Exploring the Unintended Consequences of Computerized Physician Order Entry

Joan S. Asha, Dean F. Sittiga,b, Richard Dykstraab,a, Emily Campbella, Kenneth Guapponea

aOregon Health & Science University, Portland, OR, USA
bKaiser Permanente Northwest, Portland, OR, USA

Abstract

This paper summarizes the foci, activities, methods, and results of a three-year research project. Using a mixed methods approach, the Physician Order Entry Team has identified and categorized the unintended consequences of computerized physician order entry (CPOE). After analyzing 380 examples of unintended adverse consequences, the team described in detail nine major types and conducted a national survey in the U.S. to discover how hospitals recognize and deal with unintended consequences. With the assistance of a panel of experts, the team identified strategies for managing unintended adverse consequences and outlined contents of a toolkit for CPOE implementers for addressing them.

Keywords: Attitude to computers; Hospital information systems; User-computer interface; Physician order entry

Introduction

The Physician Order Entry Team (POET), a group of researchers based at Oregon Health & Science University in Portland, Oregon, U.S.A., was conducting a study of success factors for implementing computerized physician order entry (CPOE), defined as direct entry of orders into the computer by physicians or others with the same ordering privileges, when we began noticing unintended consequences (UCs), such as physicians entering orders for the wrong patient. Colleagues doing similar qualitative studies in Australia and The Netherlands were discovering these UCs as well, and a collaborative effort in 2002 produced a general description of kinds of adverse consequences caused by clinical information systems (CIS) [1]. This was a rather startling revelation at a time when CPOE was being touted as the “leap” that hospitals should take in the interest of patient safety [2] and little attention was being paid to problems caused by CPOE. With funding from the U.S. National Library of Medicine, POET has been able to conduct an in-depth study over the past three years utilizing both qualitative and quantitative methods to discover more about these UCs of CPOE. Data were gathered via two expert panel conferences, fieldwork at a total of six sites (one outpatient and five primarily inpatient), and a national telephone survey of all CPOE sites in the U.S. The aims were to identify types of UCs and strategies for preventing, managing or overcoming them, and to provide tools to help implementers address them. The following presents a summary of the research foci, methods, and results.

Methods

Sample Selection

The main criterion for site selection for fieldwork was a reputation for excellence in using clinical information systems. Excellent organizations learn from their mistakes [3-4]. We found that personnel in these organizations are willing to 1) describe surprises they have experienced and managed, and 2) be observed during the order entry process. In addition, sites represented a geographic distribution, different types (e.g. teaching and community hospitals) and ownership, varying lengths of experience with CPOE, and both commercial and locally developed systems. Kaiser Permanente Northwest in Oregon, selected for excellence in outpatient CPOE, uses EpicCare (Epic Systems, Madison, WI), and is a health maintenance organization. Other sites included: Wishard Memorial Hospital, a county hospital in Indianapolis, IN using the locally developed Regenstrief system; The Brigham and Women’s Hospital in Boston, MA, which uses a locally developed system; Massachusetts General Hospital, Boston, MA, which uses a newer version of the Brigham system; Faulkner Hospital, a community hospital in Boston, MA, that uses the commercial MediTech system (Westwood, MA); Alamance Regional Hospital in Burlington, NC, which uses the Eclipsys commercial system (Boca Raton, FL); El Camino Hospital in Mountain View, CA, which also uses Eclipsys; and Providence Portland, which utilizes McKesson’s Horizon Expert Orders (San Francisco, CA). We received human subjects approval from each site and from the researchers’ organizations. Within each site, informants for interviews were selected based on their knowledge of what had occurred during CPOE implementation and use and their representative roles (physician, nurse, pharmacist, implementer, champion, skeptic, etc.). We observed clinicians entering orders in all areas of the hospitals and clinics. Experts for the expert conferences were selected based on hands-on experience with CPOE implementation and included clinician implementers from a variety of hospital types and vendor organizations.
Data Collection
Figure 1 illustrates the progression of data gathering, analysis, and reporting of results that occurred between 2003 and 2006, starting with a transition period at Kaiser Permanente Northwest between the success factors study and the UC study. We gathered data at Kaiser on an ongoing basis between the spring of 2003 and winter of 2004, developing refined semi-structured interview and observational techniques during the transition to studying UCs. In the spring of 2004 we held a conference of invited experts at the Menucha retreat center near Portland, OR to gather stories about UCs from the experts and to gain guidance about questions to ask and what to look for in the field. We then spent three to four days at each site with four to six investigators. Observations were documented with extensive field notes. Taped oral history interviews probed the history of surprises that occurred over time at each site. Realizing that it is hard to know when consequences are indeed unintended, we developed a short survey instrument to assess what clinicians being impacted by CPOE expect, and administered it to groups at three sites. Once we had identified the major types of UCs, we developed, piloted, and administered a telephone survey instrument designed to elicit information about the nature of UCs from all U.S. hospitals reporting that they have CPOE. A second conference of experts was held in May of 2006 to help interpret our results and to plan dissemination strategies, including a set of tools that implementers could use for identifying, managing, and overcoming UCs in their hospitals.

Data Analysis
We first reviewed data gathered at Kaiser [5] during the transitional period between projects to gain an overview of UCs and developed a general schema that included positive as well as negative UCs [6]. Data collected during the expert conference and at the remaining five field sites yielded 750 pages of field notes and transcripts. The POET team reached consensus on each description of what seemed to be a UC, approximately 80 from the Menucha conference and 300 from fieldwork. As we analyzed them in detail, we realized that the initial UC schema we had developed [6] was too broad and superficial and that we would need to develop a more sophisticated taxonomy. Using a card sort method [7] and grounded theory approach [8], we iteratively developed a taxonomy of nine major types.
of adverse UCs into which all 380 instances fit, thus reaching saturation [9]. Using an axial coding approach [10], we then found subcategories within each of the nine. Finally, we held another Menucha conference of experts to verify that these results made sense to the experts and to plan dissemination of tools to help implementers address each kind of UC.

Results

The Initial Schema

The initial broad schema of consequences related to CPOE included categories of intended and unintended consequences, desirable and undesirable, direct and indirect, and “two-sided” consequences that could be either desirable or undesirable depending on one’s point of view [6]. This schema provided a valuable framework for fieldwork because it assured that we would not limit our focus to adverse consequences. While most informaticians are interested in undesirable consequences because they need careful management, it is also heartening to know that serendipitous, beneficial surprises occur as well.

The Nine Types of Unintended Adverse Consequences Related to CPOE

Using the card sort method, we developed a “short list” of nine categories based on the larger list. The categories were validated as we analyzed the full complement of UCs. We have published a paper summarizing overall results [11], as well as specific papers about changes in the power structure resulting from CPOE [12] and emotions related to CPOE [13]; a paper about impact on workflow is under review [14]. As we conducted our analysis, we discovered that a large number of consequences, over 20% of the total, emanated from issues with clinical decision support (CDS). Briefly, the categories, in descending order of frequency, are:

More / New Work Issues: Physicians find that CPOE adds to their workload by forcing them to enter required information, respond to alerts, deal with multiple passwords, and expend extra time.

Workflow Issues: Many UCs result from mismatches between the CIS and workflow and include workflow process issues, workflow and policy/procedure issues, workflow and human computer interaction issues, workflow and clinical personnel issues, and workflow and situation awareness issues.

Never Ending Demands: Because CPOE requires hardware technically advanced enough to support the clinical software, there is a continuous need for new hardware, more space in which to put this hardware, and more space on the screen to display information. In addition, maintenance of the knowledge base for decision support and training demands are ongoing.

Paper Persistence: It has long been hoped that CIS will reduce the amount of paper used to communicate and store information, but we found that this is not necessarily the case since it is useful as a temporary display interface.

Communication Issues: The CIS changes communication patterns among care providers and departments, creating an “illusion of communication,” meaning that people think that just because the information went into the computer the right person will see it and act on it appropriately [15].

Emotions: As outlined in the paper by Sittig et al. [13], these systems cause intense emotions in users. Unfortunately, many of these emotions are negative and often result in reduced efficacy of system use, at least in the beginning.

New Kinds of Errors: As noted by Koppel et al. [16] and Ash et al. [1], CPOE tends to generate new kinds of errors such as juxtaposition errors, in which clinicians click on the adjacent patient name or medication from a list and inadvertently enter the wrong order.

Changes in the Power Structure: The presence of a system that enforces specific clinical practices through mandatory data entry fields changes the power structure of organizations. Often the power or autonomy of physicians is reduced, while the power of the nursing staff, information technology specialists, and administration is increased [12].

Overdependence on Technology: As hospitals become more dependent on these systems, system failures can wreak havoc when paper backup systems are not readily available.

The National Survey

We had already determined that the UC categories list was both useful and easy to understand and use, so we operationalized most of the categories by asking questions about UCs in a national survey. Those surveyed were to answer these questions as yes or no, and if yes, to rate the importance of this issue from 1 (not very important) to 5 (very important) (no = 0). The questions are shown in Table 1. We surveyed the entire population of acute care hospitals listed in the 2004 HIMSS AnalyticsSM Database as having reported that they have CPOE in place (N = 448). Since that database did not include U.S. Veterans Affairs hospitals, which we feel are important models of CPOE use, we also surveyed VA hospitals (N = 113). We conducted interviews with staff at 176 hospitals, discovering that a large number listed as having CPOE did not in fact have functioning CPOE systems. We also found that a number of hospitals have policies against doing surveys.

The survey results verified the existence of these UCs, and analysis of comments offered insight into the nature of the consequences. All types of consequences are indeed widespread. Our informants did not consider two of them, power shifts and new kinds of errors, as important as the others, however. We verified that there are positive as well as negative unintended consequences, and often the same consequence can be viewed in different ways by different people, depending on their perspectives. We can only speculate about why power shifts and new kinds of errors were not considered as important as other types: those answering the questions were generally information technology professionals who may not realize that power is shifting in their direction. They may also believe that the new kinds of errors are not of a serious nature. A paper reporting results is under review [17].

| Workflow (process) |
Question 1: We have noticed in our research that when CPOE systems are in use, this alters how people do their work. Have you seen this, how important is it, and could you comment?

Communications
Question 2: Communication is really important in clinical care. Have you seen any alterations in communication patterns because of CPOE, how important are these alterations, and could you comment?

Over-dependence on technology
Question 3: As we become more dependent on technology, we’ve noticed that people may have a hard time when the CPOE system is not available. If your computer went down, would this be an issue for your organization, how important would it be, and could you comment?

Power
Question 4: We have noticed the balance of power may shift when CPOE is used. Have you noticed that at your organization, how important is it, and could you comment?

More work, new work
Question 5: We think of computers as labor saving devices, but we all know that sometimes they’re not. Are there examples in your institution of new kinds of work that you didn’t do before, how important is this, and could you comment?

New kinds of errors
Question 6: CPOE has been proposed as a solution to patient safety issues, but may have created others. Have you seen new patient safety issues with CPOE, how important are they, and could you comment?

Never ending demands of technology
Question 7: The information system typically needs a great deal of support in terms of maintenance, training, updating order sets, etc. Has this been an issue in your organization, how important is it, and could you comment?

Emotions
Question 8: We have seen many emotional responses to the system. Have you seen users express strong feelings about CPOE, how important is this, and could you comment?

Table 1. Phone Survey Unintended Consequences Questions

The Anticipation Survey
To find out if the “unintended” or “unanticipated” consequences that we had identified were perhaps already known by others in the field and therefore actually anticipated during CPOE implementations, we designed and piloted an “anticipation survey.” It was designed to determine what end user clinicians were expecting to happen in organizations that were about to implement CPOE. The questions, which were asked in person, are shown in Table 2. The survey was administered as a short interview survey to 83 clinicians at three community hospitals at common gathering spots such as the cafeteria. Results from each hospital were fed back to the implementers at those individual sites. The research team conducted a comparative analysis across sites. Briefly, end users and others affected by CPOE were usually aware that CPOE was coming and that their workflow might be disrupted for a certain period of time, but they were optimistic that in the long run it would be of benefit. Other UCs were rarely mentioned. Results are summarized in a paper under review [18].

Table 2. Short Interview Survey About Anticipation of CPOE

About you:
What is your role in the organization? If clinician, continue.
• Have you heard about Computer-based Provider Order Entry being implemented here?
• If no…This is a new system that would allow the physicians to enter their patient orders directly into the computer system.
• Have you been trained on it, tested it, and/or actually used it?
• What effect do you think it will have on you?
• Do you have experience with the clinical information system now available?”

How do you think the new CPOE system might compare to the current paper system? Advantages? Disadvantages?

About the organization:
• What effect do you think CPOE will have on other clinicians within the organization?
• Do you think it will be more positive or negative? In what way?
• What does this mean for patients?
• Do you think it will be more positive or negative? In what way?
• What effect will the system have on the hospital as a whole?
• Do you think it will be more positive or negative? In what way?

Discussion
In this team’s earlier research on success factors for implementing CPOE, we cast a wide net because little was known at that time about factors leading to success or lack thereof. A rigorous yet open-ended grounded theory [8] approach was deemed most appropriate. As research questions became more focused, however, our qualitative methods became more structured. To investigate UCs of CPOE, we started with a broad schema of types and iteratively refined the schema by consulting experts, interviewing, and observing in the field. Once a taxonomy of types was defined, we were able to craft survey questions and administer a national telephone survey. Because such a large number of adverse UCs relate to CDS, our attention is becoming even more focused in that arena.
As the team and expert consultants develop tools for helping implementers avoid, manage, or overcome UCs, we have realized that all of the success factors identified and published in the past [20] are actually UC avoidance mechanisms. In addition, there are other strategies for addressing UCs, and a more complete list is under development.

Conclusions and Recommendations

While it is hard summarizing results of an intense three year study of UCs, we can draw some general conclusions about both methods and UCs. First, the selected methods served us well for this study. The more structured and rapid techniques such as the anticipation survey efficiently augmented other kinds of fieldwork. Second, development of a taxonomy of types and subtypes not only allowed us to craft survey questions, but was also useful in structuring an approach for addressing management of UCs. One key in prevention of UCs is to pay attention to success factors for implementing CPOE in the first place. Since so many UCs are related to CDS, it seems that a fruitful area for future research would be identification of success factors for implementation of CDS.

Acknowledgments

This work was supported by grant LM06942 and training grant ASMM10031 from the U.S. National Library of Medicine, National Institutes of Health.

References

[18] Sittig DF, Ash JS, Guappone K, Campbell E, Dykstra R. Assessing the anticipated consequences of computer-based provider order entry at three community hospitals using an expedited assessment procedure. Submitted manuscript.

Address for correspondence
Joan S. Ash Ph.D., Associate Professor, Oregon Health & Science University, School of Medicine, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239-3098 USA. Email ash@ohsu.edu.