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Pyrimidine-2,4,6-triones are a new class
of voltage-gated L-type Ca2þ channel activators
Nadine J. Ortner1,*, Gabriella Bock1,*, David H.F. Vandael2, Robert Mauersberger3, Henning J. Draheim4,

Ronald Gust3, Emilio Carbone2, Petronel Tuluc1 & Jörg Striessnig1

Cav1.2 and Cav1.3 are the main L-type Ca2þ channel subtypes in the brain. Cav1.3 channels

have recently been implicated in the pathogenesis of Parkinson’s disease. Therefore,

Cav1.3-selective blockers are developed as promising neuroprotective drugs. We studied the

pharmacological properties of a pyrimidine-2,4,6-trione derivative (1-(3-chlorophenethyl)-3-

cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione, Cp8) recently reported as the first highly

selective Cav1.3 blocker. Here we show, in contrast to this previous study, that Cp8 repro-

ducibly increases inward Ca2þ currents of Cav1.3 and Cav1.2 channels expressed in tsA-201

cells by slowing activation, inactivation and enhancement of tail currents. Similar effects are

also observed for native Cav1.3 and Cav1.2 channels in mouse chromaffin cells, while non-L-

type currents are unaffected. Evidence for a weak and non-selective inhibition of Cav1.3 and

Cav1.2 currents is only observed in a minority of cells using Ba2þ as charge carrier. Therefore,

our data identify pyrimidine-2,4,6-triones as Ca2þ channel activators.
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L
-type Ca2þ channels (LTCCs, Cav1) represent one of the
three major classes (Cav1–3) of voltage-gated Ca2þ

channels1. They are expressed in most electrically excitable
cells1–3. Many physiological processes, including muscle, brain,
endocrine and sensory function, depend on proper LTCC
activity2. Mutant mice and inherited human diseases have
provided detailed insight into the physiological and
pathophysiological role of these channels2,4. LTCCs contain
high-affinity drug binding sites for dihydropyridines and other
chemical classes of organic Ca2þ channel blockers5.

Within the L-type Ca2þ channel family (Cav1.1�Cav1.4),
Cav1.2 and Cav1.3 are the main isoforms found in the brain.
They are predominantly located at postsynaptic somatodendritic
locations, are often present in the same neuron6 and shape short-
and long-term adaptations of synaptic function2,4,6,7. However,
they are functionally distinct and contribute differently to various
brain functions, such as emotional and drug-taking behaviours
and different types of memory2–4. Cav1.3 comprises onlyB10%
of LTCCs in the brain8, but due to its more negative activation

voltage range it carries inward current at threshold voltages9,10.
Thereby, it can stabilize upstate potentials, shape firing patterns
and contribute to pacemaker currents2,6,7,11. L-type Ca2þ

currents also contribute to the dendritic Ca2þ transients during
the autonomous pacemaking in substantia nigra pars compacta
(SNc) dopaminergic neurons12. These Ca2þ oscillations add
to the increased level of mitochondrial oxidative stress
responsible for the particular vulnerability of these neurons to
neurodegeneration in Parkinson’s disease (PD)13. LTCC blockers
can protect these neurons from neurodegeneration in various
mammalian PD models3,14, and epidemiological clinical studies
associate the use of brain-permeable Ca2þ channel blockers in
hypertensive patients with reduced PD risk15,16. Therefore, the
inhibition of LTCCs in SNc neurons represents an attractive
neuroprotective concept in PD17. Currently available LTCC drugs
inhibit both Cav1.3 and Cav1.2 (refs 18,19). Their potent block of
Cav1.2 channels in arterial resistance vessels and cardiomyocytes
explains their cardiovascular therapeutic benefits but limits their
use for neuroprotection in PD8. As Cav1.3 channels are also

rCav1.3L rbCav1.2S

125 pA

a b

c d

e f

10 ms

100 pA

1 ms

7

5

3

1

700

500

300

100

100 4

3

2

1

0 5 10 15 20 25

Number of sweeps

75

50

25

0 5 10
Number of sweeps

15 20 25

25 pA

1 msControl

Control Cp8 Cp8 Wash

N
or

m
al

iz
ed

 ta
il

Ta
il 

(%
) 

af
te

r 
sw

ee
p 

15

700

500

300

100

Control Cp8

Ta
il 

(%
) 

af
te

r 
sw

ee
p 

15

W
as

h 
(%

) 
af

te
r 

sw
ee

p 
10 100

75

50

25

Cp8 Wash

W
as

h 
(%

) 
af

te
r 

sw
ee

p 
10

N
or

m
al

iz
ed

 ta
il

Control

15th

12th
8th

4th

15th

12th

8th

4th

40 pA

10 ms
–60

Control

Wash sweep 10
50 μM Cp8 sweep 15

1 μM ISR sweep 7

Control

Wash sweep 10
50 μM Cp8 sweep 15

1 μM ISR sweep 7

–0.2
–0.4

–0.2
–0.4

–0.6
–0.8

–0.6
–0.8
–1.0

150

200 ***

*** **
***

*** **

*

*

100

100

N
or

m
al

iz
ed

 I C
a

N
or

m
al

iz
ed

 I C
a

50

00
7 ms 99 ms4 ms 99 ms

–40 –20 20 40 60 –60–40 –20 20 40 60 80100

Figure 1 | Modulation of rCav1.3L and rbCav1.2S Ca2þ currents by Cp8. ICa (15 mM, 100-ms test pulses to Vmax at 0.2 Hz, HP of � 80 mV) through

rCav1.3L (a) or rbCav1.2S (b) before, during and after superfusion of the cell with Cp8-containing (50 mM) bath solution. Last sweep before drug

application (control) is shown in black. Insets: ICa–V relationship before (black) and after (grey) drug application (500-ms long depolarizations to indicated

potentials; for statistics see Supplementary Table 1). Dotted line: ihibition by 1 mM ISR after 7 sweeps. (c,d) Left: ICa during the first 10 ms of control (left,

bold black), 4th, 8th, 12th and 15th (grey) sweep of drug application. Right: effect of 50mM Cp8 on ICa through rCav1.3L (c, n¼ 14) and rbCav1.2S (d, n¼ 11)

at an early (4 ms for rCav1.3L, 7 ms for rbCav1.2S) and late (99 ms) time point. Normalized tail area (per cent of the area under the tail in the presence of

drug versus the tail area during the previous control sweeps) of a representative rCav1.3L (e) or rbCav1.2S (f) recording are plotted against the number of

sweeps. Left: drug application is indicated by a black line. Middle: normalized tail area (%) after 15 sweeps of drug application for rCav1.3L (e, n¼ 13, range

136–1,259) and rbCav1.2S (f, n¼ 11, range 149–1,874). Right: decrease of tail area (in %) after ten sweeps of subsequent washout with bath solution

(rCav1.3L, n¼ 13; rbCav1.2S, n¼ 9). Means±s.e. are shown. Statistical significance was determined using unpaired t-test. ***Po0.001; **Po0.01; *Po0.05.
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expressed in SNc neurons20, there is considerable interest to
develop Cav1.3-selective inhibitors as agents for neuroprotection
lacking major cardiovascular side effects17.

A recent study has reported the discovery of pyrimidine-2,4,6-
trione derivatives as highly Cav1.3-selective antagonists17,21.
These compounds may not only comprise lead structures for
further drug development but also valuable pharmacological
tools to dissect the function of Cav1.2 and Cav1.3 for different
cellular functions in vivo and in vitro. We have therefore further
characterized the pharmacological properties of these compounds
and found an unexpected gating modifying effect of Ca2þ inward
currents (ICa) through recombinant and native Cav1.3, as well as
Cav1.2 LTCCs. This was characterized by slowing of activation
and inactivation kinetics, slowing of deactivation and late inward
current stimulation. These pharmacological properties strongly
resemble those of the benzoylpyrrole LTCC channel activator
FPL64176. Our experiments identify pyrimidine-2,4,6-trione
derivatives as a new class of LTCC-activating drugs.

Results
Modulation of LTCC Ca2þ currents by Cp8. The pyrimidine-
2,4,6-trione derivatives compound 3 (Cp3; 1-(3-chlorophenethyl)-
3-cyclohexylpyrimidine-2,4,6-(1H,3H,5H)-trione) and compound
8 (Cp8; 1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-
(1H,3H,5H)-trione) have recently been reported to block rat
Cav1.3 channels with low micromolar IC50 values and with
28– (Cp3) to 4100–1,000-fold (Cp8) selectivity over Cav1.2 in
fluorometric imaging plate reader and whole-cell patch-clamp
assays after stable heterologous expression in HEK-293 cells17,21.
As the permeant ion critically affects LTCC channel kinetics and
therefore may affect drug potency and selectivity, we tested these
compounds using Ca2þ as the physiological charge carrier. ICa

inactivates much faster than IBa by inducing strong Ca2þ -
dependent inactivation (CDI)22. Similar to that in the original
publication, rat Cav1.3 a1 (rCav1.3L) and rabbit Cav1.2
(rbCav1.2S) channel constructs were expressed together with b3
and a2d1 subunits in tsA-201 cells. Cp8 (50 mM) induced a
pronounced time-dependent change in current kinetics of both
rCav1.3L and rbCav1.2S during 0.2 Hz depolarizing pulses from a
holding potential (HP) of � 80 mV to Vmax (Fig. 1a,b). It was
characterized by a slowing of the activation and inactivation time
course, accompanied by an increase of tail current. This was due
to an increase of peak tail current and a pronounced slowing of
deactivation (Fig. 1a,b; Table 1 for statistics). The drug
also induced an B10 mV shift in the half-maximal activation
voltage (V0.5, act) to more negative voltages (inset Fig. 1a,b;
Supplementary Table 1). A steady-state drug effect was usually
obtained after 15 pulses (70 s after drug application). This was
slower than for inhibition by the dihydropyridine isradipine (ISR;
1 mM), which fully developed profound inhibition within three to
nine sweeps (Fig. 1a,b). As Cp8 effects were unexpected and
previously not reported, we confirmed these findings using three
independent supplies of Cp8 (see Methods). We could also rule
out drug perfusion artefacts by performing appropriate control
experiments (see Methods for detail).

We quantified the drug effect on ICa at early (at the peak
current amplitude in the absence of drug) and late time points
(end of test pulse) during the pulse to account for drug-induced
changes on current kinetics. Slowing of activation reduced ICa of
rCav1.3L (quantified after 4 ms depolarization) and of rbCav1.2S

(quantified after 7 ms; Fig. 1c,d; right panels; Table 1). ICa through
both channels was significantly larger at the end of the
depolarizing 100-ms pulse, reflecting slowed inactivation
(Fig. 1c,d; Table 1). Fig. 1e,f illustrates the pronounced
time-dependent increase of the integrated tail current of a

representative cell and the corresponding statistics. Similar data
were obtained for human Cav1.3 (hCav1.3L) and the carboxy-
terminally long rbCav1.2L (for statistics see Table 1). The drug
effect was slowly reversible as evident from the constant decrease
of integrated tail current (Fig. 1a,b and e,f, wash) on washout.
Inhibition of early inward current was more pronounced for
rbCav1.2S than for rCav1.3L, but tail currents were similarly
increased (Fig. 1e,f). The slowing of activation and inactivation,
and the increase in late ICa was also reproducibly (n¼ 6)
illustrated for hCav1.3L during 5-s depolarizations for control and
drug-treated cells (Fig. 2a). Slowing of activation kinetics
increased the time to peak ICa and this was again slowly
reversible on washout (Fig. 2b–d). Taken together, the pharma-
cological effects of Cp8 on ICa closely resemble those previously
described for the LTCC-activating drug FPL64176 (refs 23,24)
rather than a Ca2þ channel blocker. Although variable in extent,
this modulation was clearly observed in all recordings using
Ca2þ as the charge carrier (430 cells with Cav1.3 constructs
from 6 independent transfections, 16 cells with Cav1.2 constructs
from 6 transfections).

Table 1 | ICa modulation of different LTCC constructs by Cp8
(50 lM).

0.2 Hz, 15 mM Ca2þ Normalized peak ICa after 15 sweeps (%)

rCav1.3L 4 ms 99 ms n
Control 93.6±4.1 93.5±4.6 8
50mM Cp8 74.9±6.6* 218.8±21.1*** 14

rbCav1.2S 7 ms 99 ms n
Control 101.8±2.7 92.7±4.7 9
50mM Cp8 66.1±6.6*** 128.6±10.3** 11

rbCav1.2L 7 ms 99 ms n
Control 105.3±2.9 101.7±2.5 2
50mM Cp8 93.6±7.4 165.9±14.4* 5

hCav1.3L 4 ms 99 ms n
Control 93.6±4.0 90.3±2.4 5
50mM Cp8 60.3±5.5*** 197.9±11.1*** 12

Normalized tailarea after 15 sweeps (%)

rCav1.3L n
Control 109.7±4.1 (92.3–121.7) 8
50mM Cp8 528.6±96.5*** (136.1–1259) 13

rbCav1.2S

Control 107.8±3.6 (92.4–132.8) 9
50mM Cp8 459.6±154.8* (148.6–1874) 11

rbCav1.2L

Control 96.4±13.4 (83.0–109.7) 2
50mM Cp8 639.1±196.8 (300.3–1234) 5

hCav1.3L

Control 101.6±7.9 (81.7–129.6) 5
50mM Cp8 552.3±59.8*** (200.1–858.9) 11

Cp8, (1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione; LTCC, L-type
Ca2þ channel.
Drug effects were calculated at early (4 ms for rCav1.3L, 7 ms for rbCav1.2S) and late time points
(99 ms) during the test pulse to quantify kinetic changes observed during sweep 15 (0.2 Hz,
15 mM Ca2þ ) after drug application and are expressed as % ICa of the last sweep before drug
application. Controls (obtained in separate cells) were perfused with external bath solution
containing 0.5% (v/v) DMSO and mostly reflect time-dependent channel rundown. All values
are presented as means±s.e. for the indicated number of experiments (n). For tail analysis the
minimum and maximum increase of the tail area in % is given in parenthesis to illustrate the
consistency of the stimulatory effect even in the absence of statistical significance. Number of
independent transfections43 for rCav1.3L and rbCav1.2S. Statistical significance (Cp8 versus
control) was determined using unpaired t-test. ***Po0.001; **Po0.01; *Po0.05
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Modulation of LTCC Ba2þ currents by Cp8. As Ca2þ channel-
activating properties of Cp8 have previously not been observed for
the modulation of Ba2þ currents, we tested whether these kinetic
changes were dependent on the permeant ion by repeating the
experiments using Ba2þ as the charge carrier. In 26 of 44 cells
expressing rCav1.3L and 25 of 36 cells (46 independent trans-
fections) expressing rbCav1.2S, a very similar kinetic change with a
consistent and reversible (on washout) tail current increase was
observed as described above for ICa (cell population labelled ‘Dtail’
in Fig. 3 and Supplementary Table 2). Effects on inactivation were
less pronounced than for ICa partly due to the slow voltage-
dependent inactivation of IBa (absence of CDI) (Fig. 1a,b versus
Fig. 3a,b). Exemplar current traces (Fig. 3a,b) as well as statistics
for modulation of early and late IBa and tail current (Fig. 3e,f)
show again similar modulation of both Cav1.3 and Cav1.2 chan-
nels. Comparable effects on tail current were also observed for
Cp3 (Fig. 3e,f, left panels). In addition to the 0.2-Hz pulse pro-
tocol, we also applied a protocol (0.05 Hz, 100-ms depolarizations
from an HP of � 70 mV, external bath solution 2: 10 mM Ba2þ ,
see Methods) reproducing the experimental conditions in the
original report17. The modulatory drug effects were similar using
this protocol (for statistics see Supplementary Table 2).

In the minority of the cells (18 of 44 cells expressing rCav1.3L

and 11 of 36 cells expressing rbCav1.2S), Cp8 and Cp3 inhibited
peak IBa with no consistent and reversible change of tail currents
(‘no Dtail’, Fig. 3c,d). This behaviour was also observed when
using the 0.05 Hz protocol (Supplementary Table 2). As this was
more compatible with classical Ca2þ channel block, we analysed
these recordings separately to test whether inhibition was Cav1.3
selective. The inhibition of peak IBa by Cp3 and Cp8 (50 mM) was
weak and very similar for both channel isoforms (Table 2),
suggesting a lack of Cav1.3 selectivity for Ca2þ channel-blocking
effects under our experimental conditions. Again, the absence or
presence of a kinetic change was observed for Cp3 and Cp8
obtained from drug batches synthesized in different laboratories
(see Methods).

Effect of Cp8 on ICa during fast and brief depolarizations.
The standard stimulation protocols used so far are suitable to

predict the pharmacological modulation of ICa during long and
infrequent depolarizations such as action potentials (APs) in
human cardiac myocytes. Therefore, we also quantified the effect
of Cp8 on ICa during shorter (3 ms) stimuli and at high frequency,
more closely mimicking electrical activity in the brain (Fig. 4). In
contrast to long square pulses, most of the inward current during
brief stimuli occurs as tail current on repolarization (Fig. 4a).
Switching from a stimulation rate of 1 Hz to 100 Hz trains
resulted in a reversible decrease of peak tail current through
hCav1.3L during the first 20 sweeps before a new equilibrium was
achieved. In control cells, exposure to vehicle only caused a
reduction of ICa without change in current kinetics (Fig. 4b, left)
as expected for ICa run down. In contrast, Cp8 slowed current
activation and tail current decay during individual pulses (Fig. 4b,
right). Peak tail currents during the first pulse were inhibited by
the drug (Fig. 4a,c) but failed to decrease, and even increased
during subsequent pulses, thereby stabilizing larger peak tail
currents later during the train (Fig. 4c). These experiments con-
firm the complex modulation of Cav1.3 ICa during fast trains of
depolarization with no evidence for typical LTCC-blocking
effects.

Modulation of native LTCCs in mouse chromaffin cells. To
demonstrate that the channel-activating effects are not only a
property of recombinant channel complexes, we also confirmed
our findings in mouse chromaffin cells (MCCs) in which we
could previously distinguish Cav1.3 and Cav1.2 LTCC compo-
nents (2 mM Ca2þ as charge carrier, Fig. 5). Under these con-
ditions, 3mM nifedipine completely block Cav1.2 and Cav1.3, and
on average B50% of the total current is equally carried by Cav1.3
and Cav1.2 in wild-type (WT) mice10,25. The remaining
component is carried by P/Q, N and R-type channels10,26. Cp8
caused a slight slowing of inactivation during the test pulse
(Fig. 5a, left; b, WT traces) but, as in tsA-201 cells its main effect
was a marked prolongation of the tail current. Nifedipine (3 mM)
fully blocked this effect (Fig. 5a). Tails at � 50 mV in the presence
of nifedipine and nifedipineþCp8 were indistinguishable (n¼ 7),
suggesting that the modulation is limited to LTCCs. Deactivation
of control currents occurred mono-exponentially with a single,
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submillisecond time constant (tfast), while in the presence of Cp8
it followed a double-exponential time course with a fast (tfast)
and a slow component (tslow) (Fig. 5b, right, repolarization to

� 40 mV). tslow was an order of magnitude slower and
contributed maximally to deactivation during repolarization
voltages (Vr) of � 50 or � 40 mV (Fig. 5b, n¼ 7). tfast was not
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early (4 ms for rCav1.3L, 7 ms for rbCav1.2S) and late (99 ms) time point. All n-values are given in parentheses. Means±s.e. are shown. Statistical

significance was determined using unpaired t-test (control versus Cp8: ***Po0.001; **Po0.01; *Po0.05; Dtail versus no Dtail: ### Po0.001; #Po0.05)

or paired t-test (early versus late time point: þþþ Po0.001; þþ Po0.01).

Table 2 | IBa inhibition through rCav1.3L and rbCav1.2S by Cp8 (10 and 50mM) and Cp3 (50 mM) in cells with no consistent and
reversible increase in tail current (‘no Dtail’).

Construct % Inhibition after 15 sweeps

0.2 Hz, 15 mM Ba2þ Control n 10 lM Cp8 n 50 lM Cp8 n 50 lM Cp3 n

rCav1.3L 3.1±1.6 5 8.5±4.0 6 9.1±2.3 3 23.2±1.7 7
rbCav1.2S 2.4±1.0 3 9.4±3.1 6 21.7±4.2* 3 n.d.

% Inhibition after 6 sweeps

0.05 Hz, 10 mM Ba2þ Control n 50 lM Cp8 n 50 lM Cp3 n

rCav1.3L 10.0±2.5 7 15.0±2.2 5 22.4±5.8* 3
rbCav1.2S 13.7±2.6 9 22.2±1.2* 5 26.8±2.9* 3

Cp3, 1-(3-chlorophenethyl)-3-cyclohexylpyrimidine-2,4,6-(1H,3H,5H-trione; Cp8, (1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione; n.d., not determined.
Only recordings were analysed in which Cp8 or Cp3 induced no consistent and reversible increase in tail current. Two stimulation protocols were used (100 ms test pulses at 0.2 Hz, 15 mM extracellular
Ba2þ or 0.05 Hz, 10 mM extracellular Ba2þ as charge carrier). % Inhibition in control cells includes current rundown during the experiments. All values are presented as mean±s.e. for the indicated
number of experiments (n). Statistical significance was determined using unpaired t-test. *Po0.05.
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affected by Cp8 (Fig. 5b). To determine whether Cav1.2 channels
are modulated by the drug, we repeated these experiments in
Cav1.3-deficient mice (Cav1.3� /� , n¼ 6) that only express
Cav1.2 LTCCs. Slowing of tail currents was also evident in
Cav1.3� /� cells (Fig. 5b). Again, tslow was about an order of
magnitude slower than tfast but significantly smaller (2.6 versus
3.3 ms) than in WT, indicating a slightly less-pronounced
potentiating action of Cp8 on Cav1.2 channels. The slow
kinetic component also contributed less to the total tail current
amplitude in Cav1.3� /� MCCs (15.5% (red triangles) versus
25.5% (red circles) in Fig. 5b middle). This lower contribution is
compatible with the absence of Cp8-modified Cav1.3 channels in
Cav1.3� /� mice.

The activating properties of Cp8 were also confirmed on Ca2þ

currents during an AP clamp in WT MCCs. The potentiating
effect of Cp8 is more evident on the repolarizing phase (post-AP;
tails) than during the pacemaking (pre-AP) and caused an
increase in total Ca2þ charge during the AP (Fig. 5c, n¼ 5).
As expected from its channel-activating properties, Cp8
nearly doubled the spontaneous firing frequency of MCCs, in
contrast to nifedipine that either decreased or blocked the firing10

(n¼ 6, for statistics see Fig. 5d). This was accompanied by a Cp8-
induced reduction of the after-hyperpolarization of the AP
(Fig. 5d, right).

Discussion
The unexpected finding of our study was the absence of any
evidence for a Cav1.3-selective Ca2þ channel-blocking effect of
Cp3 and Cp8, two compounds recently claimed to be highly
Cav1.3-selective channel blockers in fluorometric imaging plate
reader and patch-clamp studies17,27. Our results also differed
from those previously published, because we observed (non-
selective) current inhibition only in the minority of experiments
and only using Ba2þ as a charge carrier. Instead, in most
experiments with Ba2þ and in all experiments using Ca2þ as the
charge carrier, Cp8 reproducibly induced pronounced changes of
current kinetics through rbCav1.2S and rCav1.3L expressed in
tsA-201 cells. These changes were characterized by a slowing of
the activation and inactivation time course during depolarizing
stimuli. They were observed in independent transfections, were
independent of current size, could be slowly washed out in most
cells and were also observed with experimental conditions
(composition of bath solution, stimulation protocol),
reproducing those described in the original publication17. As
described in Methods, we also took special care to rule out
experimental artefacts such as drug carryover, pharmacological
effects of chemicals eluting from plastic material28 or dimethyl
sulphoxide (DMSO) effects. As we performed control
experiments in separate cells using the same stimulation

a
Control

hCav1.3L

Cp8

200 pA

50 ms

200 pA

50 ms

Last Last1st

After

b

c

Before

1st

After

Before

400 pA

1.5 ms

400 pA

1.5 ms

* ***

0.8

0.7

0.6

0.5

0.4

0.3
0 10 20 30 40

R
em

ai
ni

ng
 c

ur
re

nt

R
em

ai
ni

ng
 c

ur
re

nt

Pulse number

Control (n=3)
50 μM Cp8 (n=5)

1.0

0.8

0.6

0.4

0.2

0.0
1st Last 5

Figure 4 | Effect of 50 lM Cp8 on hCav1.3L Ca2þ currents using AP-like stimuli. (a) Representative traces of ICa (15 mM) during 3-ms long

depolarizations from an HP of �80 mV toþ40 mV with a frequency of 100 Hz after 3 min of drug application (50mM Cp8, right panel) or perfusion with

bath solution containing 0.5% (v/v) DMSO (control, left panel). (b) Current traces illustrating ICa during the first and the last (40th) pulse of AP-like

trains before (grey) and after (black) application of drug or control (0.5% (v/v) DMSO) solution in a separate cell. For comparison, traces were normalized

to the peak amplitude of the first pulse of one AP-like train before drug application started. (c) Left: mean (±s.e.) change of tail amplitudes during the

train in cells treated with control (black) solution or 50mM Cp8 (grey). Data were normalized to the first action potential before drug application.

Right: statistics of remaining current during the first pulse (first) or the mean of the last five pulses (last five) of the trains recorded 3 min after control

(black) or Cp8 application (grey). Statistical significance was determined using unpaired t-test. ***Po0.001; *Po0.05.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4897

6 NATURE COMMUNICATIONS | 5:3897 | DOI: 10.1038/ncomms4897 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


protocol and application time course, we also fully accounted for
changes in current kinetics and amplitude (including current run
down) not mediated by the test compounds. Moreover, the
characteristic kinetic changes were reproducibly observed not
only with the compounds synthesized in our laboratory but also
from two other independent sources (Methods). The channel
constructs used for our study were the same (Cav1.2) or very
similar (Cav1.3) to those described in the original report. Their
integrity was verified by DNA sequencing and also resulted in the
L-type current characteristics expected for the two channel
isoforms. Cav1.3 currents activated at more negative voltages
than Cav1.2 (Supplementary Table 3) and exhibited an initial
faster inactivating component (due to more pronounced CDI29)
with Ca2þ as the charge carrier (Fig. 1a,b). As the C terminus of

Cav1.2 can also be proteolytically cleaved and can even be
released from the channel into the nucleus as independent
transcriptional regulator3,30,31, we tested both long and short
Cav1.2 a1-subunit variants, without an obvious difference in Cp8
response. We also observed no relevant difference between the rat
and human Cav1.3 constructs.

Unexpectedly, the modulation of ICa by Cp8 closely resembled
the actions of the LTCC activator FPL64176. This drug also
slows activation and inactivation kinetics, increases peak current
and slows current deactivation23,24,32,33. It is therefore possible
that despite its unrelated structure, channel modulation of ICa by
Cp8 occurs through similar mechanisms than by FPL64176. This
includes the possibility that Cp8 stabilizes a conducting
inactivated state that can explain the slowing of current kinetics23.
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However, one notable difference is that in a minority of
cells, and only with Ba2þ as charge carrier, the effects on tail
currents were virtually absent and weak, and non-selective Ca2þ

channel-blocking effects by Cp8 (and Cp3) were evident.
Application of 50 mM caused o30% inhibition of IBa. This is in
contrast to a reported IC50 of B25 mM in similar patch-clamp
experiments17.

Notably, the extent of inhibition of rbCav1.2S by Cp8 was
comparable with the data previously reported for Cav1.2,
suggesting that the absence of selectivity for blocking effects in
our experiments resulted from a lower apparent sensitivity of
Cav1.3. The absence or presence of a kinetic change was not
predicted by current amplitudes and both behaviours (with or
without tail current changes) could be observed even within the
same transfection and the same day of IBa recording.

Currently, we cannot explain the differences between our data
and those reported for both compounds previously17. One
possibility is that the stable rat Cav1.3 cell line that has been
used for the initial characterization displays abnormally high
sensitivity towards these compounds. This could result from the
selection of a suitable clone from a large number of clones. To our
knowledge the biophysical and pharmacological properties of this
stable clone have never been reported in detail. This appears to be
important because an earlier study using a stable Cav1.3-
expressing cell line also could not detect essential biophysical
hallmarks of Cav1.3, such as its negative activation voltage
range34. Here we used transiently transfected cells. Although this
may introduce additional variability, it is more suitable to reveal
the true spectrum of pharmacological properties of these
channels. As we found (weak) Ca2þ channel-blocking activity
by these compounds in a population of cells with Ba2þ

recordings, it is possible that channel blocking by Cp8 depends
on a certain channel state that is preferentially stabilized by Ba2þ

and/or favoured in some stable cell lines.
The voltage-dependent widening of the L-type ICa tail

component in MCCs proves that the channel-activating proper-
ties of Cp8 also apply to native LTCCs. As we found no evidence
for ICa inhibition or tail current slowing by Cp8 in the presence of
nifedipine, we provide evidence that Cp8 effects spare non-
LTCCs (which comprise about half of the ICa in MCCs under our
experimental conditions10,26). In contrast to tsA-201-expressed
channels we found no clear effects on ICa kinetics and whole-cell
current amplitudes during our brief test pulses, although a slight
slowing of inactivation during depolarization was evident in some
cells. However, changes of current kinetics are more difficult to
quantify in MCCs because of the large contribution of non-
LTCCs to ICa. In Cav1.3� /� MCCs where Cav1.2 remains as the
only LTCC10,25, we still observed Cp8-induced appearance of a
slowly decaying tail current component demonstrating that the
drug also modulates native Cav1.2 channels. In AP-clamp
configuration, plenty of Ca2þ current is conducted during the
tail currents on AP repolarization. Cp8 widened this Ca2þ -tail
component in all tested cells (n¼ 6) and augmented the Ca2þ

current charge. Using Cav1.3� /� mice, we have previously
identified Cav1.3 LTCCs as critical pacemaker channels in
MCCs10,25. The LTCC-activating effect of Cp8 can therefore
also explain the drug-induced increase in spontaneous firing
frequency of MCCs observed in our experiments. This was
accompanied by a reduced after-hyperpolarization of the MCC
AP in the presence of drug. We hypothesize that this is due to the
specific increase of ICa during the tails. At this point the large-
conductance, Ca2þ -activated potassium channels (voltage
sensitive) are about to close; thus, the effect of the increased tail
ICa will be a reduced net outward current that will contribute to a
depolarization35. However, we cannot rule out Cp8 effects on Kþ

channels as well. In accordance with our results obtained in tsA-

201 cells, we have no evidence for Ca2þ channel-blocking effects
of Cp8 in MCCs.

Taken together, we conclude that Cav1.3-selective compounds
reproducibly inhibiting LTCCs independent of experimental
conditions and devoid of Ca2þ channel-activating properties
still need to be discovered. The large number of pyrimidine-2,4,6-
triones that has been generated in previous studies17,21 should
comprise a suitable library to screen for lead compounds of
Cav1.3-selective blockers. Our finding that Cp8 appears to spare
non-LTCCs suggests that such compounds specifically target a
binding pocket present only on LTCCs.

Methods
Electrophysiological recordings in tsA-201 cells. tsA-201 cells (a human
embryonic kidney cell line stably expressing a SV40 temperature sensitive T
antigen, ECACC, 96121229) were cultured in DMEM supplemented with 10% FCS
(Gibco, 10270-106), 2 mM L-glutamine (Gibco, 25030-032), penicillin (10 units per
ml; Sigma, P-3032) and streptomycin (10mg ml� 1; Sigma, S-6501), and maintained
at 37 �C in a humidified incubator with 5% CO2. Cells were grown and split when
they reached B80% of confluence using 0.05% trypsin for cell dissociation. The
cell’s passage number did not exceed 20 passages. For whole-cell patch-clamp
recordings, tsA-201 cells were transiently transfected with an equimolar ratio of
complementary DNA encoding full-length a1-subunits together with auxiliary
b3 (rat, NM_012828) and a2d1-subunits (rabbit, NM_001082276)9,18 using
Ca2þ -phosphate. Briefly, 0.5 ml of DNA in CaCl2 (250 mM CaCl2) was added
dropwise to 0.5 ml HEBS (274 mM NaCl, 40 mM HEPES, 10 mM KCl, 1.4 mM
Na2HPO4� 2H2O, 12 mM dextrose, pH 7.05) at 37 �C. The mix was then
incubated at room temperature for 20 min and the precipitates formed were added
directly drop by drop to cells. Medium was changed after 6–8 h incubation at 37 �C
and 5% CO2. To visualize transfected cells, green fluorescent protein was co-
transfected. Cells were then plated onto a 35-mm culture dish pre-coated with
poly-L-lysine. The cells were kept at 30 �C and 5% CO2, and subjected to
electrophysiological measurements 48–72 h after transfection.

For whole-cell patch-clamp recordings, electrodes with a resistance of 2–5 MO
were pulled from glass capillaries (Borosilicate glass, 64-0792, Harvard Apparatus,
USA) using a micropipette puller (Sutter Instruments) and fire-polished with an
MF-830 microforge (Narishige, Japan). Cells were recorded in the whole-cell
configuration using Axopatch 200A amplifier (Axon Instruments, Foster City, CA).
Recordings were digitized (Digidata 1322A digitizer, Axon Instruments) at 50 kHz,
low-pass filtered at 5 or 2 kHz and subsequently analysed using pClamp 10.2
software (Axon Instruments). Experiments showing currents bigger than 3 nA were
prospectively excluded from analysis. Linear leak and capacitative currents were
subtracted offline (5-s pulses, 100 ms protocol) or online (P/4 protocol).
Compensation was applied for 60–70% of the series resistance. The pipette internal
solution contained (in mM): 135 CsCl, 10 HEPES, 10 Cs-EGTA, 1 MgCl2, 4 ATP-
Na2 adjusted to pH 7.4 with CsOH (311 mOsm l� 1); bath solution 1 (for 0.2 Hz
recordings) contained (in mM): 15 BaCl2, 10 HEPES, 150 Choline-Cl and 1 MgCl2,
adjusted to pH 7.4 with CsOH; bath solution 2 (for 0.05 Hz recordings) contained
(in mM): 10 BaCl2, 140 NaCl, 1 MgCl2, 10 HEPES, 20 CsCl adjusted to pH 7.4 with
CsOH, osmolarity B320 mOsm l� 1; bath solution 3 contained (in mM): 15 CaCl2,
10 HEPES, 150 Choline-Cl, and 1 MgCl2, adjusted to pH 7.4 with CsOH; current–
voltage (I–V) relationships were obtained by applying a 20- or 500-ms long square
pulse protocol (as indicated in the figure legends) to various test potentials starting
from an HP of � 80 mV. Resulting I–V curves were fitted to the equation I¼Gmax

(V�Vrev)/{1þ exp[� (V�V0.5,act)/kact]} where I is the peak current amplitude,
Gmax is the maximum slope conductance, V is the test potential, Vrev is the
extrapolated reversal potential, V0.5,act is the half-maximal activation voltage and
kact is the slope factor. Ba2þ or Ca2þ currents were recorded using either a 0.2-Hz
protocol (100 ms test pulses to Vmax, HP � 80 mV, bath solution 1 and 3) or a
0.05 Hz protocol (100 ms test pulses to Vmax, HP � 70 mV, bath solution 2). For
the quantification of tail currents, the area under the curve between the peak of the
tail current and the subsequent 17 ms was integrated. Five-second long square
pulses were elicited from an HP of � 80 mV to Vmax every 30 s. AP-like square
stimuli: 3 ms from an HP of � 80 mV toþ 40 mV with a frequency of 1 or 100 Hz.

Drug perfusion. Concentrations (50 mM) of drug were routinely employed to
ensure fast equilibrium of the slow drug effects and because lower concentrations
produced only minimal effects on IBa (Table 2). Cells were perfused by an air
pressure-driven perfusion system (BPS-8 Valve Control System, ALA Scientific
Instruments) with external solutions in the presence or absence of drugs with a
flow rate of 0.6 ml min� 1. Drug application was started after at least four constant
control sweeps during perfusion with external bath solution. To ensure that the
perfusion system was not contaminated, each day before measuring the com-
pounds, individual control recordings with only bath solution containing 0.5% (v/
v) DMSO were performed, using the tubes subsequently used for test compounds.
The recording setup and perfusion system has never been exposed to Ca2þ

channel activators (such as BayK8644 or FPL64176). Complete exchange of the
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solution around the perfused cell was obtained in o50 ms. All experiments were
performed at room temperature (B25 �C).

Electrophysiological recordings from MCCs. Chromaffin cells were isolated and
dissociated from 3-month-old male C57BL/6N or male Cav1.3� /� mice as
described in detail previously10,25. Ethical approval was obtained for all
experimental protocols from the University of Torino Animal Care and Use
Committee, Torino, Italy. All experiments were conducted in accordance with the
National Guide for the Care and Use of Laboratory Animals adopted by the Italian
Ministry of Health.

A drop (100 ml) of concentrated cell suspension was plated on poly-ornithine
(1 mg ml� 1; Sigma-Aldrich, Munich, Germany) and laminin (5 mg ml� 1; Sigma-
Aldrich, Munich, Germany) coated petri-dishes and 30 min later 1.9 ml of DMEM
containing 1% penicillin/streptomycin (Sigma-Aldrich) and 15% FCS (Sigma-
Aldrich) was added. The primary chromaffin cell culture was kept in an incubator
at 37 �C and water saturated atmosphere with 5% CO2.

Currents were recorded in perforated-patch conditions using a multiclamp
700-B amplifier and pClamp 10.0 software (Molecular Devices, Sunnyvale, CA,
USA)10,25. Traces were filtered using a low-pass Bessel filter set at 1–2 kHz and
sampled at 10 kHz using a digidata 1440 A acquisition interface (Molecular
Devices). Borosillicate glass pipettes (Kimble Chase life science, Vineland, NJ, USA)
with a resistance of 2–3 MO were dipped in an Eppendorf tube containing
intracellular solution before being back-filled with the same solution containing
500mg/ml of amphotericin B (Sigma-Aldrich) dissolved in DMSO (Sigma-Aldrich).
Recordings were initiated after amphotericin B brought the access resistance below
15 MO (5–10 min). Series resistance was compensated by 80% and monitored
throughout the experiment. Fast capacitive transients during step-wise
depolarizations (in voltage clamp) were minimized online by the patch-clamp
analogue compensation. Uncompensated capacitive currents (in voltage clamp)
were further reduced by the subtraction of the averaged currents in response to P/4
hyperpolarising pulses.

Intracellular solution used for Ca2þ current measurements was (in mM): 135
Cs-MeSO3, 8 NaCl, 2 MgCl2 and 20 HEPES, pH 7.4 (with CsOH). The extracellular
solution was (in mM): 135 TEACl, 2 CaCl2, 2 MgCl2, 10 HEPES, 10 glucose, pH 7.4
(with TEA-OH). TTX (300 nM; Tocris Bioscience: Bristol, UK) was added to avoid
contamination by Naþ currents. Intracellular solution for current clamp was (in
mM): 135 KAsp, 8 NaCl, 20 HEPES, 2 MgCl2, 5 EGTA, pH 7.4 (with NaOH;
Sigma-Aldrich). The extracellular solution used for current clamp measurements is
based on a physiological Tyrode’s solution containing in mM: 30 NaCl, 4 KCl, 2
CaCl2, 4 MgCl2, 10 HEPES and 10 glucose, pH 7.4 (with NaOH). Nifedipine (nife)
was obtained from Sigma Chemicals (N7634). Nifedipine as well as Cp8 were
dissolved in DMSO to stock concentrations of 1 and 50 mM, respectively, and used
in final concentrations of 3 and 50 mM, respectively.

cDNA constructs. Full-length rat rCav1.3L corresponds to GenBank accession
number AF370010/AF370009 (long C terminus) containing exon 31A instead of
exon 31, and with the prototypical rat Cav1.3 a1 subunit sequence as predicted
from the genomic sequence (7M2K motif at amino terminus, Gly in position 244,
Ala in 1,104 and Val in 2,075; for details see ref. 36); full-length rabbit rbCav1.2L:
GenBank accession number X15539 (same as P15381 used by Kang et al.17);
rbCav1.2S: rbCav1.2L truncated at position D1800 (refs 30,37,38); human full-
length hCav1.3L: GenBank accession number EU363339. The short form of Cav1.2
lacks 371 C-terminal amino acid residues, which are believed to be cleaved off by
posttranslational proteolytic processing from a portion of the Cav1.2 a1 subunits.
This stable fragment can dissociate from the channel and serve as transcriptional
regulator or remains bound mediating regulation by protein kinase-A3. Our human
and rat a1 subunit constructs are highly conserved (495% sequence identity, most
of the difference resulting from the absence of short exons 11 and 44 in human
clone) and are functionally indistinguishable36. Assuming that non-natural point
mutations have been corrected in the clones used for generating stable cell lines
used in the original report39, our rCav1.3L construct differs from the rat a1
construct used by Kang et al.17 only in exon 31 and 9 N-terminal residues, which
should cause only minimal functional differences (as reported in ref. 36).

Solutions and chemicals. ISR was obtained from Sigma Chemicals (ISR: I6658).
The pyrimidine-2,4,6-trione derivatives Cp3 and Cp8 (labeling according to Kang
et al.17) were synthesized as described below. Compounds were independently
obtained as a gift from Dr Tuck Soong and from Boehringer Ingelheim Pharma
GmbH & Co. KG, Biberach, Germany. Stock solutions (10 mM) of Cp3, Cp8 and
ISR were prepared in DMSO (maximum final concentration of 0.5% (v/v)). DMSO
did not affect Cav1.3 and Cav1.2 channel currents as shown in control experiments
carried out with active drug perfusion protocols (‘controls’ in Figures and Tables).
Drugs were diluted to the indicated final concentrations before experiments.

Synthesis of Cp3 and Cp8. To a stirred solution of 0.272 g (150 mmol) 1-chloro-
3-(2-isocyanatoethyl)benzene in anhydrous methylene chloride (15 ml), 1.50 mmol
of the appropriate amine was added. After stirring for 5 h at room temperature,
0.233 g (1.65 mmol) of malonyl dichloride dissolved in 75 ml of anhydrous
methylene chloride was added dropwise over 5 min under vigorous stirring. The

solution was stirred for another 1 h at room temperature. The solvent was removed
under reduced pressure. Purification was performed by column chromatography
using 50 g of silica gel and petroleum ether/ethyl acetate (2:8).

Cp3: derived from 0.149 g (1.50 mmol) cyclohexanamine. The reaction afforded
0.301 g (0.86 mmol) as a white powder (yield: 58%); m.p.: 154–155 �C; 1H-NMR
(200 MHz, CDCl3): d 7.28–7.10 (m, 4 H), 4.60 (m, 1H), 4.14–4.00 (m, 2H), 3.61
(s, 2H), 2.95–2.80 (m, 2H), 2.36–2.12 (m, 2H), 1.94–1.76 (m, 2H), 1.74–1.53
(m, 3H), 1.48–1.15 (m, 3H); 13C-NMR (50 MHz, CDCl3): d 164.8, 164.7, 151.3,
140.0, 134.5, 130.0, 129.3, 127.3, 127.1, 55.6, 42.8, 40.4, 33.8, 29.2, 26.5, 25.3; high
resolution mass spectrometry (electrospray ionization (ESI)) calculated for
C18H21ClN2O3[M-H]� : 347.1168, found 347.1213.

Cp8: derived from 0.128 g (1.50 mmol) cyclopentanamine. The reaction
afforded 0.363 g (1.08 mmol) as an off-white powder (yield: 72%); m.p.:
131–132 �C; 1H-NMR (200 MHz, CDCl3): d 7.29–7.09 (m, 4H), 5.24–5.02 (m, 1H),
4.15–4.00 (m, 2H), 3.63 (s, 2H), 2.95–2.80 (m, 2H), 2.60–1.72 (m, 6H), 1.71–1.48
(m, 2H); 13C-NMR (50 MHz, CDCl3): d 164.9, 164.7, 151.1, 140.0, 134.5, 130.0,
129.3, 127.3, 127.1, 54.5, 42.8, 40.3, 33.9, 28.9, 25.7; high resolution mass
spectrometry (ESI) calculated for C17H19ClN2O3[M-H]� : 333.1011, found 333.1052.

All starting materials were obtained from Sigma-Aldrich. Reactions were
monitored by thin-layer chromatography using Polygram SIL G/UV254
(Macherey-Nagel) plastic-backed plates (0.25 mm layer thickness) and visualized
using an ultraviolet lamp. Column chromatography was performed using silica gel
60 (0.040–0.063 mm). The identity of both compounds was confirmed by
1H-NMR, 13C-NMR and ESI-mass spectrometry (MS). 1H- and 13C-NMR spectra
were recorded from CDCl3 solutions on a Varian Gemini 2000 (200 and 50 MHz,
respectively) spectrometer using tetramethylsilane as internal standard. Chemical
shifts are given in p.p.m. (for details see Supplementary Figs 1 and 2). ESI-MS
measurements were acquired on a microTOF-Q II mass spectrometer (Bruker-
Daltonics, Bremen, Germany). MS parameters: ESI, Nebulizer gas 23.2 psi, dry gas
8.0 l min� 1 at 200 �C, capillary voltage 4.5 kV. The mass scan range was set to
100–1,000 m/z with a scan rate of 1 Hz (Supplementary Figs 3 and 4). Purity of
both compounds was confirmed via HPLC using a Shimadzu HPLC-System
equipped with SIL-20A HT Auto Sampler, CTO-10-AS VP Column Oven,
DGU-20A3 Degasser, SPD-M20A Diode Array Detector and two LC-20AD
pumps. The column was a 250� 4-mm Eurospher 100-5 C-18 column with
precolumn from Knauer. The mobile phase consisting of acetonitrile/water (3:1)
had a constant flow rate of 1 ml min� 1 at 24 �C. Compounds were detected at
225 nm. HPLC showed a purity of498% via integration of area under the peak
(Supplementary Figs 5 and 6).

Statistics. Data analysis was performed using Clampfit 10.2 (Axon Instrumens)
and Sigma Plot 11 (Systat Software Inc.). All values are presented as mean±s.e. for
the indicated number of experiments (n). Data were analysed by unpaired or paired
t-test as indicated for individual experiments using Graph Pad Prism 5.1 software
(GraphPad Software Inc.). Statistical significance was set at Po0.05.
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