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Vehicle Trajectory Prediction at Intersections using
Interaction based Generative Adversarial Networks

Debaditya Roy, Tetsuhiro Ishizaka, C. Krishna Mohan, and Atsushi Fukuda

Abstract—Vehicle trajectory prediction at either signalized
or non-signalized intersections with heterogeneous traffic is
challenging. This issue becomes more aggravated when traffic
is predominantly composed of smaller vehicles that frequently
disobey lane behavior. Existing macro approaches consider the
trajectory prediction problem in lane-based traffic that cannot
cannot account for non-lane based traffic where there is high
disparity in vehicle size and driving behavior among different
vehicle types. Hence, we propose a vehicle trajectory prediction
approach that models the interaction among vehicles. These
interactions are encapsulated in the form of a social context
embedded in a Generative Adversarial Network (GAN) to predict
the trajectory of each vehicle at either a signalized or non-
signalized intersection. The GAN model helps in producing the
most acceptable future trajectory among acceptable choices that
conform to past driving behavior. We evaluate the proposed
approach on aerial videos of intersections from the bench-
mark VisDrone dataset. A comparison with existing trajectory
prediction approaches establishes the efficacy of the proposed
framework.

Index Terms—Traffic flow prediction, Generative Adversarial
Networks, Interaction Modeling

I. INTRODUCTION

Vehicle trajectory prediction at any intersection requires
detection and tracking of vehicles plying in various directions.
Traditionally, sensors such as magnetometer detectors, loop
detectors, ultrasonic sensors, and surveillance video cameras
have been used to monitor intersections. However, these sen-
sors are prohibitively expensive to set up and operate at all
intersections. Particularly, surveillance video cameras that are
being increasingly employed for traffic monitoring suffer from
issues like occlusion, shadows, and a limited field of view.
Although many techniques have been proposed to mitigate
these challenges [1], [2], traditional surveillance cameras are
still not viable for monitoring all the lanes in an intersection. In
contrast, an Unmanned Aerial Vehicle (UAV) can be deployed
as a cost-effective solution to monitor all the lanes of an
intersection. Especially, with the availability of lightweight,
high-resolution cameras, even small vehicles like motorbike
can be captured in detail. Furthermore, UAVs provide a top-
view perspective that is devoid of occlusion and shadows that
makes aerial videos ideal for capacity analysis of intersections.

Vehicle trajectory prediction in aerial videos can be per-
formed by detecting the different types of vehicles and tracking
them individually throughout the intersection. This problem
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has been studied in the literature at a macroscopic level as
homogeneous traffic flow (predominantly cars) [3] or hetero-
geneous traffic flow problems without considering motorbikes
(or other two-wheelers) [4], [5] and with vehicles following
lane discipline [6]. However, the traffic in developing countries
contains a majority of two-wheelers that ply without any
lane discipline, and the research is scant in this direction.
Existing research in the area of mixed traffic analysis con-
verts scooter, motorcycle, and bus flow to either equivalent
passenger car units [5] or instead convert car and bus flows
into equivalent scooter units [7]. Such a conversion does not
represent the complex interactions among different types of
vehicles especially in developing nations where the significant
percentage of traffic volume is either buses or scooters. For
example, motorcycles may maneuver between the gaps of
large stationary vehicles stationary at a stop line to move
to the front of the queue while in the presence of no gaps,
a bus with its considerable size and slow acceleration may
impede the progress of smaller vehicles behind it. To deal
with such diverse scenarios, we propose an alternative system
that predicts the best possible route for each vehicle given
the possible interactions among vehicles possible in the future
based on their proximity to each other. Some examples of
the multiple prediction paths available during various vehicle
maneuvers like overtaking and merging at intersections are
presented in Figure 1.

Estimating the interactions between vehicles during the
maneuvers shown in Figure 1 requires generating future tra-
jectories that are aligned with the past behavior for each
vehicle. The past behavior acts as a prior or condition for the
future trajectories and hence, we propose to use a conditional
Generative Adversarial Network (GAN) [8] that has been
shown to generate multiple predictions from the same prior
distribution. These predictions are then pruned based on its
closeness to ground truth during training using a Markov
Decision Process (MDP) to get a robust estimation of the
trajectories from the vehicle detections. These tracks are then
used to seed the GAN to produce useful predictions. The
combinations of an MDP with the conditional GAN based
on social interactions between vehicles shows impressive
accuracy in predicting vehicle trajectories for different vehicle
maneuvers like merging and overtaking in both signalized and
non-signalized intersections. The main contributions of the
paper are as follows:

• To the best of our knowledge, this is the first use of
adversarial training for vehicle trajectory prediction for
non-lane based traffic.
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• The prediction mechanism is vehicle independent that
does not use vehicle or road dimensions in order to
predict trajectories

• The proposed GAN based solution can handle vehicle
maneuvers like merging, overcoming, and avoiding on-
coming traffic at intersections.

(a)

(b)

(c)

Fig. 1: Multiple prediction paths are available during various
vehicle maneuvers (a) avoiding oncoming traffic, (b) overtak-
ing, and (c) merging. The paths in green are acceptable while
the ones in red are not. The paths in yellow are not optimal for
the target vehicle but can be considered based on the decision
taken by another vehicle (s). The choice for all vehicles are not
shown for clarity. Simulations are obtained using PTV Vissim.
Best viewed in color.

The rest of the paper is organized as follows. Section
II reviews relevant literature in the area of multiple object
detection and multiple object tracking. In Section III, the entire

proposed approach is described in detail, and the evaluation
results are presented in Section IV. Finally, the conclusion is
presented in Section V.

II. RELATED WORK

In recent years, several methods for traffic monitoring from
aerial video have been presented. Most of these methods rely
on either hand-crafted features like Scalar Invariant Feature
Transform (SIFT) [9], or background subtraction [10], or mo-
tion history image [11] or using sparsity-based reconstruction
[12]. However, in this paper, the traffic monitoring problem
is treated as a Multiple Object Tracking (MOT), or Multiple
Target Tracking (MTT) problem that involves the location of
multiple objects and maintaining their trajectories throughout
their presence in the input video. There are multiple challenges
encountered in MOT mostly related to the drifting of tracking
points due to appearance variations caused by illumination,
pose, cluttered background, interactions, and camera move-
ment. Further, monitoring an intersection means that the
number of vehicles constantly changes every few seconds that
may lead to a decrease in tracking accuracy. Hence, most of
the existing MOT approaches focus on a single class of object,
usually people or vehicles.

The various MOT approaches can be categorized as either
batch or online trackers. Batch trackers combine past, present,
and future tracking information for associating the detections
to the correct tracks. However, batch methods have higher
computational cost whereas online methods only consider past
and current frame information for data association. Hence,
online methods are more suitable for real-time applications
like traffic monitoring.

Tracking vehicles in aerial videos have been studied in the
past using optical flow based methods like Kanade-Lucas op-
tical flow [13], features like Kanade-Lucas-Tomasi (KLT) [14],
and particle filters [15] have been used. These methods apply
interest point based tracking, but because of the background
complexity in aerial videos, some irrelevant interest points can
be extracted from the background. Further, such deterministic
trackers cannot handle drifts in the object trackers as compared
to stochastic methods like Bayesian filters. This is the reason
many online trackers use Bayesian filtering for capturing
motion dynamics and observation models to estimate posterior
likelihoods of vehicle position.

One of the popular Bayesian filtering methods are Markov
chain Monte Carlo (MCMC)-based methods [16] that can
handle various object moves and interactions of multiple ob-
jects. However, naive MCMC methods assume that the number
of objects does not change over time that is not applicable
at intersections. Hence, reversible jump MCMC (RJMCMC)
based methods were proposed in [17], where a variable number
of objects can be handled with the help of update, swap,
birth, and death operations for each track. As variations in
appearances, interaction, occlusions and changing the number
of objects introduce computation overhead, an MCMC sam-
pling with low computation overhead by separating motion
dynamics into birth and death moves was proposed in [18].
However, as birth and death are determined in separate MCMC
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chains, each Markov chain has no dimension variation and
can reach to stationary states with less computation overhead.
However, such a simple approach for separating birth and
death dynamics cannot deal with complex situations like track
drifts due to appearance variations. Further, the dynamically
varying number of objects cause multiple track drifts in
crowded or high traffic scenarios as generally observed in
intersections [19], [20], [21].

In [22], a simpler Markov Decision Process (MDP) based
online-tracker was proposed that can address track drifts by
learning and updating an appearance model for a target to
handle appearance changes based on the object detection
outputs at every frame. Further, MDP can effectively handle
birth/death and appearance/disappearance of targets by associ-
ating them with state transitions. In [23], recurrent neural net-
works (RNN) were proposed to model the birth/death/update
of each target track and data association was performed using
long short-term memory (LSTM) cells for each target. The
training of the RNN and LSTM units is based on synthetic
data generated from the actual data. Hence, the RNN is not
being able to handle sudden changes in motion and direction
and results in poorer accuracy in tracking as compared to MDP
based tracking. As traffic movement of motorbikes and other
vehicles contain such variations at intersections, RNNs are
unsuitable for tracking such movements. Thus, MDP based
tracking seems to be the most reasonable choice for tracking
traffic movement at intersections.

While MDP based tracking can account for appearance
changes, it cannot estimate the influence of other vehicles on
the target vehicle. An interaction model captures the influence
of an object on other objects. This is especially true for
heterogeneous traffic with no specific demarcation of lanes for
motorbikes, cars, and trucks. This results in the adjustment
of speed and direction to avoid collisions. In such cases,
smaller vehicles change lanes based on the “force” experienced
from other vehicles, especially larger ones. The car-following
model [24] that is generally used to describe homogeneous
traffic with lane discipline cannot be used to describe the
aforementioned behavior. To accommodate motorcycle-heavy
traffic, a tri-class flow (considering bus, car, and motorcycle
as separate flows) was empirically studied in [25]. The traffic
flow problem was described as two-wheeler accumulation in
different lanes alongside buses and cars which were segmented
as vehicle packets. However, these vehicle packets were still
segregated by lanes. Such a packet formation fails to account
for the unique kinetic characteristics of two-wheelers riding
between lanes as suggested by the authors in [25]. Hence,
interaction models also known as social force models were
developed where each object is considered to be dependent on
other objects and environmental factors [26]. Understanding
these forces and accounting for them allow effective tracking
even in crowded traffic scenes generally encountered at inter-
sections. Social force models categorize target behavior based
on two aspects, individual force and group force.

Individual force is defined for each target, and is further
subdivided into two forces - fidelity that means that the target
should not change its desired direction, and constancy which
means that one should not suddenly change its speed and

direction. Group force is further categorized into three types
of forces - attraction between individuals moving together
as a group, repulsion that refers to the minimum distance
maintained between members in a group, and coherence that
means individuals moving together in a group move with
similar velocity.

The majority of existing publications focus on modeling
pedestrian dynamics with social force models [27], [28],
[29], [30] but there is limited literature on traffic modeling
using social force dynamics [31], [32], [33]. However, the
traffic models developed with social force carefully consider
vehicle dimensions, turning radius, the exact distance between
vehicles, etc. In real scenarios, for any arbitrary vehicle at any
intersection, information about vehicle dimensions and exact
distances are difficult to obtain from aerial videos. Hence, the
relative distance between the trajectories of the neighboring
vehicles which is independent of the dimensions of the target
vehicle is used [27], [28]. However, these approaches focus
on predicting the average future trajectory by minimizing the
L2 distance from the ground truth future trajectory whereas
the goal should be to generate multiple good trajectories
for every vehicle given the current position. This leads us
to choose a Generative Adversarial Network (GAN) based
encoder-decoder architecture to predict the most likely vehicle
trajectory. This GAN uses a pooling layer to model vehicle-
vehicle interactions and a loss function that allows the network
to produce multiple diverse future trajectories for the same
observed sequence. These future trajectories are based on both
the distance and probability of collision in the future with
neighboring vehicles.

III. VEHICLE INTERACTION MODELING USING GAN

In order to estimate the influence of various vehicles in
the vicinity of the target vehicle, there is a need to jointly
reason and predict the future trajectories of all the vehicles
involved in an intersection. Assuming that the trajectories
for the vehicles in a scene are obtained from a tracking
algorithm as X = X1, X2, · · · , Xn, the goal is to predict
the future trajectories Ŷ = Ŷ1, Ŷ2, · · · , Ŷn of all the vehicles
simultaneously. The input trajectory of a vehicle i is defined
as Xi = (xti, y

t
i) from time steps t = 1, ..., tobs, the ground

truth future trajectory is defined as Yi = (xti, y
t
i) from time

steps t = tobs + 1, · · · , tpred, and the predicted trajectory is
defined as Ŷi.

A Generative Adversarial Network (GAN) comprises of two
neural networks - a generative model G to capture the data
distribution, and a discriminative model D to estimate whether
a sample arrived from the training data rather than G. The
generator G takes a latent variable z as input, and outputs a
sample G(z) while the discriminator D takes a sample x as
input and outputs D(x) which represents the probability that it
is real. The training procedure is akin to a two-player min-max
game with the objective function

min
G

max
D

V (G,D) =

Ex∼pdata(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]. (1)
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Conditional GAN expands the functionality of the traditional
GAN architecture by accepting an additional input c at both the
generator and discriminator to produce G(z, c) and D(x, c),
respectively [8]. Such conditional GANs can be used to
replicate models conditioned on a prior distribution (in this
case, the prior trajectory of the vehicle during t = 1, ..., tobs.

Trajectories of vehicle movements are a form of time-series
data with many possible futures based on different intentions
like giving more space to larger vehicles and avoiding over-
taking maneuvers, left turn, right turn, or U-turn on a multi-
lane road, etc. This makes the vehicle trajectory prediction
problem truly multimodal and GANs can help predict all the
different possibilities. In a nutshell, the GAN used in this work
consists of a generator, a pooling stage, and a discriminator.
The generator is an encoder-decoder framework where the
hidden states of encoder and decoder are linked with the help
of a pooling module. The generator takes in input Xi and
outputs predicted trajectory Ŷi. The discriminator receives the
entire sequence comprising both input trajectory Xi and future
prediction Ŷi (or Yi) as input and classifies them as either real
or fake.

In order to produce the input for the generator, the location
of each person is embedded into a fixed length vector eti
using a 1-layer multi-layer perceptron (MLP) as in [27]. These
embeddings are then used to initialize the hidden state of the
encoder in the LSTM at time t as

eti = φ(xti, y
t
i ;Wee),

htei = LSTM(ht−1
ei , eti;Wencoder),

(2)

where φ(.) is an embedding function with ReLU non-
linearity, Wee is the embedding weight, htei is the hidden state
of the ith encoder at time t and the LSTM weights, Wencoder,
are shared between all the vehicles to provide global context
of the scene. The encoder learns the state of the vehicle and
stores the motion pattern for that particular vehicle. Similar to
the social LSTM model [27], a pooling stage (PS) is designed
to share the information between the different encoders that
models vehicle-vehicle interaction. After observing the motion
of each vehicle till tobs, the hidden states of all the vehicles
present at the intersection are pooled (max-pooled in our
implementation) to obtain a tensor Pi for each vehicle. As
the goal is to produce future trajectories that are synchronized
with past driving behavior in the observation period, the hidden
state of the decoder is conditioned based on the combined
tensor as

cti = γ(Pi, h
t
ei;Wc),

htdi = [cti, z],
(3)

where γ() is a multi-layer perceptron (MLP) with ReLU non-
linearity, htdi is the hidden state of the ith decoder at time t,
and Wc is the embedding weight.

After initializing the decoder states as above, the predictions
can be obtained as follows:

eti = φ(xt−1
i , yt−1

i ;Wed),

Pi = PS(ht−1
d1 , ..., htdn),

htdi = LSTM(γ(Pi, h
t−1
di ), eti;Wdecoder),

(x̂ti, ŷ
t
i) = γ(htdi),

(4)

where φ(.) is an embedding function with ReLU non-linearity
with Wed as the embedding weights. The LSTM weights are
given by Wdecoder and γ(.) denotes an MLP.

The discriminator uses a separate encoder which takes as
input Treal = [Xi, Yi] or Tfake = [Xi, Ŷi] and classifies them
as real or fake. The discriminator learns interaction behavior
and classifies unacceptable trajectories as “fake”. While a
GAN is trained using adversarial loss given in 2, L2 loss is
used to estimate the distance of the generated path from the
actual ground truth.

To estimate the trajectory of multiple vehicles, we need to
share information across the LSTMs representing each vehicle.
However, the number of vehicles at an intersection is high,
and the number varies depending on the traffic condition.
Therefore, there is a need for a compact representation to
store shared information. Further, local interactions are not
always sufficient to determine future trajectories, and far-away
vehicles might impact the path taken by a vehicle. Hence, the
network needs to model the global context. In social pooling
[27], [28] based approaches, a grid-based pooling scheme is
proposed that considers only local context and fail to capture
global context. As per [34], both a compact representation
and global context can be learned using a symmetric function
on transformed elements of the input set of points. Hence,
in this paper, the input coordinates are passed through an
MLP followed by a symmetric function like Max-Pooling. The
pooled vector Pi summarizes all the information needed for
a vehicle to choose a path. Also, the relative position of each
person in relation to person i is augmented with input to the
pooling module.

Though GAN produces good predictions, these predictions
are the “average” prediction in case of multiple outputs. In
order to encourage the generation of diverse samples, we
use a variety loss given in [35]. For each scene, k possible
output predictions are generated by randomly sampling z from
N (0, 1) and the best prediction in terms of L2 distance from
the ground truth trajectory is kept as the prediction.

Lvariety = min
k
‖Yi − Ŷ (k)

i ‖2, (5)

where k is a hyper-parameter. By considering only the best
trajectory, this loss encourages the network to explore the
space of outputs that are closest to the past trajectory.

IV. EXPERIMENTAL RESULTS

A. Dataset description

The VisDrone dataset contains 96 video clips that include 56
clips for training, 7 for validation, and 33 for testing. Among
them, we chose only the videos that depict vehicular traffic at
intersections. Finally, the dataset considered for evaluation in
this paper consists of 23 clips for training (10,239 frames with
approximately 11,000 vehicles), 5 for validation (2,033 frames
with approximately 2,400 vehicles), and 6 for testing (2,110
frames with approximately 2,500 vehicles) from the VisDrone
dataset. The detailed statistics of the different types of vehicles
in these videos are reported in Table I. Some signalized and
non-signalized intersections used during testing are shown in
Figure 2.
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(c)
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Fig. 2: Examples of signalized intersections (a) and (b) and
non-signalized intersections (c) and (d) in VisDrone dataset.

TABLE I: Statistics of intersection videos in VisDrone dataset

Vehicle type Number of vehicles
Bicycle 2,245
Bus 782
Car 7,345
Motorcycle 4,823
Van 372
Truck 56
Total 15,623

B. Vehicle tracking

It is important to determine the best tracking algorithm to
supply vehicle trajectories to the prediction framework. Hence,
we compare the tracking performance of three popular on-
line tracking algorithms that can efficiently track hundreds of
vehicles at every intersection - 1) Markov Decision Process
(MDP) based tracker [22], 2) simple, online, real-time tracking
(SORT) [36], and 3) deep SORT [37] that integrates the
SORT algorithm with appearance features from the YOLO
[38] detection framework. The different metrics used for
comparison in Table II that are specific to multi-object tracking
are:

• Multiple Object Tracking Accuracy (MOTA) combines
three sources of errors - false negatives (FN), false
positives (FP) and ID switches (IDs) as follows

MOTA = 1−
∑

t(FNt + FPt + IDst)∑
tGTt

where t is the frame index, and GT is the number of
ground truth objects.

• Multiple Object Tracking Precision (MOTP) is the av-
erage difference between all true positives and their
corresponding ground truth targets.

MOTP =

∑
t,i dt,i∑
t ct

where ct denotes the number of matches in frame t and
dt,i is the bounding box overlap of target i with its
assigned ground truth object.

• FM shows the number of times a ground truth trajectory
is interrupted during tracking.

• Each ground truth trajectory can be classified as mostly
tracked (MT) if it is tracked more than 80% of its
lifespan, partially tracked (PT) if it is tracked more than
50%, and mostly lost (ML) if it tracked less than 20%.

While we were able to test SORT and MDP with different
detection frameworks, deepSORT integrates the appearance
features provided by different layers of the YOLO [39] ar-
chitecture to associate the targets. This prevents the tracking
framework to be decoupled from the detection network. It
can be observed from Table II that the MDP tracker has
the highest recall and MOTA among the other trackers. It
can be observed although R-FCN consistently provides better
precision, F-RCNN has the best recall which is justified by the
more number of proposals evaluated by F-RCNN. AS SSD has
a similar architecture to YOLO, both of them fail at detecting
smaller objects that translate to poor tracking performance
for the trackers utilizing their detection outputs. Overall, the



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

tracking strategy of MDP yields better accuracy in tracking
with much less false negatives and a superior recall score as
well. This can be attributed to the state-based handling of the
appearance and disappearance of vehicles that prove to be a
better strategy for associating the tracks with the detection
outputs.

C. Trajectory Prediction

The obtained tracks are then used to train the vehicle
trajectory prediction algorithms. We compare the GAN based
prediction system to existing approaches using social LSTM
(S-LSTM) [27] and social attention-based structural recurrent
neural network (S-RNN) [30]. For both the encoder and
decoder in the proposed GAN, LSTM is used as the RNN,
and the dimensions of the hidden state for the encoder is 16
and the decoder is 32. The input coordinates obtained from
the tracker output are transformed into a relative coordinate
system with the center of the video taken as the origin in order
to achieve translation invariance. These relative coordinates
are then embedded as 16-dimensional vectors to be provided
as input to the encoder. The Generator and Discriminator are
iteratively trained with a batch size of 64 for 200 epochs using
Adam optimizer with an initial learning rate of 0.001. For the
S-LSTM and S-RNN, we use the implementation provided by
the respective authors. For the GAN model, we modify and
use the implementation given by the authors in [35]. All the
prediction networks follow different protocols for observation
and prediction lengths. For simplicity of comparison, we
follow the same observation length of 8 time steps (tobs = 8)
and prediction length of 8 time steps (tpred = 8) for all the
networks.

The comparison is done using the following evaluation
metrics:

• Average Displacement Error (ADE) which measures the
average L2 distance between ground truth and the pre-
diction over all the predicted time steps.

• Final Displacement Error (FDE) that measures the dis-
tance between the predicted final destination actual des-
tination at the end of the prediction period tpred.

In Table III, we present the comparison of vehicle trajectory
prediction performance of GAN with S-RNN and S-LSTM. It
can be observed that GAN produces better ADE and FDE
scores than the other two prediction approaches. This can be
attributed to the generator in GAN being trained with a variety
loss that is able to predict more diverse set of trajectories
than both S-LSTM and S-RNN. Further, the global context
employed in GAN is more apt for vehicle trajectory prediction
at intersections as vehicles can rapidly accelerate or decelerate
at intersections. Even vehicles which are separated initially can
become close rapidly and a global strategy helps in keeping
track of such movements for better predictions.

D. Qualitative Analysis

Traffic prediction using GAN having a social structure
helps us predict two basic movement types used by smaller
vehicles like motorcycles and scooters in traffic - merging

and overtaking. While merging, vehicles avoid collisions while
continuing towards their destination by either slowing down
or altering their course slightly or a combination of both.
This behavior is highly dependent on the context and behavior
of other surrounding vehicles. The proposed model (GAN +
MDP + SSD) can predict the variation in both the speed and
direction of a vehicle to effectively navigate nearby traffic.
For instance, the model predicts that either vehicle Y (yellow)
slows down or both vehicle R (red) and Y change direction to
avoid collision (Figure 3 (a) and (b)).

Another common scenario encountered in traffic is where a
vehicle might want to either maintain pace or maybe overtake
the vehicle in front. This has been studied with car-following
models in literature [24]. The decision making ability while
overtaking is restricted by the field of view. However, as the
GAN model has access to the ground truth positions of all the
vehicles involved in the scene, it results in some interesting
predictions. For example, in Figures 3 (c) and (d), the model
predicts that vehicle R (in red) is obstructed by vehicle B
(blue) and will give way by changing their direction. This
global knowledge allows GAN to correctly predict that vehicle
Y (yellow) will overtake vehicle B.

Vehicles also avoid each other when moving in opposite
directions without any physical barrier separating both the
streams of traffic. This tendency manifests in smaller vehicles
generally bunching with other vehicles moving in the same
direction. Also, smaller vehicles (vehicle Y) mostly observe
the movement of larger vehicles (vehicle R) in the opposite
direction and overtake only if they predict that there is
adequate clearance distance (Figure 3 (f)). However, in the
presence of smaller vehicles, the driver in vehicle Y (yellow)
makes a choice very late and close to the oncoming vehicle
R (red) (Figure 3 (e)). The model is not able to distinguish
between these two behaviors as the type of vehicle is not taken
into consideration during prediction and the prediction is not
aligned with the ground truth (Figure 3 (e)). In such case, we
hypothesize that decisions based on local vicinity can produce
better predictions rather than accounting for vehicles that are
further away (global context).

V. CONCLUSION

In this paper, we proposed a vehicle trajectory prediction
approach that considers the interaction among vehicles. These
interactions provide a global context for training a Generative
Adversarial Network (GAN) in order to predict trajectories of
each vehicle at both signalized and non-signalized intersec-
tions. The prediction algorithm can predict vehicle trajectory
resulting from different traffic maneuvers like overtaking,
merging, and avoiding oncoming traffic without any additional
information about the dimension of the road. The proposed
GAN based network produces multiple future trajectories and
chooses the best based on the past driving behavior of a
vehicle encapsulated in the vehicle trajectory. An evaluation on
the intersection videos of the VisDrone dataset demonstrates
the efficacy of GAN is predicting trajectories with minimal
deviation compared to the actual trajectories followed by
different types of vehicles. Further, as there are no assumptions
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TABLE II: Comparison of different trackers on intersection videos for all vehicle types in the VisDrone dataset. The detection
frameworks used are also mentioned.

Method Recall (%) Precision (%) GT MT PT ML FP FN IDs FM MOTA (%) MOTP (%)
DeepSort [37] YOLO 7.8 79.3 526 42 64 420 1522 69039 342 623 5.2 73.5

SORT [36]
F-RCNN 17.7 93.5 526 51 79 396 902 60306 305 520 16.0 79.4
SSD 5.5 82.6 526 2 44 480 856 69172 256 437 4.0 75.7
R-FCN 16.6 91.5 526 49 77 400 1132 61045 340 539 14.6 78.8

MDP [22]
F-RCNN 25.5 89.4 526 69 118 339 2216 54564 192 497 22.2 78.0
SSD 11.1 78.4 526 20 68 438 2244 65088 157 403 7.8 74.4
R-FCN 24.6 87.6 526 70 111 345 2547 55213 248 552 20.8 77.0

(a) (b)

(c) (d)

(e) (f)

Fig. 3: Prediction of traffic flow using GAN in signalized and unsignalized intersections during various maneuvers - (a) and
(b) merging, (c) and (d) overtaking, and (e) and (f) preventing oncoming traffic. While the traffic flow during merging and
overtaking is predicted correctly, overtaking is more challenging as the size of the vehicle dictates the distance maintained by
the drivers as seen in (e) and (f). The vehicles in consideration are enclosed in white boxes. Best viewed in color.
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TABLE III: Comparison of prediction performance with state-
of-the-art on the intersection videos of VisDrone dataset.

Method ADE FDE

S-RNN [30]

DeepSort 0.88 1.60

SORT
F-RCNN 0.92 1.76
R-FCN 0.92 1.75
SSD 0.85 1.52

MDP
F-RCNN 0.89 1.56
R-FCN 0.86 1.61
SSD 0.94 1.66

S-LSTM [27]

DeepSort 0.89 1.57

SORT
F-RCNN 0.77 1.62
R-FCN 0.91 1.66
SSD 0.92 1.67

MDP
F-RCNN 0.82 1.53
R-FCN 0.89 1.51
SSD 0.79 1.42

GAN

DeepSort 0.91 1.65

SORT
F-RCNN 0.87 1.66
R-FCN 0.87 1.65
SSD 0.77 1.42

MDP
F-RCNN 0.82 1.53
R-FCN 0.84 1.58
SSD 0.72 1.32

about the type of traffic and their movements, the method can
be applied for the analysis of any type of intersection. In the
future, we would like to consider the vehicle type to improve
predictions in some traffic scenarios.
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