
Deepak SubramanianUniversity of California, Riverside | UCR · MolecularCell and Systems Biology
Deepak Subramanian
PhD
About
18
Publications
6,976
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
199
Citations
Introduction
Additional affiliations
August 2009 - present
June 2007 - May 2009
Publications
Publications (18)
Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to...
Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to...
Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to...
The neuropilin receptors and their secreted semaphorin ligands play key roles in brain circuit development by regulating numerous crucial neuronal processes, including the maturation of synapses and migration of GABAergic interneurons. Consistent with its developmental roles, the neuropilin 2 (Nrp2) locus contains polymorphisms in patients with aut...
The neuropilin receptors and their secreted semaphorin ligands play key roles in brain circuit development by regulating numerous crucial neuronal processes, including the maturation of synapses and migration of GABAergic interneurons. Consistent with its developmental roles, the neuropilin 2 (Nrp2) locus contains polymorphisms in patients with aut...
The mechanisms by which the neurophysiological and inflammatory responses to brain injury contribute to memory impairments are not fully understood. Recently, we reported that the innate immune receptor, toll-like receptor 4 (TLR4) enhances AMPA receptor (AMPAR) currents and excitability in the dentate gyrus after fluid percussion brain injury (FPI...
Objective:
Traumatic brain injury is a major risk factor for acquired epilepsies and understanding the mechanisms underlying the early pathophysiology could yield viable therapeutic targets. Growing evidence indicates a role for inflammatory signaling in modifying neuronal excitability and promoting epileptogenesis. Here we examined the effect of...
A Proposed Mechanism for Spontaneous Transitions Between Interictal and Ictal Activity Jacob T, Lillis KP, Wang Z, Swiercz W, Rahmati N, Staley KJ. J Neurosci. 2019;39(3):557-575. doi:10.1523/JNEUROSCI.0719-17.2018. Epub 2018 Nov 16. PMID: 30446533 Epileptic networks are characterized by 2 outputs: brief interictal spikes and rarer, more prolonged...
Traumatic brain injury is a major risk factor for acquired epilepsies and understanding the mechanisms underlying the early pathophysiology could yield viable therapeutic targets. Growing evidence indicates a role for inflammatory signaling in modifying neuronal excitability and promoting epileptogenesis. Here, we identify that signaling through an...
Autism spectrum disorder (ASD) and temporal lobe epilepsy exhibit remarkable comorbidity, but for reasons not clearly understood. To reveal a common pathophysiological mechanism, we here describe and characterize an in vitro epileptiform activity in the rat hippocampus that exhibits common features with in vivo activity in rodent ASD models. We dis...
Epilepsy, characterized by recurrent seizures and abnormal electrical activity in the brain, is one of the most prevalent brain disorders. Over two million people in the United States have been diagnosed with epilepsy and 3% of the general population will be diagnosed with it at some point in their lives. While most developmental epilepsies occur d...
We model the role played by the Basal Ganglia (BG) in the generation of voluntary saccadic eye movements. The BG model explicitly represents key nuclei like the striatum (caudate), Substantia Nigra pars reticulata (SNr) and compata (SNc), the Subthalamic Nucleus (STN), the two pallidal nuclei and Superior Colliculus. The model is cast within the Re...
We present a computational model that highlights the role of basal ganglia (BG) in generating simple reaching movements. The model is cast within the reinforcement learning (RL) framework with correspondence between RL components and neuroanatomy as follows: dopamine signal of substantia nigra pars compacta as the temporal difference error, striatu...
We present a computational model that highlights the role of basal ganglia (BG) in generating simple reaching movements. The model is cast within the reinforcement learning (RL) framework with the correspondence between RL components and neuroanatomy as follows: dopamine signal of substantia nigra pars compacta as the Temporal Difference error, str...
We model the role played by the Basal Ganglia (BG) in generation of voluntary saccadic eye movements. Performance of the model
is evaluated on a set of tasks such as feature and conjunction searches, directional selectivity and a successive saccade
task. Behavioral phenomena such as independence of search time on number of distracters in feature se...
Parkinsonian handwriting is typically characterized by micrographia, jagged line contour, and unusual fluctuations in pen velocity. In this paper we present a computational model of handwriting generation that highlights the role of the basal ganglia, particularly the indirect pathway. Whereas reduced dopamine levels resulted in reduced letter size...
Questions
Questions (6)
I am trying to study the effect of a drug on dentate oscillations in urethane anesthetized rats, where I have a guide cannula + a tungsten wire lowered to the dentate gyrus. The tungsten wire extends ~1mm below the guide cannula. After recording a stable baseline, I lower a hamilton syringe attached to a syringe pump into the guide tube so that it extends ~0.5mm below the guide cannula. Regardless of how carefully this is done, I always end up with a spreading depression which recovers ~95% eventually . Is this common? how do i prevent this from happening?
Any suggestions will be appreciated.
I would like to study LTP in the temporoammonic pathway (TA). I have been regularly using horizontal slices of hippocampus-entorhinal cortex (combined slices) for my experiments and was wondering if this would be ideal to study LTP in TA pathway.
Which slice angle would be the best to study this and how difficult is it to precisely stimulate the TA pathway ?
Changes in NKCC1 expression are seen in in vivo models of epilepsy and brain tissue from patients with drug-resistant seizures. Is it possible to study such changes using acute hippocampal slice preparations (using western blotting)?
More precisely, if I incubate hippocampal slices in zero Mg2+ or high K+ conditions for 1-3 hours, will that trigger changes in NKCC1 expression already?
I am interested to know how long it would take to regulate NKCC1 expression.