
and the coupling of mitosis to S-phase entry via autonomous
regulation of the anaphase-promoting complex (60). This gene,
which was highly overexpressed in human gliomas, has only
recently been shown to be up-regulated in human carcinomas of
diverse origin and to be associated with poor tumor differentiation
(42, 61). Its silencing significantly inhibits cancer cell proliferation
and sensitizes cells to tumor necrosis factor–related apoptosis-
inducing ligand–mediated cell killing (42). UBE2C may be a target
for the common amplification of the 20q13.1 locus in carcinomas
(42). We have also noted a mechanistic link between gene
expression and copy number for UBE2C in human gliomas (data
not shown).
By contrast, we found persistent down-regulation of the

MYC-binding FBXW7 gene in human gliomas. This putative
haplosufficient tumor suppressor gene, which functions as a
phosphoepitope-specific substrate recognition component of the
SKP1-cullin-F-box ubiquitin ligase complex, promotes protea-
some-dependent MYC turnover in vivo and MYC degradation
and ubiquitination in vitro (44, 62). The frequent mutation of
MYC at the FBWX7-binding site suggests that MYC activation
is one of the key oncogenic consequences of FBWX7 loss in

Figure 4. Validation of target genes by
real-time RT-PCR. BNIP2, CD151, CSDA,
EMP1, FBXW7, and UBE2C were deemed
particularly interesting because of their
differential expression in gliomas and/or
their interaction in the knowledge-based
network analysis. Columns, mean
expression levels of target gene versus
HPRT1 in a representative panel of tumors
and normal brain; bars, spread of the
expression across all examined samples.
This analysis confirming recurrent
overexpression of MYC and the
MYC-target genes UBE2C and EMP1 ,
the CDK4-interacting gene CSDA , and the
invasion-related genes BNIP2 and CD151 ,
as well as persistent downexpression of
the MYC-regulator FBXW7 in human
gliomas. Comparison of real-time RT-PCR
and microarray results showed a high
degree of correlation between both
analyses (mean correlation R = 0.92);
regression correlations (r) are indicated for
each gene, as are nonlogarithmic average
fold differences between tumor and brain
in parentheses.
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carcinogenesis (44, 62). The recent identification of FBWX7-
inactivating mutations in human cancer has been linked to
increased genomic instability (63) by a p53-dependent, STK6-
involving mechanism (64).
We have also revealed common overexpression of the EMP1

gene during gliomagenesis. EMP1 has been originally isolated from
a MYC-induced mouse brain tumor cDNA library (65). This
putative membrane glycoprotein is an immediate transcriptional
target for MYC that possesses tumorigenic activity (43). EMP1
expression is associated with cell proliferation, which is down-
regulated when cells are growth arrested (65). It is also highly
expressed in undifferentiated, proliferating embryonic stem cells,
but a much lower expression is observed after these cells are
induced to differentiate (65). The increased expression of EMP1
during brain development (66) emphasizes the conceptual
interrelatedness of gliomagenesis and neurogenesis. We have
recently mapped EMP1 to a locus of recurrent gene copy number
gain on chromosome 12p13.1 in human gliomas (6).
We also found the CSDA gene, a Y-box transcription factor that

promotes G0-G1 to S-phase transition and has been implicated in
carcinogenesis (67, 68), to be persistently overexpressed in gliomas.
This gene is thought to stimulate cell cycle progression at least in
part via interaction with the CDK4/RB pathway (68), which is
chronically active in a subset of gliomas. Finally, we report
overexpression of the BNIP2 gene in human gliomas, in particular
the glioblastoma subtype. This gene has been originally identified
as an interacting partner of the BCL2 and p19E1B prosurvival
factors (69) as well as a putative substrate of the fibroblast growth
factor receptor in the cell (70). Recently, BNIP2 has been
implicated in modulating cell dynamics by inducing cellular
protrusions in cancer cells through interaction with CDC42,
suggesting its potential role in cell migration and invasion (71).
Our network analysis has also revealed an extended pathway

map potentially involved in glioblastoma cell invasion. The
invasion of neoplastic cells into normal surrounding brain tissue
is a pathologic hallmark of glioblastomas (72). Understanding the
mechanisms of tumor cell invasion is critical as it has a central role
in glioblastoma progression and failure of contemporary therapy
due to disease recurrence from microdisseminated disease.
Glioblastoma cells share the common attributes of the invasion
process, including cell adhesion to extracellular matrix (ECM)
components, cell locomotion, and the ability to remodel extracel-
lular space. The brain parenchyma is a unique environment devoid
of rigid protein barriers. Integrins and the hyaluronan receptor
CD44 are specific adhesion receptors active in glioblastoma-cell
matrix interactions, which are used by the neoplastic cells to
adhere and migrate along the brain ECM (72). The ECM protein
FN1 interacts with many integrins and promotes glioblastoma cell
adhesion and migration (25, 26). The serine protease PLAU and its
cognate receptor (PLAUR) degrade the brain ECM and thus
contribute to the invasive capabilities of glioblastoma cells (25).
The secreted CCN gene family members CYR61 and CTGF, which
can act as ligands for integrins and stimulate adhesion and
migration, are overexpressed in glioma cells and prognostic for
tumor progression and survival of glioma patients (19, 28). The
SPARC-induced secretory protein TGFBI interacts with FN1 (73)
and distinct integrins (74, 75) and promotes integrin-dependent
adhesion of glioblastoma cells (20, 76). The integrin-associated
protein CD47 serves as a ligand for signal regulatory protein a

in malignant glioma cells and is frequently expressed in glioblas-
tomas (77).

We have identified CD151 as a new component of a network
that may potentially mediate glioblastoma cell invasion. Consti-
tuting a member of the tetraspanin superfamily, CD151 is a cell
surface glycoprotein that complexes with integrins and other
tetraspanins (78), regulates integrin trafficking and/or function
(79), and enhances cell motility, invasion, and metastasis of cancer
cells (48). Most recently, CD151 has been implicated in modulating
the ligand-binding activity of ITGA3 through stabilizing its
activated conformation (80) and has been shown to predict the
outcome of low-grade primary prostate cancer better than
histologic grading (81). We confirm a recent report (82) of low
expression of L1CAM in various glioma subtypes compared with
normal brain. This glycoprotein has a role in nervous system
development (83). We found the SRC family member LYN to be
overexpressed in glioblastoma. This nonreceptor tyrosine kinase
acts as an oncogene, and has been shown to be critical in platelet-
derived growth factor–stimulated integrin aVh3–mediated migra-
tion of U-87MG glioblastoma cells (84).
There is growing evidence that most functional networks within

the cell approximate a scale-free topology, where the number of
nodes shows a power-law degree distribution (2). Examples of scale-
free organization are genetic regulatory networks, in which the
nodes are individual genes and the links are derived from the
expression correlations that are based on microarray data (4, 85).
Using relevance networks (3), we have found a scale-free organiza-
tional principle in the gene expression signatures of gliomas, where
the main feature is the coexistence of nodes of widely different
degrees, from nodes with one or two links to so-called hubs with a
very large number of links. Our functional network analysis also
indicates that molecular interaction networks in glioma cells
show scale-free features, specifically the existence of hubs (such as
MYC) which may fundamentally determine the network’s behavior.
A relevance network is a group of genes whose expression profiles
are highly predictive of one another. We have shown that genes can
be directly or indirectly linked to several genes based on positively
and negatively correlated expression. This feature provides a con-
siderable advantage compared with traditional cluster algorithms
where each gene can be linked to only one other feature and be only
a member of one functional genomic cluster. In addition, it can
capture negative correlations, which are missed in hierarchical
clustering and simultaneously display them with positive correla-
tions. Our findings support the implicit notion of unsupervised,
exploratory network algorithms, that genes with similar expression
behavior are related biologically. Our data evidence a high level of
self-organization in the gene expression networks of glioblastoma
and indicate that genes with functions in glioblastoma formation
and progression show interrelated expression patterns. They also
indicate modularity in the glioma transcriptome, in which distinct
functions are carried out by groups of interacting molecules. Such
modularity is substantiated by our discovery of a highly conserved
module of interconnected genes with shared cell cycle functions
across the glioma transcriptome.
Our study has several limitations. A potential shortcoming of

our study was the analysis of brain tumor tissue versus normal
brain tissue. Normal brain tissue is composed of various cell types,
most of which may actually not represent the cells of glioma origin.
Although the identification of multiple genes with previous
implication in gliomagenesis provides a measure of reliability for
our experimental setting, differences in the relative amounts of
grey versus white matter and tumor versus normal tissue may
potentially skew the gene expression profiles towards regulators of
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proliferation. In addition, a potential pitfall of our study is that the
functional networks and their underlying gene-by-gene interac-
tions have been deduced by an in silico modeling approach that
was based on predetermined database knowledge and which
therefore can only be considered as a source of hypotheses. These
interactions have been established in various physiologic and
pathologic cell conditions. This however does not necessarily prove
that the genes in our network maps interact in a similar way in
human gliomas. Molecular functions vary by cellular and tissue
contexts, which limit conclusions regarding the potential func-
tional significance of molecular associations in gliomas made
through database analysis. Functional testing will be needed for
the rigorous evaluation of individual molecular interactions
inferred by our database approach. Our hypothesis-generating
approach has revealed several new candidates altered in
expression in human gliomas. Gene-targeting experiments, such
as gene silencing by RNA interference and gene knockout in an
animal model or gene delivery by gene transfection, will be useful
in validating the significance of these genes in gliomagenesis or
individual glioma subtypes. Finally, none of the described
molecular interaction networks are independent. Instead, they
are likely constituents of a complex network map that determines
the biological behavior of glioma cells. Integrated studies that
enable the analysis of all (regulatory, metabolic, spatial, etc.)
interactions may offer additional insights into how such an
extensive map contributes to gliomagenesis.
In conclusion, we have used network analysis as a conceptual

framework to explore the pathobiology of human gliomas, based

on the assumption that glioma cell behavior is a contextual
attribute of distinct patterns of interactions between multiple
genes. The salient results of our study include the delineation of
refined biological pathway maps differentially modulated in
human gliomas, one of which is built around the myc oncogene
and includes distinct MYC-interacting genes that were not
previously implicated in gliomagenesis. Modules of interconnected
genes with common functions in cell cycle regulation are
conserved in the glioma transcriptome. In glioblastoma, clusters
of genes with tumor-promoting functions show high-level self-
organization and correlated patterns of gene expression. The
paradigmatic, extensive migratory and invasive behavior of this
glioma subtype is accentuated by the demarcation of a pathway
map enriched for integrin-signaling components. Although the
actual role of individual genes and gene interactions in the inferred
genetic regulatory networks requires rigorous functional evalua-
tion, these networks may contribute to understanding key
biological functions and pathways that are altered during glioma-
genesis and may offer the potential for new avenues of future
therapeutic intervention.
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