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10.1 Introduction

Many plants have been recognized to have healing powers against human ill-

nesses from ancient times due to their secondary metabolite content [1]. The

study of phytochemicals from traditional medicine is becoming more popular

in recent literature, and this is proving to be a great resource for modern med-

icine in identifying novel bioactive compounds with potential medical applica-

tions [2,3]. A lot of attention has been received in the last 10 years for the anti-

bacterial activity of phytochemicals [1]. Phytochemicals can be defined as a

vast collection of naturally occurring chemical substances that give plants their

color, flavor, scent, and texture [1]. Over the years, these molecules have

become crucial metabolites that help plants survive momentary or long-term

dangers in their environment against free radicals, viruses, bacteria, and fungus

along with controlling vital development and reproduction functions [3,4].

Plants produce a wide range of phytochemicals. Chemical structures, botanical

sources, biosynthetic processes, and biological features can all be used to
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classify phytochemicals into several categories [5]. Chemical structures are

used to classify the majority of phytochemicals [1,5]. Therefore, based on their

chemical structure, phytochemicals can be divided into Alkaloids, sulfur-

containing phytochemicals, terpenoids, and polyphenols. Depending on their

varying chemical structures and molecular functions, the different classes of

phytochemicals exhibit their numerous medicinal properties [6].

The extraordinary progress in computer science and its wide-ranging appli-

cations has facilitated research to many folds [7]. In silico approaches could be

used to find the effects of unexplored phytochemicals by identifying their

molecular targets with the help of an algorithm. The combination of chemoin-

formatics and bioinformatics, as well as systems biology techniques, aids the

process of drug discovery. These methods combine the use of publicly available

databases and various software tools to screen candidate compounds, recognize

patterns, and analyze their binding interactions with their potential targets. The

functions of omics tools, such as descriptor and pharmacophore development,

molecular docking, biological activity prediction, and quantitative or qualita-

tive structure-activity relationships (QSAR) modeling, are well known [8,9].

Therefore, these approaches can be used for computational screening of phyto-

chemicals for anti-bacterial drug discovery.

Over the last few decades, there has been a considerable increase in the

applications of computational approaches, artificial intelligence, and mathe-

matical modeling in phytochemical research, particularly in plant metabolo-

mics and screening plant metabolites, pharmacological and toxicological

property prediction (virtual screening or in silico studies), chemical fingerprint-

ing, chemical taxonomy, biosynthetic and phylogenetic research [7]. All these

approaches help us to delineate the properties of phytochemicals. One such

property is to act as an anti-bacterial agent. Research in recent years has

revealed that phytochemicals exhibit anti-bacterial activity through various

mechanisms, including the destruction of bacterial membranes, and suppression

of virulence factors, such as enzyme and toxin inhibition, and bacterial biofilm

formation [1]. The anti-bacterial activity can, therefore, be identified by

computer-aided approaches, which can further lead to drug discovery.

10.2 Phytochemicals as anti-bacterial agents

Phytochemicals have shown potential in combating bacterial infections and over-

coming the challenge of bacterial resistance development. Their anti-bacterial

activities are linked to chemical influence on the function or biosynthesis of

essential constituents, as well as overcoming anti-bacterial host defenses [10].

The various anti-bacterial properties of phytochemicals have been identified,

including interference with bacterial cell wall biosynthesis and cell membrane

disintegration, prevention of bacterial protein production, DNA replication and

damage response, and cellular metabolism [11,12]. Phytochemicals may have

anti-bacterial effects through differing mechanisms, depending upon their
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classification, discussed in the previous section [13]. This section elaborates on

the anti-bacterial properties of the different classes of phytochemicals.

10.2.1 Anti-bacterial activity of alkaloids

Alkaloids are a broad and structurally diverse category of plant-derived phyto-

compounds. Alkaloids rapidly establish hydrogen bonding with receptors, pro-

teins, and enzymes since they have a basic nitrogen atom and also have one or

more acidic amine hydrogen atoms [14]. Further, the presence of functional

groups having proton-acceptors and donors such as phenolic hydroxyl and poly-

cyclic groups indicates their remarkable functional properties [15]. Alkaloids

show much potential as effective anti-bacterial drugs due to their broad anti-

bacterial spectrum and their ability to act against drug-tolerant variants. Various

studies, based on the mechanism of action of the anti-bacterial activity of alka-

loids, suggest that they act by damaging the cytoplasmic membrane [16],

impacting DNA activity [17], and restricting protein production [18] in bacterial

cells. Isoquinoline alkaloids are a subclass of characteristic alkaloids that have

been proposed to exhibit strong anti-bacterial action [19]. Sanguinarine and ber-

berine are types of isoquinoline alkaloids possessing anti-bacterial properties.

The mode of mechanism includes arresting the cell cycle process [14], disrupt-

ing the plasma membrane leading to leakage of its contents, and suppressing

protein synthesis [20]. Various alkaloids like sanguinarine [19] and agelasines

[14] are known to impair the cell wall and cell membrane of bacterial cells by

affecting their permeability potential [14]. They do so by preventing the forma-

tion of the biofilm, which is a substance surrounding the bacteria proving to be

beneficial against adverse conditions [21]. Further, alkaloids also affect the

efflux pump system, which is an integral part of the bacterial plasma membrane

[20]. These pumps enable the bacterium to show resistance to anti-bacterial

agents, preventing their entry into the cell [19].

Therefore, through the various mechanisms and pathways mentioned

previously, alkaloids hold a lot of promise to be studied further as potential

anti-bacterial drugs, and their modes of action specifically can be explored

and identified by applying computational screening methodologies.

10.2.2 Anti-bacterial activity of sulfur-containing phytochemicals

Sulfur-containing phytochemicals or organosulfur phytochemicals are another

class of phytochemicals; they are organic compounds with at least one carbon-

sulfur bond present. Some of the organosulfur phytochemicals found are

thiosulfinates, glucosinolates, allicin, isothiocyanate, and many others [1].

Organosulfur phytochemicals have exhibited anti-bacterial activity against both

Gram-negative and -positive bacteria since 1965 [22]. Glucosinolates, a sub-

class of organosulfur compounds, have been identified to act against bacteria

by modifying cellular protein structures, leading to the suppression of their
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growth [23]. They have also been found to damage the bacterial plasma mem-

brane structure leading to the outflow of constituents of the cell and causing a

decrease in the enzymatic activity [24]. Isothiocyanates, the smaller compo-

nents of glucosinolates, have been found to exhibit bactericidal activity by

blocking the activity of the enzyme urease in bacterial cells [1]. Further, they

have been found to suppress the growth of bacterium species like Staphylococ-
cus aureus [25]. Thiosulfinates have been identified to possess bacteriostatic

properties [24]. Allicin, a thiosulfinate extracted from garlic [26], is well known

for its anti-bacterial properties, including the total obstruction of RNA produc-

tion and a substantial inhibition of DNA and protein synthesis [27].

Organosulfur compounds have been discovered to reduce biofilm formation

and cause their destruction [28], preventing them from successfully protecting

the bacterial cell. Lastly, these compounds may also cause suppression of genes

which leads to bacterial mobility, flagellum formation, respiratory, and various

biomolecule synthesis pathways [29].

10.2.3 Anti-bacterial activity of terpenoids

Terpenoids are the largest class of phytochemicals that are derived from meva-

lonic acid and characteristically have more than one isoprene unit present in

their structure. They have been identified to exhibit compelling action against

various bacterial strains [30]. The general mechanism of terpenoids against bac-

teria is due to the presence of an aromatic structure with a polar functional

group. The anti-bacterial action of terpenes depends on their chemical and

structural properties [31]. Terpenoids such as thymol and carvacrol possess

hydroxyl groups that enable them to be involved in hydrogen bonding with

enzymatic active sites, preventing their standard functionality [30]. Due to their

highly reactive nature, the hydroxyl groups function as proton exchangers with

the membrane of bacterial cells, allowing the terpenoid molecules to be attached

to the lipid bilayer of the plasma membrane, altering its conformational func-

tional properties [32,33]. Artemisinin, a sesquiterpene phytochemical drug, has

shown effective anti-bacterial activity against various types of bacteria like

facultative, aerobic, and anaerobic bacteria [30]. Andrographolide, a diterpene

lactone, also exhibited anti-bacterial properties in combination with azithromy-

cin drug, and it acted by preventing the formation of biofilm [32].

10.2.4 Anti-bacterial activity of polyphenols

Polyphenols have shown great potential as anti-bacterial agents due to their

ability to inhibit various pathogenic mechanisms adopted by bacteria [34].

One of the anti-bacterial mechanisms of action adopted by polyphenols is

the obstruction of biosynthesis of nucleic acids, which in turn hinders the for-

mation of DNA and RNA within the bacterial cell [35]. Another mechanism

identified is that the polyphenols assimilate on the surface of the bacterial cell
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wall and exhibit bactericidal activity through various pathways, including the

production of hydrogen peroxide by oxidative polyphenols [36]. They also

act in a similar manner to destroy the plasma membrane by altering its proper-

ties [37]. A significant property of polyphenols that has been identified is their

ability to cause bacterial cell aggregation [37]. This clumping of cells can lead

to improper or insufficient functioning. Due to the accumulation of the cells, the

bacteria are unable to receive an adequate amount of oxygen, which disturbs the

respiratory chain within the cells [37]. Moreover, the reduced area may also lead

to the insufficient uptake of essential nutrients, providing another explanation

for the cause of inhibition of nucleic acid synthesis. Like the other phytochem-

icals, polyphenols interfere with biofilm formation and quorum signaling by

preventing the association of signal molecules with their receptors in bacterial

cells [37]. Additionally, they have also been found to block bacterial cells from

attaching to the host substratum [35].

Therefore, it is evident that all classes of phytochemicals have innumerable

anti-bacterial attributes. A few prominent examples of phytochemicals and their

anti-bacterial mechanisms of action have been highlighted in Table 10.1. How-

ever, to determine their exact functionality and extent of use as potential anti-

bacterial drugs, it is essential to study their structure-activity relations, stability

of their complex with receptors, interactions with specific biological targets,

and other characteristics. It is possible to do so by utilizing various computa-

tional screening methodologies that can aid in drug discovery.

10.3 High-performance computational drug discovery

The exponential advancement in technology has brought forward its innumer-

able advantages and applications in the field of drug design and discovery.

Computational approaches such as different facets of artificial intelligence like

predictive analysis and deep neural networking and mathematical programming

models can be implemented in different aspects of research in phytochemicals

[7]. These can aid in screening various phytochemical databases to identify

potential drug candidates, analyze and study their structure-activity relation-

ships, and discover their properties associated with toxicity and therapeutic

properties, among many others.

Drug development in the pharmaceutical sector can be a very tedious and

costly process wherein there is still uncertainty about whether the final drug will

be approved. The virtual screening of potential phytochemicals as drugs may

bring forward more promising candidates, which may further be taken into con-

sideration for experimental screening and can significantly increase efficiency

and help cut down costs. Sarker and Nahar [7] defined the term Computational

Phytochemistry as a field where various computational tools, methods, and

models are incorporated into the analysis and study of phytochemicals to dis-

cover valuable plant metabolites and study compounds exhibiting bioactive

properties [7]. Therefore integrating the process of computer-aided drug design
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TABLE 10.1 Phytochemicals, their sources, and anti-bacterial mechanism(s) of action.

S/N

Phytochemical

class

Phytochemical

name Sources

Anti-bacterial

mechanism(s) of

action Targets Reference

1 Alkaloids Sanguinarine Roots ofMacleaya
cordata and
Macleaya
microcarpa

Destroys the integrity
of the cell membrane
by reductions in
intracellular ATP
concentration, pH,
and cell membrane
potential, as well as
severe changes in
cellular shape. Arrests
cell cycle and inhibits
protein synthesis

E. coli, S. epidermidis,
Streptococcus pyogenes, K.
pneumoniae, Acinetobacter
baumannii, S. aureus, and B.
subtilis

[10,38,39]

2 Alkaloids Berberine Roots, barks, and
stems of
Coptidisrhizome
and Barberry
plants

Blocks the activity of
the bacterial division
protein FtsZ. Arrests
cell cycle and inhibits
protein synthesis

Aeromonas hydrophila,
Bifidobacterium
adolescentis, Edwardsiella
ictaluri, Escherichia coli,
Pseudomonas fluorescens,
Staphylococcus aureus,
Staphylococcus epidermidis,
Streptococcus agalactiae,
and Vibrio vulnificus

[10,40]

3 Alkaloids Ajmalicine Hairy roots of
Catharanthus
roseus

Targets the MurA
enzyme in bacterial
species, which is
responsible for the
peptidoglycan
formation; and the
enzyme shikimate
dehydrogenase, a key
enzyme in amino acid
synthesis

Multi-drug-resistant
Acinetobacter baumannii
and Escherichia coli

[41,42]



4 Alkaloids Tomatidine Stems, roots,
leaves, and
whole-plant
fractions of
tomato plant

Hydroxyl groups
hinder
microorganisms, and
these groups can
interact with
bacteria’s cell
membranes,
destroying membrane
composition and
causing the loss of
cellular components

E. coli, Salmonella
typhimurium,
Staphylococcus aureus, and
Listeria ivanovii

[43]

5 Sulfur-
containing
phytochemicals

Iso-thiocyanates Present in
cruciferous
vegetables

Prevents biofilm
formation, quorum
signaling, inhibits
urease enzyme, toxin
production, and
destroys bacterial cell
membrane

S. mutans, L. casei, S. aureus,
E. faecalis,
A. actinomycetemcomitans,
F. nucleatum, P. nigrescens,
C. perfringens, C. albicans,
E. coli, E. faecalis,
L. monocytogenes

[1,44,45]

6 Sulfur-
containing
phytochemicals

Allicin Garlic (Allium
sativum L.)

Inhibits bacterial
enzymatic activity by
reacting with their
functional groups,
inhibiting toxin
formation, quorum
signaling and alters
membrane
permeability

Species of Escherichia,
Staphylococcus, Salmonella,
and methicillin-resistant
Staphylococcus aureus

[28,46,47]

7 Sulfur-
containing
phytochemicals

Glucosinolates Brassicaceae,
Capparidaceae,
Moringaceae, and
Resedaceae
families

Hydrolysis products
of glucosinolates
cause bacterial
growth inhibition,
plasma membrane
destruction, and

S. aureus, E. faecalis, and S.
saprophyticus

[24,48]

Continued



TABLE 10.1 Phytochemicals, their sources, and anti-bacterial mechanism(s) of action—cont’d

S/N

Phytochemical

class

Phytochemical

name Sources

Anti-bacterial

mechanism(s) of

action Targets Reference

reduction in enzyme
activity

8 Terpenoids Thymol Thymus,
Oregano,
Satureja,
Coridithymus,
Thymbra and
Lippia

Causes bacterial
membrane
breakdown, bacterial
lysis, and intracellular
content release,
culminating in death.
Inhibition of efflux
pumps, bacterial
motility, and
membrane ATPases,
prevention of
formation and
disruption of
preformed biofilms

E. coli O157:H7, S.
typhimurium, L.
monocytogenes

[1,49]

9 Terpenoids Carvacrol Found in
Origanum
vulgare, Thymus
vulgaris and wild
bergamot

Effects on the
structural and
functional features of
the cytoplasmic
membrane. Inhibits
enzymatic activity
within bacterial cells

E. coli and L. monocytogenes [30,50–
52]



10 Terpenoids Limonin Citrus grandis,
residues after
juice extraction of
Citrus reticulata
and peels, and
residues after
juice extraction of
Citrus hystrix

Exhibits bacteriostatic
effect, and inhibits
bacterial cell
communication and
biofilm formation

Escherichia coli,
Staphylococcus aureus,
Bacillus thuringiensis,
Salmonella, and Shigella
spp.

[53,54]

11 Polyphenols Galangin Found in honey,
Alpinia
officinarum,
Helichrysum
aureonitens and
in propolis

Directly inhibits the
activity of β-
lactamase and
exhibits intrinsic
anti-bacterial activity

K. pneumoniae [1,55,56]



with traditional experimental approaches can prove to be extremely valuable

and productive in the efficient process of drug design and development. Even

though the diverse properties of phytochemicals have been known for ages, in-

depth research on their biological effects and their efficacy as drugs for various

diseases has only recently begun.

This section focuses on the various tools and technologies currently avail-

able that can be utilized to identify and study the anti-bacterial potential of phy-

tochemicals. These methods combine the use of publicly available datasets and

various software applications to evaluate candidate compounds, recognize pat-

terns, and analyze their interaction affinity with their likely targets. The various

computational screening methods discussed in this section are enlisted in

Table 10.2, along with current tools that can be utilized to conduct them.

Further, the outline of the process of computational screening of phytochem-

icals for anti-bacterial drug discovery has been represented in Fig. 10.1.

10.3.1 Phytochemical database: Analysis and validation

The first step in the computational screening of anti-bacterial drug discovery

would be data mining. Data mining involves analyzing vast amounts of data

to find correlations and develop links to solve issues through various

computer-based analytical tools. For computational phytochemical screening,

an integrative and comprehensive strategy for data processing is required,

beginning with the identification of plant products and ending with the separa-

tion and determination of potential drug candidates. Several publicly accessible

databases have accumulated and presented data on various plants and their

products, whichmay be helpful from amedicinal point of view. These databases

can be utilized to retrieve information about phytochemicals whose structural

and functional properties may lead to their use as anti-bacterial agents. This sec-

tion discusses the various phytochemical-based databases present, which can be

useful.

NAturalPRoducts ALERT (NAPRALERT) is a highly regarded natural

product relational database that includes information on the biochemical, phar-

macological, and medicinal properties of extracts from in vitro, in vivo, in situ,

and humans and clinical studies [7]. It contains data on the medicinal properties

of more than 200,000 plant species. Indian medicinal plants, phytochemistry,

and therapeutics (IMPPAT) database is another electronic database containing

information on more than 9000 phytochemicals along with their two- and three-

dimensional chemical structures. Further, via computational tools, IMPPAT has

incorporated the ADMET properties of the phytochemicals, enabling users to

determine their structural and functional properties using the IMPPAT database

[73]. Another database commonly used to retrieve information regarding plants

and their products is Dr. Duke’s Phytochemical and Ethnobotanical Database,

which enables the convenient search for specific plants, chemicals, bioactivity,

and ethnobotany using their scientific or common names [74]. Medicinal plant
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TABLE 10.2 Computational screeningmethods used for drug discovery from

phytochemicals.

S/N

Computational

screening

method Application

Software/

Tools References

1 Database
screening

To identify the
potential
phytochemicals from
plants known to have
anti-bacterial
properties

ebDB

GRIN

TCM-ID

Flora
Europea

HIT

[7]

2 1D-QSAR 1D structure of the
ligand is used to
correlate their affinity
with the ligand’s
properties such as
lipophilicity and
solubility

AutoQSAR [57,58]

3 2D-QSAR Determines
correlation between
the physicochemical
properties of the atoms
and functional groups
present in a ligand
with its bioactivity

QSAR-Co [57,59]

4 3D-QSAR Determines the
correlation based on
the 3D spatial
arrangement of atoms
in a ligand molecule
with its biological
activity caused due to
various interactions
such as electrostatic
and steric

HASL

AutoGPA

[60–62]

5 4D-QSAR Compares the ligands’
bioactivity with its
conformational
flexibility, rotational
bonds and its various
configurations

LQTAgrid [63,64]

6 Molecular
docking

Predicts interaction
between the
phytochemical ligand
and bacterial target
molecule

AutoDOCK

MOE-Dock

Glide

MCDock

Surflex

[65,66]

Continued
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database for drug designing (MPD3) is a web-based tool that can provide data

on numerous phytochemicals from various plants having medicine-like proper-

ties [75]. The proposed database can be particularly valuable for computer-

aided drug discovery (CADD), as it is simple to use and efficient.

Similarly, there are various other plant databases listed in Table 10.2,

which can be utilized to discover and acquire information regarding phyto-

chemicals having properties, which may make them useful in anti-bacterial

drug discovery.

10.3.2 Structure-based virtual screening

Once the phytochemicals showing evidence of anti-bacterial properties are iden-

tified through data mining, it is essential to evaluate their interaction and affinity

toward the target molecules, which will enable their anti-bacterial mechanism of

action.

Virtual screening is an effective in silico approach in the drug development

process. The presence of a 3D model of the protein of interest is a requirement

for performing virtual screening [76]. Virtual screening is frequently used in the
research of new pharmaceuticals, and it has significantly led to the production

TABLE 10.2 Computational screeningmethods used for drug discovery from

phytochemicals—cont’d

S/N

Computational

screening

method Application

Software/

Tools References

7 Molecular
dynamics

Analyses the
movement of atoms in
a ligand’s molecular
structure to predict its
involvement in
biomolecular
processes

AMBER

CHARMM

GROMACS

Enlighten2

YASARA

[67–71]

8 ADMET profiling Identification of
ADMET properties to
determine the
potential of
phytochemicals as
anti-bacterial drugs

VolSurf

QikProp

MetaDrug

PK-Sim

DDDPlus

[72]
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of commercially available drugs. Virtual screening based on structure or target-

based virtual screening interprets optimum association among phytochemicals

and a bacterial target to build complexes. Thus, the phytochemicals are arranged

based on their affinity for the bacterial protein, with the phytochemical having

the most potent interaction appearing first [77]. This computational screening

approach requires knowledge of the targeted protein’s three-dimensional struc-

ture to predict the associations involving the target and specific chemical

FIG. 10.1 Outline of computational anti-bacterial drug discovery from phytochemicals, using

methods such as molecular docking, QSAR, pharmacophore modeling, and ADMET profiling.
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component [77]. Phytochemicals are selected and categorized based on their

affinity for the target site in this technique. As a result, the phytochemicals that

are more likely to have pharmacological interaction with the bacterial target can

be identified. Score functions are being applied to check the probability of a

binding domain characterizing the ligand-target attraction [78]. Structure-based

virtual screening is a commonly used technique in drug discovery and develop-

ment due to its time and cost efficiency [77]. Further, this technique enables the

molecules in question to be tested entirely using computational tools. Therefore,

the potential phytochemicals whose three-dimensional structures are available

can be used to conduct structure-based virtual screening against their known

targets that result in their anti-bacterial activity.

10.3.2.1 Molecular docking

Molecular docking is extensively employed to conduct structure-based virtual

screening technology, which takes advantage of the structural and chemical

changes that occur when a drug-like compound interacts with its targeted site,

trying to predict the favorable positioning of ligands in the binding site using

scoring functions [65]. Molecular docking is a valuable tool to predict the inter-

action of phytochemical compounds with the anti-bacterial target sites and their

affinity toward each other. Docking is accomplished in two phases: firstly, sam-

pling ligand conformations in allosteric protein regions and rating the structural

arrangements using a scoring function [79]. Sampling algorithms replicate

hypothetical means of interaction, whereas the scoring function would give

the molecule the highest score out of all created conformations in a perfect

interaction.

In rigid docking, the sampling algorithm uses translational and rotational

degrees of freedom to explore alternative positions of ligands at the active bind-

ing site, whereas, in flexible docking, degrees of freedom based on spatial

arrangement are included with translations and rotations of the ligands. Search

algorithms use various strategies to anticipate the suitable conformation of

ligands, including evaluating the chemical and geometrical properties of the

participating atoms [79]. Molecular docking software applies mathematical

models to assess the strength of non-covalent reactions involving a ligand

and a protein target. They can be utilized to figure out the attachment region

of the ligand and the structure of the complex formed [78]. This strategy can

be used to find allosteric sites. Further, it can also estimate the binding ability

of a receptor molecule to a ligand and aid in the identification of drug

candidates [78].

Sharavanan et al. conducted a molecular docking study with phytochemicals

derived from the plant Leucas aspera against bacterial subcellular protein tar-

gets such as MreB, a cytoskeleton protein present in bacteria like E. coli, and
FtsZ regulatory proteins [65]. The docking simulation was carried out using the

MolDock sampling algorithm and Molegro Virtual Docker [80]. The potential
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phytochemicals such as Leucosperone B were docked against protein targets

found in E. coli and B. subtilis. The docking scores obtained from the algorithm

were compared to those of an existing control drug, penicillin [80]. Ultimately,

the low-energy docking position was considered to be a significant interaction

between protein and ligand molecules, as the possibility of them occurring nat-

urally is greater. Even though the penicillin showed better affinity toward the

targets like FtsZ, Leucosperone B’s docking scores were good, and the phyto-

compound showed a high affinity toward the protein targets [80]. The com-

pound was found to participate in four hydrogen bonds with the target

receptor MreC [80], indicating its strong reaction with bacterial components.

Thus, this study signified that the phytochemical Leucosperone B could be con-

sidered for anti-bacterial drug discovery.

Similarly, various other molecular docking studies [81–84] have been

conducted to identify the interaction of phytochemical ligands with different

bacterial protein targets to understand the affinity, activity, and strength of

phyto inhibitors against bacterial action.

10.3.3 Ligand-based virtual screening

Unlike structure-based virtual screening, ligand-based virtual screening does

not examine small molecule repositories. Instead, it focuses on preliminary

information on identified compounds that bind to the desired protein

target. A pharmacophore framework that outlines the minimum structural prop-

erties a ligand must exhibit, enabling it to attach to the targeted molecule, can be

generated using these recognized molecules [85]. To determine the activity of

novel analogs, this method utilizes QSAR, formed from an association between

estimated attributes of molecules and their biological activity found empirically

[85]. This section focuses on two commonly used ligand-based virtual screen-

ing methodologies, which can be adapted to identify phytochemicals for anti-

bacterial drug discovery.

10.3.3.1 Quantitative structure-activity relationships

The QSAR connects biological activities to physicochemical qualities in a

quantitative way. The molecular activity is mathematically linked to one or

more target proteins using QSAR analysis. The statistical patterns developed

as a result are used to estimate the bioactivity of novel molecules that have

yet to be evaluated in the lab [8]. QSAR is used in molecular design, assessment

of various biological functions, lead compound refinement and virtual screen-

ing, categorization, detection, and comprehension of pharmacological action

mechanisms, and analysis of the toxicity of drug candidates [86]. QSAR is a

multi-step procedure that starts with the shortlisting of a collection of training

compounds depending on experimental functions, followed by the construction

of a statistical connection to explain the compounds’ properties based on their
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structure and physical chemistry [72]. A model is created that shows a link

between themolecular targets and the biological features of the ligands. Follow-

ing that, the model is used to predict the activity of the test set in a similar man-

ner that the training compounds were predicted [72]. The various types of

QSAR, their uses and tools to perform QSAR analysis have been discussed

in Table 10.2. A plethora of research has been conducted to evaluate the

structure-activity relationship between phytochemicals and their target receptor

protein, which enables their anti-bacterial action [84,87–89].
For instance, Araya-Cloutier et al. (2018) performed a QSAR analysis

between isoflavonoids and protein targets on L. monocytogenes and E. coli
to determine their anti-bacterial properties [90]. In the QSAR study, a genetic

algorithm was applied to correlate the physicochemical property of the phyto-

compounds to their anti-bacterial activity by implementing the ordinary least

square regression model [90]. In the L. monocytogenes models, the descriptors

were found to be the hydrophilic nature of the isoflavonoid, the presence of

reacting hydrophilic groups on the molecules, globularity, and the branching

of the molecules [90]. Similarly, in the case of E. coli models, the properties

corresponding to their action against bacteria were the number of hydrophobic

groups, hydrogen bond-forming groups, globularity, and molecular flexibility

[90]. Thus, these results indicated that the circular shape and molecular flexi-

bility were the two most contributing factors to the anti-bacterial mechanism of

action of isoflavonoids.

Another QSAR study between polyphenols and gram-positive and negative

bacteria that are commonly seen to contaminate food was conducted to identify

the action of polyphenol phytocompounds against them [91]. In MATLAB soft-

ware, the multi-linear regression QSAR was applied with the help of the

enhancement replacement method. By using the Kubinyi Function, the proper-

ties to be analyzed were shortlisted and incorporated into the model. Based on

the Kubinyi Function scores, the best molecular descriptors were identified

(high scores) and were further confirmed by performing the t-test [91]. The

results found that the hydrophobicity, lipophilicity, electrostatic forces, molec-

ular flexibility, and other properties all cumulatively contributed to the anti-bac-

terial mode of action of the polyphenolic phytocompounds.

10.3.3.2 Pharmacophore-based virtual screening

A pharmacophore is a conceptual representation of molecular properties

required for ligand molecule identification by a biological structure, describing

how different ligands varying in structure can bind to the same receptor site

[85]. Pharmacophore properties of a compound correspond to those atomic

or structural arrangements of molecules that contribute to their specific activity,

upon a change which can lead to modification in their activity as well. Further, it

has also been noted that different compounds having similar atomic configura-

tions at their active site also exhibit similar functionality [85]. With the
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advancement of chemical databases and computer applications in recent years,

virtual database screening utilizing the pharmacophore approach has become

one of the most common methods for finding potential drug candidates for drug

discovery.

Active ligands and the active site of the receptor protein are required for

pharmacophore modeling. A pharmacophore can be constructed by several

methods. Shared feature evaluation can be used to identify physicochemical

characteristics that are common in a group of potent drugs that appear to be

relevant for binding association [92]. Furthermore, different chemical con-

figurations for specific training set compounds, along with the matching

inhibitory activity or dissociation constant values, can be utilized to link

the 3D layout of their chemical properties with training set molecules’

bioactivity [92].

Two general steps have been identified to conduct ligand-based pharmaco-

phore modeling successfully. The first step involves designing the structural

layout of phytochemical ligand molecules in a training set to depict the

conformation-based activity of the compounds [93]. Secondly, comparing the

structural features of the various ligands in the training set contributes to their

similar action to construct the model [93].

Nyawai et al. [94] performed pharmacophore modeling on phytochemicals

from the plant species Clinacanthus nutans to discover their conformation-

based properties leading to their anti-bacterial action. They did so by creating

a three-dimensional pharmacophore structure of the ligand phytochemicals

with minimal energy due to their positioning, and then the ligands were clus-

tered for their accurate alignment [94]. The model was developed by overlap-

ping and aligning the phytochemical ligand test set with the training set,

composed of currently available anti-bacterial drugs such as ampicillin, amox-

icillin, and cefixime. The common structural features identified between the

drugs and the phytochemicals were four groups participating in donating and

one in accepting hydrogen bonds, a single hydrophobic group, and the presence

of an aromatic structure within the hydrophobic region [94]. Thus, confirming

that these structural properties impart their anti-bacterial activity by participat-

ing in bacterial cell binding, similar to those of broad-spectrum antibiotics.

10.3.3.3 ADMET profiling

Another crucial step in the process of drug discovery is the analysis of the phar-

macokinetics of the potential drug candidates. The absorption, distribution,

metabolism, excretion, and toxicity (ADMET) are crucial parameters that need

to be considered and analyzed in drug discovery. Even though phytochemicals

have proven to be highly beneficial in the medicinal sector, certain phytochem-

icals can be toxic. Further, the dosage and means of administration of the phy-

tochemicals are essential aspects that need to be taken into consideration while

designing phytochemical drugs.
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In drug discovery and development, significant progress has been achieved

in high-throughput scanning for these attributes. ADMET forecasting is now

possible using in silico approaches, allowing for more appropriate pharmaco-

logical lead identification. Various ADMET analysis software has been devel-

oped to aid the process of computational drug discovery. KnowItAll ADME/

Tox Edition, ADMET Predictor, MedChem Studio, and IMPACT-F are among

the few which are currently being used to perform the analysis [88].

Table 10.2 mentions other ADMET web tools currently available as well.

10.4 Computer-aided anti-bacterial drug discovery
of phytochemicals

The different high-performance computational drug discovery methods have

been discussed in this chapter. This section discusses the need for computational

screening of phytochemicals for anti-bacterial drug discovery and various stud-

ies, which identified potential phytochemical drug candidates.

10.4.1 Importance of computational studies of phytochemicals
for anti-bacterial drug discovery

The different properties of phytochemicals and their application for the devel-

opment of the desired drug have been discussed. Phytochemicals have various

biological activities and are employed as anti-oxidants, immunomodulators,

anti-microbials, cardiovascular medicines, and anti-cancer medications

[95]. Multiple studies demonstrate that several phytochemical compounds

isolated from medicinal plants have effective anti-bacterial potential against

multi-drug-resistant infections and that these compounds could be used as

anti-bacterial medications, according to the scientific literature [96]. Their

identification, on the other hand, is still limited. The complete reliance on

time-consuming in vitro and in vivo screening technologies is a key roadblock

in the discovery of effective phytocompounds [95]. Isolation, purification, and

screening of drug candidates are currently the most important phases in nat-

ural product drug development. The use of industrial-scale extraction and bio-

technology is required for the successful conversion of lead compounds into

clinically useful medications [97]. The drug discovery process is lengthy,

complicated, and costly. It frequently leads to more failures than triumphs.

Alternatively, employing an online database and bioinformatics tools to per-

form computational drug discovery might be a cost-effective and time-saving

method. These advanced bioinformatics tools and methods can, therefore, be

used for designing, optimization, and high-throughput screening of

phytocompounds [95].

Plants have undoubtedly proven to be a good source of novel anti-bacterial

medications in several types of research over the last few decades. As a result,

anti-bacterial medicinal plants hold a lot of promise due to their biodiversity,
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and most of them have not been well studied yet. To assure the selection of

bioactive and non-toxic or probable side effects of the nominated anti-bacterial

phytochemicals, more extensive investigations connected to the isolation of

anti-bacterial phytochemical components frommedicinal plants must be carried

out [96]. Therefore, extensive computational studies of phytochemicals are

required to facilitate anti-bacterial drug discovery.

10.4.2 In silico aided anti-bacterial drug discovery from
phytochemicals

Various research have proven that phytochemicals can be used for anti-bacterial

drug discovery. This has been achieved by studying the different computational

techniques along with in silico studies. The following case studies give us a

detailed idea of how these phytochemicals act as anti-bacterial agents using

computer-aided approaches.

10.4.2.1 Identification of anti-bacterial and anti-diarrheal activities
of Colocasia gigantea Hook F. leaves based on computational
approaches

The anti-bacterial and anti-oxidant properties of the methanol soluble extract of

Colocasia gigantea have been investigated [98]. Phytochemical extraction and

structure elucidation ofColocasia leaves produce chemical substances such as iso-

orientin, orientin, Lut-6-C-Hex-8-C-Pent, vicenin, alpha-amyrin, beta-amyrin,

monoglycerol stearic acid, apigenin, vitexin, and isovitexin [99]. For the experi-

ment, plant materials were collected, cleaned, sun-dried, and then ground into a

coarse powder [99,100]. The in vitro anti-microbial investigation was performed

using the disc diffusion method followed by a molecular docking analysis of sec-

ondary metabolites [98]. After obtaining the anti-bacterial activity against certain

pathogens, themoleculardockinganalysiswasperformed.Thefirst step indocking

analysis is the selection of compounds for computational studies. PubChem was

used to retrieve the chemical structures of isolated molecules (https://pubchem.

ncbi.nlm.nih.gov/). PubChem is a database of chemical compounds and their bio-

logical roles [101]. It includes data on tiny molecules, lipids, carbohydrates, and

(chemicallymodified) amino acid and nucleic acid sequences, among other chem-

ical entities (including siRNAandmiRNA) [102]. To assess the potential utility of

PubChem for drug development, the targets for proteins in PubChem are system-

atically summarized by their function, 3D structure, and biological route [103].

Through chemical analysis, alpha-amyrin, beta-amyrin, monoglyceryl stearic

acid, and penduletin were chosen as major chemical compounds [100].

The next step is ligand preparation. From the PubChem compound database,

the synthetic structures of C. gigantea’s four compounds (alpha-amyrin,

beta-amyrin, monoglyceryl stearic acid, and penduletin) were obtained [98].
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The ligand was created using the LigPrep, which was provided in Schr€odinger-
suite-Maestro v 11.1, with the following parameters: neutralized at pH 7.0� 2.0

using Epik 2.2, and minimized using the OPLS 2003 force field [98].

Followed by this, the enzyme/receptor preparation was done. The Protein

Data Bank (RCSB PDB) of the Study Collaboratory for Structural Bioinformat-

ics (RCSB) offers tools and resources for research and teaching that provide a

structural picture of life. The RCSB PDB website (http://www.rcsb.org) makes

use of the PDB archive’s curated 3D macromolecular data to provide new ways

to access, report, and explore data [104]. This RCSB PDB has been used to

obtain 3D structures of macromolecules such as kappa-opioid receptor and

human delta-opioid receptor for anti-diarrheal docking studies, beta-ketoaryl-

ACP synthase 3 receptor for anti-microbial docking studies, glutathione reduc-

tase for anti-oxidant docking study. The enzyme/receptor was prepared for a

docking experiment using the Protein Preparation Wizard, which was included

in Schr€odinger suite-Maestro v11.1 [98]. The glide standard precision docking

is the final phase. To evaluate the potential mechanism of action of the selected

compounds in relation to the respective enzymes/receptors for anti-diarrheal

and anti-bacterial activity in C. gigantea, a molecular docking analysis was per-

formed. For docking studies, glide standard precision docking, which is

included in Schr€odingersuite-Maestro v 11.1, was utilized [98]. After molecular

docking, the determination of pharmacokinetic parameters by the SwissADME

web tool was carried out. SwissADME performs validation to predict the phar-

macokinetic parameters of drug compounds [105]. Based on Lipinski’s rule, it

calculates the total molecular weight of the compounds, lipophilicity (LogP),

the number of hydrogen bond acceptors, and the number of hydrogen bond

donors [98].

Furthermore, admetSAR was used to predict toxicological characteristics.

The toxicological properties of the selected compounds were determined using

the admetSAR online program [98]. Using the PASS online tool, the anti-bac-

terial effects of the four major phytoconstituents alpha-amyrin, beta-amyrin,

monoglyceryl stearic acid, and penduletin were examined [98]. The prediction

of activity spectra for substances (PASS) software predicts pharmacological

effects and biochemical mechanisms based on a substance’s structural formula.

It can be used to find new targets (mechanisms) for some ligands and, con-

versely, new ligands for some biological targets [106]. In the anti-microbial

study, molecular docking revealed that monoglyceryl stearic acid and alpha-

amyrin had the highest and lowest binding affinity against the beta-ketoaryl-

ACP synthase 3 receptor, respectively [4]. Asn247, gly209, asn274, gly305,

leu205, leu191, thr190, ala111, thr81, ile156, phe213, met207, and val212 were

found to interact owing to Van der Waals forces [98].

SwissADME, an online application, was used to determine the pharmaco-

kinetic properties of the substances chosen by Lipinski. The study found that

all of the substances followed Lipinski’s principles, indicating that they have

a high oral bioavailability. The admetSAR web server also predicted the

232 Phytochemistry, computational tools, and databases in drug discovery

http://www.rcsb.org


toxicological features of the four chemicals. The selected compounds were

found to be non-Ames poisonous, non-carcinogenic, and have low toxicity

levels [4]. Finally, the anti-bacterial properties of four main C. gigantea com-

pounds were investigated using the PASS online program. The potency dis-

played a higher Pa value than Pi [98].

According to the findings of this study, the methanol extract of C. gigantea
leaves can be a rich source of anti-oxidants as well as a promising option for

anti-diarrheal and mild anti-bacterial treatment. Furthermore, some bioactive

potential compounds showed promising binding affinity to specific proteins

in molecular docking analysis, and the ADMET investigation revealed their

drug-like characteristics. The experimental results for bioactive components

were consistent with PASS predictions [98].

10.4.2.2 Molecular docking, molecular dynamic simulations,
and in vitro assays to screen potential lead molecules against
prioritized targets of multi-drug-resistant (MDR) Acinetobacter
baumanni

The goal of this study was to use metabolic pathway analysis and database

search approaches to identify potential drug targets for A. baumannii, and to

compare the binding affinities of three conventional pharmaceuticals and their

known targets to the binding potential of selected ideal herbal leads against drug

targets utilizing molecular modeling, molecular dynamic (MD) simulations,

and in vitro experiments [42].

The identification of the drug targets was carried out using the KEGG path-

way. The three-dimensional structures of the five stated targets that were not

present in their original forms were estimated using homology modeling.

The computational screening and selection of ligands were further carried

out. The molecules were screened using the PreADMET web server [42]. Pub-

Chem and ChemSpider were used to find the 3D structures of these phyto

ligands. The drug-likeness characteristics of the phyto ligands were predicted

using PreADMET’s, Lipinski’s rule of five, CMC-like rule, Lead-like rule,

MDDR-like rule, and WDI-like rule [42]. To predict toxicity, the compounds

that qualified for the ADME features were further chosen. For molecular dock-

ing, the lead molecules that qualified these predictions were chosen [42].

Molecular docking studies were used to predict receptor-ligand interactions.

AutoDock Vina v1.1.2 was used for flexible body docking. AutoDock Vina

delivers a two-order-of-magnitude speedup over the molecular docking pro-

gram, while also greatly enhancing the accuracy of binding mode predictions.

It generates grid maps automatically and organizes the results in an unobtrusive

fashion for the user [105]. Three commonly used antibiotics were employed in

the molecular docking experiments. The selected antibiotics were clinafloxacin,

imipenem, and polymyxin-E [42]. These medications’ three-dimensional struc-

tures were obtained from the PubChem and Chemspider databases. ChemSpider
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is a free online chemical database that gives users access to physical and chem-

ical properties, molecular structure, spectral data, synthesis methods, safety

information, and nomenclature for almost 25 million different chemical com-

pounds from about 400 different data sources [107]. The selected antibodies

were docked and flexible body docking was carried out. The ideal docked poses

for each antibiotic with their specific targets were screened using minimum

binding energy (kcal/mol), cluster RMS, quantity of hydrogen bonds, and other

interacting residues. The interaction of antibiotics and their specific targets was

compared to the binding capacity of herbal-based ligands [42].

MD simulations are used to optimize the structure of the protein receptor

before docking and account for protein flexibility; to refine docked complexes

and account for induced fit; to calculate binding free energies and provide an

accurate ranking of potential ligands; and, more recently, to find the binding site

and correctly dock the ligand during the docking process itself [108]. To study the

stability of docked conformation and priorities the binding potentiality of the

selected herbal leads, the best-docked complexes of limonin and diaminopimelate

epimerase, and a homology model of aspartate semi-aldehyde dehydrogenase,

strictamin, and UDP-N-acetylglucosamine 1-carboxyvinyltransferase, were cho-

sen for the MD simulation [42]. The Swiss Param topology generator was used to

create the topology for the ligands. The force field Charmm 27was used to create

the topology for the proteins and the complex. GROMACS v 5.0.5 was used to

execute an explicit solvent MDs simulation in a dodecahedron box using the

extended simple point charge Spc/e water model [42]. Finally, the gmx rms com-

mand was used to calculate the root-mean-square displacement (RMSD) of all

heavy atoms in the initial structures to determine the structure’s stability and

whether the complex is stable and close to the experimental structure [42].

Computation prediction revealed the drug-likeness properties of the selected

lead molecules. According to Lipinski’s rule of five, 97 compounds qualified

for drug-like characteristics. Because of the computational prediction, com-

pounds including ajmalicine, strictamin, and limonin were qualified for drug-

likeness, and ADMET was chosen as an ideal lead for molecular docking stud-

ies [42]. The docking studies revealed limonin to have the best binding energy

[42]. In theMD simulation, the herbal lead limonin showed stable binding to the

receptor diaminopimelate epimerase, implying that the lead-receptor associa-

tion is stable. The RMSD ranges were found to be 1.4–1.47nm for 250ns

MD simulation. According to MD simulations, the docked complex appeared

to be stable, and the herbal lead strictamin exhibited stable binding to the recep-

tor UDP-N-acetylglucosamine 1-carboxyvinyltransferase [42].

According to the results of the computational screening, the herbal-based

lead compounds had greater binding potential with lower binding energy, clus-

ter RMSD, and stabilizing interactions than three traditional antibiotics toward

their known targets. The MD simulation research suggests that docked com-

plexes are stable in terms of binding energy, number of hydrogen bonds, and

conformation during the MD simulation [42]. In contrast to interactions
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between anti-bacterials like imipenem (carbapenam), clinafloxacin (fluoroqui-

nolones), and polymyxin-E (colistin), phyto ligands like ajmalicine, limonin,

and strictamin have good binding potential, low binding energy, and stabilizing

interactions toward the chosen targets, according to computational modeling

and MD simulations. As a result, the current study suggests that these phyto

ligands, all derived from medicinal plants, could be employed as alternate lead

compounds against multi-drug-resistant A. baumannii’s prioritized drug

targets [42].

10.4.2.3 Computational screening of terpenoids for anti-bacterial
drug discovery against Staphylococcus aureus

The following study uses an in silico approach for target identification and

molecular docking analysis to investigate the anti-microbial properties of ter-

penoids from Bacopa monnieri and Andrographis paniculata against Staphylo-
coccus aureus, as well as the interactions of phytochemicals involved in anti-

bacterial activity [109].

In this study, CADD is employed to introduce terpenoid-based therapeu-

tics against MRSA. In the pharmaceutical industry, computational drug design

has been frequently utilized to either uncover new compounds or improve lead

compounds that exhibit considerable inhibitory activity against a target bio-

logical receptor [110]. The researchers are looking for new ligands in the ter-

penoids from B. monnieri and Andropgraphis paniculata. The novel target

identification against MRSAwas carried out by choosing four ligands and col-

lecting them PubChem [109]. Ligands were produced with the maestro

Schr€odinger software suite’s 2D sketcher tool, which turned them into 3D

structures. To elucidate the proposed docking mode to explain the binding

interaction with herbal extracts produced from the two plants, three-

dimensional structures of novel target proteins were retrieved in .pdb format

from RCSB and prepared for docking [109]. The molecular docking studies

are performed against novel targets. The in silico investigation of new and

potent drugs requires MD simulation. The MD studies were carried out using

the maestro suite of Schr€odinger software [109].

In terms of docking score and gliding energy, the results were obtained. The

hydrogen bond interaction and ligand interaction show how the target and

ligand molecules interact. Andrographin got the best docking score (highest

negative) among the other phytocompounds examined and would be the best

ligand to inhibit the target protein 2X4K of S. aureus [109]. Bacoside had no

interaction with the target protein 2X4K [109]. The amino acids in the docking

pocket surround the drug molecule at the docking site and participate in hydro-

gen bond production as hydrogen bond donors or acceptors [109]. During dock-

ing between selected target protein 2IHY and plant extracts of A. paniculata,
andrographin obtained the highest negative docking score and glide energy.

As a result, andrographin may be a better ligand for inhibiting the target protein
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2IHY and so preventing methicillin-resistant Staphylococcus aureus (MRSA).

Even docking of bacoside with target protein 21HY generated a high negative

docking score [109].

Therefore, it was concluded that B. monnieri and A. paniculata phytochem-

icals possessed a significant anti-bacterial activity against MRSA. The conclu-

sion obtained from the in silico analysis revealed that andrographis and

bacoside have a higher selectivity for the target proteins 2X4K and 2IHY,

and could be an effective anti-microbial drugs.

10.5 Conclusion and future perspectives

With the increasing number of pathogens along with the upsurge of bacterial

drug resistance, anti-bacterial drug discovery is gaining more importance in

today’s world. In the current century, one of the challenges faced in the health-

care industry globally is the severe illnesses induced by bacteria resistant to reg-

ularly used anti-bacterial drugs. As a result, there has been a large increase in

incidence and death, as well as longer duration of hospital stays and higher costs

of healthcare. Therefore, the need to discover and utilize new drugs, which can

effectively tackle this issue, is of great importance.

Phytochemicals obtained from plant sources serve as a great medium in the

drug discovery process. Their various properties, as highlighted in this chapter,

can be exploited to obtain desired anti-bacterial drugs that can fight against spe-

cific bacterial species. These bioactive compounds are being used in various

fields and increase the chances of more discoveries in the future. The different

classes of phytochemicals provide a wide range of applications because of their

specific properties. For these bioactive compounds to serve as anti-bacterial

agents, their computational screening needs to be carried out.

CADD is gaining popularity as it uses the ability of the phytochemicals to

serve as an anti-bacterial agent, which can then be applied for drug discovery.

The creation of high-quality databases and resources that can be tuned for struc-

tural variety or commonality has resulted from the quest for novel pharmaceu-

ticals. Further, advancements in molecular docking approaches, paired with

developments in computing architecture, are allowing for rapid strides in the

process of drug design and discovery. The different high-performance compu-

tational drug discovery methods that can be used according to the requirement

of the target molecules and the drug discovery process have been elaborated in

this chapter. Since the drug discovery process is tedious and time-consuming,

different in silico tools must be employed to make the process of drug discovery

and design simpler. The different computational drug discovery methods like

molecular docking, QSAR, pharmacore-based virtual screening, and in silico

ADMET analysis can, therefore, be used for designing, optimization, and

high-throughput screening of phytochemicals. CADD is now universally per-

ceived as a promising supplement to high-throughput screening and a massive

timesaver.
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The drug development approach, involving ligand-based and structure-

based methodologies, is seen to have its own set of benefits and drawbacks.

The combination of the two methodologies, which complement one another,

has demonstrated remarkable advantages in terms of speed and efficiency in

the virtual screening process for generating prospective leads. There is still

an opportunity for improvement and new features to enhance and authenticate

high-throughput virtual screening models, which are becoming increasingly

significant in the area of novel drug development studies.

Even though the significance and potential of plant products are widely

known, the research conducted on them to identify and effectively benefit from

their properties, such as anti-bacterial action, is still relatively limited. Thus,

augmenting the existing knowledge of phytochemicals with computational

screening methodologies can facilitate and expedite the process by which drug

discovery and development are viewed and implemented. With the rapid pro-

gress happening in the field of science and technology, these computational

methods will pave the way for even greater opportunities in the near future

in the field of computational phytochemistry.
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