
CSI Communications | December 2011 | 22 www.csi-india.org

Dr. Debasish Jana
Editor, CSI Communications
Vice Chairman, CSI Kolkata Chapter

Exclusive Interview with
Prof. Jeffrey David Ullman
Father of database, automata and compilers

(L to R) Debasis Bandyopadhyay, Jeffrey Ullman, Debasish Jana, Sushanta Sinha and
Prateep Misra

(L to R) Jeffrey Ullman, Debasish Jana and Sushanta Sinha, a copy of CSIC, August 2011
issue is seen on the table

Jeffrey David Ullman is the Stanford W. Ascherman Professor of Computer Science Emeritus at Stanford
University. He is the author or co-author of sixteen books, all setting standards in their respective fields. His popular
textbooks include compilers (various editions popularly known as the Dragon Book), theory of computation (also
known as the Cinderella book), data structures, and databases. His research interests include data mining, information
integration, and electronic education.

Ullman received BS in Engineering Mathematics from Columbia University in 1963 and PhD in Electrical Engineering
from Princeton University in 1966. His early job was at Bell Labs He was Professor at Princeton from 1969 to 1979.
Since 1979, he has been a Professor at Stanford University.

Ullman’s research interests include database theory, data integration, data mining, and education using the information
infrastructure. He is one of the founders of the field of database theory, and was the doctoral advisor of an entire
generation of students who later became leading database theorists in their own right. He was the Ph.D. advisor of
Sergey Brin, one of the co-founders of Google, and served on Google’s technical advisory board. He is currently the
CEO of Gradiance.

He is a member of the National Academy of Engineering, ACM Fellow, recipient of a Guggenheim Fellowship, the
Karl V. Karlstrom Outstanding Educator Award, the SIGMOD Contributions and Innovation Awards, and the Knuth
Prize (2000). Ullman is also the co-recipient (with John Hopcroft) of the 2010 IEEE John von Neumann Medal, “for
laying the foundations for the fields of automata and language theory and many seminal contributions to theoretical
computer science”.

Prelude
In September, 2011, Jeffrey D Ullman came to India as part of his periodic tours of India for TCS. During his trip to
India, he visited Bangalore, Pune, Delhi and Kolkata. During his visit at Kolkata, this interview was initiated with active
help and cooperation from Arpan Pal, Debasis Bandyopadhyay and Sushanta Sinha of TCS Kolkata. Excerpts from his
postings at Google Plus on his Kolkata trip: “Friday was Kolkata. If you think of Kolkata (or Calcutta as it was known)
through the eyes of Mother Teresa, you think of it as the armpit of the universe. But that is very far from the truth.
Compared with most of the major Indian cities, the roads are well paved, with lines demarking lanes and few if any
potholes. Traffic was not bad, and the only major jam I was in, on Friday night, seemed to be people going out for
entertainment.”

Practitioner
Workbench

CSI Communications | December 2011 | 22 www.csi-india.org

CSI Communications | December 2011 | 23

DJ: I feel extremely privileged to meet you
in person at Kolkata, the City of Joy. At the
same time, I feel indebted to the active
cooperation of Sushanta Sinha, Arpan Pal and
Debasis Bandyopadhyay of TCS to initiate
this interview while you were at Kolkata in
September, 2011. Very special thanks to you
for kindly agreeing to an exclusive interview
for Computer Society of India.

Down memory lane
DJ: The month of October, 2011 is extremely
bad. Two great stalwarts: Steve Paul Jobs
and Dennis Ritchie have left us. The world of
computing has faced a great loss by these two
demises. Please share some great moments
with them.

JDU: I wish I could. I never met Steve Jobs.
I was at Bell Labs for a few years when
Dennis Ritchie and Ken Thompson were
beginning their work on UNIX. Dennis was
always a very decent fellow, but alas our
interests were very different at that time.
And the bad news continued with the
death of John McCarthy.

Our approach is to teach
the subject through
experience, first in
instructor-guided team
projects, and later in
individually chosen
research.
DJ: Yes, that’s too bad news to the world of
computing. Death is inevitable to everyone,
the eternal truth of life. Let me quote
Rabindranath Tagore, who sparkled enriched
cultural renaissance throughout India through
his songs, drama, painting and above all
countless literary works, “When my footprints
will not be here in this hut, when I shall not
sail the boat here in this river, at that time
you may not even remember me–still I shall
be here, my soul will be here”. The work, the
inner soul, the footprints don’t perish.

Software Engineering: Teaching and
Practice
DJ: The field of software engineering is very

dynamic in nature. Owing to the dynamic
nature of the field, there will always room
for innovation and improvement. But there is
always a gap found in software engineering
theory taught in many undergraduate and
graduate degree programs versus software
engineering practices. On one hand, students
feel software engineering is a boring subject,
whereas practitioners live on these. And there
is a huge gap. What is your perception and
suggestion on this?

At Stanford, we try to
educate people who will
get a software job right
out of college, those who
will go for a masters, and
those who will eventually
get a doctorate and enter
research or advanced
development.

JDU: At Stanford, we do not have courses
called “Software Engineering”. Our
approach is to teach the subject through
experience, first in instructor-guided team
projects, and later in individually chosen
research. But I am puzzled by the claim
that SE is a “boring” subject. There are two
kinds of “theory” that I know about in SE.
One involves automated program proving
or checking or other kinds of automated
analysis. In the US we tend to be less
enthusiastic about proofs of correctness
but quite interested in model checking,
static analysis, and other theoretical
techniques that have had significant
successes. These subjects can be taught
in an interesting manner and can be quite
instructive. The other kind of theory is
more philosophical in nature. I cannot
judge the importance of these ideas; I’m
sure each of them has its following and
some successes to point to. I am less
surprised that people find philosophical
material boring. CS attracts people who
want to do things, not philosophize about
them. They’ll learn the methodologies

they need in the field, when their job
requires it.

Education in computing: the scope,
focus and coverage
DJ: Comparing with the early ages when
Computer Science course was introduced
as a formal discipline in many parts of the
world, and today, we have Computer Science
and many other variants like Information
Technology, Information Science etc. What
is your vision of imparting education in
computing as needed for today’s arena?

Today’s curriculum should
be flexible enough that
students with interest in
the fundamentals (e.g.,
theory of algorithms)
should be able to get
that instruction, and
yet let those who are
looking for a job writing
applications concentrate
on pragmatics.

JDU: There isn’t just one arena. At
Stanford, we try to educate people who
will get a software job right out of college,
those who will go for a masters, and those
who will eventually get a doctorate and
enter research or advanced development.
Thus, we offer many different tracks at
all levels, ranging from theory to systems
to applications, and allow students to
choose with only a small core curriculum.
We keep the Computer-Science label for
all these programs, but we could have
identified some of the lower-level tracks
as “Information Technology” or some
similar term.
DJ: Because of service orientation approach
in software development, the innovation
in computer learning and investment for
compilers have become less especially in
Indian scenario. Algorithms, data structures,
databases, compiler design, fundamental
programming paradigms are all extremely

Part 1 of 3

On Core Fundamentals of
Computing and Future of Education

CSI Communications | December 2011 | 24 www.csi-india.org

essential to know, to preach, to teach the
underlying concepts and vision. Please talk
about coursework and what subjects should
be taught today in a CS curriculum.

The theory that has
withstood the test of time,
such as finite automata,
and the basic algorithms
ideas are things that every
student should learn.

JDU: Compilers were once a major
portion of the curriculum. Not only were
they the best example of how theory could
impact practice, they were the point in
the curriculum where we asked students
to write a nontrivial piece of software.
Today, there is so much else to learn, and
compilation is so small a portion of the
total picture that the course is optional
rather than required at most schools.

At the same time, the software industry
has grown to the point where there is a
well-established hierarchy of people who
code the designs of others, those who
do the designs, and those at the top who
decide what to design for. It is essential
we prepare students to enter at the lower
rungs and enable those who are capable to
reach the higher rungs. Today’s curriculum
should be flexible enough that students
with interest in the fundamentals (e.g.,
theory of algorithms) should be able to
get that instruction, and yet let those who
are looking for a job writing applications
concentrate on pragmatics. The approach
at Stanford is to allow students to take a
number of courses in specific languages
or systems, e.g., “writing Android apps” or
“Python programming,” but not to count
these courses toward the units required
for a CS major. I think that is a good
compromise.

Theoretical knowledge and
innovation in practice
DJ: You once told “theory is obsolete”, how
does it stand for young learners, even for
practitioners in age-old processes?

JDU: I don’t remember ever saying
that. There is a lot of theory that is
pointless game-playing, but theory is
still very important in a number of areas,

including cryptography, computational
complexity, design of algorithms, and
hardware or protocol verification. Fields,
such as databases, graphics, and AI,
have developed their own specialized
theory that strong practitioners need to
master. Many believe that the theory
has impact in verification of hardware,
and even software, especially protocols.
Moreover, the theory that has withstood
the test of time, such as finite automata,
and the basic algorithms ideas are things
that every student should learn. These
concepts get applied all the time.

I think that people able to
handle a little bit of the
theory will generally be
more adept at software
development.

DJ: In fact, the innovation in computer
learning and investment for compilers have
become less especially in Indian scenario.
Many universities are not offering compiler
design courses. In fact, most of the jobs these
freshers coming out of colleges see seldom
require knowledge in automata, compiler
design, graph theory, algorithms and core
foundation of computer science. It’s very
sad, and disheartening but yet true. As such,
quality students, quality teachers, quality
practitioners are less. Less is more, more is
less, we know. But, still, what do you say?

JDU: I responded to the matter of
compilers earlier. I know that CS theory
plays a reduced role in education,
compared to what it was when I started
teaching in the late 1960’s. But much of
that is because there are so many more
pragmatic things worth learning today.
But there is still a core of theory, much of
it covered by the topics you mentioned
in your question, that are worth teaching
to everyone. Moreover, I think that
people able to handle a little bit of the
theory will generally be more adept at
software development, even if they don’t
use the specifics taught in their theory
classes, because software creation and
mathematics are similar in their demands
for rigorous thinking, precision, patience,
and a number of other qualities. Thus, a
good theoretical curriculum encourages
the right kind of people to take up a career
in software.

Cloud computing
is another example
of the triumph of
commodity hardware.
Instead of specialized
“supercomputers,” we
get more cost-effective
parallelism from racks of
commodity processors
and disks.

Changing focus of computing
DJ: How do you see the changing trend form
of computational shift from centralized to
distributed, in-house to cloud computing?

JDU: I find it unsurprising. As should be
apparent, there was a kink in the Moore’s
law curve about a decade ago, and the
consequence is that you can’t get more
speed out of a single processor. That
forced us to go parallel.

Cloud computing is another example of
the triumph of commodity hardware.
Instead of specialized “supercomputers,”
we get more cost-effective parallelism
from racks of commodity processors and
disks. History has many examples where
trying to design hardware for specialized
applications fails in the face of less
efficient (for that problem) commodity
hardware. The failures of Lisp machines
and word-processors come to mind. I’m
sure there are many others.

About Gradiance: creating
homework a learning experience
DJ: Please tell us about Gradiance, system for
creating and administering class exercises, in
cloud perspective

JDU: Almost 10 years ago, four of us–
Ramana Yerneni, Alan Beck, Murty Valiveti,
and I – developed a platform for managing
homeworks. Ramana was the principal
architect, and Murty, who runs Gautami
Software in Hyderabad, contributed the
design and implementation.

The key difference between Gradiance
and other homework platforms is that
our goal is to make homework a learning
experience, rather than a hoop for students
to jump through. We invented the “root

CSI Communications | December 2011 | 25

question,” which is a form of question
in which there are many right and many
wrong answers. Thus, question designers
have to be a bit careful how they phrase
questions. So instead of asking “compute
the join of these two relations,” you ask
“compute the join of these relations and
then, in the list below, identify the tuple
that is in the join.” In that way, there are
many possible correct answers, one for
each tuple in the join. We ask the student
to solve the problem completely, and then
answer a multiple-choice question about
the answer. For the join question, we
would have them compute the join just as
they would in a conventional homework,
but then they are given one correct tuple
and three incorrect ones. If they pick an
incorrect tuple, we offer them a “choice
explanation,” which in this case would
address the reason why their choice
was not in the join, as well as general
information such as the definition of the
join. Students are then allowed to take
the same question as many times as they
like, until they get it right. To discourage
random guessing, we bundle several
questions in a group and ask them to get
all questions in the group right.

We had a contract with Pearson
education to develop Gradiance materials
for my books and a number of other
books. However, we eventually learned
that they were unable to count on-line
sales of our product, so the contract was
cancelled. We have not been able to find
sufficient sources of revenue to keep
the company going as a profit-making
enterprise, so we decided to make it
free for all instructors who want to use

it. We also allow students to register for
the “omnibus courses” for each of the
books. These courses let the students do
all the homeworks we developed for the
book. My home page http://i.stanford.
edu/~ullman gives directions on how to
get access to Gradiance.

I believe that in a few
years, schools will be
able to have students use
well-designed courses for
the entire CS curriculum,
perhaps in many other
disciplines as well.

Vision on knowledge dissemination
DJ: You have made many of your books
free for interested readers, Foundations
of Computer Science, Mining of Massive
Datasets. Why did you do this?

JDU: Your readers should feel free to come
to http://i.stanford.edu/~ullman/focs.
html and http://i.stanford.edu/~ullman/
mmds.html

Like our experience with Gradiance and
automated homeworks, it is becoming
harder to make money writing textbooks.
File-sharing services have cut significantly
into the market, as have on-line resellers
of used texts. It appears that the idea of
writing for royalties was an idea that had
a brief run. 200 years ago, there was no
such notion, and soon it will be a thing of
the past. It seems academics are willing
to put their intellectual property out their

in the hope of developing a reputation
rather than generating revenue. We’ve
always done that with our research, so
why not with our educational materials
of all sorts. In fact, one of the most
interesting developments along these
lines is not the free book, but the free
course. In the fall of 2011, three major
Stanford courses – AI, Machine Learning,
and Databases – are being offered to
the public for free. The AI course has
140,000 students, and the other two
over 70,000. Everything is automated,
including a Gradiance reimplementation
for managing homeworks and exams,
and a discussion group where students
answer the questions of other students,
with no faculty involvement. Surprisingly,
it all works. Well prepared students are
willing to help those who are struggling.

I believe that in a few years, schools will be
able to have students use well-designed
courses for the entire CS curriculum,
perhaps in many other disciplines as well.
The role of faculty will change markedly.
Instead of 1000 professors around the
world, each preparing and teaching more
or less the same thing at the same time,
they will be able to devote their time to
the things that really require personal
involvement: helping students who are
struggling, mentoring research students,
doing their own research, and possibly
creating educational materials of their
own. And a consequence of this change
is that we are finally going to be able to
reduce the size of faculties. Every other
industry has learned to do more with
fewer people. It’s now education’s turn.

To be continued...

•	 Mining of Massive Data Sets (with A. Rajaraman), Cambridge
Univ. Press, 2011 (available for free download through http://i.
stanford.edu/~ullman/mmds.html)

•	 Database Systems: The Complete Book (with H. Garcia-Molina and
J. Widom), Prentice-Hall, Englewood Cliffs, NJ, 2009.

•	 Introduction to Automata Theory, Languages, and Computation,
(with J. E. Hopcroft and R. Motwani), Addison-Wesley, Reading
MA, 1969, 1979, 2000.

•	 Elements of ML Programming, Prentice-Hall, Englewood Cliffs, NJ,
1993, 1998.

•	 A First Course in Database Systems (with J. Widom), Prentice-
Hall, Englewood Cliffs, NJ, 1997, 2002, 2008.

•	 Foundations of Computer Science (with A. V. Aho), Computer
Science Press, New York, 1992. C edition, 1994 (available for free

download through http://i.stanford.edu/~ullman/focs.html)
•	 Principles of Database and Knowledge-Base Systems (two

volumes), Computer Science Press, New York, 1988, 1989.
•	 Compilers: Principles, Techniques, and Tools (with A. V. Aho, M.

Lam and R. Sethi), Addison-Wesley, Reading MA, 2007.
•	 Computational Aspects of VLSI, Computer Science Press, 1984
•	 Data Structures and Algorithms (with A. V. Aho and J. E. Hopcroft),

Addison-Wesley, Reading MA, 1983.
•	 Principles of Compiler Design (with A. V. Aho), Addison-Wesley,

Reading, MA, 1977.
•	 Fundamental Concepts of Programming Systems, Addison-

Wesley, Reading MA, 1976.
•	 The Design and Analysis of Computer Algorithms (with A. V. Aho

and J. E. Hopcroft), Addison-Wesley, Reading MA, 1974.

List of some classic books authored by Prof. Jeffrey D Ullman:

