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1  Introduction

Phytoplankton are responsible for approximately 40–50 % of the total primary 
production on Earth. They contribute to controlling the total CO2 concentration 
and pH of the ocean, which together with physical processes (e.g. solar energy 
input, sea–air heat exchanges, upwelling of subsurface waters and mixed layer 
thickness) dictates the air-to-sea CO2 gas exchanges (Longhurst et al. 1995; Field 
et al. 1998; Takahashi et al. 2002; Falkowski et al. 2004). The global net primary 
production from phytoplankton is 45–50 Gt C year−1, whilst from land plants 
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it is of 45–68 Gt C year−1 and from coastal vegetation it is of 1.9 Gt C year−1 
(Longhurst et al. 1995; Box 2004; Haberl et al. 2007).

Since the development of techniques for Chl a detection in water in the decade 
of 1930 and 1940s (Harvey 1934, 1939), a number of research works has been pub-
lished to develop analytical methodologies (Richards and Thompson 1952; Parsons 
and Strickland 1963; Jeffrey and Humphrey 1975), to elucidate Chl a origin (Fennel 
and Boss 2003; Letelier et al. 2004; Huisman et al. 2006) and to understand its 
photoinduced degradation into various pheopigments (Welschmeyer and Lorenzen 
1985; Barlow et al. 1993; Stephens et al. 1997). An additional issue is the produc-
tion of autochthonous DOM by photoinduced degradation of Chl a or phytoplankton 
biomass, under both photoinduced and microbial (bacterial) metabolism/assimi-
lation/respiration (Kirchman et al. 1991, 1995; Tranvik 1993; Nelson et al. 1998, 
2004; Hart et al. 2000; Parlanti et al. 2000; Carrillo et al. 2002; Rochelle-Newall and 
Fisher 2002; Nieto-Cid et al. 2006; Mostofa et al. 2009; Zhang et al. 2009).

The spatial variability of the net primary productivity over the globe is sub-
stantially high, varying from about 1,000 g C m−2 for evergreen tropical rain for-
ests to less than 30 g C m−2 for deserts (Scurlock et al. 1999). On the other hand, 
chlorophyll a (Chl a) concentrations vary from 0.0 to 2,080 μg L−1 in a variety 
of natural waters. Such a variability in Chl a concentration can produce either a 
surface/subsurface Chl a maximum (SCM) or a deep Chl a maximum (DCM) in 
natural waters (Huisman et al. 1999, 2006; Riley et al. 1949; Bainbridge 1957; 
Steele and Yentsch 1960; Anderson 1969; Derenbach et al. 1979; Dortch 1987; 
Viličić et al. 1989; Bjørnsen and Nielsen 1991; Donaghay et al. 1992; Huisman 
and Weissing 1995; Djurfeldt 1994; Gentien et al. 1995; Odate and Furuya 1998; 
Dekshenieks et al. 2001; Franks and Jaffe 2001; Klausmeier and Litchman 2001; 
Diehl 2002; Rines et al. 2002; Yoshiyama and Nakajima 2002; Arístegui Ruiz  
et al. 2003; Hodges and Rudnick 2004; Matondkar et al. 2005; Weston et al. 2005; 
Lund-Hansen et al. 2006; Beckmann and Hense 2007; Hense and Beckmann 2008; 
Hopkinson and Barbeau 2008; Whitehouse et al. 2008; Yoshiyama et al. 2009; Lu 
et al. 2010; Martin et al. 2010; Ryabov et al. 2010; Velo-Suárez et al. 2010).

The high variation in Chl a content is generally used as a universal signature of 
cyanobacteria (algae), or of phytoplankton bloom or eutrophication in a variety of 
waters (Fielding and Seiderer 1991; Ondrusek et al. 1991; Williams and Claustre 
1991; Millie et al. 1993; Jeffrey et al. 1999; Bianchi et al. 1993, 2002, Blanco et al. 
2008; Kasprzak et al. 2008). Variations in Chl a concentrations or primary produc-
tion is entirely dependent on various environmental factors in natural waters, which 
have been extensively discussed before (see also chapter “Photosynthesis in Nature: 
A New Look”).

It has been found that Chl a bound to phytoplankton can be degraded by photoin-
duced and microbial processes, thereby producing a number of pigments and colour-
less organic compounds in natural waters (Welschmeyer and Lorenzen 1985; Barlow 
et al. 1993; Stephens et al. 1997; Zhang et al. 2009; Bianchi et al. 2002; Schulte-Elte 
et al. 1979; Falkowski and Sucher 1981; Pietta et al. 1981; Mantoura and Llewellyn 
1983; Keely and Maxwell 1991; Nelson 1993; Sun et al. 1993; Rontani et al. 1995, 
1998, 2003, 2011; Rontani and Marchand 2000; Yacobi et al. 1996; Cuny et al. 
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1999; Marchand and Rontani 2001; Rontani 2001; Lemaire et al. 2002; Rontani 
and Volkman 2003; Marchand et al. 2005; Christodoulou et al. 2009; Christodoulou 
et al. 2010). Chl can also be degraded in higher plants, which for instance causes 
the colour change in leaves from green to yellow or red that is naturally observed 
in autumn. However, degradation can also occur as a consequence of cell death 
caused by external factors, such as injuries due to low or high temperature, pathogen 
attack, as well as phenomena taking place during various phases of the life cycle 
of plants (Hendry et al. 1987; Takamiya et al. 2000). Conversion of Chls to pheo-
phytins can take place during discolouration of green vegetable upon processing 
by several chemicals, photoinduced or enzymatic reactions including simultaneous 
actions of enzymes, weak acids or changes in pH, oxygen, light and heat (Blair and 
Ayres 1943; Gupte et al. 1964; Hayakawa and Timbers 1977; Minguez-Mosquera 
et al. 1989; Mangos and Berger 1997; Koca et al. 2007). Moreover, the key PSII 
degradation reactions of Chls are photooxidation, involving attack of singlet  oxygen 
or HO• via H2O2, and enzymatic degradation (Takamiya et al. 2000; Brown et al. 
1991; Hörtensteiner 2006; Kräutler and Hörtensteiner 2006; Moser et al. 2009; 
Hörtensteiner and Kräutler 2011; Gálvez et al. 1988).

This chapter will give an overview of the various kinds of Chl, their properties, 
functions, and techniques for their precise determination. It extensively discusses the 
distribution of Chl a providing information about SCM and DCM depths, the forma-
tion mechanisms of such maxima as well as the changes of Chl a  concentrations 
in a variety of natural waters, under both field and experimental conditions. It also 
discusses the degradation and degradation mechanisms of Chl a  bound to aquatic 
microorganisms and higher plants, as well as the modifications taking place during 
food processing. Finally, an explanation will be provided of how Chl a acts as a uni-
versal signature of phytoplankton bloom, and of the possible actions to be adopted 
for the management of eutrophication by controlling primary production or Chl a.

2  Chlorophylls (Pigments) in Phytoplankton

Photosynthetic organisms can collect light energy with their light-harvesting systems 
that are composed of core and peripheral antenna complexes (Green and Durnford 
1996). Core antenna complexes of oxygen-evolving photosynthetic organisms have 
Chl a as pigment. In contrast peripheral antenna complexes, particularly for photo-
system II (PSII), have various pigments depending on the group of photosynthetic 
organisms. They are Chl b, Chl c (made up of c1, c2 and c3), Chl d, phycobilins, 
fucoxanthin, zeaxanthin (carotenoids), echinenone, peridinin, and so on (Bianchi et 
al. 2002; Woodward et al. 1960, 1990; Dougherty et al. 1966; Fleming 1967; Wu 
and Rebeiz 1985; Jeffrey and Wright 1987; Verne-Mismer et al. 1988, 1990; Fookes 
and Jeffrey 1989; Rowan 1989; Grossman et al. 1995; Miyashita et al. 1996, 1997; 
Motilva 2008).

Chl b is detected in various forms such as: divinyl Chl b, with two vinyl 
groups at R1 and R2 positions; monovinyl Chl b, with vinyl at R1 and ethyl at 
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R2, and meso-Chl b with two ethyl groups at R1 and R2 (Fig. 1) (Clarke et al. 
1976). Moreover, Chl c composed of a 17-acrylic side-chain has been isolated 
from two Moroccan oil shales of Cretaceous age (Verne-Mismer et al. 1988). 
Petroporphyrins, showing both a free C-7 position and a C-13 to C-17 substitu-
tion pattern typical of Chl c fossils, have been isolated from two Cretaceous 
Moroccan oil shales and may arise from a still unknown Chl, 7-formylchloro-
phyll c or Chl c3 (Verne-Mismer et al. 1990). Chl c3, isolated from a microalga, 
has tentatively been identified as 7-demethyl-7-methoxycarbonyl chlorophyll 
(Fookes and Jeffrey 1989). Chl c2, isolated from the coccolithophorid Emiliania 
huxleyi (Prymnesiophyceae), is present in approximately equal proportions as 
Chl c3. It has absorption maxima at 447, 579 and 628 nm, whilst no Chl c1 has 
been detected (Jeffrey and Wright 1987). Cells of the new prokaryote have an 
absorption maximum in the red region (714–718 nm) due to Chl d absorption, but 
they do not show any characteristic absorption peak of Chl a at around 680 nm 
(Miyashita et al. 1997). Chl f is [2-formyl]-chlorophyll a (C55H70O6N4Mg), and 
its in vitro absorption (706 nm) and fluorescence (722 nm) maxima are red-shifted 
compared to all other Chls from oxygenic phototrophs (Chen et al. 2010).

Uncoupled Chls in PSII of cyanobacteria or phytoplankton and red algae 
can absorb at shorter wavelength, e.g. 670 nm (close to their site energy), 
whilst electronically coupled chlorins (the central cofactors) or Chl dimers can 
absorb between 676 and 684 nm (Zhang et al. 2009; Telfer et al. 1990; Durrant 
et al. 1995; Renger and Marcus 2002). Formation of Chl dimers and their light-
induced excitations are extensively discussed in the photosynthesis chapter 
“Photosynthesis in Nature: A New Look”. Upon 440-nm excitation of Chl a bound 
to Synechocystis cells, a typical PSII fluorescence at 685 nm has been observed 
both at room temperature and at 77 K (Satoh et al. 2001). Two additional fluo-
rescence components have been detected at 695 and 722 nm, whilst no fluores-
cence peak for Chl b has been observed in these cyanobacteria (Satoh et al. 2001). 
Red shifts are commonly observed in in vitro Chl a systems, including thin films, 

Fig. 1  Molecular structure 
of chlorophyll a and 
chlorophyll b with some 
medication. Data source 
Clarke et al. (1976)

H
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monolayers and colloidal dispersions used as models for the in vivo systems (Katz 
et al. 1991). Red shifts generally occur when electron releases follow the easiest 
way in the functional groups bound to the component system (see also  chapters 
“Colored and Chromophoric Dissolved Organic Matter (CDOM) in Natural 
Waters” and “Fluorescent Dissolved Organic Matter in Natural Waters”) (Mostofa 
et al. 2009; Senesi 1990). Chl b found in chlorophytes and prochlorophytes can 
absorb sunlight at around 470 nm (highest peak) and 650 nm (small peak) (Satoh 
et al. 2001). The Chl c isolated from Peridinium gatunense showed two peaks at 
448–449 and 634–635 nm (Yacobi et al. 1996).

All pigments can bind to their specific proteins to form pigment-protein com-
plexes (Cogdell et al. 1996; Pearlstein 1996). Complexation can provide the easi-
est way of electron release, as depicted in other chapters (see “Photosynthesis in 
Nature: A New Look” and “Complexation of Dissolved Organic Matter with Trace 
Metal ions in Natural Waters”). The Chl b content of the light-harvesting complex 
(LHC) of PSII in higher plants is highly preserved, approximately between 45 and 
50 % or in the approximate ratio of 3:1 of Chl a to Chl b (Anderson 1986; von 
Elbe and Schwartz 1996). Conversely, the contents of Chl b in cyanobacteria are 
variable and relatively low (1.4–10.6 % or more) (Bianchi et al. 2002; Satoh et al. 
2001). Experimental and other observation have shown that Chl a molecules can 
bind to LHC of PSII at Chl b binding sites (Thornber and Highkin 1974; Terao 
and Katoh 1989; Murray and Kohorn 1991; Paulsen et al. 1993; Polle et al. 2000). 
Correspondingly, Chl b is vital for the stability of LHC of PSII in the thylakoid 
membrane (Murray and Kohorn 1991; Bellemare et al. 1982). The core antenna 
complexes of chlorophytes have Chl a and do not bind Chl b, despite its presence 
(Satoh et al. 2001; Anderson et al. 1978).

2.1  Properties and Functions of Chlorophyll

Chlorophyll (Chl) a has a methyl group at the C-3 carbon (molecular formula 
C55H72MgN4O5), while Chl b has the same chemical structure as Chl a but 
with a –CH3 group replaced by a –CHO one, providing the molecular formula 
C55H70MgN4O6 (Fig. 1) (Clarke et al. 1976). The correct gross structure of Chl 
has been suggested at first by Fischer (Fischer and Wenderoth 1940) and verified 
in a synthesis by Woodward (Woodward et al. 1960; Woodward 1961). The rela-
tive configuration of the methyl and propionic ester groups on the D ring in the 
structure was shown to be trans by Ficken and his colleagues (Ficken et al. 1956). 
The stereochemistry and absolute configuration of the phytyl group is 2′-trans-
7′R,11′R, as discovered in 1959 (Burrell et al. 1959; Crabbe et al. 1959). The 
relative configuration at C10 is such that the methoxycarbonyl group is trans to 
the propionic ester side chain on C7 (Closs et al. 1963; Wolf et al. 1967). In addi-
tion to their structural differences, Chl a is observed to be thermally less stable 
than Chl b (Buckle and Edwards 1970; Lajollo et al. 1971; Schwartz and von Elbe 
1983; Canjura et al. 1991; Schwartz and Lorenzo 1991).

http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_6
http://dx.doi.org/10.1007/978-3-642-32223-5_7
http://dx.doi.org/10.1007/978-3-642-32223-5_7
http://dx.doi.org/10.1007/978-3-642-32223-5_9
http://dx.doi.org/10.1007/978-3-642-32223-5_9
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Functions of Chls and their degradation products can be discriminated as fol-
lows: (i) Chl is an efficient visible-light photosensitizer and a key component 
required for the absorption of sunlight. It is essential for the occurrence of photo-
synthesis as it is involved into the initiation of electron release in aquatic micro-
organisms and higher plants (see also chapter “Photosynthesis in Nature: A New 
Look”) (Hörtensteiner and Kräutler 2011; Foote 1976; Kimball 1979; Knox and 
Dodge 1985). Under specific conditions (e.g. high light conditions, high temper-
ature, drought and so on) Chl can significantly produce reactive oxygen species 
(ROS) such as singlet oxygen (1O2), superoxide radical anion (O2•−), hydrogen 
peroxide (H2O2) and HO• (see chapter “Photosynthesis in Nature: A New Look”). 
In turn, these species can degrade Chl and cause cell death (Rontani 2001; 
Hörtensteiner and Kräutler 2011; Marshall et al. 2002; Oda et al. 1998). ROS also 
play a role during senescence of photosynthetic cells or fruit ripening. Strong light 
gradients cause unbalanced excitation of the two photosystems and reduce pho-
tosynthetic efficiency (Dietzel et al. 2011). (ii) According to the Treibs hypoth-
esis, petroporphyrins can originate from Chl (Treibs 1936; Liang et al. 1993).  
(iii) Chl, some of its synthetic analogues, metal complexes of porphyrins and phth-
alocyanines are all photoactive. As key components bound to organisms they can 
cause production of H2O2 in vivo under light, in aqueous solutions saturated with 
dioxygen (Hong et al. 1987; Bazanov et al. 1999; Premkumar and Ramaraj 1999; 
Lobanov et al. 2008). (iv) Chls, the pigments responsible for green color in fruits 
and vegetables, are highly susceptible to degradation during processing. This can 
result into changes from bright green to olive brown or other colors, during stor-
age and processing in the agriculture and food industry (Schwartz and von Elbe 
1983; Sweeney and Martin 1961). Color, the major quality attribute of vegetables 
and fruits, is a key factor in the commercial value of food to the consumer and 
can be highly affected by Chl breakdown as an important catabolic process of leaf 
senescence and fruit ripening (Takamiya et al. 2000; Hörtensteiner and Kräutler 
2011; Schwartz and von Elbe 1983; Steet and Tong 1996). (v) The colorless “non-
fluorescent Chl catabolites (NCC)” found in ripening fruits (e.g. apples and pears) 
can act as antioxidants, in a similar way as bilirubin (Moser et al. 2009; Stocker 
et al. 1987; Barañano et al. 2002). It has been shown that the rates of formation of 
hydroperoxides of linoleic acid in the presence of NCC is significantly reduced. 
The observed effect is a function of time and of the concentration of the added 
antioxidants. Moreover, the (concentration-dependent) peroxy radical scaveng-
ing effect of NCC is only slightly inferior to that of bilirubin (Moser et al. 2009; 
Stocker et al. 1987; Müller et al. 2007). (vi) Chl a is generally used to estimate 
the primary biomass production or the phytoplankton/cyanobacterial biomass or 
bloom in natural waters. In contrast, carotenoids and the degradation intermediates 
xanthophylls could be effective biomarkers of different classes of phytoplankton 
(Fielding and Seiderer 1991; Ondrusek et al. 1991; Williams and Claustre 1991; 
Millie et al. 1993; Jeffrey et al. 1999; Bianchi et al. 1993, 2002; Kasprzak et al. 
2008). Therefore, Chl a and its degradation products could be useful indicators 
of the fate and composition of phytoplankton species and of transformation and 
degradation of phytoplanktonic carbon. As a key characteristic of phototrophic 

http://dx.doi.org/10.1007/978-3-642-32223-5_7
http://dx.doi.org/10.1007/978-3-642-32223-5_7
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organisms, they can be used as a criterion in the classification of autotrophic bacte-
ria and cyanobacteria or algae (Williams and Claustre 1991; Marchand et al. 2005; 
Rowan 1989; Liang et al. 1993; Downs and Lorenzen 1985; Trüper 1987; Volkman 
et al. 1988; Vaulot et al. 1990; Veldhuis and Kraay 1990; Wilhelm et al. 1991; 
Brunet et al. 1992; Head and Horne 1993; Soma et al. 1993). Similarly, phaeopig-
ments (Chl degradation products) represent the dominant form of plant pigments 
in marine sediments (Brown et al. 1991; Baker and Louda 1983; Furlong and 
Carpenter 1988; Leavitt and Carpenter 1990; Bianchi and Findlay 1991; Bianchi 
et al. 1993; Jeffrey et al. 1997). Chl b is used as a biomarker for chlorophytes 
(Bianchi et al. 2002). (vii) Primary production (e.g. algae) is substantially high in 
ice bed (0.1–1,000 μg L−1) and can provide food resources for organisms in higher 
trophic levels, in seasons and regions where the water-column biological produc-
tion is low or negligible (Palmisano et al. 1985; Garrison et al. 1986; Wheeler  
et al. 1996; Mock and Gradinger 1999; Lizotte 2001). (viii) The specific  
Chl a content per unit of phytoplankton biomass is typically decreased with 
increasing phytoplankton standing stocks, and with Chl a concentration in natu-
ral waters and also in laboratory cultures of certain species (Kasprzak et al. 2008; 
Desortová 1981; Shlgren 1983; Wojciechowska 1989; Watson et al. 1992; Talling 
1993; Chow-Fraser et al. 1994; Schmid et al. 1998; Felip and Catalan 2000; Sandu 
et al. 2003; Kiss et al. 2006). Such a trend might reflect several phenomena such 
as: degradation of Chl a bound in phytoplankton; lake trophic status; phytoplank-
ton community structure; size frequency distribution of algal cells; and seasonal 
shifts within the plankton community (Bianchi et al. 2002; Bursche 1961; Nusch 
and Palme 1975; Harris 1986; Watson and McCauley 1988; Arnott and Vanni 
1993; Fu et al. 2010; Mostofa KMG et al. unpublished data). (ix) Chloropigments 
(Chl a and carotenoids) and their degradation products could be important deter-
minants of UV and PAR attenuation in natural waters, due to their efficient radia-
tion absorption (see also chapter “Colored and Chromophoric Dissolved Organic 
Matter (CDOM) in Natural Waters”) (Zhang et al. 2009; Devlin et al. 2009; Zhang 
and Qin 2007; Dupouy et al. 2010; Zhang et al. 2007). (x) The ultimate degrada-
tion products of Chls and pigments are colorless (Zhang et al. 2009; Marchand  
et al. 2005; Mostofa K et al. unpublished data; Wakeham and Lee 1993; Mostofa K  
et al. unpublished data; Meyers 1997). They may contribute to autochthonous 
DOM and, therefore, to DOM dynamics in natural waters. Lipids, one of the three 
major classes of organic matter in algal material, are often used as biomarkers 
because of their lower labilility compared to proteins and carbohydrates (Mostofa 
et al. 2009; Sun et al. 2002; Wakeham 1995; Volkman 1986).

2.2  Determination of Chls and Other Pigments

For the measurement of Chls, and particularly of Chl a, Chl b and Chl c, various 
absorption peaks have been used. Absorption peaks have small variations depend-
ing on the phytoplankton species (Goedheer 1970; Prezelin 1981; Aguirre-Gomez 

http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_5
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et al. 2001; Pérez et al. 2007). For Chl a, peaks that are often used are those at 
412–425, 435–455, 618–623 and 662–675 nm, respectively (Zhang et al. 2009; 
Goedheer 1970; Prezelin 1981; Aguirre-Gomez et al. 2001; Pérez et al. 2007). 
The in vivo absorption spectra of the brown alga Laminaria digitata have Chl a 
peaks at 418, 437, 618 and 673 nm. Moreover, absorption peaks of Glenodinium 
sp. occur at 419, 437, 618 and 675 nm, and absorption peaks (average) of three 
different groups of algae are located at 412, 435, 623 and 675 nm (Goedheer 1970; 
Prezelin 1981; Hoepffner and Sathyendranath 1991). The structural configuration 
of PSI and PSII in the reaction center shows that they may have two wavelength 
positions: uncoupled Chls can absorb at 670 nm (close to their site energy), and 
electronically coupled chlorins (the central cofactors) or Chl dimers can absorb 
between 676 and 684 nm (see also chapter “Photosynthesis in Nature: A New 
Look”) (Telfer et al. 1990; Durrant et al. 1995; Renger and Marcus 2002).

Microbial degradation experiments show that absorbance of Chl a in the shorter 
wavelength region (~440 nm) disappears relatively faster compared to the longer 
wavelength region (~675 nm). Therefore, only the 675 nm absorption peak remains 
visible in the suspension if degradation time is long enough (Fig. 2; see also chap-
ter “Colored and Chromophoric Dissolved Organic Matter (CDOM) in Natural 
Waters”) (Zhang et al. 2009). Absorption peaks in the shorter wavelength region 

Fig. 2  Changes in the (a) 
mean concentrations of total 
pigment, chlorophyll a and 
Phaeophytin-a (Pa); and 
(b) phytoplankton pigment  
absorption at the Chl a 
absorption maxima at 440 
and 675 nm and CDOM 
absorption at 355 nm during 
the degradation experiment 
period (0–33 days). Error 
bar indicates the means and 
standard deviations (n = 3). 
Data source Zhang et al. 
(2009)

µ µ

(a)

(b)
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are generally accounted for by various substances such as proteins, amino acids 
and other organic components bound to PSI and PSII. These compounds are all 
susceptible to undergo microbial decompositon (see chapters “Photoinduced and 
Microbial Degradation of Dissolved Organic Matter in Natural Waters, “Colored and 
Chromophoric Dissolved Organic Matter (CDOM) in Natural Waters”, “Fluorescent 
Dissolved Organic Matter in Natural Waters”). On the other hand, Chls that absorb 
radiation in the longer wavelength region are susceptible to undergo photochemical 
decomposition (see chapters “Photoinduced and Microbial Degradation of Dissolved 
Organic Matter in Natural Waters”, “Colored and Chromophoric Dissolved Organic 
Matter (CDOM) in Natural Waters”, “Fluorescent Dissolved Organic Matter in 
Natural Waters”). Absorbance in the longer wavelength regions (>600 nm) is gener-
ally linked to the easiest way of electron release from the functional groups bound 
to the parent molecule. Chl molecules are thus responsible for the absorption peaks 
located at λ > 600 nm. Interestingly, longer wavelength absorption peaks (>600 nm) 
are often observed for some functional groups that are present in terrestrial humic 
substances (fulvic and humic acids) in riverine ecosystems (see chapter “Colored 
and Chromophoric Dissolved Organic Matter (CDOM) in Natural Waters”). 
Therefore, changes in functional groups or molecules bound to PSI and PSII, which 
take place through either photoinduced or microbial processes, may affect the 
absorption peaks. Note that peaks appearing in the green region (500–600 nm) are 
small compared to those located in the blue (<500 nm) and red (>600 nm) regions 
(Aguirre-Gomez et al. 2001).

Considering the previously reported findings, the following suggestions can 
be followed for Chl determination: First, measurement of Chl a should be con-
ducted only at a single wavelength, not at several ones. The most suitable is at 
around 665–675 nm, and absence of light should be ensured during sample 
 processing and measuring. Second, Chl b should be measured only at around 
643–650 nm. In earlier studies, the measurement of Chl b has been carried out 
using its absorption peaks at 465–470 or 483, 585–595 and 643–650 nm, but only 
the latter  provides sufficiently accurate results (Satoh et al. 2001; Aguirre-Gomez 
et al. 2001; Bidigare et al. 1989; Millie et al. 1997). Some differences in absorp-
tion wavelengths in Chl b can be caused by the occurrence of various forms of 
this Chl, as mentioned before. The third issue is that Chl c should be detected at 
630–639 nm, although earlier studies have adopted absorption peaks at  465–470, 
589, and 630–639 nm (Bidigare et al. 1989; Millie et al. 1995, 1997). The many 
absorption peaks used in earlier studies, in particular at short wavelengths, should 
not be adopted for the measurement of any Chl molecule. The reason is that 
absorbance at shorter wavelengths has been observed for other pigments that could 
interfere with Chl determination, such as hycoerythrin (detected at 543–550 and 
566–568 nm) (Payri et al. 2001; Smith and Alberte 1994); phycoerythrocyanin 
(~550 nm and ~575 nm) (Millie et al. 2002); phycocyanin (625–630 nm) (Payri 
et al. 2001; Millie et al. 2002); fucoxanthin (521–531 nm) (Bidigare et al. 1989); 
and different carotenoids (490–495 nm) (Millie et al. 1997; Owens et al. 1987). 
Furthermore, CDOM absorbs radiation in lower wavelength regions (250–500 nm) 
because of the functional groups present in allochthonous and autochthonous 

http://dx.doi.org/10.1007/978-3-642-32223-5_4
http://dx.doi.org/10.1007/978-3-642-32223-5_4
http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_6
http://dx.doi.org/10.1007/978-3-642-32223-5_6
http://dx.doi.org/10.1007/978-3-642-32223-5_4
http://dx.doi.org/10.1007/978-3-642-32223-5_4
http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_6
http://dx.doi.org/10.1007/978-3-642-32223-5_6
http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_5
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organic substances (see chapter “Colored and Chromophoric Dissolved Organic 
Matter (CDOM) in Natural Waters”).

3  Distribution of Chlorophyll (Chl a)

Chl a concentrations are significantly varied in the water column, where a given 
set of parameters may lead to either a surface or a subsurface Chl a maximum 
(SCM), or to a deep Chl a maximum (DCM) (Huisman et al. 2006; Riley et al. 
1949; Bainbridge 1957; Steele and Yentsch 1960; Anderson 1969; Derenbach et 
al. 1979; Dortch 1987; Viličić et al. 1989; Bjørnsen and Nielsen 1991; Donaghay  
et al. 1992; Huisman and Weissing 1995; Djurfeldt 1994; Gentien et al. 1995; 
Odate and Furuya 1998; Huisman et al. 1999; Dekshenieks et al. 2001; Franks 
and Jaffe 2001; Klausmeier and Litchman 2001; Diehl 2002; Rines et al. 2002; 
Yoshiyama and Nakajima 2002; Arístegui Ruiz et al. 2003; Hodges and Rudnick 
2004; Matondkar et al. 2005; Weston et al. 2005; Lund-Hansen et al. 2006; 
Beckmann and Hense 2007; Hense and Beckmann 2008; Hopkinson and Barbeau 
2008; Whitehouse et al. 2008; Yoshiyama et al. 2009; Lu et al. 2010; Martin et al. 
2010; Ryabov et al. 2010; Velo-Suárez et al. 2010). The location of the maximum 
is entirely determined by the environmental conditions. The cited studies have 
shown that SCM and DCM of phytoplankton can occur in a variety of conditions 
in lake and marine waters. They can range in the vertical dimension from centime-
ters to a few meters, and have been observed to extend horizontally for kilometers.

3.1  Surface or Subsurface Chl a Maximum

The surface or subsurface Chl a maximum (SCM) is detected in the surface layer, 
which varies in different waters and may range between 0–25 m in lakes and 
0–30 m or more in seawater (Fig. 3a; Table 1) (Fu et al. 2010; Mostofa K et al. 
unpublished data; Apollonio 1980; Vicente and Miracle 1984; Kimor et al. 1987; 
Pedros-Alio et al. 1987; Millán-Núñez et al. 1996; Gomes et al. 2000; Guildford 
and Hecky 2000; Li and Harrison 2001; Echevin et al. 2004; Koné et al. 2005; 
Camacho 2006; Ediger et al. 2006; Parab et al. 2006; Roy et al. 2006; Satoh  
et al. 2006; Sawatzky et al. 2006; Yacobi 2006; Norrbin et al. 2009; Xiu et al. 
2009; Zhu et al. 2009; Hamilton et al. 2010). According to these studies, SCM 
can be defined as a zone of maximum photosynthetic activity that shows the high-
est Chl a contents. It occurs in the upper surface layer of the euphotic zone in the 
presence of strong light, high DOM contents and nutrients, and under high tem-
perature as well as low or high turbulence. It is a remarkable feature of highly tur-
bid water in the surface layer of stagnant natural waters, particularly in lakes and 
oceans. High variation with depth of SCM in seawater is presumably caused by an 
increase of the surface-water mixing zone, due to strong wind and wave compared 

http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_5
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to conditions in lakes. An upper-surface mixed layer commonly occurs in lakes 
and oceans, due to mechanical perturbation of surface waters (e.g. by wind, waves 
and storms) (Deuser 1987; Venrick 1993; Law et al. 2003; Moum et al. 1989; 
Brainerd and Gregg 1995). It is characterized by strong turbulent mixing, up to a 
depth of approximately 30–200 m or more. Note that few studies have reported the 
occurrence of DCM (or subsurface Chl a maximum) at a depth of 5–25 m or more 
(Table 1) (Parab et al. 2006; Sawatzky et al. 2006; Xiu et al. 2009; Hamilton et al. 
2010; Fee 1976; Sommaruga and Augustin 2006). Considering the surface mixing 
zone of the water column, it might be supposed to have a similar meaning as the 
surface Chl a maximum (SCM). A high content of Chl a at a depth of 5–15 m may 
be due to the occurrence of strong photoinduced degradation of Chl a in the upper 
surface layer, e.g. at 0–4 m depth. Note that subsurface Chl a maxima have been 
considered as DCM in several earlier studies, while in this chapter a similar mean-
ing (SCM) is adopted for the subsurface Chl a maximum (at e.g. 5–15 m depth) 
and for the surface Chl a maximum (0–30 m depth). SCM should thus be well 
differentiated from DCM to avoid any confusion. Such a rationalization could be 
useful to avoid confusion between SCM and DCM in future studies.
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Fig. 3  Vertical changes in the chlorophyll a (a) and dissolved organic carbon (DOC) concen-
trations (b) in monthly collected samples from Lake Biwa and Error bars indicate the standard 
deviation Data source Mostofa et al. (2005), Mostofa KMG et al. (unpublished data)
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SCM is often observed in coastal seawater and subsequently decreases in the 
offshore direction, whereas DCM is increased along the offshore direction with 
its enhanced depth (Millán-Núñez et al. 1996; Hayward et al. 1995; Maranón et 
al. 2004). Chl a values are quite high in SCM in coastal seawater, and decrease 
much more rapidly in the offshore direction (Millán-Núñez et al. 1996; Echevin 
et al. 2004). The occurrence of SCM in coastal seawater is possibly responsible 
for the high contents of DOM and nutrients, which is a general phenomenon in 
coastal environments. High contents of DOM can protect surface waters against 
sunlight exposure (Laurion et al. 2000; Hayakawa and Sugiyama 2008), and the 
photoproducts generated from photoinduced degradation of DOM and POM can 
enhance photosynthesis. The consequence is SCM formation in surface waters. 
For similar reasons, SCM is limited at the epilimnion (~0–5 m) in Lake Kinneret, 
Lake Hongfeng (4–5 m), Lake Baihua (0–2 m); Lake Biwa (2.5–10 m) and Lake 
Baikal (~0–30 m, with a peak at 10 m). DOC concentrations are quite higher 
(258–485 μM C) in Lake Kinneret compared to Lake Hongfeng (134–250 μM C 
at 0–25 m), Lake Baihua (157–330 μM C at 0–25 m), Lake Biwa (76–135 μM 
C at 0–80 m), and Lake Baikal (88–142 at 0–1,620 m) (Table 1) (Fu et al. 2010; 
Mostofa KMG et al. unpublished data; Satoh et al. 2006; Yacobi 2006; Berman  
et al. 1995; Yoshioka et al. 2002, 2007; Annual Report 2004; Sugiyama et al. 
2004; Yuma et al. 2006; Mostofa et al. 2005). The overall penetration depth in 
Lake Kinneret was on average 1.77 m, and the uppermost layer is supposed to be 
representative of the entire euphotic zone (Yacobi 2006). Therefore, it is suggested 
that DOM and mechanical perturbation of surface waters (e.g., by wind, waves 
and storms), which also depends on the depth and size of the water ecosystem 
(particularly for lakes), are the two key factors for SCM formation.

Lakes having high water temperature (WT) often exhibit the SCM in the 
epilimnion, such as Lake Hongfeng (10.9–47.8 μg L−1 at 4–5 m and 15.3–
31.0 °C), Lake Baihua (15.0–65.5 μg L−1 at 0–2 m and 15.3–31.0 °C), Lake Biwa 
(2.0–12.3 μg L−1 at 2.5–10 m and 11.6–28.7 °C), Lake Kinneret (95 % of Chl a at 
0–5 m and 15–30 °C), Lake Baikal (0.7–5.8 μg L−1 at 0–30 m and 16.5–17.9 °C); 
Lake Malawi (0.03–18.7 μg L−1 at upper mixing layer and ~40 °C); Lake Victoria 
(4.7–78.5 μg L−1 at upper mixing layer and 25–29 °C) and Lakes of Experimental 
Lakes Area (<311–327 μg L−1 at 5–7 m and 4–20 °C) (Table 1) (Fu et al. 2010; 
Mostofa K et al. unpublished data; Guildford and Hecky 2000; Satoh et al. 2006; 
Yacobi 2006; Fee 1976; Berman et al. 1995; Mostofa et al. 2005). Therefore, high 
contents of DOM in surface water under high WT, driven by strong sunlight, can 
photochemically decompose DOM and POM to produce high amounts of DIC, 
CO2, and H2O2. These species are directly linked with occurrence of high pho-
tosynthesis and high primary production. Moreover, in mesocosm experiments 
it has been observed that increasing DOM concentrations from ~10 mg C. L−1 
to ~20 mg C. L−1 had a negative effect on total phytoplankton growth. The most 
likely explanation is the reduction of irradiance because of radiation absorption by 
DOM (Klug 2002).

DOC concentrations are relatively low in the offshore direction, which may afford 
easy penetration of sunlight (UVR) that can reach the deeper layers. This issue may 
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increase the photosynthetic layer depth in the water column, i.e. increase the DCM 
depth. A significant contribution to Chl a may come from phytoplankton in deeper 
layers, in the case of a low-DOC lake water when UV attenuation increases with 
Chl a concentrations (Laurion et al. 2000). Moreover, the mixing depth can play an 
important role in SCM or DCM formation in lakes or oceans. A low mixing depth 
can often induce SCM formation, whilst high mixing depth can cause DCM forma-
tion. For example, SCM formation (~0–15 m) occurs when mixed-layer depth is low 
(3–15 m), whilst DCM formation (~65 m) takes place when the mixed-layer depth is 
high (e.g. 33 m in East China Sea) (Hung et al. 2000).

The Chl a concentrations in Lake Biwa are several times (~15–24) higher at 
the epilimnion (0–10 m), compared to those of deeper layers (40 and 70 m)  during 
the summer stratification period (Mostofa KMG et al. unpublished data). SCM is 
often observed during autumn, e.g. November in 1999 and October in 2000 at the 
epilimnion. Chl concentration largely fluctuates and it is lower during the sum-
mer stratification period compared to early spring and autumn seasons (Fig. 3a) 
(Mostofa KMG et al. unpublished data). The low Chl a contents in SCM and its 
fluctuation during the summer stratification period is presumably caused by pho-
todegradation induced by strong sunlight, coupled with high WT (maximum 
28.7 °C). However, an early bloom in 2000 compared to 1999 was probably caused 
by a longer summer period. WT was 26.8 to 21.9 °C during September–October 
in 1999, which is lower compared to 2000 (WT: 23.6 to 19.5 °C at the same time).

Moreover, reduction of water clarity through eutrophication can cause a shift in 
phytoplankton distributions, from a DCM in spring or summer to a SCM within the 
surface mixed layer. This may happen when the depth of the euphotic zone is con-
sistently shallower than the depth of the surface mixed layer (Hamilton et al. 2010). 
Such a SCM, which is susceptible to occur because of high primary production in 
spring or summer, is initially caused by the photoinduced generation of photoprod-
ucts in waters. Simultaneously, the decrease of primary production because of pho-
toinduced degradation does not predominantly occur during that period. Therefore, 
the new primary production may prevail over photoinduced degradation processes. 
The DOM that is generated as a consequence of the high primary production can 
substantially absorb sunlight and cause the depth of the euphotic zone to be shallow.

These results may suggest that two important phenomena account for the 
occurrence of SCM and DCM in natural waters: First, waters with high contents of 
DOM and POM can have intense solar radiation in the surface layer. In contrast, 
photoproducts (DIC, CO2, H2O2, and so on) are generated photochemically under 
high WT (caused by strong sunlight) from DOM and POM. They are responsible 
for the occurrence of high photosynthesis, with the consequence that high primary 
production can form SCM in surface waters. The second phenomenon is that water 
with low contents of DOM and POM lets sunlight to penetrate in the deeper water 
layer. Photoinduced or microbial products (DIC, CO2, H2O2, nutrients, and so on) 
are generated from DOM and POM and are responsible for occurrence of photo-
synthesis. As a consequence, enhanced primary production at depth can produce 
DCM in deep water. The two described phenomena are extensively discussed in 
the next sections.



714 K. M. G. Mostofa et al.

3.1.1 Mechanism of SCM Formation

SCM is driven by sunlight and it is formed during the summer stratification period 
in waters with high contents of DOM and POM and high temperature. High con-
tents of DOM (of both allochthonous and autochthonous origin) and POM (e.g. 
algae) along with Chl a or phytoplankton, together with incident light wavelengths 
or solar zenith angle are the main limiting factors for sunlight in the surface layer 
(see also chapter “Colored and Chromophoric Dissolved Organic Matter (CDOM) 
in Natural Waters” for detailed description) (Laurion et al. 2000; Hayakawa and 
Sugiyama 2008; Markager and Vincent 2000; Belzile et al. 2002; Shank et al. 2005; 
Zhao et al. 2009). High contents of DOM and POM are thus responsible for hav-
ing most of the sunlight intensity in the upper surface layer. Therefore, most of the 
photoinduced degradation processes would occur in the surface layers or in epilim-
nion. OM including DOM and POM is one of the key factors that can produce nutri-
ents (NO3

−, NH4
+ and PO4

3−) and various photo- and microbial products (H2O2, 
CO2, DIC, LMW DOM, and so on) (see also chapters “Dissolved Organic Matter 
in Natural Waters , Photoinduced and Microbial Degradation of Dissolved Organic 
Matter in Natural Waters ”, “Photosynthesis in Nature: A New Look” and “Impacts 
of Global Warming on Biogeochemical Cycles in Natural Waters”) (Zepp et al. 
1987; Palenik et al. 1987; Palenik and Morel 1988; Cooper and Lean 1992; Miller 
and Zepp 1995; Bushaw et al. 1996; Graneli et al. 1996, 1998; Miller and Moran 
1997; Sarthou et al. 1997; Gao and Zepp 1998; Jørgensen et al. 1998; Bertilsson et 
al. 1999; Bertilsson and Tranvik 2000; Anesio and Granéli 2003; Scully et al. 2003; 
Obernosterer and Benner 2004; Ma and Green 2004; Croot et al. 2005; Molot et al. 
2005; Johannessen et al. 2007; Kujawinski et al. 2009; Mostofa and Sakugawa 2009; 
Finlay et al. 2009; Stets et al. 2009; Jiao et al. 2010; Liu et al. 2010; Lohrenz et al. 
2010; Omar et al. 2010; White et al. 2010; Zepp et al. 2011; Borges et al. 2008). All 
these species can influence photosynthesis directly and indirectly in waters.

Photoinduced degradation of DOM and POM (e.g. degradation of phytoplank-
ton) can be described as follows:

where DIC is usually defined as the sum of an equilibrium mixture of dissolved 
CO2, H2CO3, HCO3

−, and CO3
2−.

Microbial degradation of DOM and POM is as follows:

The mechanism behind the formation of SCM might be that H2O2, photogen-
erated intracellularly in a photosynthetic cell or extracellularly from DOM and POM 
in surface waters can induce photosynthesis in the presence of CO2 or DIC (dissolved 
CO2, H2CO3, HCO3

−, CO3
2−). Dependence of photosynthesis by aquatic microor-

ganisms on OM (DOM and POM) is extensively documented in the literature (see 

(3.1)

DOM + POM + hυ → H2O2 + CO2 + DIC + LOW DOM + NO3
−

+ NO2
−

+ PO4
3−

+ autochthonous DOM + others

(3.2)

DOM + POM + microbes →H2O2 + CO2 + DIC + LOW DOM + NO3
−

+ PO4
3−

+ autochthonous DOM + others

http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_5
http://dx.doi.org/10.1007/978-3-642-32223-5_1
http://dx.doi.org/10.1007/978-3-642-32223-5_1
http://dx.doi.org/10.1007/978-3-642-32223-5_4
http://dx.doi.org/10.1007/978-3-642-32223-5_4
http://dx.doi.org/10.1007/978-3-642-32223-5_7
http://dx.doi.org/10.1007/978-3-642-32223-5_10
http://dx.doi.org/10.1007/978-3-642-32223-5_10
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Sect. 5.5, chapter “Photosynthesis in Nature: A New Look”). It has recently been 
shown that dissolved O2 is significantly related to benthic or sestonic Chl concen-
tration (Heiskary and Markus 2003; Miltner 2010). Moreover, a 10 mg L−1 differ-
ence between daytime and nighttime dissolved O2 concentrations was observed at 
an enriched site, where benthic Chl a levels exceeded 500 mg m−2 (Sabater et al. 
2000). Variation in dissolved O2 concentration forced by algal respiration is an impor-
tant link between increasing nutrients and decreasing biological quality, as shown in a 
study of medium to large rivers (Heiskary and Markus 2003). These findings are con-
sistent with the hypothesis that photoinduced formation of H2O2 from dissolved O2 
may be involved in SCM formation or primary production. Correspondingly, when 
cyanobacterial blooms are accumulated as scums in surface waters, prolonged expo-
sure to UV radiation can cause enhanced carotenoid production, which can subse-
quently increase Chl a-specific photosynthetic production of O2 (Jeffrey et al. 1997).

3.2  Deep Chl a Maximum

The Deep Chl a maximum (DCM) is a well-known phenomenon occurring in the 
presence of maximal Chl a contents in the deeper layer of the euphotic zone of the 
water column (Table 1) (Fennel and Boss 2003; Letelier et al. 2004; Huisman et al. 
2006; Steele and Yentsch 1960; Anderson 1969; Klausmeier and Litchman 2001; 
Hodges and Rudnick 2004; Beckmann and Hense 2007; Hense and Beckmann 
2008; Ryabov et al. 2010; Pérez et al. 2007; Gomes et al. 2000; Camacho 2006; 
Sawatzky et al. 2006; Fee 1976; Kiefer et al. 1972; Cullen 1982; Moll and 
Stoermer 1982; Abbott et al. 1984; Pick et al. 1984; Steinhart et al. 1994; Varela 
et al. 1994; Budy et al. 1995; Ediger and Yilmaz 1996; Gross et al. 1997; Goericke 
and Welschmeyer 1998; Marañón et al. 2000; Wurtsbaugh et al. 2001; Cuny et al. 
2002; Pérez et al. 2002; Tittel et al. 2003; Barbiero and Tuchman 2004; Chapin 
et al. 2004; Holm-Hansen and Hewes 2004; Park et al. 2004; Ghai et al. 2010; 
Johnson et al. 2010; Harrison and Smith 2011; Mellard et al. 2011). According to 
these studies, DCM can be defined as a zone of maximum photosynthetic activ-
ity with highest Chl a contents. It is usually a region lacking a pronounced den-
sity gradient, generally occurring in or below the thermocline (the metalimnion). 
It is a stable and common feature occurring in the presence of sufficient light and 
nutrients under low temperature and low turbulence, and it is a remarkable char-
acteristic of clear water with low nutrients in the deep layer, particularly in lakes 
and oceans. The DCM is a stable feature in tropical waters whilst it is a seasonal 
phenomenon in the Mediterranean and other temperate waters, following seasonal 
changes in incident light intensity and nutrient conditions (Letelier et al. 2004; 
Huisman et al. 2006; Ghai et al. 2010). The DCM is found to vary from 20 to 
350 m in lakes and from 30 to 139 m in oceans (Table 1).

DCM is entirely different in Lake Superior and Lake Michigan. It is observed 
in the upper hypolimnion at a depth of 23–35 m in Lake Superior, whilst its depth 
in Lake Michigan changes seasonally. Depth varies from 15 to 30 m during early 
thermal stratification primarily in June, to 25–50 m by mid-stratification in July, 

http://dx.doi.org/10.1007/978-3-642-32223-5_7
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and finally reaches 40–70 m in August (Barbiero and Tuchman 2004; Moll et al. 
1984; Fahnenstiel and Scavia 1987). It has been shown that WT is relatively higher 
(3–24 °C) in Lake Michigan than in Lake Superior (6–18 °C), and high WT along 
with DOM contents may affect the DCM depth variation in Lake Michigan. Redfish 
Lake and other Sawtooth Valley (Idaho) lakes had DCM with mean Chl a peaks 
reaching 240–1,000 % of the mean epilimnetic Chl a concentrations. The DCM can 
be present at low light levels and account for 36.72 % of the lake primary produc-
tion (Gross et al. 1997). The Sawtooth Valley lakes have DCM Chl values that can 
be up to 10 times higher in the metalimnia and hypolimnia than in the epilimnia 
(Steinhart et al. 1994; Budy et al. 1995). The DCM in the Sawtooth Valley lakes 
are located at depths where the light levels are near or below 1 % of surface light 
(Gross et al. 1997).

Seasonal changes in mixing and light intensity can produce a seasonal reset of Chl 
distributions, which can alter the DCM or SCM formation and ablation as a regime 
shift (Hense and Beckmann 2008; Hamilton et al. 2010; Abbott et al. 1984; Vincent 
1983; Vincent et al. 1984; Marshall and Peters 1989; Bayley et al. 2007; Carpenter 
et al. 2003). Three different ‘regimes’ can occur during the seasonal occurrence of a 
DCM in Lake Tahoe, with transitions alternatively controlled by diffusion, nutrient 
supply and light (Abbott et al. 1984). Seasonal changes of DCM in the water column 
can depend on the depth of light penetration, which can largely affect DCM depth 
during the summer stratification period (Hamilton et al. 2010). Seasonal variations in 
the water-column attenuation coefficient of the photosynthetically available radiation 
(PAR) can shift the 1 % sea-surface PAR depth from approximately 105 m in winter to 
121 m in summer, in the North Pacific Subtropical Gyre (Letelier et al. 2004). Such a 
seasonal depth shift of isolumes (constant daily integrated photon flux strata) can also 
be increased to 31 m due to the added effect of changes in sea-surface PAR (Letelier et 
al. 2004). Such a discrepancy can induce a significant deepening of the DCM during 
the summer period, with a concomitant increase in Chl a (Letelier et al. 2004).

The DCM phytoplankton contains higher amounts of phosphorus than for the 
epilimnion, which is likely caused by the rapid photochemical degradation of 
SCM phytoplankton in epilimnion. Nutrient-rich DCM might be useful as a food 
source for grazers, including deep-living calanoid copepods that may have a sub-
stantial impact on total lake phytoplankton productivity (Barbiero and Tuchman 
2004; Moll et al. 1984). The DCM also releases the new DOM and nutrients in 
the hypolimnion under microbial assimilation (Rochelle-Newall and Fisher 2002; 
Maurin et al. 1997; Yamashita and Tanoue 2008). Phytoplankton from DCM do 
not show marked differences from epilimnetic communities in taxonomy or nutri-
ent status, but can exhibit substantially higher photosynthetic impairment under 
UVR exposure (Harrison and Smith 2011). This suggests that epilimnetic phyto-
plankton can be acclimated to in situ light conditions in a spectrally-specific man-
ner, and that ultraviolet-A radiation may be a stronger stressor than ultraviolet-B 
or photosynthetically active radiation in the mixed layers of lakes (Harrison and 
Smith 2011). DCM has varying characteristics that suggest multiple processes 
contributing to its formation and maintenance in lakes and oceans (Anderson 
1969; Steele 1964; Hobson and Lorenzen 1972).
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3.2.1 Mechanism of DCM Formation

It has been shown that DCM is generally developed in clear water at low tem-
perature. The main effect of these conditions result is the penetraton of radiation 
into deep water, in which case photosynthesis can enhance the primary production 
and produce the DCM in deeper water. The mechanism behind DCM formation is 
presumably that H2O2 and HCO3

− produced in the DCM water layer are suscepti-
ble to take part in phytoplankton photosynthesis. It has been shown that DIC (dis-
solved CO2, H2CO3, HCO3

−, CO3
2−) is mostly produced from particulate organic 

matter (POM: e.g. algae or cyanobacteria) and DOM microbiologically in natu-
ral waters as well as under in situ experiments (Ma and Green 2004; Finlay et al. 
2009; Stets et al. 2009; Jiao et al. 2010). Correspondingly, most H2O2 can be pro-
duced either from algae (cyanobacteria or phytoplankton or biota) or from DOM, 
by several biological or photochemical processes (see also chapter “Photoinduced 
and Microbial Generation of Hydrogen Peroxide and Organic Peroxides in 
Natural Waters” for more references and description) (Palenik et al. 1987; Palenik 
and Morel 1988; Cooper and Lean 1992; Sarthou et al. 1997; Croot et al. 2005; 
Mostofa and Sakugawa 2009; Zepp et al. 1987; Angel et al. 1999; Wentworth et al. 
2000; Wentworth et al. 2001; Moreno 2012; Moffett and Zafiriou 1990). Such pro-
cesses are: (i) extracellular phenomena, (ii) biological processes such as glycolate 
oxidation during photorespiration, (iii) enzymatic reduction of oxygen at the cell 
surface, and (iv) microbial degradation of DOM under dark incubation. Most phy-
toplankton cells have the enzyme superoxide dismutase (SOD), which can catalyse 
the conversion of superoxide to H2O2. This is one of the many biological reactions 
that produce H2O2 in seawater (Croot et al. 2005).

In a field study, dark production of H2O2 was highest at 40–60 m depth and the 
corresponding DCM was detected at 90 m. The finding suggests that photosynthe-
sis, which causes the DCM may reduce the dark production of H2O2 at 90 m depth 
(Palenik and Morel 1988). Simultaneously, the increase in pigment production 
caused by phytoplankton under the low-light conditions of the DCM layer (Steele 
1964; Hobson and Lorenzen 1972; Kiefer et al. 1976) may lead to high contents 
of H2O2 and contribute to DCM formation. Note that pigments made up of Chls 
can rapidly absorb light energy upon irradiation. Radiation absorption can excite 
an electron to form the superoxide radical anion (O2•−) and then H2O2 (see chap-
ters “Photosynthesis in Nature: A New Look” and “Photoinduced and Microbial 
Generation of Hydrogen Peroxide and Organic Peroxides in Natural Waters”). The 
H2O2 concentration increase at the depth of the Chl maximum is possibly due to 
biological production (Croot et al. 2005). The formation of H2O2 by phytoplankton 
in the DCM layer can be supported by the observation that Chattonella marina, a 
harmful algal bloom species, is capable of producing reactive oxygen species (ROS) 
including O2•−, H2O2, and HO• at levels 100 times higher than those produced by 
most algae (Marshall et al. 2002; Oda et al. 1998). ROS are often produced as by-
products of various metabolic pathways localized in mitochondria, chloroplasts, 
and peroxisomes (see also chapter “Photosynthesis in Nature: A New Look”) (Apel 
and Hirt 2004). The presence of the cyanobacterium Microcystis sp. can produce 
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a buildup of apoptosis-inducing ROS in the competing dinoflagellate Peridinium 
gatunense (Vardi et al. 2002). A distinct H2O2 maximum at depth in the Southern 
Ocean can correspond to a DCM, which also suggest a significant biological source 
of H2O2 (Sarthou et al. 1997; Croot et al. 2005). The decay of H2O2 apparently fol-
lows first-order kinetics (Petasne and Zika 1997; Yuan and Shiller 2001) and is bio-
logically mediated by small microorganisms (Petasne and Zika 1997).

Filtration of seawater to remove the biota typically produces a dramatic reduc-
tion in the decay rate of H2O2 (Moffett and Zafiriou 1990; Petasne and Zika 1997; 
Fujiwara et al. 1993), whilst the amount of colloidal material influences the decay 
rate (Yuan and Shiller 2001). H2O2 may be concentrated by particulate organic 
matter or small fungi through rapid transpiration (Komissarov 1994, 1995, 2003). 
The decay process of H2O2 can be explained in two ways: one is the uptake possi-
ble of H2O2 by microorganisms during photosynthesis, the other is the decomposi-
tion of H2O2 by catalases and peroxidases bound to microorganisms. Catalases and 
peroxidase can enzymatically activate H2O2 to detoxify it to H2O (see also chap-
ter “Photoinduced and Microbial Generation of Hydrogen Peroxide and Organic 
Peroxides in Natural Waters”) (Moffett and Zafiriou 1990). Moreover, conversion of 
H2O2 to H2O by catalases and peroxidases could play a key role in photosynthesis 
and needs further study to clarify the possible links. Note that dark reduction of CO2 
may take place because of the electrons that are released by organic molecules and 
sulfide (Jagannathan and Golbeck 2009). Some important phenomena relevant to this 
context are extensively discussed in the photosynthesis chapter (“Photosynthesis in 
Nature: A New Look”).

3.3  Changes in the Chl a Concentrations in Natural Waters

Chl a concentrations undergo significant variations in the water column, which 
can be seasonal, spatial and temporal depending on various factors that charac-
terize water (Bianchi et al. 2002; Sommaruga and Augustin 2006; Biggs 2000;  
de Moraes Novo et al. 2006; Duan and Bianchi 2006; Lewis et al. 2010).

Streams and Rivers

Chl a concentrations range from 0.0 to 280 μg L−1 in streams and rivers (Table 1) 
(Miltner 2010; Chessman 1985; Lohman and Jones 1999; van Nieuwenhuyse and 
Jones 1996; Basu and Pick 1997; Gao et al. 2004; Guéguen et al. 2006; Morgan 
et al. 2006; Devercelli and Peruchet 2008; Palmer-Felgate et al. 2008; Royer  
et al. 2008; Longing and Haggard 2010; Calijuri et al. 2008). The highest Chl a 
concentrations in freshwater riverine ecosystems are in the order of <280 μg L−1 
in River Alne (Warwickshire, UK); <263 μg L−1 in Red River and its basin (USA); 
<240 μg L−1 in River Arrow (Warwickshire, UK); <216 μg L−1 in Paraná River 
basin (South America); <170 μg L−1 in temperate streams (USA); <100 μg L−1 

http://dx.doi.org/10.1007/978-3-642-32223-5_2
http://dx.doi.org/10.1007/978-3-642-32223-5_2
http://dx.doi.org/10.1007/978-3-642-32223-5_7
http://dx.doi.org/10.1007/978-3-642-32223-5_7


719Chlorophylls and their Degradation in Nature 

in River Avon (Warwickshire, UK); <97 μg L−1 in streams and rivers (USA); 
<65 μg L−1 in La Trobe River Streams (Victoria, Australia); <44.6 μg L−1 in 
Ozark Streams (Missouri, USA); <27 μg L−1 in Rideau River (Ontario, Canada); 
<18.0 μg L−1 in sStreams and rivers (Illinois, USA); <17 μg L−1 in Chalk stream 
(UK); and 0.0–12.7 μg L−1 in other studied systems (Table 1).

Chl a mostly results from in-channel production rather than from tributary or out-
side inputs. Chl a concentrations in the Pearl River are high only during summer low-
flow periods and are often controlled by temperature and by CDOM concentration 
(Duan and Bianchi 2006). Lower phytoplankton biomass (dominated by chlorophytes) 
in the Pearl River is likely linked with intense shading by CDOM and lower avail-
ability of nutrient inputs (Duan and Bianchi 2006). High concentrations of Chl a (0.4–
170 μg L−1) are strongly correlated with high contents of phosphorus (5–1,030 μg 
L−1) in temperate streams (van Nieuwenhuyse and Jones 1996). Chl a concentra-
tions in the lower Mississippi River are high in summer low-flow periods and also 
during interims of winter and spring. They are not coupled with physical variables 
or nutrients, likely due to a combination of in situ production and inputs from reser-
voirs, navigation locks and oxbow lakes in the upper Mississippi River and Missouri 
River (Duan and Bianchi 2006). The high, diatom-dominated phytoplankton biomass 
in the lower Mississippi River is likely the result of decreasing total suspended sol-
ids (because of increased damming in the watershed) and increasing nutrients (due to 
enhanced agricultural runoff) over the past few decades (Duan and Bianchi 2006).

Lakes and Reservoirs

Chl a concentrations are significantly variable, from 0.01 to 850 μg L−1 in a vari-
ety of lakes (Table 1) (Carrillo et al. 2002; Kasprzak et al. 2008; Fu et al. 2010; 
Mostofa KMG et al. unpublished data; Vicente and Miracle 1984; Pedros-Alio et 
al. 1987; Guildford and Hecky 2000; Camacho 2006; Satoh et al. 2006; Sawatzky  
et al. 2006; Hamilton et al. 2010; Fee 1976; Sommaruga and Augustin 
2006; Yuma et al. 2006; Kiefer et al. 1972; Gross et al. 1997; Barbiero 
and Tuchman 2004; Fahnenstiel and Scavia 1987; de Moraes Novo  
et al. 2006; Aizaki et al. 1981; Rojo and Miracle 1987; Dasí and Miracle 
1991; Miracle et al. 1993; Windolf et al. 1996; Camacho 1997; Yoshioka 
1997; Biddanda et al. 2001; Kahlert 2002; Laurion et al. 2002; Bachmann  
et al. 2003; Camacho et al. 2003; Straškrábová et al. 2005; Blindow et al. 
2006; Silsbe et al. 2006; McCallister and del Giorgio 2008; Striebel et al. 
2008; Antoniades et al. 2009; James et al. 2009; Pan et al. 2009; Winder  
et al. 2009; Lv et al. 2011; Wang et al. 2012; Liu et al. 2011; Zhang et al. 2007; 
Rae et al. 2001). These studies demonstrate that the highest detected Chl a concen-
trations can be ordered as follows: <850 μg L−1 in Lake Cisó (Spain); <327 μg 
L−1 in lakes of the Experimental Lakes Area (northwestern Ontario, Canada); 
<298 μg L−1 in Lake Arcas (Spain); <276 μg L−1 in several shallow Danish lakes; 
<265 μg L−1 in numerous Florida Lakes; <189.8 μg L−1 in Subtropical and urban 
shallow Lakes (Wuhan, China); <189 μg L−1 in several lakes in Japan; <175.9 μg 
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L−1 in several lakes in Germany; <145 μg L−1 in Lake Börringesjön (Sweden); 
<133.22 μg L−1 in several Chinese lakes; <~110 μg L−1 in Lake Victoria; <90 μg 
L−1 in Lake El Tobar (Spain); <89.2 μg L−1 in Amazon flood plain lakes (shallow 
lakes: 1–3 m depth); <82.1 μg L−1 in Lake Kizaki (Japan); <66.93 μg L−1 in Lake 
Baiyangdian (China); <65.5 μg L−1 in Lake Hongfeng and Lake Baihua (China); 
<60 μg L−1 in Lake Okeechobee (USA) and Lake Krankesjön (Sweden); 53.4 μg 
L−1 in Lake Bansee (Germany); 52.7 μg L−1 in Lake Mitchell (USA); 40.49 μg 
L−1 in Lake Medicine (Canada); <30 μg L−1 in Lake Taihu (China); 26.9 μg L−1 
in Lake Thalersee (Germany); 25.16 μg L−1 in Lake Eagle (Canada); <25 μg L−1 
in Lake La Cruz (Spain); 20.2 μg L−1 in Lake Johanna; <18.7 μg L−1 in Lake 
Malawi (Africa); <18.1 μg L−1 in large Northwestern Ontario lakes; <15 μg L−1 
in Lake La Parra and Lake Lagunillo del Tejo (Spain); <12.3 μg L−1 in Lake Biwa 
(Japan); 11.57 μg L−1 in Lake Josephine (USA); 0.03–10.0 μg L−1 in other lakes 
studied including relatively low Chl a concentrations in some famous lakes such as 
in Lake Superior (<0.73 μg L−1); Lake Michigan (< ~ 8.0 μg L−1), Lake Baikal 
(<5.8 μg L−1) and Lake Tanganyika (<4.5 μg L−1) (Table 1).

In Lake Biwa, Chl a concentration ranged from 2.1 to 12.3 μg L−1 in the 
upper epilimnion (2.5 and 10 m), from 0.5 to 10.7 μg L−1 in the deeper epilim-
nion (20 m), and from 0.1 to 3.3 μg L−1 in the hypolimnion (40 and 70 m)  during 
the summer stratification period (Fig. 3a) (Mostofa KMG et al. unpublished data). 
From January to March, Chl a (2.0–4.0 μg L−1) was almost uniformly distributed 
throughout the entire water column, due to vertical mixing during the overturn 
period (Fig. 3a) (Mostofa et al. 2005).

The summer maximum of Microcystis biomass in Lake Taihu peaked at 
112.0 mg L−1 in August 1998, which accounted for 94.5 % of the total phytoplank-
ton biomass. In contrast, Chl a concentrations varied from approximately 5–30 μg 
L−1 (Table 1) (James et al. 2009; Liu et al. 2011). It has also been shown that the 
annual cycles of WT showed a regular summer peak each year in lake Taihu, in 
accordance with fluctuations in Microcystis biomass. WT reached almost up to 
30 °C during summer and declined to 5 °C by January (Liu et al. 2011). However, 
WT is relatively high (14.5–30.2 °C) in Lake Okeechobee (USA) that showed sub-
stantially high contents of Chl a (10–60 μg L−1, Table 1) (James et al. 2009).

In two eutrophic lakes, e.g. Lake Hongfeng and Baihua (Southwestern China), 
Chl a concentration showed the highest level (44–66 μg L−1) in the epilimnion 
(0–6 m) in July, during the summer stratification period (Fu et al. 2010). WT and 
DOC concentrations for these two lake waters were 25–31 °C and 134–330 μM 
C, respectively. Similarly, in the warm monomictic Lake Kinneret (Israel) Chl a 
concentrations exhibited a maximum at the epilimnion (0–5 m) during the spring 
season (April–May) (Yacobi 2006; Berman et al. 1995). WT and lake DOC con-
centrations were 15–30 °C and 258–485 μM C, respectively (Yacobi 2006; 
Annual Report 2004). On the other hand, in water of monomictic Lake Biwa Chl 
a maximum was observed in the epilimnion during the autumn season: November 
1999 (12.3 μg L−1) and October 2000 (9.4 μg L−1) (Mostofa KMG et al. unpub-
lished data). Moreover, WT and DOC concentrations were 17.0–19.5 °C and 
76–135 μM C, respectively (Mostofa et al. 2005; Mostofa KMG et al. unpub-
lished data).
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Chl a concentrations are greatly variable, ranging from 0.01 to 133.22 μg 
L−1 in 38 Chinese lakes. Most of them are mesotrophic (TN = 0.31–2.30 mg 
L−1; TP  = 0.01–0.11 mg L−1), five lakes are oligotrophic (TN < 0.31 mg L−1; 
TP  < 0.01 mg L−1), and another four lakes are eutrophic (TN > 2.30 mg L−1; 
TP  > 0.11 mg L−1) with algal blooms during the summer period (Zhang et al. 
2007). The TN:TP ratio ranged from 2:1 to 253:1 for all 38 lakes (Zhang et al. 
2007). Chl a concentrations significantly varied (10–145 μg L−1) in two Swedish 
lakes. In Lake Börringesjön the highest concentration (145 μg L−1) has been found 
in September, when light attenuation ranged from 4.61 to 7.81 m−1 (Blindow  
et al. 2006). Chl a concentrations were low (0.3–1.2 μg L−1) in an alpine lake dur-
ing the ice-cover period, but after ice-break the values increased particularly in 
the deep layers. The maximum was observed at 9 m depth (8.5 μg L−1), whilst 
DOC concentrations in the water column ranged from 10 to 54 μM C (Sommaruga 
and Augustin 2006). Chl a concentrations were also very low (0.14–2.85 μg L−1) 
in lake water with low WT (1.2–12.4 °C) and low DOC concentrations (such as 
~42 μM C) (Carrillo et al. 2002). In Bohai Sea the vertical distribution of Chl a 
and water temperature at depth 0–20 m was approximately 1–2 μg L−1 and  
24.7–25.6 °C. The diffuse attenuation coefficient increased with depth, producing 
a DCM at around 5–6 m depth (Xiu et al. 2009). High temperature and other fac-
tors suggest that this low variation of Chl a (1–2 μg L−1) might be caused by high 
photoinduced decomposition of Chl a in the surface layer (0–5 m). This result is not 
accounted for by DCM, rather it can be considered as SCM or mixed layer depth.

On the other hand, Chl a concentrations in reservoirs are substantially high, rang-
ing from approximately 0.0–919 μg L−1 (Gálvez et al. 1988; Foster et al. 1997; Dasí 
et al. 1998; An and Park 2002; Almodovar et al. 2004; Sigareva and Pyrina 2006; 
Mineeva et al. 2008; Mineeva and Abramova 2009). The highest Chl a concentrations 
were detected in several UK reservoirs, such as <120–919 μg L−1; Chl a was then 
found at <54.5–239.8 ± 68.2 μg L−1 in several Russia’s reservoirs and <173 μg L−1 
in Taechung Reservoir (South Korea) (Table 1). The Chl a concentrations in Gorky 
Reservoir varied from 6.3 to 28.0 μg L−1 in both right and left banks, and from 5.9 
to 20.6 μg L−1 in riverbed with variation of water temperature (WT) from 19.7 to 
21.9 °C. In Cheboksary reservoir, Chl a concentrations were 4.2–72.4 and 6.6 ± 
0.7 - 239.8 ± 68.2  μg L−1, respectively, with variation of WT from 11.0 to 24.0 °C 
(Table 1) (Mineeva et al. 2008; Mineeva and Abremova 2009). The peak Chl a levels 
in Stanford reservoir exceeded 916 μg L−1 in June and July, but they remained below 
25 μg L−1 for the remainder of the sampling period (Foster et al. 1997).

Estuaries

The Chl a concentrations are quite high (0.0–220 μg L−1) in estuaries (Table 1) 
(Lemaire et al. 2002; Zhu et al. 2009; Stross and Stottlemyer 1965; Pennock 1985; 
Abril et al. 2002; Hauxwell et al. 2003; Langston et al. 2003; Gitelson et al. 2007; 
He et al. 2010; Craig et al. 2012; Mallin 1994; Gaulke et al. 2010). The highest 
Chl a concentrations are <220 μg L−1 in European estuaries; <184 μg L−1 in 
North Carolina estuaries; >101 μg L−1 in the Exe Estuary SPA; <80 μg L−1 
in Neuse River Estuary; <77.4 μg L−1 in estuaries of Chesapeake Bay; <60 μg 
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L−1 in Delaware and Loire Estuaries; <40.0 μg L−1 in Pearl River Estuary; 
<33.3 μg L−1 in Patuxent River Estuary; <23.0 μg L−1 in several temperate 
estuaries; <18.02 μg L−1 in estuary of Bedford Basin, Canada; <13.8 μg L−1 
in Sado Estuary; <11.0 μg L−1 in Changjiang (Yangtze River) Estuary; <8.9 μg 
L−1 in Elbe Estuary; and 0.3–5.4 μg L−1 in all other estuaries studied (Table 1). 
Such high contents of Chl a in estuaries are indicative of highly productive 
waters, which might be cause by several factors: (i) Estuarine waters contain 
high contents of DOM, such as 84–525 μM C, which are mostly originated 
from terrestrial DOM along with the autochthonous DOM and land-derived 
nutrients (Table 1; see also in chapter “Dissolved Organic Matter in Natural 
Waters”) (Hauxwell et al. 2003; Monbet 1992). Water with high contents of 
DOM can significantly enhance primary production in estuaries, along with 
factors that have been discussed previously (see also chapter “Photosynthesis 
in Nature: A New Look”). (ii) Tidally-driven resuspension along with other 
associated processes (e.g. tidal mixing, current velocity, light penetration, and 
sediment resuspension) can influence the variability of suspended particulate 
matter in estuaries (Monbet 1992; Nichols and Biggs 1985; Allen et al. 1980; 
Schubel 1971). Estuaries with a low tidal range have maximum suspended sedi-
ment load, on the order of 100–200 mg L−1. In contrast, systems with high tidal 
ranges have sediment concentrations of about 1,000–10,000 mg L−1 (Nichols 
and Biggs 1985). Comparative data analysis from 40 microtidal and macrotidal 
estuaries shows that mean annual Chl a levels are significantly lower in systems 
with high tidal energy (Monbet 1992). In contrast, nitrogen concentrations are 
equal to nitrogen levels in the microtidal systems (Monbet 1992). The mecha-
nism behind these phenomena is presumably that strong tidal wave along with 
strong wind mixing can produce high concentrations of H2O2, DIC, nutrients, 
and so on. These species can be produced either photochemically or microbially 
from DOM and POM, and can strongly influence photosynthesis and primary 
production as discussed in an earlier chapter (see “Photosynthesis in Nature: A 
New Look”).

Coastal and Open Oceanic Environments

The Chl a concentrations undergo higher variations, from 0.02 to 2080 μg L−1 
in the waters of coastal and open oceans compared to those of lakes and estuar-
ies (Table 1) (Letelier et al. 2004; Rochelle-Newall and Fisher 2002; Hopkinson 
and Barbeau 2008; Wheeler et al. 1996; Millán-Núñez et al. 1996; Gomes et al. 
2000; Guildford and Hecky 2000; Li and Harrison 2001; Ediger et al. 2006; Parab  
et al. 2006; Roy et al. 2006; Norrbin et al. 2009; Xiu et al. 2009; Hung et al. 2000; 
Ahumada et al. 1991; Morales et al. 1996; Dellarossa 1998; Planas et al. 1999; 
Doyon et al. 2000; Gibb et al. 2000; Gong et al. 2000; Pizarro et al. 2000; Kinkade 
et al. 2001; Olson and Strom 2002; Sasaoka et al. 2002; Carstensen et al. 2004; 
Clark et al. 2004; Reul et al. 2005; Holm-Hansen et al. 2004; Pérez et al. 2006; 
Iriarte et al. 2007; Li et al. 2007; Seppälä et al. 2007; Calbet et al. 2009; Kim et al. 
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2009; Grippo et al. 2010; Isada et al. 2010; Chen et al. 2011; Iriarte and González 
2004; Gonzalez et al. 1989; Mackey et al. 1995). Detected Chl a concentra-
tions are as high as 2080 μg L−1 in Arabian Sea, <152 μg L−1 in Yellow Sea, 
<148 ± 63.1 μg L−1 in north-western Alboran Sea or W-Mediterranean (0–200 m 
depth), <40 μg L−1 in Chiloé and austral fjord (Chile), <35 μg L−1 in Concepción 
and Mejillones Bay (Chile), <30 μg L−1 in western subarctic waters of the Pacific 
Ocean (0–200 m depth), <23.3 μg L−1 in Chesapeake Bay (USA), <17 μg L−1 
in Northwest Pacific Ocean, <17 μg L−1 in North Atlantic Ocean, <16.8 μg L−1 
in upwelling seawater of northern Chile, <15.54 μg L−1 in Southwest Florida 
Shelf, <15.23 μg L−1 in California Current System, <14.6 μg L−1 in Scotia Sea 
(near South Georgia), <14.5 μg L−1 in Subtropical coastal waters (Hong Kong: 
0–10 m depth), <12.5 μg L−1 in Baltic Sea, <11.6 μg L−1 in Southwest Florida 
Shelf (Caloosahatchee River: Sts 51–55), <10.88 μg L−1 in Gulf of St. Lawrence 
(Canada), <8.3 μg L−1 in Southwest coastal waters (India), and 0.0–4.45 μg L−1 
in rest of the coastal and other oceans (Table 1). Very low values have been found 
in Southeast Bering Sea (4.45 μg L−1), Atlantic Ocean (<4.0 μg L−1) and East 
China Sea (<4.14 μg L−1) (Table 1).

Extremely high Chl a concentrations at the surface of eastern Arabian Sea (the 
highest ever observed in natural water) are responsible for the surface growth of 
Trichodesmium spp. (Parab et al. 2006). This effect is probably linked to high 
water temperature (20.6–29.4 °C) (Parab et al. 2006) and relatively high DOC 
contents, varying from 80 to 300 μM C (Menzel 1964; Dileep Kumar et al. 1990; 
Breves et al. 2003). High contents of Chl a in Yellow seawater are also presum-
ably caused by the occurrence of high contents of DOM (129–268 μM C) (Xia et 
al. 2010) and relatively high water temperature (9–20 °C) (Li et al. 2007) driven 
by solar irradiance. High contents of Chl a are generally detected in coastal sea-
waters, probably due to high terrestrial input of DOM and POM. Both DOM and 
POM can produce DIC, CO2 and H2O2 upon photoinduced or microbial respira-
tion/degradation, which are responsible for high photosynthesis and high primary 
production (see chapter “Photosynthesis in Nature: A New Look” for detailed 
mechanisms).

In the Baltic Sea, the Chl a concentrations are highest in the water column dur-
ing the spring bloom in late April and during the cyanobacterial bloom in August, 
which are the two major bloom events (Bianchi et al. 2002). In contrast Chl a con-
centration is low during the summer period, despite the extensive development of 
cyanobacterial surface blooms (Bianchi et al. 2002). The contents of Chl a vary 
from 0.3 to 13.5 nmol L−1, whilst those of Chl b vary from 0.05 to 0.92 nmol L−1 
(Bianchi et al. 2002). Chl a is approximately 15 times higher than Chl b in the 
Baltic Sea.

The observed, relatively low concentrations of Chl a in oceanic environments 
are presumably due to several facts: (i) Low contents of DOM and POM, partic-
ularly in open Oceanic environments, may cause the occurrence of low contents 
of CO2, DIC, H2O2, nutrients, and so on. They are responsible for low photosyn-
thesis and low primary production, as extensively discussed in the photosynthesis 
chapter (see chapter “Photosynthesis in Nature: A New Look”). In contrast, high 
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contents of organic matter (DOM and POM) in coastal waters are responsible for 
the higher observed contents of Chl a compared to the open ocean (Clark et al. 
2004). It is generally known that DOM and POM (e.g. phytoplankton) can release 
NO3

− and PO4
3−, by either photoinduced or microbial assimilation/respiration in 

waters (see chapters “Dissolved Organic Matter in Natural Waters, Photoinduced 
and Microbial Degradation of Dissolved Organic Matter in Natural Waters” and 
“Photosynthesis in Nature: A New Look”).

(ii) Strong wind and wave mixing along with the solar (UV and PAR) radiation 
may degrade Chl a, DNA or biomolecules bound to PSI and PSII of microorgan-
isms. The effect would be more marked in the open ocean compared to coastal 
waters. This issue would be supported by the observation that UV-B radiation 
(280–315 nm) can inhibit photosynthetic carbon fixation by tropical phytoplankton 
assemblages in coastal to pelagic surface seawaters (Li et al. 2011). The inhibition 
of photosynthesis by UV-A (315–400 nm) increases from coastal to offshore waters 
(Li et al. 2011). It has also been shown that UV-B inhibits photosynthesis by up to 
27 % and UV-A by up to 29 % (Li et al. 2011). In East China Sea, lower concen-
tration of Chl a (0.06–0.07 μg L−1: Kuroshio sites) has been detected in the open 
ocean, with high water temperature (23.9–24.0 °C) and low NO3

− (<0.1 μM), than 
in coastal seawater (0.43–2.44 μg L−1) (Hung et al. 2000). The latter had low tem-
perature (16.3–18.9 °C) and high NO3

− (<0.4–6.0 μM) (Hung et al. 2000).
Similarly and interestingly, Chl a concentrations are largely variable (0.06–

1,000 μg L−1) and substantially high (occasionally >1,000 μg L−1) in ice- covered 
Antarctic and Arctic Oceans (Table 1) (Palmisano et al. 1985; Garrison et al. 1986; 
Wheeler et al. 1996; Mock and Gradinger 1999; Apollonio 1980; Guildford and 
Hecky 2000; Norrbin et al. 2009; Sakshaug and Holm-Hansen 1986; Spies 1987; 
Verlencar et al. 1990; Varela et al. 2002; Cottrell and Kirchman 2009; Hewes et 
al. 2009). The highest Chl a concentrations, reaching values higher than 1,000 μg 
L−1, have been detected in bottom-ice communities of Antarctica Ocean. 
Otherwise, Chl a is largely variable: it reached <297 μg L−1 in the ice undersur-
face; <5.2 in the water column of central Arctic Ocean; <86 μg L−1 in Barents and 
Greenland Sea ice (Arctic Ocean); <25 μg L−1 in Gerlache and south Bransfield 
Straits (Antarctic Peninsula); <8.2 μg L−1 in Dumbell Bay (Arctic Ocean); 
<4.03 μg L−1 in ocean seawater (Antarctic Ocean); <4.0 μg L−1 in South Shetland 
Islands (Antarctica), 0.10–2.27 in other ice seawater; and finally 111 ± 30 μg L−1 
in incubation experimental studies using Antarctic ice seawater (Table 1).

It has been shown that Chl a varies significantly, from 0.1 to 297 μg L−1 in ice 
undersurface and from 0.1 to 5.2 μg L−1 in the water column (Wheeler et al. 1996). 
The values of Chl a can increase in the range of the potential phytoplankton stand-
ing stock (25–50 μg L−1) in Antarctic marine waters, Southern Ocean (Sakshaug 
and Holm-Hansen 1986; Spies 1987). Similarly, Chl a contents in bottom ice com-
munities reach 300–400 mg m−2 (Steemann-Nielsen 1962; Palmisano and Sullivan 
1983). Such numerous algal communities are presumably the consequence of sev-
eral phenomena: (i) Algal growth may be prolonged due to low temperature and low 
solar irradiance, which are unable to form O2•− and subsequently H2O2 or HO•. This 
phenomenon can protect algal cells from death, allowing high primary production 
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caused by accumulation of algal species in the ice bed. Interestingly, observation of 
a series of ice age classes indicated that older ice has higher concentrations of par-
ticulate organic carbon, Chl and algal cells (Gleitz and Thomas 1993). Substantial 
increases have been observed for the abundance of Chaetoceros neogracile, F. cylin-
drus, and Nitzschia lecointei, implying growth of these algae (Gleitz and Thomas 
1993). The abundance of other species (F. kerguelensis, Dactyliosolen) decreased 
with the age of the sea ice, implying that they can possibly accumulate in ice but are 
selected against over time (Gleitz and Thomas 1993). Correspondingly, algal pigment 
signatures in sea ice also suggest that older ice is more diatom-dominated (Lizotte et 
al. 1998). Lower concentrations of Chl a, which have been observed in a light per-
turbation experiment (3.54 ± 1.00 to 14.2 ± 12.4 μg L−1) compared to the control 
experiment (5.21 ± 2.33 to 111 ± 30 μg L−1) in Antarctica ice seawater (Palmisano 
et al. 1985) can also  support the above phenomena. The occurrence of more elevated 
concentrations of  dissolved O2 in Arctic and Antarctic Oceans compared to tropical 
and subtropical waters (Codispoti and Christensen 1985; Falkner et al. 2005; Garcia et 
al. 2005; Schmittner et al. 2007; Araoye 2009; Abowei 2010; Keeling et al. 2010) are 
also responsible for the rapid formation of H2O2 under low irradiance. These phenom-
ena can support high photosynthesis in seawater ice. (ii) The occurrence of the ozone 
hole, and a corresponding increase in UV-B exposure, can cause unequivocal increase 
of direct or indirect oxidative damage, either directly or indirectly through formation 
of ROS. It has been shown that the latter can alter biomolecules (lipids, DNA, amino 
acids, proteins, Chls) and can affect photosynthetic efficiency, reproduction and devel-
opment in Antarctic marine organisms (see also chapter “Photosynthesis in Nature: 
A New Look”) (Bidigare 1989; Smith et al. 1992; Arrigo 1994; Lesser et al. 2001, 
2004; Lesser and Barry 2003; Karentz et al. 2004; Leu et al. 2007; Lister et al. 2010; 
Cullen and Neale 1997). The effects of the ozone hole and of the corresponding UV-B 
 exposure is largely mitigated by sea ice coverage, in the case of aquatic organisms 
that live beneath the ice cover (Moreno 2012; Karentz et al. 2004; Lister et al. 2010; 
Tremblay et al. 2006; Perovich 1993; Trodahl and Buckley 1989). (iii) Intracellular 
and extracellular production of H2O2 from algae (or phytoplankton species) can 
take place under light conditions in the ice layer (see also chapter “Photosynthesis 
in Nature: A New Look”) (Hong et al. 1987; Bazanov et al. 1999; Premkumar and 
Ramaraj 1999; Lobanov et al. 2008; Palenik et al. 1987; Palenik and Morel 1988; 
Komissarov 2003), and could enhance photosynthesis. A further enhancement effect 
could be caused by relatively high amounts of DIC, H2O2 and nutrients produced 
from DOM and POM, either by microbial or photoinduced processes in Arctic and 
Antarctic Oceans.

Photosynthesis could rapidly occur under low irradiance conditions in the pres-
ence of large amounts of algae (or phytoplankton), and if H2O2, DIC and nutrients 
are available. It has been shown that nutrient concentrations (e.g. nitrate) are consid-
erably high (2–12 μM) in the Arctic Ocean (Tremblay et al. 2006). In the Antarctic 
Ocean, Chl a concentrations in coastal surface seawater ice are high (0.45–4.03 μg 
L−1), and at the same time there are low contents of NH4

+ (0.05–2.21 μM), NO3
− 

(7.82–23.1 μM), and PO4
3− (0.60–3.0 μM) compared to those of oceanic off-

shore waters (Table 1) (Verlencar et al. 1990). In contrast, Chl a concentrations are 
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relatively low (0.19–0.43 μg L−1) in the presence of rather elevated amounts of NH4
+ 

(0.14–1.36 μM), NO3
− (22.55–29.50 μM), and PO4

3− (1.71–2.35 μM), even in the 
presence of similar water temperatures (Table 1) (Verlencar et al. 1990). This result 
can imply that nutrients have limited influence on photosynthesis in offshore seawater. 
A more important effect could be that high contents of algae (or phytoplankton spe-
cies) in coastal Antarctic seawater ice can absorb irradiance by Chl a bound to PSI 
and PSII. A possible consequence would be intracellular or extracellular H2O2 for-
mation, which could directly affect photosynthesis. This effect could be more impor-
tant in coastal seawater ice than in offshore oceanic seawater ice. The covariation of 
dissolved nitrate and phosphate maintained by ocean circulation (Weber and Deutsch 
2010) might be a factor that affects photosynthesis in offshore regions. However, 
future studies will be required to provide evidence for this mechanism.

4  Factors Controlling Chl a in Natural Waters

There are a numbers of environmental factors that substantially influence Chl a 
concentrations or primary production in natural waters. The key factors affecting 
photosynthetic and respiratory activities can be detected based on the growth and 
development of organisms. They are: (i) seasonal variation in sunlight and UV 
radiation, which affect photosynthesis; (ii) occurrence of CO2 forms; (iii) varia-
tion in temperature; (iv) effects of water stress (drought) and precipitation/rainfall;  
(v) effects of the amount and nature of DOM and POM; (vi) variation in nutrient 
contents; (vii) variation in trace metal ions; (viii) effect of salinity or salt stress;  
(ix) effects of toxic pollutants on aquatic microorganisms; (x) effect of size-frac-
tionated phytoplankton; (xi) effects of global warming. These factors are similar 
to those affecting primary production or cyanobacterial bloom, which the excep-
tion of the effect of global warming (see chapter “Photosynthesis in Nature: 
A New Look” and “Impacts of Global Warming on Biogeochemical Cycles in 
Natural Waters”).

4.1  Effects of Global Warming

Global warming can affect the heat budget and other physical processes of a water 
body, and can subsequently alter the stratification and mixed layer depths (Huisman 
et al. 2006; Schindler 1997; Magnuson et al. 1997). Such changes, along with 
global warming-induced changes in the seasonal light cycle, can alter the sea-
sonal patterns of Chl contents (or primary production), phytoplankton composition 
and nutrient concentrations in SCM and DCM (Huisman et al. 2006; Walsby et al. 
1997; O’Reilly et al. 2003; Verburg et al. 2003; Baulch et al. 2005; Fu et al. 2007; 
Jöhnk et al. 2008; Castle and Rodgers 2009; Davis et al. 2009; Paerl and Huisman 
2009). Correspondingly, an extension of the summer season due to global warming 
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may prolong the photochemical processes, with high production of photoproducts, 
pH alteration, and microbial food web stimulation (Baulch et al. 2005; Morris and 
Hargreaves 1997; Cooke et al. 2006; Malkin et al. 2008). These issues can result 
into high photosynthesis, thereby enhancing phytoplankton productivity in lakes and 
oceans. These phenomena will particularly affect the Arctic and Antarctic regions.

Climate models predict that global warming will increase the stability of the verti-
cal stratification in large parts of lakes and oceans (Huisman et al. 2006; Sarmiento 
et al. 1998, 2004; Bopp et al. 2001, 2005; Schmittner 2005). This will subsequently 
reduce vertical mixing and suppress the upward flux of nutrients, leading to a 
decrease in primary production. However, increased stability of the water column 
might also increase the photochemical degradation of DOM, and cause high pho-
tosynthesis via high temperature and longer summer season. Reduced vertical mix-
ing can generate oscillations and chaos in phytoplankton biomass, size and species 
composition of DCM (Huisman et al. 2006; Barbiero and Tuchman 2004; Winder et 
al. 2009). These perturbations are generated by the difference in timescale between 
the sinking flux of phytoplankton and the upward flux of nutrients. Increasing back-
ground light attenuation can increase light limitation, shifting phytoplankton towards 
the surface and generally decreasing DCM depth and total biomass, particularly in 
the mixed layer (Mellard et al. 2011). Climate warming may promote the growth of 
toxic, rather than non-toxic, phytoplankton populations (Davis et al. 2009). Therefore, 
changes induced by global warming can significantly impact the SCM, DCM, species 
composition, nutrients dynamics, and carbon cycle. This issue is also extensively dis-
cussed in other chapters (see chapters “Photosynthesis in Nature: A New Look” and 
“Impacts of Global Warming on Biogeochemical Cycles in Natural Waters”).

5  Degradation of Chl

It has been shown that terrestrial plants adapt their annual life cycles of growth, 
reproduction and senescence to the annual climate cycle with period of one year. 
In contrast, phytoplankton biomass can turn over around 100 times each year as a 
result of fast growth and equally fast consumption by grazers (Calbet and Landry 
2004; Behrenfeld et al. 2006; Winder and Cloern 2010). Therefore, the signifi-
cance of the degradation of Chl a bound to higher plants and aquatic microorgan-
isms shows characteristic differences.

5.1  Degradation of Chl a in Aquatic Microorganisms

Chl a bound to phytoplankton or cyanobacteria can be degraded by both pho-
toinduced and microbial degradation processes and can produce chlorophyl-
lide a, pheophorbide a, pheophytin a, and pyropheophytin a in aqueous media 
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(Welschmeyer and Lorenzen 1985; Stephens et al. 1997; Zhang et al. 2009; 
Bianchi et al. 2002; Schulte-Elte et al. 1979; Falkowski and Sucher 1981; Pietta et 
al. 1981; Mantoura and Llewellyn 1983; Keely and Maxwell 1991; Nelson 1993; 
Sun et al. 1993; Rontani et al. 1995; Rontani et al. 1998, 2003, 2011; Rontani 
and Marchand 2000; Yacobi et al. 1996; Cuny et al. 1999; Marchand and Rontani 
2001; Rontani 2001; Lemaire et al. 2002; Rontani and Volkman 2003; Marchand 
et al. 2005; Christodoulou et al. 2009; Christodoulou et al. 2010; Rontani et al. 
2000). Photosynthetically active radiation (PAR, 400–700 nm) and UV radiation 
(UV-B: 280–315 nm and UV-A: 315–400 nm) are responsible for the degrada-
tion of Chls, of PSI, and of PSII bound to phytoplankton species, either directly 
or through photoinduced generation of ROS in the natural environment (see also 
chapter “Photosynthesis in Nature: A New Look”) (Schulte-Elte et al. 1979; 
Nelson 1993; Rontani et al. 1995; Nelson and Wakeham 1989; Rontani et al. 1994; 
Sinha and Häder 2002; Häder and Sinha 2005; Rath and Adhikary 2007; Gao  
et al. 2008; Pattanaik et al. 2008; Jiang and Qiu 2011). It has also been shown that 
the degradation rates of Chl a bound to algae are several times higher than those 
of sediment TOC or of algae themselves (Leavitt and Carpenter 1990; Westrich 
and Berner 1984; Garber 1984; Henrichs and Doyle 1986). The photodegrada-
tion of different lipid compounds in killed cells of Phaeodactylum tricornutum 
and Dunaliella sp. shows that Chl phytyl chain is degraded to 6,10,14-trimethyl-
pentadecan-2-one and 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol, ster-
ols to 5α- and 6α/6β-hydroxysterols, carotenoids to loliolide and iso-loliolide, 
and unsaturated fatty acids to C7–C11ω-oxocarboxylic and α,ω-dicarboxylic acids 
(Rontani et al. 1998). After elimination of insufficiently specific photoproducts, 
the compounds 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol, 5α- and 
6α/6β-hydroxysterols, C7–C11ω-oxocarboxylic and α, ω-dicarboxylic acids (with 
C9 as the most abundant species) have been selected to constitute a “pool” of use-
ful indicators of photooxidative alteration of phytoplankton (Rontani et al. 1998).

Irradiation of killed non-axenic cells of Emiliania huxleyi (Prymnesiophyceae) 
under PAR and UV radiation can degrade most of the unsaturated lipid components, 
such as Chls, unsaturated fatty acids and brassicasterol (Christodoulou et al. 2010). 
Exposure to UV radiation can also induce photosensitized stereomutation (cis–trans 
isomerization) of the double bonds of some lipids (e.g. monounsaturated fatty acids 
and Chl phytyl side-chain) and of some of their oxidation products. These  processes 
yield (after reduction) some compounds (e.g. 9-hydroxyoctadec-cis-10-enoic 
and 10-hydroxyoctadeccis-8-enoic acids arising from oleic acid oxidation and 
11-hydroxyoctadec-cis-12-enoic and 12-hydroxyoctadec-cis-10-enoic acids arising 
from cis-vaccenic acid oxidation), which are sufficiently specific to act as tracers of 
UV-induced in situ photodegradation (Christodoulou et al. 2010). The abiotic degra-
dation processes can act on most of the unsaturated lipid components of senescent 
phytoplankton, such as sterols, unsaturated fatty acids, Chl phytyl side-chain, carote-
noids, alkenones and alkenes (Rontani et al. 1998; Rontani 2001, 2008; Christodoulou 
et al. 2010). In phytodetritus, the visible light-dependent degradation rates are 3–4 
times higher for the Chl tetrapyrrolic structure than for the phytyl side-chain (Cuny  
et al. 1999; Cuny and Rontani 1999).

http://dx.doi.org/10.1007/978-3-642-32223-5_7
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Planktonic lipids are more susceptible to biodegradation than terrestrial lipids. 
Moreover, biodegradation is more intense in sinking particulate organic matter 
(POM) than in suspended POM (Rontani et al. 2011). Simultaneously, there would 
be efficient transfer of singlet oxygen from suspended and senescent phytoplankton 
cells to associated bacteria, with subsequent inhibition of heterotrophic degradation 
(Rontani et al. 2011). The in vitro enzymatic degradation of Chl a in several species 
of marine phytoplankton can produce chlorophyllide a, pheophorbide a, pheophytin 
a, and pyropheophytin a (Owens and Falkowskit 1982). In some species, Chl a can 
be degraded to products that do not absorb visible light. It has also been observed 
that losses of phytol and Mg2+ are catalysed by chlorophyllase and by a magnesium-
releasing enzyme, respectively. Both enzymes are activated by cell disintegration 
(Owens and Falkowskit 1982). Phaeophytin a, pyrophaeophytin a, phaeophorbide 
a, and pyrophaeophorbide a are the phaeopigments found in largest amount in both 
sediments and water column (Furlong and Carpenter 1988). Tetrapyrrole derivatives 
of chloropigments (phaeopigments) are formed as a result of bacterial or autolytic 
cell lysis, and of metazoan grazing activities (Welschmeyer and Lorenzen 1985; 
Sanger and Gorham 1970; Shuman and Lorenzen 1975; Bianchi et al. 1988, 1991). 
Further degradation may produce several colorless organic substances (Brown et al. 
1991; Westrich and Berner 1984; Henrichs and Doyle 1986).

From the differences between anoxic and oxic decomposition in incuba-
tion experiments, together with naturally observed concentration profiles, it can 
be inferred that Chl a in natural sediments can be degraded during the oscillation 
between oxic and anoxic conditions caused by physical and biological mixing pro-
cesses (Ming-Yi et al. 1993). Oscillation experiments (oxic vs. anoxic and anoxic 
vs. oxic) also suggest that the activity of aerobic organisms may be an important 
factor that affects Chl a degradation (Ming-Yi et al. 1993). Examination of the 
effects of meiofauna on Chl a degradation under oxic conditions, implies that 
microorganisms may play a stronger role in Chl a degradation than meiofauna 
(Ming-Yi et al. 1993). The relative temperature independence of anoxic degradation 
and temperature dependence of oxic degradation suggest that anoxic degradation 
may be largely controlled by chemical factors, while oxic degradation may be more 
strongly controlled by biophysical and biochemical processes (Ming-Yi et al. 1993).

It is shown that the maximum DOM production lags in time relative to Chl a 
concentration in surface waters, whilst Chl a concentrations were relatively low 
and fluctuated during the summer stratification period in Lake Biwa (Fig. 3a and 
b) (Zhang et al. 2009; Mostofa KMG et al. unpublished data; Mostofa et al. 2005; 
Sasaki et al. 2005; Hanamachi et al. 2008). The summertime fluctuation of Chl 
a is possibly linked to its photoinduced degradation, which can contribute to the 
DOC increase in the surface water of Lake Biwa (Fig. 3a and b) (Mostofa KMG et 
al. unpublished data; Mostofa et al. 2005). The release of DOM from algae or phy-
toplankton might be one of the key causes for the decrease of Chl a or of the pri-
mary production in the surface layer, during the summer season. It is shown that 
both ‘labile’ and ‘refractory’ fractions of DOM are produced during phytoplankton 
or algal biomass degradation. However, the ‘labile’ fraction of organic matter, such 
as glucose, is rapidly decomposed within a few days and the ‘refractory’ fraction 
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is decomposed more slowly (Mostofa et al. 2009; Zhang et al. 2009; Mostofa 
KMG  et al. 2008; Ogawa et al. 2001).

Low concentrations of Chl a during the summer stratification period in upper sur-
face waters might be the effect of photoinduced degradation of Chl a by sunlight. 
Degradation of Chl a presumably involves two facts. First of all, cyanobacteria can 
generate internally reactive oxygen species (ROS) such as superoxide radical anion 
(O2

−), hydrogen peroxide (H2O2) and hydroxyl radical (HO•) in PSII, which can 
all be involved into cells decomposition (see chapter “Photosynthesis in Nature: A 
New Look” for a detailed description). The second fact is the photoinduced genera-
tion of ROS from DOM (of both allochthonous and autochthonous origin), NO2

− 
and NO3

− (see also chapters “Photoinduced and Microbial Generation of Hydrogen 
Peroxide and Organic Peroxides in Natural Waters” and “Photoinduced Generation 
of Hydroxyl Radical in Natural Waters”). These ROS can decompose Chl a that is 
found outside the cells (see chapter “Photosynthesis in Nature: A New Look”). H2O2 
involvement can be justified by the observation that autoxidation is substantially 
enhanced in the presence of a peroxide or hydroperoxide initiator (Fossey et al. 1996; 
Wilson et al. 2000; Kwan and Voelker 2003). Dissolved O2 is substantially varied 
(from 6.0 to 12.0 mg L−1) in a variety of surface waters, whereas the saturated dis-
solved O2 concentration in pure water is 7.5 mg L−1 at 30 °C (Falkner et al. 2005; 
Garcia et al. 2005; Schmittner et al. 2007; Araoye 2009; Abowei 2010; Keeling et al. 
2010; Hatcher 1987). High contents are generally found at low temperature, particu-
larly in the Arctic and Antarctic Oceans. Such high contents of dissolved O2 prompt 
the rapid absorption of electrons released from either chromophoric DOM (CDOM) 
or POM (e.g. phytoplankton or algae) upon light illumination, which enhances pro-
duction of O2

•− and H2O2. Dissolved O2 in water is the ultimate electron acceptor 
upon illumination by light, forming O2

•− that is a long-suspected first intermediate 
in photoinduced reactions that take place in natural surface waters (Baxter and Carey 
1983; Bielski et al. 1985; Petasne and Zika 1987; Micinski et al. 1993). The involve-
ment of dissolved O2 in H2O2 production can be justified by the experimental obser-
vation that 5–40 % of the oxygen produced by photosynthetically active organisms 
can be fixed through photochemical reactions in natural waters (Laane et al. 1985).

Experimental studies show that H2O2 can affect cyanobacteria at concentra-
tion values that are 10 times lower than for green algae and diatoms. Strong light-
dependent toxicity can enhance the difference, for which reason H2O2 can act as 
a limiting factor for cyanobacterial growth (Drábková et al. 2007). H2O2 concen-
trations of approximately 2–8 μM, which are produced during light exposure of 
aquatic macrophyte leachates or DOM, can inhibit microbial growth or bacterial 
carbon production (Farjalla et al. 2001; Anesio et al. 2005). The addition of 0.1 μM 
H2O2 to humic lake water can inhibit BCP by as much as 40 % (Xenopoulos and 
Bird 1997). Photobleaching and CO2 production in irradiated waters can be signifi-
cantly decreased upon addition of ROS scavengers, whilst post-irradiation bacte-
rial growth in samples containing a ROS scavenger can be significantly increased 
Scully et al. (2003). The decrease of ROS activity (CO2 production) can likely 
cause an accumulation of bioavailable DOM and enhance microbial processes 
(Scully et al. 2003). Chl a is more susceptible to photochemical decomposition than 
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zeaxanthin in the epilimnion, because zeaxanthin is generally a more stable com-
pound. It is photo-resistant and is found in higher contents than Chl a during the 
summer period (Bianchi et al. 2002; Rowan 1989, 2000). Photoresistance of carot-
enoids such as zeaxanthin and ß, ß-carotene involves quenching of singlet oxygen, 
which prevents photooxidation reactions (Rowan 1989; Jeffrey et al. 1997).

5.2  Degradation of Chl a in Higher Plants

Degradation of Chl can have two visible effects on plant leaves (Hendry et 
al. 1987; Takamiya et al. 2000; Matile et al. 1996; Amir-Shapira et al. 1987; 
Merzlyak et al. 1999; Park et al. 2007; Pruzinská et al. 2005; Zimmermann and 
Zentgraf 2005; Kratsch and Wise 2000; Karuppanapandian et al. 2011; Hillman et 
al. 1994). The first is the colour change from green to yellow or red, which natu-
rally occurs during the season change in autumn and is the most conspicuous and 
rapid event. The second is cell death caused by external factors, such as injuries 
sustained by low or high temperature, pathogen attack during various phases of 
the life cycle of plants, and so on. It has been estimated that approximately 1.2 
billion tons of Chl is degraded globally each year (Hendry et al. 1987). The con-
versions of Chl to chlorophyllide and of pheophytin to pheophorbide in coleslaw, 
cucumbers and brined olives are the result of chlorophyllase activity (Heaton et 
al. 1996). Chl a in crude extracts of Chenopodium album (white goose foot) in the 
dark can produce chlorophyllide a, pheophorbide a, 132-hydroxychlorophyllide a 
and pyropheophorbide a, the increase of which is accompanied by a concomitant 
decrease in levels of Chl a (Shioi et al. 1991). Chl a is degraded in a crude extract 
of C. album via enzymatically catalyzed reactions (Shioi et al. 1991).

Chl of detached rice leaves undergoes an initial long lag that lasts for one whole 
day, after which it is rapidly degraded in the second and third days during experiments 
conducted under total darkness at 30 °C (Okada et al. 1992). Light only has a weak 
protecting effect on soluble proteins, and ribulose-1,5-bisphosphate carboxylase/oxy-
genase rapidly disappeared under illumination with weak white light (Okada et al. 
1992). In an in vitro system of extracted broccoli florets, Chl a is degraded initially 
to chlorophyllide a or 132-hydroxychlorophyll a. Subsequently, chlorophyllide a is 
degraded to pyrophaeophorbide a through 132-hydroxychlorophyll a (Yamauchi et al. 
1997). Finally, 132-hydroxychlorophyll a and pyrophaeophorbide a can be degraded 
to colourless, low molecular weight compounds.

5.3  Degradation of Chl During Food Processing

It is well-known that blanching can inactivate chlorophyllase and enzymes, pro-
ducing a subsequent decrease in the photosynthetic capacity that is responsible for 
senescence and rapid loss of green colour. The discolouration of green vegetable 
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during processing is caused by conversion of Chls to pheophytins, which is also 
influenced by pH (Blair and Ayres 1943; Gupte et al. 1964; Minguez-Mosquera 
et al. 1989; Koca et al. 2007). Chl degradation reactions can be caused by several 
chemical, photoinduced or enzymatic processes, including simultaneous actions of 
enzymes, weak acids or pH changes, oxygen, light and heat. Such processes can 
lead to the formation of a large number of degradation products (Hayakawa and 
Timbers 1977; Koca et al. 2007). Major chemical degradation processes are pheo-
phytinization, epimerization, pyrolysis, as well as hydroxylation, oxidation or pho-
toinduced oxidation (Mangos and Berger 1997).

The green colour of vegetables can be altered to an olive green under mild 
acidic conditions, whereas hydrogen ions can transform Chls to their corre-
sponding pheophytins by substitution of the magnesium ion in the porphyrin ring 
(Minguez-Mosquera et al. 1989; Gold and Weckel 1958; Gunawan and Barringer 
2000). Preferential degradation of Chl b in the degreening of ‘Satsuma’ mandarin 
(Citrus unshiu Marc.) is found in ethylene-treated fruits and in fruits ripening on 
the tree. In contrast, Chl a is predominantly degraded in non-treated fruits (Keishi 
1979). Methyl jasmonate and ethylene can markedly enhance the mRNA levels 
and chlorophyllase activity, which presumably accelerates leaf senescence and 
fruit ripening (Drazkiewicz 1994; Smart 1994; Creelman and Mullet 1997; Jacob-
Wilk et al. 1999; Tsuchiya et al. 1999). Stimulatory effects by methyl jasmonate 
and ethylene also indicate that chlorophyllases are key enzymes for senescence or 
ripening.

5.4  Mechanism for Degradation of Chl

The key PSII reactions of Chls are photooxidation, involving attack of 1O2, HO• 
or H2O2, and enzymatic degradation (see also chapter “Photosynthesis in Nature: 
A New Look”) (Takamiya et al. 2000; Brown et al. 1991; Gossauer and Engel 
1996; Hörtensteiner 2006; Kräutler and Hörtensteiner 2006; Moser et al. 2009; 
Hörtensteiner and Kräutler 2011). The processes occurring under high irradiance 
or UV light and high temperature have been documented in the photosynthesis 
chapter (see chapter “Photosynthesis in Nature: A New Look”). Three Chl cata-
bolic enzymes, such as chlorophyllase, pheophorbide a oxygenase, and red Chl 
catabolite reductase (RCCR) are susceptible to play key roles into Chl degrada-
tion, either during leaf senescence and fruit ripening or in response to pathogens 
and wounding (Hörtensteiner 2006; Hörtensteiner and Kräutler 2011; Kariola  
et al. 2005; Azoulay Shemer et al. 2008).

The mechanism responsible for the degreening of plants and the degradation of 
Chl involves enzymatic reactions in two phases, through several chain reactions 
(Fig. 4) (Takamiya et al. 2000; Hörtensteiner 2006; Kräutler and Hörtensteiner 
2006; Moser et al. 2009; Hörtensteiner and Kräutler 2011). In the first phase, 
Chl degradation is caused by the removal of the phytol tail (dephytylation) and 
of the central Mg atom (magnesium dechelatase). Dephytylation occurs first by 

http://dx.doi.org/10.1007/978-3-642-32223-5_7
http://dx.doi.org/10.1007/978-3-642-32223-5_7
http://dx.doi.org/10.1007/978-3-642-32223-5_7
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hydrolysis of a phytol residue in ring IV, catalyzed by the enzyme chlorophyllase 
that converts Chl to phytol and chlorophyllide (Drazkiewicz 1994; Jacob-Wilk 
et al. 1999; Tsuchiya et al. 1999; Willstätter and Stoll 1913; Trebitsh et al. 1993; 
Schelbert et al. 2009). The ‘Mg dechelatase’ subsequently occurs in chlorophyl-
lide, by displacement with 2 H+ (dechelation) that produces pheophorbide. The 
latter is subsequently cleaved by an oxygenase enzyme and converted into red 
Chl catabolite (RCC). Subsequent reduction can produce colorless primary fluo-
rescent Chl catabolite (pFCC). The in vivo and in vitro accumulation of pheopig-
ments during Chl degradation in algae and higher plants suggests the presence 
of a ‘magnesium dechelatase’ enzyme (Owens and Falkowskit 1982; Shioi et al. 

Fig. 4  Representative structural outline of major catabolites delineating the main paths of chlo-
rophyll breakdown in higher plants (Kräutler and Hörtensteiner 2006; Moser et al. 2009): Chls 
are degraded in the chloroplast by enzyme-catalyzed processes via pheophorbide (Pheide) a and 
the red chlorophyll catabolite (RCC) to give primary fluorescent chlorophyll catabolites (pFCC, 
or its C1-epimer, epipFCC). The relevant enzymes involved in this part are: (a) Chl b reductase; 
(b) 7-hydroxymethyl Chl reductase; (c) chlorophyllase (CLH); )d) 85magnesium dechelatase; (e) 
pheophytinase (PPH); (f) Pheide a oxygenase (PAO); (g) RCC reductase (RCCR). pFCCs are 
modified further by unidentified hydroxylating enzymes (h, i). When carrying a free propionic 
acid group, FCCs are transported into the vacuole, where they are suggested to isomerize by a 
spontaneous, acid catalyzed reaction (j) to the corresponding nonfluorescent chlorophyll catabo-
lites (NCCs), such as Hv-NCC-1 (the main tetrapyrrolic catabolite found in senescent leaves of 
barley, Hordeum vulgare). Else, they are esterified by unknown enzymes at the propionic acid 
group (k) to give ‘persistent’ hypermodified FCCs, such as Mc-FCC-56 (the main FCC in peels 
of ripe bananas, Musa acuminata, cavendish cultivar). Relevant atom numbering is specified 
Data source Hörtensteiner and Kräutler (2011)
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1991; Janave 1997; Maeda et al. 1998; Ziegler et al. 1988). Pheophorbide a oxy-
genase is thought to catalyze the reaction that produces RCC in various leaves and 
fruits (Fig. 4) (Hörtensteiner 2006; Kräutler et al. 1997; Mühlecker et al. 1997; 
Hörtensteiner et al. 1998). Pheophytinase, a chloroplast-located and senescence-
induced hydrolase that is widely distributed in algae and land plants can also 
specifically dephytylate the Mg-free Chl pigment, pheophytin (phein), yielding 
pheophorbide (Schelbert et al. 2009).

In the second phase, pFCC-modifying reactions produce FCCs that are imported 
into the vacuole by a primary active transport process. FCCs are further converted 
to nonfluorescent Chl catabolites (NCCs) by an acid-catalyzed isomerization, tak-
ing place inside the vacuole (Fig. 4) (Hörtensteiner 2006; Moser et al. 2009; 
Hörtensteiner and Kräutler 2011; Hinder et al. 1996; Kräutler 2003; Christ et al. 
2012). Transfer of catabolites from senescent chloroplasts to the vacuole is mediated 
by primary activated transport processes (Hörtensteiner and Kräutler 2011). Note 
that the vacuole is a membrane-bound organelle within the cell cytoplasm. It occurs 
in plant cells and other microorganisms and can store water, salts, minerals, nutri-
ents, proteins, pigments and enzymes. It is involved in growth, protection, waste 
disposal and structural support and tends to be very large in mature plant cells. 
Degradation products and enzymes involved in the described reactions have been 
identified in leaves and fruits (Hörtensteiner and Kräutler 2011; Hörtensteiner et al. 
1995, 1998; Hinder et al. 1996; Christ et al. 2012; Kräutler et al. 1991; Matile et al. 
1992; Ginsburg and Matile 1993; Mühlecker and Kräutler 1996; Matile et al. 1999).

A process that is closely coupled with the oxygenase reaction is a reduction 
of the δ-methine bridge of the RCC by a stromal enzyme, termed RCC reductase 
(RCCR). The reaction yields colorless fluorescent products (Fig. 4) (Hörtensteiner 
2006; Rodoni et al. 1997; Wüthrich et al. 2000; Oberhuber and Kräutler 2002; 
Oberhuber et al. 2008). RCCR has been purified and cloned recently in barley and 
Arabidopsis (Wüthrich et al. 2000).

Spectroscopic analysis shows that pFCC has been identified from senescent 
leaves of various plants (Matile et al. 1996; Mühlecker et al. 1997, 2000; Kräutler 
and Matile 1999). The pFCC is converted to FCCs by several modifications 
depending on the plants, such as demethylation and hydroxylation (Hörtensteiner 
2006; Hörtensteiner and Kräutler 2011; Matile et al. 1992). Modified FCCs are 
transported to the central vacuole by ATP-dependent translocator(s) in the tono-
plast. They are non-enzymatically converted to NCCs by rearrangement of double 
bonds, in the pyrrole IV ring and adjacent g-methine bridge (Fig. 4) (Hörtensteiner 
2006; Moser et al. 2009; Hörtensteiner and Kräutler 2011; Hinder et al. 1996; 
Kräutler 2003; Christ et al. 2012; Matile et al. 1999). The pFCC and all fluores-
cent Chl catabolites have the same absorption spectrum, with a major peak at 
around 320 nm and a shoulder at around 360 nm (Takamiya et al. 2000). In con-
trast, NCCs have an absorption maximum at 316 nm with no shoulder (Takamiya 
et al. 2000). Finally, three degradation products of monopyrrole derivatives such 
as hematinic acid, methyl ethyl maleimide and methyl vinyl maleimide aldehyde 
have been detected in senescent leaves and cotyledons of barley, spinach, pea and 
cucumber (Suzuki and Shioi 1999).
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Senescent mes16 mutants exhibit a strong UV-excitable fluorescence, which 
is due to accumulation of FCCs. This derives, at least in part, from the fact that 
FCC isomerization to the respective NCC in the presence of an intact C132-
carboxymethylester is slower than with a free carboxylic acid group (Christ et al. 
2012; Oberhuber et al. 2008). The most likely reason is differences in the vacuolar 
pH, which determine the rate of FCC-to-NCC isomerization. Therefore, whether 
a plant can accumulate FCCs or NCCs might depend on the presence/absence of 
O134-demethylation and/or on the vacuolar pH (Christ et al. 2012). Accumulation 
of ‘hypermodified’ FCCs (hFCCs) in ripening bananas (Musa acuminata, 
Cavendish cultivar) can indicate a new role of Chl catabolites. Moreover, hFCCs 
are a group of unprecedented FCC-esters, and their accumulation in the peels of 
ripening bananas is rationalized by the corresponding deactivation of the natural, 
acid-induced (FCC-to-NCC) isomerization (Moser et al. 2008). Such isomerization 
occurs rapidly in weakly acidic solution (at pH 4.9) and at ambient temperature 
in aqueous solution. It also occurs in the vacuoles of senescent leaves, in senes-
cent leaves of banana plants and of the peace lily (Spathiphyllum wallisii) (Matile 
et al. 1988; Matile 1997; Oberhuber et al. 2003; Moser et al. 2009; Banala et al. 
2010; Kräutler et al. 2010). The hFCCs are esterified at the C17-propionic acid side 
chain, but they are not isomerized to NCCs in some senescing leaves and in ripen-
ing banana fruits (Moser et al. 2009; Banala et al. 2010; Kräutler et al. 2010).

The conversion of FCCs to NCCs in vacuole is partly due to either Fenton-type 
or photo-Fenton type reactions that can generate the HO•, a strong oxidizing agent. 
This issue is supported by the observation of hydroxylated NCC products or of prod-
ucts with OH-containing other functional groups in place of CH3 (R1 or R3 positions) 
(Moser et al. 2009; Hörtensteiner and Kräutler 2011; Müller et al. 2007; Pruzinská et al. 
2005; Christ et al. 2012; Kräutler et al. 1991; Mühlecker and Kräutler 1996; Oberhuber 
et al. 2003; Kräutler et al. 1992; Curty and Engel 1996; Berghold et al. 2004; Berghold 
et al. 2006). Further evidence is the occurrence of the reactions under acidic conditions 
(pH 4.9), which is vital for obtaining sufficiently high efficiency of Fenton or photo-
Fenton reactions. Note that Fenton reaction occurs in an aqueous solution of H2O2 and 
ferrous or ferric salts, which can produce HO• (see also ’Photoinduced Generation 
of Hydroxyl Radical in Natural Waters”) (Fenton 1894; Barb et al. 1951; Zepp et al. 
1992; Kwan and Voelker 2002). The efficiency of the Fenton reaction is highest at pH 
3, whilst the photo-Fenton process takes place in the presence of light. The occurrence 
of various salts, minerals, proteins, FCCs, water and so on in vacuole may favor such 
type of reactions. The reduction of the rate of formation of hydroperoxides of linoleic 
acid (induced by H2O2) in the presence of NCC may also support the occurrence of 
such reactions in vacuole (Moser et al. 2009; Müller et al. 2007). High production rates 
of H2O2 in vacuole can be due either to light-sensitive FCCs or from the complexes 
of FCCs with metal ions present in vacuole. Upon irradiation, such compounds yield 
electrons (e−) that can subsequently produce superoxide radical anions (O2

•−), H2O2, 
and finally HO• from H2O2. The latter process can take place by either direct photo-
dissociation (H2O2 + hυ → HO•) or upon Fenton and photo-Fenton reactions. Such 
processes are discussed in detail in other chapters (see chapters “Photoinduced and 
Microbial Generation of Hydrogen Peroxide and Organic Peroxides in Natural Waters”, 

http://dx.doi.org/10.1007/978-3-642-32223-5_3
http://dx.doi.org/10.1007/978-3-642-32223-5_3
http://dx.doi.org/10.1007/978-3-642-32223-5_2
http://dx.doi.org/10.1007/978-3-642-32223-5_2
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Photoinduced Generation of Hydroxyl Radical in Natural Waters”, and “Complexation 
of Dissolved Organic Matter with Trace Metal ions in Natural Waters”). The transfor-
mation of FCCs to NCCs can be depicted shortly as below (Eqs. 5.1–5.4):

where FCCs upon illumination by light are excited and produce e−, (Eq. 5.1) which 
then reacts with aqueous dissolved oxygen to generate O2

•− (Eq. 5.2). O2
•− then 

produces H2O2 and subsequently HO• upon several pathways as mentioned earlier 
(Eq. 5.3). The HO• radical can then react with FCC+ to convert it into FCCs-OH 
and then into NCCs-OH (Eq. 5.4). Organic peroxides (ROOH) are produced either 
by similar processes or by breakdown of other organic components. They can gen-
erate the organic peroxide radical (RO•) and give NCC-OR. These reactions are 
extensively discussed in earlier chapters (see chapters “Photoinduced and Microbial 
Generation of Hydrogen Peroxide and Organic Peroxides in Natural Waters and 
Photoinduced and Microbial Degradation of Dissolved Organic Matter in Natural 
Waters”). Such a mechanism can also be supported by the observation that Chl degra-
dation of chloroplast lysate or leaf extracts can be induced by intrinsic (per)oxidation 
with phenolic compounds and H2O2, and by lipoxygenation with linolenic acid (‘oxi-
dative Chl bleaching’) (Janave 1997; Johnson-Flanagan and Spencer 1996; Adachi et 
al. 1999). Similarly, peroxidase or oxidase activity rise in parallel to the degreening 
of seeds or cotyledons in some plants (Johnson-Flanagan and Spencer 1996; Adachi 
et al. 1999). Therefore, HO• or RO• may play a significant role in the transformation 
of FCCs to NCCs in vacuole. Chl breakdown is a prerequisite to detoxify potentially 
phototoxic pigments within the vacuoles, to allow the remobilization of nitrogen from 
Chl-binding proteins that takes place during senescence (Hörtensteiner 2006).

On othe other hand, Chl b is degraded to chlorophyllide b by chlorophyl-
lase, then chlorophyllide b is converted to chlorophyllide a by ‘Chl b reductase’ 
(Schelbert et al. 2009; Ito et al. 1996; Folly and Engel 1999; Scheumann et al. 
1999; Tanaka and Tanaka 2006; Rüdiger 2003). The further degradation of chloro-
phyllide a proceeds in similar ways as mentioned before.

6  Chl Acting as Universal Signature of Cyanobacteria 
(Algae) or Phytoplankton Dynamics

Chl a concentrations are very variable in waters, ranging from 0.0 to 280 μg L−1 in 
streams and rivers, 0.01–850 μg L−1 in lakes, 0.0–919 μg L−1 in reservoirs, 0.0–
220 μg L−1 in estuaries, 0.0–2080 μg L−1 in coastal and marine waters, and 0.06–
1,000 μg L−1 in ice-covered Arctic and Antarctic Oceans (Table 1). Changes in Chl a 

(5.1)FCCs + hυ → FCCs
+

+ e
−

(5.2)e
−

+ O2 → O
•−

2

(5.3)O
•−

2
+ 2H

+
→ H2O2 → HO

•

(5.4)FCC
+

+ HO
•

→ FCC − OH → NCC − OH
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concentrations reflect the occurrence and features of microorganisms present in natural 
waters. Therefore, Chl a can be used to estimate the primary production or the cyano-
bacterial (algal) bloom in a variety of waters (Fielding and Seiderer 1991; Ondrusek et 
al. 1991; Williams and Claustre 1991; Millie et al. 1993; Jeffrey et al. 1999; Bianchi et 
al. 1993, 2002; Kasprzak et al. 2008). Chl a concentration is a predictor of phytoplank-
ton biomass across a broad trophic gradient of lakes, ranging from oligotrophic to 
highly eutrophic. It is also the most generally used indicator of eutrophication (Blanco 
et al. 2008; Kasprzak et al. 2008). Concentrations of Chl a depend on the fractional 
contributions of three phytoplankton size classes (micro-, nano- and picoplankton), 
whereas small cells dominate at low Chl a concentrations and large cells at high 
Chl a concentrations (Sathyendranath et al. 2001; Brewin et al. 2010).

The specific Chl a content per unit of phytoplankton biomass typically 
decreases with an increase of phytoplankton standing stocks in filed and exper-
imental observations (Zhang et al. 2009; Kasprzak et al. 2008; Desortová 1981; 
Shlgren 1983; Wojciechowska 1989; Watson et al. 1992; Talling 1993; Chow-
Fraser et al. 1994; Schmid et al. 1998; Felip and Catalan 2000; Sandu et al. 2003; 
Kiss et al. 2006). The decreases in Chl a content per unit of phytoplankton bio-
mass presumably involves two facts: First, Chl a bound to microorganisms is the 
individual component that can be rapidly degraded by either photoinduced or 
microbial processes (Zhang et al. 2009; Takamiya et al. 2000; Hörtensteiner 2006; 
Kräutler and Hörtensteiner 2006; Moser et al. 2009; Hörtensteiner and Kräutler 
2011). Second, the release of autochthonous DOM from phytoplankton biomass, 
by either photoinduced or microbial assimilation/respiration (see also chapter 
“Dissolved Organic Matter in Natural Waters”) (Parlanti et al. 2000; Mostofa et 
al. 2009; Mostofa et al. 2009; Zhang et al. 2009) may affect the decrease in the 
total content of Chl a in phytoplankton standing stocks. In addition, Chl a con-
centrations are substantially affected by the occurrence of phytoplankton species 
or of size-fractionated phytoplankton, which undergoes seasonal variations in 
different waters (Bianchi et al. 2002; Satoh et al. 2001; Goedheer 1970; Prezelin 
1981; Aguirre-Gomez et al. 2001; Pérez et al. 2007; Hoepffner and Sathyendranath 
1991; Parab et al. 2006; Huang et al. 2004, 2005; Buchanan et al. 2005; Qiu et 
al. 2010). Micro- and nano-Chl a are both higher than pico-Chl a, but pico-Chl a 
can reach 40 % of total Chl a in Wanshan islands in summer (Huang et al. 2005). 
Micro- and nano-Chl a in Pearl River Estuary (South China Sea) generally account 
for 60 % of total Chl a, and pico-Chl a account for 20 % of total Chl a in most 
samples (Qiu et al. 2010). In September, picophytoplankton is dominant except 
for the estuary head, where nano-phytoplankton is predominant. Pico-Chl a in 
far offshore samples accounts for 69 and 75 % of total Chl a (Qiu et al. 2010). 
Picophytoplankton typically accounts for less than 10 % of the total phytoplankton 
biomass during winter and early spring in Chesapeake Bay. However, it can often 
contribute to more than 50 % of total phytoplankton biomass in summer and early 
autumn, particularly in mesohaline and polyhaline waters (Buchanan et al. 2005). 
Variations in Chl a concentrations among phytoplankton species and changes in 
Chl a concentrations per unit of phytoplankton biomass are caused by environ-
mental factors, but Chl a is the only parameter that allows precise and rapid deter-
mination of phytoplankton biomass or primary production in natural waters.

http://dx.doi.org/10.1007/978-3-642-32223-5_1
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6.1  Possible Mechanisms For the Management  
of Eutrophication by Control of Primary Production

Most present studies try to correlate Chl a with nutrients, in order to regulate 
Chl a, primary production or photosynthesis by controlling nutrients or by 
other measures of flood disturbance frequency or of days available for accrual 
(Biggs 1985, 1995, 2000; Biggs et al. 1998, 1999; Lohman et al. 1992; Welch 
and Lindell 1992; Chapra 1997; Dodds et al. 1998; Chetelat et al. 1999; Huszar 
et al. 2006). Nutrients, particularly NO3

− and PO4
3− are produced mostly by 

DOM and POM (e.g. phytoplankton species or algae or cyanobacteria), via 
photoinduced or microbial respiration and degradation. This issue strongly sug-
gests that regulating Chl a is vital for the control of DOM and POM in aquatic 
environments. DOM and POM are in fact the sources of all reactants such as 
CO2, DIC, H2O2, nutrients and autochthonous DOM, which are responsible for 
photosynthesis and, therefore, for the primary production of Chl a (see chap-
ters “Photosynthesis in Nature: A New Look” and “Impacts of Global Warming 
on Biogeochemical Cycles in Natural Waters”). DOM and POM along with 
global warming can lead to excess primary production and to photosynthesis, 
as shown in chapter “Impacts of Global Warming on Biogeochemical Cycles 
in Natural Waters”. A conceptual model of primary production enhancement 
and three important steps for remediation, to control algal blooms are exten-
sively discussed in Sects. 5 and 5.1 of chapter “Impacts of Global Warming on 
Biogeochemical Cycles in Natural Waters”. The same measures can be adopted 
to control photosynthesis and, therefore, to limit primary production or Chl a 
concentration. This activity can reduce eutrophication in natural waters.

7  Scope of the Future Research

DOM along with POM (e.g., algae or phytoplankton) can play an important role 
in the formation of SCM and DCM. The mechanism behind SCM and DCM for-
mation may pave the way for future research. Formation of H2O2 in DCM layer 
by phytoplankton might be important, and distribution of H2O2 as well as its for-
mation from the existing phytoplankton in DCM could be interesting to understand 
the mechanism of DCM formation. Almost all of previous studies dealt with nutri-
ents (total nitrogen, NO3

− or NH4
+, and total phosphate or PO4

3−), but they have 
some problems. First, DOM and POM can release nutrients in natural waters by 
photoinduced or microbial respiration or degradation. Therefore, release and uptake 
of nutrients during photosynthesis has limited importance in waters with high con-
tents of DOM and POM or high contents of nutrients. Second, waters with high 
contents of DOM and POM can produce DIC, CO2, H2O2 and so on, which are 
directly linked to photosynthesis and, therefore, to primary production (see chapter 
“Photosynthesis in Nature: A New Look”). Therefore, DOM and POM should be 
more directly linked to Chl a than nutrients are. Important research needs can thus 

http://dx.doi.org/10.1007/978-3-642-32223-5_7
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be listed as follows: (i) Investigation on the relationship between Chl a and DOM 
and POM in a variety of waters, with high and low DOM contents; (ii) Investigation 
on phytoplankton photosynthesis along with measurement of Chl a, DIC, CO2, 
H2O2 and dissolved O2. Note that H2O2 is photochemically produced from dis-
solved O2 (see chapter “Photosynthesis in Nature: A New Look”). Recently, sig-
nificant correlation has been found between dissolved O2 and benthic or sestonic 
Chl concentration (Heiskary and Markus 2003; Miltner 2010), possibly due to H2O2 
generation from dissolved O2 followed by in algal production. (iii) New model stud-
ies are required, dealing with the mechanism of SCM and DCM formation and elu-
cidating the role of organic matter (DOM and POM), solar radiation, photoinduced 
formation of DIC, CO2 and H2O2, and water temperature. Note that solar radiation 
and water temperature are vital for the photoinduced generation of H2O2, DIC, CO2 
and nutrients from DOM and POM (see chapter “Photosynthesis in Nature: A New 
Look”). (iv) Investigation on photosynthesis in natural waters, with and without 
addition of phytoplankton/algae/cyanobacteria (POM) Such a study could elucidate 
the effect and role of POM on the photosynthesis, allowing a distinction between 
photosynthetic processes conducted by DOM and POM. (v) Study of changes of 
dissolved O2 concentration along with those of H2O2 and Chl a. (vi) Elucidation of 
the role and contribution of H2O2, produced either intramolecularly or extracellu-
larly on photosynthesis, in aquatic phytoplankton and higher plants.

8 Nomenclature

CDOM Chromophoric dissolved organic matter
Chl Chlorophyll
Chls Chlorophylls
DCM Deep chlorophyll a maximum
DIC Dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3

−, and CO3
2−)

DOM Dissolved organic matter
FDOM Fluorescent dissolved organic matter
H2O2 Hydrogen peroxide
NCC Nonfluorescent chlorophyll catabolites
1O2 Singlet oxygen
O2

− Super oxide anion radical
HO• Hydroxyl radical
OM Organic matter
Pfcc Primary fluorescent chlorophyll catabolite
POM Particulate organic matter
RCC Red chlorophyll catabolite
RCCR Red Chl catabolite reductase
ROS Reactive oxygen species
SCM Surface or subsurface chlorophyll a maximum
WT Water temperature

http://dx.doi.org/10.1007/978-3-642-32223-5_7
http://dx.doi.org/10.1007/978-3-642-32223-5_7
http://dx.doi.org/10.1007/978-3-642-32223-5_7
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Problems

(1) List the various kinds of Chl found in organisms
(2) Explain shortly the Chl a functions.
(3) How does the surface or subsurface Chl a maximum (SCM) differ from the 

deep Chl a maximum (DCM)?
(4) Explain the mechanisms of SCM and DCM formation in the water column.
(5) How does global warming affect SCM or DCM?
(6) Explain the mechanism of Chl a degradation
(7) How does Chl act as universal signature of cyanobacteria (algae) or phyto-

plankton biomass?
(8) Explain possible actions for the management of eutrophication by controlling 

primary production (Chl a).
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