

www.utm.my

Cloth as a Flexible Platform for Low-Cost Microfluidic Colorimetric Assay

A. Nilghaz¹, G.O.F. Parikesit², F.A. Abdul Majid¹, and D.H.B. Wicaksono¹*

¹Universiti Teknologi Malaysia

²Universitas Gajah Mada, Indonesia

*corresponding author:

Email: dedy.wicaksono@biomedical.utm.my

Overview

- Background
 - Current Diagnostic Technique
- Proposed Methods
- Results & Discussion
- Conclusion and Future Works

Background

www.utm.my

Conventional Diagnostic Methods

ACIKITA International Conference of Science and Technology, 25-27 July 2011

MATERIAL OF COMMANDER OF COMMAND COMMA

Below is a summary of your recent labs:

Cholesterol:	168	Goal: <200
HDL "good" Cholesterol:	46	Goal: >40
LDL "bad" Cholesterol:	86	Goal: <160
Triglycerides:	182	Goal: <150

Interpretation: Cholesterol looks good.

۰			
	Sodium:	138	Normal 135-148
	Potassium:	4.8	Normal 3.5-5.5
	Chloride:	105	Normal: 96-109
	CO2:	24	Normal 20-32
	BUN:	18	Normal: 5-26
	Creatinine:	1.11	Normal 0.5-1.5
	Glucose:	89	Normal 65-115
	Calcium:	9.6	Normal 8.5-10.6

Summary: Electrolytes and kidney function are normal.

White blood cells:	7.4	Normal 3.5-10
Hemoglobin:	11.7	Normal 13-17
Hematocrit:	34.1	Normal: 38.5-52
Platelets:	339	Normal: 150-450

Interpretation: Mild anemia

Background

- Conventional Diagnostic Methods
 - Body fluid (saliva, blood, urine) is taken by a trained medical person using specific equipments in clinical lab
 - Sample is further prepared using special protocol by trained medical person in clinical lab
 - Sample is analysed using special equipments: PCR, stained microscopy, etc.
 - Results are sent to the General Practitioner or Family Doctor

Background

- Conventional Diagnostic Methods
 - Expensive
 - Taking long time to get diagnostic result
 - Tedious and cumbersome
 - Early detection of diseases is rare; thus more for curative rather than preventive medicine
 - Cannot be used for semi real-time / semi continuous patient condition monitoring

Proposed Methods

www.utm.my

 Microfluidics: the manipulation of fluids in small volume at low Reynolds number (laminar flow) → LAB ON A CHIP

Proposed Methods

- Cloth / Textile material as cheap material platform for microfluidic device:
 - Gaps between the woven threads act as microfluidic channel
 - Pores in line shape between the fibres in a single threads also act as micro-/nano-fluidic channels

Proposed Methods

www.utm.my

Batik as an indigenous microfluidic fabrication

technology

www.utm.my

 Cloth Microfluidic device by stacking cut cloth and double side adhesive tape

www.utm.my

 Cloth Microfluidic device by stacking cut cloth and double side adhesive tape

www.utm.my

Cloth Microfluidic device by batik-inspired wax patterning

www.utm.my

Cloth Microfluidic device by batik-inspired wax patterning

Wax-hydrophobic resist

www.utm.my

Cloth Microfluidic device by batik-inspired wax patterning

www.utm.my

 Flexible Microfluidic Cloth-based Analytical Device (μCAD)

Conclusions

- We have proposed and shown the use of cotton cloth as a novel low-cost platform for microfluidic manipulation
- We have shown two different fabrication methods: cut and stack, wax-pattern and fold
- We have shown 2-D and 3-D microfluidic devices for diffusion-dominated mixing
- We have also shown the use of cloth microfluidic device as a new flexible bioanalytical platform

Future Works

- Design and fabrication of cloth-based microfluidic device for more complex bioassays: ELISA, ...
- Integration as wearable device
- A novel platform for cell culture and tissue engineering → tissue on cloth-chip with applications e.g. drug screening, toxicity test, diagnostics, etc.

