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Background Within-person variability in measured values of a risk factor can
bias its association with disease. We investigated the extent of
regression dilution bias in calculated variables and its implications
for comparing the aetiological associations of risk factors.

Methods Using a numerical illustration and repeats from 42 300 individuals
(12 cohorts), we estimated regression dilution ratios (RDRs) in
calculated risk factors [body-mass index (BMI), waist-to-hip ratio
(WHR), and waist-to-height ratio (WHtR)] and in their compo-
nents (height, weight, waist circumference, and hip circumference),
assuming the long-term average exposure to be of interest.
Error-corrected hazard ratios (HRs) for risk of coronary heart dis-
ease (CHD) were compared across adiposity measures per standard-
deviation (SD) change in: (i) baseline and (ii) error-corrected levels.

Results RDRs in calculated risk factors depend strongly on the RDRs, correl-
ation, and comparative distributions of the components of these risk
factors. For measures of adiposity, the RDR was lower for WHR [RDR:
0.72 (95% confidence interval 0.65–0.80)] than for either of its com-
ponents [waist circumference: 0.87 (0.85–0.90); hip circumference:
0.90 (0.86–0.93) or for BMI: 0.96 (0.93–0.98) and WHtR: 0.87
(0.85–0.90)], predominantly because of the stronger correlation and
more similar distributions observed between waist circumference and
hip circumference than between height and weight or between waist
circumference and height. Error-corrected HRs for BMI, waist circum-
ference, WHR, and WHtR, were respectively 1.24, 1.30, 1.44, and 1.32
per SD change in baseline levels of these variables, and 1.24, 1.27,
1.35, and 1.30 per SD change in error-corrected levels.

Conclusions The extent of within-person variability relative to between-person
variability in calculated risk factors can be considerably larger (or
smaller) than in its components. Aetiological associations of risk
factors should be compared through the use of error-corrected
HRs per SD change in error-corrected levels of these risk factors.
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Introduction
Epidemiological analyses often aim to estimate the
association between underlying levels of risk factors
and the likelihood of a disease. Because most risk
factors are measured with error and are subject to
fluctuations within individuals, analyses that use
only a single measurement of a risk factor may pro-
duce biased estimates of its associations with a dis-
ease.1 This bias can be caused by: (i) errors in
technical measurement; (ii) short-term within-
person variation; and/or (iii) long-term within-
person variation. In this paper, these sources of
variability are collectively classed as ‘within-person
variability’. In regression analyses with only a single
risk factor, within-person variability leads to under-
estimation of the true magnitude of the association
between long-term average levels of the risk factor
and disease (regression dilution bias),2–8 whereas in
analyses with multiple error-prone risk factors the as-
sociations may be biased either toward under- or
toward overestimation.9 Various methods have been
proposed to quantify and correct the effect of
within-person variability in the associations estimated
from a single measurement of a risk factor.1,10

Although within-person variability in directly
measured risk factors (e.g. blood pressure11 or fibrino-
gen12) has been extensively studied, less is known
about within-person variability in calculated
risk factors, such as sums and differences (e.g.
change in body weight) or ratios13 [e.g. body-mass
index (BMI¼weight/height2) or waist-to-hip ratio
(WHR)] of measured variables. Indeed, the extent of
within-person variability in calculated risk factors can
often appear to be greater or smaller than expected in
comparison to the within-person variability in its
component measurements.13 This is important in
direct comparisons of the strength of disease-associa-
tions of risk factors, including calculated risk factors,
that have different degrees of within-person variabil-
ity. For instance, there has been considerable interest
in comparing the magnitude of associations of various
cardiovascular risk factors, such as different types of
lipid markers or measures of adiposity, with the risk
of coronary heart disease (CHD).14,15 Such compari-
sons are straightforward when the effect of within-
person variability is ignored (i.e. in analyses using
measured values). Assuming log-linear relationships
of risk factors with CHD risk, their associations are
often compared per standard-deviation (SD) change
in the baseline levels of these risk factors. Because
of different degrees of within-person variability in
some risk factors, however, the interpretation of
these findings becomes more complicated when
their associations are also corrected for regression

dilution bias, and the use of baseline SD as the unit
with which to compare associations of risk factors
with the disease may be inappropriate.

The current paper has two objectives. Its primary
objective is to illustrate the extent of within-person
variability in calculated risk factors through a
numerical example and the use of data on measures
of adiposity from 12 different studies in the Emerging
Risk Factors Collaboration.16 The secondary objective
of the paper is to demonstrate how to compare the
magnitudes of disease-association of risk factors that
have different degrees of within-person variability,
with regression dilution bias taken into account.

Numerical example
Regression dilution ratios in calculated
variables
The extent of within-person variability in a risk factor
can be quantified through the regression dilution ratio
(RDR), which is appealing because of its simplicity
and its familiarity in the epidemiological litera-
ture.7,11,12 The RDR can be defined as the ratio of
the between-person variance to the total variance
(i.e. between-person varianceþwithin-person vari-
ance) in a risk factor. Values of the RDR that are
close to 1 indicate little within-person variability,
whereas values closer to 0 imply greater levels of
within-person variability.

For illustration and algebraic simplicity, suppose we
are interested in the relationship between risk and
T2 � T1, where the components T1 and T2 represent
two error-free variables with a bivariate normal
distribution (BVN). For example, T1 and T2 may be
underlying body weight on two occasions or waist
and hip circumference at the same point in time.
Hence, the exposures of interest are the change in
weight or the difference in waist and hip circumfer-
ence, respectively. Let Q1i and Q2i represent the
observed variables measured with error for individual
i. It is assumed that the classical additive measure-
ment error model17 applies to T1 and T2:

Q1i ¼ T1i þ e1i

Q2i ¼ T2i þ e2i

where
T1i

T2i

" #
� BVN

�1

�2

" #
,

�2
1 ��1�2

��1�2 �2
2

" # !

and
e1i

e2i

" #
� BVN

0

0

" #
,

�2
1 ��1�2

��1�2 �2
2

" # !
:

The within- and between-person variances for
Q1i are �2

1 and �2
1 respectively, and likewise for Q2i.
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� is the correlation between the error-free values
T1 and T2, whereas � is the correlation between the
within-person errors in these values. The RDRs for Q1

and Q2 are therefore:

RDRðQ1Þ ¼
�2

1

�2
1 þ �

2
1

and RDRðQ2Þ ¼
�2

2

�2
2 þ �

2
2

:

The within- and between-person variances, and the
RDR for the observed difference Q2 – Q1 are:

within-person variance ðQ2�Q1Þ ¼ �
2
1 þ �

2
2�2��1�2

between-person variance ðQ2�Q1Þ¼�
2
1 þ �

2
2�2��1�2

RDRðQ2�Q1Þ ¼
�2

1 þ �
2
2 � 2��1�2

ð�2
1 þ �

2
2�2��1�2Þ þ ð�2

1þ�
2
2�2��1�2Þ

:

Consider the value of the between-person variance. If
T1 and T2 are similarly distributed with equal variances
(e.g. �2), then the between-person variance for Q2 – Q1 is
simply 2�2�2��2, which approaches zero as the correl-
ation, � approaches 1. For �< � the between-person
variance will be relatively greater than the between-
person variance for Q2 – Q1, which will yield a smaller
RDR than the RDR that would result from the use of Q1

and Q2 alone, as illustrated below.
The algebraic forms for the within- and between-

person variances for the summation T1þ T2 can be
derived in exactly the same way as shown
above. For ratios of variables, such as T2=T1, it is
easier to consider the log-transformed equivalent,
log T2�log T1, to which the equations given above
can be applied. Usually, the RDR of a log-transformed
ratio approximates the RDR of the untransformed
ratio,12 and variances of log-transformed variables
are similar to the squared coefficients of variation of
the untransformed variables.

Empirical results
Figure 1 shows the calculated RDRs for Q1þQ2 and Q2 –
Q1 in the situations in which (i) RDR(Q1)¼RDR(Q2)
has the values 0.95, 0.80, and 0.60; (ii) � varies from
–1 to 1; and (iii) the ratios of the between-person vari-
ances �2

1 and �2
2 (as well as the ratios of the within-

person variances �2
1 and �2

2) have the values 1, 0.75,
and 0.5. We first assume that there is no correlation
between the within-person errors (i.e. �¼ 0). Under
these conditions, RDR(Q2 – Q1) (Figure 1, dotted line)
decreases with a higher correlation, �, because of the
decrease in the between-person variance and the rela-
tive increase in the within-person variance. The value
of RDR(Q2 – Q1) is smaller than that of RDR(Q1)
[¼ RDR(Q2)] for all positive correlations, �.
Depending on the RDRs of Q1 and Q2, the decrease in
RDR(Q2 – Q1) can occur mainly at high correlations, �,
or can also extend over lower correlations. For instance,
for RDR(Q1)¼RDR(Q2)¼ 0.95, �40.8 leads to a
sudden decrease in RDR(Q2 – Q1), whereas for lower
RDRs for Q1 and Q2, the value of RDR(Q2 – Q1) decreases
earlier and less remarkably. Greater discrepancy in the

variances of T1 and T2 attenuates that effect and pre-
vents RDR(Q2 – Q1) from decreasing beyond a certain
limit. A similar but reversed situation is observed for
RDR(Q1þQ2) (Figure 1, dashed line).

Figure 2 is a plot of the calculated RDRs for Q1þQ2

and Q2 – Q1 under the situations in which: (i)
RDR(Q1)¼RDR(Q2) has the values 0.95, 0.80, and
0.60; (ii) r varies from –1 to 1; and (iii) � has the
values 0, 0.3, and 0.6. We now assume equal vari-
ances, �2

1 ¼ �
2
2. Note that the plot lines cross at

r¼ �. The value of RDR(Q2 – Q1) declines with higher
correlation, �. However, RDR(Q2 – Q1) becomes more
stable with increasing �, except at very high values of
�. Similar results are observed when the ratios of the
between-person variances �2

1 and �2
2 are equal to 0.75

and 0.5, respectively (Supplementary Figure 1, avail-
able as Supplementary data at IJE online).

Comparison of Measures of
General and Abdominal Adiposity
The Emerging Risk Factors Collaboration
The Emerging Risk Factors Collaboration (ERFC)16

collected baseline and repeat information on height,
weight, and waist and hip circumference from 12
prospective studies, in which there were 3351 fatal
or first-ever non-fatal CHD events. Among 58 271 in-
dividuals in the 12 studies for whom baseline meas-
ures were available, a total of 42 300 had one or more
repeat measurements, and 21 360 of these individuals,
in 4 studies, had5 2 repeat measurements (Table 1).
The 79 145 available repeat measurements available
were derived from 18 different re-surveys spanning
the interval from 2–10 years after the baseline
survey. Individuals with repeat measurements of adi-
posity-related measures generally had somewhat
higher baseline values of measures of adiposity, and
were younger and more likely to be non-smokers than
individuals in the same studies who did not have
repeat measurements.

Statistical methods
We quantified the extent of within-person variability
in WHR, WHtR, and BMI and their components by
the RDR, using Rosner’s regression approach.10

Separate RDRs for each re-survey in each study
were estimated by regressing the repeat measure-
ments of the adiposity measures on their baseline
values. For each study s ¼ 1,2, . . . ,S, with individuals
i ¼ 1,2, . . . ,ns, and repeat measurements
r ¼ 1,2, . . . ,rsi, the model can be written as

Esir ¼ �sr þ �srEsi þ "sir,

where "sir � Nð0,�2
srÞ and �sr is the study and re-sur-

vey–specific RDR. Esir and Esi represent repeat and
baseline measurements of the adiposity measure E,
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respectively. �sr represents the study and re-survey–
specific intercept.

Overall RDRs were estimated from a Rosner-regres-
sion calibration model described by a single linear
mixed model of the repeat measurement on the base-
line measurement, adjusted for study and re-survey
(to allow for any differences in mean levels between
studies and at different re-surveys), and with allow-
ance for between-study heterogeneity in the RDRs
and between-person variability in mean levels (to ac-
count for multiple repeat measurements per person),
represented by the model:

Esir ¼ �sr þ ð�þ usÞEsi þ 	Xsi þ wsi þ "sir

where, us � Nð0, �2
uÞ, wsi � Nð0, �2

wÞ and "sir � Nð0, �2
e Þ;

Xsi are other baseline covariates, such as age, sex, and
smoking status. Between-study heterogeneity in the

RDR value � is represented by �2
u. The parameters �2

w
and �2

e represent individual-specific and residual vari-
ation, respectively. Between- and within-person vari-
ances and correlations of two log-transformed
adiposity measures were estimated from a bivariate
linear mixed model, using all-logarithmic baseline and
re-survey measurement values as the dependent vari-
ables, regressed on dummy variables for study and for
re-surveys, with allowance for between-person variabil-
ity in mean levels.

Proportional hazards Cox models were used to
calculate hazard ratios (HRs) in relation to WHR,
WHtR, BMI, and waist circumference for fatal or first-
ever non-fatal CHD, adjusted for age, sex, and
smoking status. Analyses involved a two-stage ap-
proach with estimates of association calculated separ-
ately within each study before pooling across studies by
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random-effects meta-analysis.18 The effect of between-
study heterogeneity was quantified with the I2 statis-
tic.19 To investigate the effect on these associations of
different degrees of within-person variability in meas-
ures of adiposity, HRs were calculated on the error-cor-
rected levels and presented: (i) per 1-SD change in
baseline adiposity measures (SD of baseline measures
for all individuals); and (ii) per 1-SD change in error-
corrected levels (SD of predicted error-corrected levels
for all individuals). Predicted error-corrected levels of
measures of adiposity for all individuals were estimated
as empirical Bayes estimates from the Rosner-regres-
sion calibration model described above.12,20 Thus, the
predicted error-corrected levels were estimated as

Êsi ¼ �̂s þ ð�̂þ ûsÞEsi þ 	̂Xsi þ ŵsi

where �̂s ¼
1
rs

Prs

r¼1 �̂sr and ûs and ŵsi are the best
linear unbiased predictors of the random effects.
Supplementary analyses were done with averaged
measures of adiposity for each individual.21 The

Supplementary Appendix (available as Supplementary
data at IJE online) provides an example of our ana-
lyses for BMI.

Regression dilution ratios
Overall RDRs of adiposity measures were: 0.72 (95%
confidence interval 0.65–0.80) for WHR, 0.87 (0.85–
0.90) for WHtR, and 0.96 (0.93–0.98) for BMI (Figure
3). Corresponding RDRs for components of these ratios
were: 0.87 (0.85–0.90) for waist circumference, 0.90
(0.86–0.93) for hip circumference, 0.99 (0.98–1.00) for
height, and 0.97 (0.96–0.98) for weight. There was con-
siderable heterogeneity between the study- and re-
survey–specific RDRs of WHR, with RDRs ranging
from 0.48 to 0.87.

Correlations and comparative distributions of
components of adiposity measures
Correlations and ratios of the between-person vari-
ances for log-transformed height, weight, waist, and
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hip circumference measurements are shown in
Table 2. Underlying waist and hip circumference
were more strongly correlated with one another
than were either waist circumference and height or
weight and height. Additionally, the errors for waist
and hip circumference were strongly correlated, which
is likely to be due to similar variation in these two
measures over time.

Associations corrected for within-person
variability
Without correction for regression dilution bias, the
HRs of CHD per 1-SD change in baseline levels were
similar for BMI, waist circumference, WHR and WHtR
(Table 3). However, in analyses that corrected for re-
gression dilution bias and calculated HRs per 1-SD
change in baseline adiposity measure, CHD was dis-
tinctly more strongly associated with WHR than with
WHtR, BMI, or waist circumference. Broadly similar
magnitudes of associations were observed in analyses
that corrected for regression dilution bias and calcu-
lated HRs per 1-SD change in error-corrected levels of
adiposity levels. The between-study heterogeneity
of HRs decreased somewhat after correction for
between-person variability (Table 3). Error-corrected

HRs were consistently smaller in analyses that used
averaged levels of adiposity measures (Supplementary
Table 1, available as Supplementary data at IJE
online), primarily because this approach fails to cor-
rect for regression dilution bias in individuals without
repeat measurements.

Discussion
This paper explores the extent of within-person vari-
ability in calculated risk factors and its implication for
epidemiological studies. Our findings show that RDRs
in calculated variables can be considerably different
from those in the directly measured risk factors.
This difference depends most strongly on the strength
of correlations and similarity in the distributions of
the directly measured risk factors. Our data on
repeat measurements of adiposity showed that the
overall RDR of WHR is considerably lower than that
of its components or of BMI and WHtR.

The main explanation for the lower RDR of WHR is
that overall waist and hip circumference are more
strongly correlated with one another and have more
similar between-person coefficients of variation than
do height and weight or waist circumference and
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height. Hip- and waist-circumference measurements
can be made with the same measuring technique
(e.g. with a tape measure, and usually by same ob-
server) and have potentially similar variations over
time, explaining the strong positive correlations in
the within-person errors of hip and waist circumfer-
ence. In contrast, weight and height are measured
with independent standardised techniques (e.g.
weighing scales and wall charts, respectively) and
height has little variation over time. Our investigation
across 12 studies allowed us to observe considerable
between-study heterogeneity in the RDRs of WHR,
which was largely explained by variation in the cor-
relations and between-person coefficients of variation
of waist and hip circumference.

We have shown that HRs for CHD per 1-SD change
in error-corrected level of BMI, WHR, WHtR and
waist circumference are broadly similar, but quite dif-
ferent conclusions would be drawn had the error-cor-
rected associations been presented per 1-SD of
baseline levels of these variables. The objectives of
many aetiological studies are to estimate associations
between underlying (i.e. error-corrected) levels of risk
factors and the likelihood of disease, expressed as
risk ratios for some appropriate change in the risk
factors. For continuous variables, the unit of change
is often chosen as an SD in the observed baseline risk
factor, which appropriately allows direct comparisons
of: (i) risk associations for several baseline risk factors
measured on different scales, uncorrected for within-
person variability; and (ii) risk associations for a
single risk factor before and after correction for
within-person variability. However, we argue that
use of an SD in baseline risk factors may be inappro-
priate for the comparison of different risk factors after
correction for within-person variability. Correcting for
within-person variability in a single risk factor can be
viewed as shrinking the observed distribution of the
risk factor to its true error-corrected distribution, and
the degree of shrinkage will depend on the extent of
within-person variability. Thus, for risk factors with
substantial within-person variability, the SD for the
error–corrected levels will be much smaller than the
SD of the observed baseline levels of these factors.
Given the aetiological objectives, it is more appropri-
ate to present the risk ratios per SD change in the
error-corrected levels to allow a direct comparison of
risk associations between error-corrected levels of sev-
eral risk factors with different degrees of within-
person variability, such as we present for the different
adiposity markers in relation to the risk of CHD.
These results may resemble the risk associations un-
corrected for within-person variability, because the
use of smaller unit changes counteracts the effect of
correcting for regression dilution bias. However, this
similarity is not guaranteed, especially in the case of
multivariate regression dilution corrections.

This paper has focused on within-person variability
in calculated ratios for measures of adiposity markers,

but our numerical examples have implications for
other commonly used ratios, such as those for lipids
(e.g. the ratio of total to high-density lipoprotein chol-
esterol), apolipoproteins (e.g. the ratio of apolipopro-
tein AI to apolipoprotein-B), fatty acids (e.g. the ratio
of omega-6 to omega-3 fatty acids), and for simple
sums and differences of risk factors (e.g. change in
body weight). We have not investigated beyond com-
bining two variables, as is required for determining
the calculated serum level of low-density lipoprotein
cholesterol,22 for example, but we expect similar de-
terminants to affect the combined within-person vari-
ability of three or more variables.

Among various statistical considerations13 is that
the ratio of two normally distributed variables
cannot strictly be normally distributed, violating the
assumptions of the additive measurement error model
and the parametric Rosner-regression calibration
model. However, we observed approximately normal
distributions for height, weight, and hip and waist
circumference and their corresponding ratios.
Depending on the original distribution, a log-trans-
formation can be a useful tool with which to gain a
better approximation of normality,23 although using
an RDR or Rosner-regression calibration model for a
log-transformed ratio would be appropriate only if the
ratio is also log-transformed in the risk-regression
model, which may create interpretive difficulties.

We have assumed that disease risk depends on a
single, underlying, long-term error-corrected exposure
level, and have used repeat measurements made over
a long time span. The methodology presented here is
also suitable for assessing alternative research hypoth-
eses, such as relating disease risk to the error-cor-
rected exposure level at a point in time (e.g. BMI at
age 20 years): in this case, RDRs should be estimated
only with the use of repeated measures made over a
shorter time span (e.g. BMI repeat measures taken
during the 20th year of age).

The limitations of methods to correct for regression
dilution bias are well-known.17 In a more realistic
situation with true, time-varying underlying exposure,
regression dilution corrections are valid if disease risk
depends only on the current true underlying expos-
ure, or if RDRs are constant over time; otherwise,
these corrections typically overcorrect.24 We further
assumed a classical, additive non-differential meas-
urement error model, but multiplicative measurement
error models that allow within-person variability to
increase with the level of exposure may be preferred.
However, we observed no important time trend in
RDRs over a 10-year time span (Figure 3), nor an
increasing within-person variability with level, sug-
gesting that our corrections are likely to be appropri-
ate for adiposity measures. Nevertheless, our observed
associations of measures of adiposity with CHD risk
may reflect residual bias caused by unmeasured con-
founders (e.g. dietary intake or physical activity),
rather than being causal associations. Corrections for
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the extent of within-person variability amplify the
effect of such non-causal associations.25 If these con-
founding factors were available, they would be mea-
sured with error, and correction methods would need
to be extended for such analyses, such as by using the
multivariate Rosner-regression model.1 As is appropri-
ate, the current study did not adjust for factors (e.g.
systolic blood pressure or lipids) on the biological
pathways between adiposity and CHD.

Our findings indicate that using calculated variables
as aetiologic risk factors can be problematic, but we
acknowledge that there may be some practical advan-
tages in using such variables. These include the
simplicity in the clinical interpretation of disease-risk
associations with a single calculated summary variable,
and the applicability of simple correction methods to a
single risk factor, whereas multiple error-prone risk fac-
tors require more complex multivariate correction
methods. However, using any calculated variable in
place of its separate components forces constraints on
the estimated risk associations, which may not be ap-
propriate or optimal, especially for risk prediction.
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Supplementary data are availabe at IJE online.

Funding
The ERFC Coordinating Centre is underpinned by a
programme grant from the British Heart Foundation
(RG/08/014) and grants from the UK Medical
Research Council and the National Institute of
Health, Cambridge Biomedical Research Centre.
A variety of sources have supported recruitment,
follow-up, and laboratory measurements in the

cohorts contributing to the ERFC. Investigators in
several of these studies have contributed to a list
naming some of these funding sources, which can
be found at http://www.phpc.cam.ac.uk/ceu/research/
erfc/studies/.

Acknowledgements
We thank Stephen Kaptoge, George Davey Smith,
Sarah Lewington, Gary Whitlock, and two reviewers
for helpful comments on an earlier draft of this paper.

Conflict of interest: None declared.

Emerging Risk Factors Collaboration Investiga-
tors: G Davey Smith; ARIC AR Folsom, LE
Chambless, J Stevens; AUSDIAB: R Atkins, E Barr;
CHS: KJ Mukamal, JR Kizer (see http://www.chs-
nhlbi.org for acknowledgements); COPEN: A
Tybjærg-Hansen, BG Nordestgaard, R Frikke-
Schmidt; EPICNOR: K-T Khaw, NJ Wareham;
HOORN: JM Dekker, G Nijpels, CDA Stehouwer;
IKNS: H Iso, A Kitamura, K Yamagishi, H Noda;
LASA: D Deeg JL Poppelaars; MESA: M Cushman,
AR Folsom, BM Psaty, S Shea (see http://www.mesa-
nhlbi.org for acknowledgements); RANCHO: E
Barrett-Connor, DL Wingard, R Bettencourt;
SHS: BV Howard, Y Zhang, J Umans; TARFS: A
Onat.

Data Management Team: M Walker, S Watson.

Coordinating Centre M Alexander, AS Butterworth,
E Di Angelantonio, P Gao, P Haycock, S Kaptoge, S
Lewington, L Pennells, SG Thompson, M Walker, S
Watson, IR White, AM Wood, D Wormser, J Danesh
(principal investigator).

KEY MESSAGES

� The extent of within-person variability relative to between-person variability in calculated risk factors
can be considerably larger (or smaller) than in its components.

� Regression dilution ratios in calculated risk factors depend strongly on the regression dilution ratios,
correlation, and comparative distributions of the components of these risk factors.

� Aetiological associations of risk factors should be appropriately compared through the use of
error-corrected hazard ratios per standard deviation change in error-corrected levels.
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