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Abstract—In this paper we describe an analysis of our speaker
diarization system based on a series of oracle experiments.
In this analysis, each system component is substituted by an
oracle component that uses the reference transcripts to perform
flawlessly. By placing the original components back into the
system one at a time, either in a top-down or bottom-up
manner, the performance of each individual system component is
measured. The analysis approach can be applied to any speaker
diarization system that consists of a concatenation of separate
components. Our experimental findings are relevant for most
RT09s diarization systems that all apply similar techniques. The
analysis revealed that three components caused most errors:
speech activity detection, the inability to handle overlapping
speech and robustness of the merging component to cluster
impurity.

Index Terms—speaker diarization, rich transcription, system
analysis

I. INTRODUCTION

PEAKER diarization is the task of determining: ‘Who

spoke when?’. Speaker diarization systems segment and
cluster speech on the basis of speaker characteristics. Being
able to group all speech from one particular speaker is a
useful pre-processing step for various speech processing tasks.
For example, speaker diarization information can be used to
improve Automatic Speech Recognition (ASR) performance
(feature normalization or model adaptation [1]), for a meeting
summarization application it is important to track who said
what to whom, and a dialogue act tagger needs utterance
boundary information and can exploit speaker change informa-
tion to model interruptions. Speaker diarization is also useful
as an initial step for tracking people across recordings, making
it possible, for example, to search for quotations of a specific
person in multimedia collections.

Since 2002 the US National Institute of Standards and Tech-
nology (NIST) has organized evaluations of speaker diarization
technology in the broadcast news domain and since 2004
these evaluations have also been performed in the meeting
domain [2]. We have participated in the 2006, 2007 and 2009
Rich Transcription (RT) evaluations' with a system based on
a Hidden Markov Model architecture and Gaussian Mixture
Models that are trained using only the speech in the data under
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evaluation. Although we have made numerous adjustments,
the framework of our system is still very similar to the system
initially proposed in [3].

After participating in the NIST rich transcription evaluation
in 2006 we performed an analysis of our system based on a
series of ‘oracle’ experiments that enabled us to determine
efficiently which component needed our attention most in
future research efforts [4]. Oracle experiments are ‘cheating’
experiments where the system or part of the system can make
use of whatever knowledge is available [5]. For our analysis in
2006, oracle experiments were used to assess the performance
of separate system components. We first replaced all system
components with an oracle variant and then, one by one,
placed the original components back into the system. By
measuring the difference in system performance at each step,
we determined the performance of each individual component.
In our original paper we did not investigate to what extent the
performance of one component influences that of others [4].
In this study, we extend our analysis in order to measure this
dependency and to obtain more detailed and more reliable
information about the components in our system.

This paper is organized as follows. First, in the remainder
of this section we will describe the procedures during the
NIST RT evaluations, the overall framework of our diarization
system and that of the other systems that were entered into the
most recent NIST RT evaluation. Next, in Section II we will
describe our analysis method. In Section III we will summarize
the results of our initial study and we will discuss the most
important changes made to our system due to the first analysis.
In Section IV we will investigate the shortcomings of our
most recent system and finally we will use the same oracle
setup to investigate why the results at RTO9s were poorer than
expected.

A. The NIST Rich Transcription evaluation series

Since 2004, NIST has conducted competitive evaluations of
speaker diarization systems using recordings from multi-party
meetings and lectures, as part of the Rich Transcription (RT)
evaluations, the speaker diarization task must be performed
with little knowledge of the characteristics of the audio or of
the talkers in the recording. There are several conditions in
which diarization systems are evaluated. The primary evalua-
tion condition allows the use of audio recorded from multiple
distant microphones (MDM) [2]. In this paper we focus solely
on the primary MDM condition in the meeting domain.

The metric used to evaluate the performance of each
speaker diarization submission is called Diarization Error
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Rate (DER) [2]. The diarization error rate is the sum of
two error rates: the Speech Activity Detection (SAD) error
and the speaker classification error. The SAD error is the
percentage of speech and non-speech that is misclassified.
The speaker classification error is the time-weighted error
due to misclassifying speakers. Note that if two speakers are
talking simultaneously, both should be classified correctly. The
speaker classification error consists of regular classification
errors and of all overlapping speech errors.

Another metric, mainly used for system analysis, is hypoth-
esis speaker purity (or cluster purity). The entire set of speech
segments from one single hypothesis speaker might contain
multiple reference speakers. The hypothesis speaker purity is
the time-weighted fraction of the most occurring reference
speaker for the particular hypothesis speaker. We use hypoth-
esis speaker purity in our oracle experiments to determine
which two clusters should be merged (see Section II).

Note that it is possible that multiple hypothesis speakers
use the same reference speaker for purity calculation. If the
purity of a hypothesis speaker is a hundred percent, this means
that all speech of this speaker can be mapped to one single
reference speaker and no noise of other speakers is present.
However, this does not mean that the hypothesis speaker does
not contribute to the DER as the reference speaker might be
mapped to another hypothesis speaker.

B. Agglomerative model-based speaker diarization

The system described in this paper is based on a system that
was originally proposed in [3]. Our system is model-based, but
the models are created on the audio that is being processed
and not on a pre-defined training set. It uses an agglomerative
clustering algorithm: speech data is first partitioned into a large
number of clusters and these clusters are merged pairwise
until, presumably, the correct number of clusters is reached.

Figure 1 presents the five steps of the algorithm. In the
first step, Speech Activity Detection, all non-speech audio
is removed from the data and only speech is used in the
remainder of the system. Second, during initialization the
speech data is randomly distributed over a number of clusters
and by iteratively training models for these clusters and re-
segmenting the speech data, speaker models are created. In
the third step, a distance metric is used to determine which
two models are most similar and in the fourth step, if the
two models are not regarded to be from the same speaker,
the optimum number of clusters is reached and the process
finishes. Finally if the two models are indeed regarded to be
from the same speaker, the two models are merged into one
single model and the system continues at the third step.

In order to find the two models that are most similar,
the Bayesian Information Criterion (BIC) distance metric is
used [6]. This metric compares the sum of likelihoods of two
models M; and M each on their own data with the likelihood
of a third model M;; that is trained and evaluated on the
combined data of M; and M;. If the combined likelihood of
models M; and M is smaller than the likelihood of M;;, the
two models are considered to be trained on speech from a
single speaker.

Speech Activity Detection

Create 16 models

Create models

Re-align data

Train models (x iterations)

Merge and train model
Re-align data IM

Train models (x iterations)

Pick best models to merge

Fig. 1. A schematic representation of the speaker diarization algorithm. The
steps for creating the initial 16 models and merging the models each consist
of a number of training and re-segmentation iterations.

The first to apply BIC to segmentation and clustering were
Chen and Gopalakrishnan [7]. The need for a tunable model
complexity parameter was later made superfluous in [3] by
keeping the complexity the same before and after merging,
effectively done by keeping the number of Gaussians in M;;
the same as the sum of Gaussians in M; and M;. For our
system, we have adopted the approach in [3].

C. State-of-the-art diarization systems

The agglomerative clustering algorithm described above is
not only the basis for our system, it is also used in most
other systems that were entered into the most recent NIST
Rich Transcription evaluation. For example, the IIR-NTU [8]
submission for RT09s applies HMM based agglomerative
clustering. The system uses two feature streams: Time Delay
of Arrival (TDOA) features and MFCC features. The MFCC
features are used for SAD and both feature streams are
applied in the agglomerative clustering step. Before clustering
is started, the IIR-NTU system performs a smart initialization
step in which the audio is clustered in nine groups using the
TDOA information.

Also the UPC [9] and UPM [10] systems apply agglomera-
tive clustering using an HMM topology, Viterbi and BIC. The
UPC system incorporates a model for determining the prior
probability of a speaker talking after other speakers have been
speaking. The UPM system applies “frame purification” to
filter out feature vectors that are not helpful for classification.

The LIA-Eurecom submission was the only system in
RT09s that did not apply agglomerative clustering [11]. Instead
this system starts with a single cluster for the entire recording
and splits this cluster iteratively into multiple speaker clusters.
Similar to the other systems, the LIA-Eurecom systems applies
GMMs in an HMM topology for segmentation and clustering
and the models are also refined iteratively.

Because the basis of all systems in RT09s is similar, we
are convinced that the findings of our system analysis will
be, to greater or lesser extent, applicable to the other systems.
Further, even for systems that do not apply the same tech-
niques as ours, the analysis method itself can be interesting.
For every system that can be divided in a concatenation of
separate components, the oracle based analysis approach can
be applied.
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II. ORACLE BASED SYSTEM ANALYSIS

The analysis described in this paper is based on oracle
experiments. The term ‘oracle’ stems from the fact that (part
of) the system can make use of whatever knowledge is avail-
able. Even the optimal system output, the reference transcripts,
may be used. In a sense, the system is an oracle that knows
everything [5].

A. Oracle based experiments in other studies

Oracle based analysis is commonly used in various research
fields and also for analysis of speaker diarization systems,
oracle experiments have been conducted before. In [12], oracle
experiments were used to determine the impact of overlapping
speech in speaker diarization. It was shown that, with perfect
overlap detection, the system could be improved in two ways:
by skipping the overlap regions during clustering and by as-
signing the overlap regions to two speakers using an effective
algorithm called ‘nearest-2’. By applying the perfect overlap
input, the performance was close to that of the oracle optimum
overlap assignment. In the same research, oracle experiments
were used to show that the extent of dimensionality reduction
of location features should be variable for each recording.

In [13] oracle experiments were used to analyze exist-
ing and new stopping criteria. Both the speech/non-speech
classification and speaker change detection components were
replaced by oracle components and only the clustering and
stopping components were tested. This study showed that,
with perfect input, the proposed stopping component based on
information change rate, outperformed the conventional BIC
based stopping criterion.

The two papers used oracle experiments in order to focus
on a specific problem in speaker diarization. By using oracle
components as input for the component under test, the errors
in each experiment could be attributed purely to the tested
components. This advantage can also be regarded as a disad-
vantage because in the oracle setting, the component is not
tested to be robust for non-perfect input. In this paper we do
not focus on one single component of the system. Instead, we
will use the oracle technique to analyze each component under
perfect conditions (top-down analysis, see Section II-D) and
under actual input conditions (bottom-up, see Section II-E).

B. Oracle based system analysis of our diarization system

For our analysis, oracle experiments are used to assess the
performance of separate system components. For each of these
tests, the components that are not tested are replaced by an
experimental setup that performs optimally by using knowl-
edge of the reference transcription (the oracle knowledge) and
the components that are tested are left unchanged.

In our initial set of experiments, at first all components
are replaced by the oracle setup and the DER is measured.
Then, one at a time and in a top-down approach, the actual
components are placed back into the system. The increase in
DER after replacing a component is attributed to shortcomings
of that particular component. By replacing the components
top-down, each newly replaced component receives its normal
input, but its output is further processed by the oracle.

In our second set of experiments we replace the components
in a bottom-up approach. This way, the investigated compo-
nent receives perfect oracle input and the output is further
processed by the actual system.

Note that because of the iterative nature of the diarization
algorithm (the loop in Figure 1), it is not possible to perform
the experiments completely top-down or bottom-up. We have
chosen the order to replace the oracle components with the
actual components in such a manner that this effect is mini-
mized. Before discussing these experimental setups, we will
first describe how the reference transcripts are used.

C. Reference transcripts

For scoring the output of diarization systems, a reference
transcript is manually created labeling the fragments where
each speaker is talking [2]. In the oracle experiments, these
reference transcripts are used in three different ways. In the
first experiments of the series, the transcripts are used as
input for the diarization system. One way of doing this is
to replace the SAD output with the transcription. In this case
the IDs of all speakers in the transcripts are replaced with one
ID (‘speech’) and all overlap regions are replaced by single
regions. Another method for using the reference transcripts
as input, is to replace the initial clustering with a perfect
clustering obtained from the reference transcript.

The reference transcripts are also used to take merging
decisions. Instead of performing BIC, the oracle merge com-
ponent scores a segmentation with the NIST scoring tools? and
determines for each cluster which speaker it represents most
(which speaker is classified by that cluster the longest period of
time). The purity of each cluster is then calculated as discussed
in Section I-B. The oracle merge component will then decide
to merge the two clusters with the same representing speaker
that has the highest purity.

Third, the system is modified so that an intermediate hy-
pothesis segmentation file can be printed after each merging
iteration for monitoring purposes. From these files we can
calculate what is the best possible system performance, the
diarization error rate if the system does not make any more
mistakes, in two steps. Firstly, for each speaker cluster we
determine which speaker it represents the most. After labeling
all IDs with the true speaker identities (an oracle approach for
perfectly merging clusters with the same reference speaker
identity) we use the reference transcripts for scoring.

D. Top-down analysis

The basis of our analysis consists of six oracle experiments.
In the first experiment, all algorithm steps are replaced by
an experimental setup that uses oracle information, and at
each following experiment one of the components is placed
back into the system (top-down). This procedure is depicted
in Figure 2.

Zhttp://www.nist.gov/speech/tools
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Fig. 2. The six experimental setups. The bigger light grey boxes represent the
oracle components that replace the actual components. The oracle components
perform their task using the reference transcript. In each experiment, one
component is placed back into the system.

Experiment 1, Optimal models: 1f the algorithm would do
a perfect job, the HMM would contain exactly one model per
speaker and each model is trained on all the available speech
of its speaker. Even if the algorithm would not make a single
mistake and these optimal models were created, the system is
not expected to have a perfect diarization score because the
system is not able to model overlapped speech and because
the models, with their limited number of Gaussians, might
not be able to classify all speech perfectly. In order to test
the system on these limitations, in the first experiment the
reference transcription is used instead of the SAD component.
For each speaker in the reference, one model is trained using
all speech from that particular speaker. The total number of
Gaussians in the system is the same as normal (80) and they
are distributed over the clusters based on the amount of speech
that is available for each speaker. After the models are created,
a Viterbi pass is performed to find the final system result.
This experiment gives us the error due to overlapping speech
(further referred to as error A: the overlapping speech error)
and the error due to imperfect modeling and segmenting the
data (error B: the modeling/segmentation error).

Experiment 2, speech activity detection: In the second
experiment, the actual SAD component is placed back into
the system. The models are still trained directly on the speech
from the reference transcription, but the final segmentation is
performed with the actual SAD segmentation. Compared to
experiment 1 (the DER scored on this experiment subtracted
by the error of experiment 1), this gives us the error that can
be blamed on the SAD component (further referred to as error
C: the speech activity detection error).

Experiment 3, iterative merging: Next it is tested what the
influence of performing the actual merging iterations is on
the final result. For this test, the reference transcript is used
to create sixteen initial models. Each model is created with
speech of only one speaker, but because now sixteen models
are needed, the speech of each speaker is cut up in pieces

so that multiple models can be trained for each speaker. The
data are distributed such that each model is trained on an
average amount of data (a person that spoke a lot in a meeting,
will have a high number of initial models). The normal model
initialization and iterative merging procedure are used, but the
decisions about which models to merge and when to stop are
performed by the oracle setup (as described in Section II-C).
Compared to experiment 2, this gives us the error due to the
procedure of creating the final models by merging the smaller
initial models together (error D: the iterative merging error).

Experiment 4, model initialization: Instead of creating the
initial models with use of the reference transcript, in this
experiment the initial models are created normally by dividing
the speech data randomly. However, the merging and stop
decisions are still performed by the oracle setup. Therefore,
compared to experiment 3, this gives us the error due to the
shortcomings of the systems model initialization method (error
E: non-perfect initial clusters error).

Experiment 5, merge candidate selection: The oracle merge
candidate selection component is now replaced by the actual
candidate selection component based on BIC. Compared to
experiment 4, this gives us the error due to the shortcomings
of the BIC selection component (error F: combining wrong
models error).

Experiment 6, stop criterion: Finally, the remaining oracle
setup that is able to decide when to stop merging perfectly, is
replaced by the actual component that decides when to stop
based on BIC. Compared to experiment 5, this gives us the
error due to incorrect stop decisions (error G: stop clustering
too early/late error).

E. Bottom-up analysis

By applying the oracle-analysis described above, it is as-
sumed that the performance of each component is mostly
independent of the performance of others. However, chang-
ing one component is likely to have an impact on other
components. Therefore, blaming a single component for the
increase of DER between two experiments, might sometimes
give a slightly distorted picture. The first two blame classes,
overlapping speech and SAD, do not suffer from this problem
because the amount of overlapping speech is fixed (for a given
test set) and SAD is the first component in the system and it
does not need input from any other component.

A way to investigate the dependencies between the re-
maining components is to test each component with input
of varying quality. The results of such experiments would
probably provide very valuable information and possibly give
a nuance the analysis results, but performing such a set
of experiments is very elaborate. Also, creating a set of
inputs with varying quality is not always straightforward. For
example, if two SAD segmentations have the same SAD error
it is not necessarily true that the diarization system performs
equally well using both segmentations. Because of these two
difficulties we restrict the possible input for each component
to either perfect (or actually as good as we can do) or real
input.

With the six oracle experiments described above, we have
not yet tested the bottom components with perfect input. We
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only tested the string of components top-down, but not yet
bottom-up. Therefore, in order to provide a better under-
standing of the last five blame classes, in a second series
of experiments, we start with all components replaced by
the oracle components and we replace the actual components
bottom-up.

In the previous set of top-down experiments, we could
blame the increase in DER when replacing an oracle compo-
nent for the real component entirely on that one component,
because the components following the evaluated component
were all oracle components and therefore were not affected
by the errors of the evaluated component. In this set of exper-
iments any errors made by a replaced component will influence
the behavior of the components that follow and therefore we
cannot blame the increase in DER on the component that is
placed back, but we have to blame it on that one component
and all components that use its input. If we want to specify
where the error lies exactly, for each group of components that
influence each other we have to do another top-down analysis.

Experiment 1, cheat all: In the first experiment of this series
we use oracle components for all four steps (SAD and overlap
are not taken into account in this series). This experiment
is not the same as the “optimal models” experiment in the
first experiments series, because here we are not bypassing
any of the components. In the optimal models experiment we
train models for each speaker directly. Now, we train sixteen
perfect models and we actually merge these models until we
reach the (cheated) stopping point. For this experiment we now
also use an oracle component for the re-segmentation step.
In the previous series we either used the actual component
(“Tterative merging”) or we bypassed it completely. Now we
cheat by simply not performing re-segmentation at all. Because
the initial segmentation is already perfect, re-segmenting is not
needed. When two clusters are merged, the training data of the
two clusters is simply combined.

Experiment 2, stop criterion: The first bottom-up experi-
ment is to replace all components with their oracle variant,
except for the stop criterion component. This experiment
will teach us how well the stop criterion is performing with
“perfect” input.

Experiment 3, merge candidate selection: Next, the com-
ponent that is responsible for the selection of models to merge
is also placed back into the system. The diarization error of
this experiment minus the error of the first experiment can be
blamed on both the stopping criterion and on the component
for selecting merge candidates.

To find out which part of the error to blame on which of the
two components, it is needed to perform an experiment where
the stopping criterion component is replaced by its oracle
variant. This oracle component is implemented as follows: we
simply merge until only one cluster is left. We then calculate
the DER for each possible number of clusters and we pick the
number of clusters with the lowest error rate.

Experiment 4, performing re-segmentation: In this exper-
iment we replace the oracle re-segmentation component (not
doing segmentation at all) with the actual Viterbi segmentation
step. If the models represent their data well enough, placing
back the segmentation component will not influence the DER

much. The increase in DER is shared between the three
non-oracle components. If it needs to be specified which
component is to blame exactly, two additional experiments
need to be performed: one where the merging and stopping
components are both replaced by the oracle components and
one where only the stopping component is replaced by the
oracle variant.

Experiment 5, non-perfect SAD and initialization: Finally,
we replace the perfect initialization step with the original
step and we replace the perfect SAD segmentation with the
actual segmentation. Note that for the previous experiments
we trained the models on the perfect non-overlapping speech
regions, but at the very end we perform one single Viterbi
segmentation on the actual SAD segmentation. Because of this,
we are able to compare the results of the previous experiments
directly to the results of this experiment.

Again, in order to divide the increase in error over all the
non-oracle components, a top-down analysis is needed of the
segmentation, merging and stopping components in which the
oracle variants are used and top-down replaced with the real
components.

F. Discussion

In this section we have described a system analysis method
based on oracle experiments. With six components in the
system, there may be 2% possible oracle experiment by re-
placing any of the components by their oracle counterpart.
However, not all of these combinations are feasible or even
make sense. We can investigate cumulative effects by adding
components successfully, this can be performed top-down or
bottom-up and if both are done, a total of eleven exper-
iments are needed. Performing only the top-down analysis
provides a good impression of the performance of each system
component. However, because the components do not work
independently of each other, combining the top-down and
bottom-up analysis provides a better picture.

An even better understanding can be formed when the
bottom-up analysis is combined with a top-down analysis of
all components that use the output of the component under
evaluation. This type of analysis is a bit more complicated
than the simple top-down and bottom-up approaches and it
also requires some additional experiments (six experiments in
our case).

III. SUMMARY OF THE 2006 ANALYSIS

In this section we summarize the results of the top-down
analysis that we performed in 2006 and we discuss how we
adjusted our current system largely based on the results of this
analysis. An in-depth description can be found in [4].

A. Top-down analysis

In our previous work [4], we have performed the six top-
down oracle experiments on our 2006 system. In the first
experiment, the entire algorithm to create the HMM topology
was bypassed and the models were created directly. At each
following experiment in a top-down manner, one step of the
algorithm was placed back into the system (see Section II-D).
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The error analysis showed that three factors contributed
most to the total DER: the lack of being able to model
overlapped speech, the speech activity detection itself and the
initialization of the sixteen clusters. Unfortunately, because
each component is treated as a black box in the the error
analysis, the analysis did not provide information on why
these components performed suboptimal or how they could be
improved. We therefore needed to investigate the three com-
ponents further. In the remainder of this section we summarize
our attempts to improve the three weakest components of our
system. These studies are described in-depth in [1], [14].

Cluster initialization: One of the parameters in cluster
initialization is choosing the number of initial clusters. In the
original system, the number of initial clusters is fixed to 16.
But for recordings of varying length, keeping the number of
initial models fixed will result in models trained on too little
data for short recordings and models trained on too much data
for long recordings. Models trained on too little data tend to
get over-trained and this might prevent models from the same
speaker to be selected for merging. Models that are trained
on high quantities of data might be so general that all models
become similar and are all merged together. In order to prevent
these two kinds of mistakes, after the analysis we changed
cluster initialization so that the number of initial models was
determined on basis of the amount of speech in the recording.
We found that our system performed best with one initial
model for each 40 seconds that the recording contains speech
(using 5 Gaussians in each initial GMM).

We have not yet investigated other methods for cluster ini-
tialization improvement. One interesting method to investigate
is that of IIR-NTU used at RT09s where the initial models are
only trained on part of the data that is believed to be clean [8].

Speech activity detection: In our 2006 system, speech
activity detection was done with the RT06s SAD component of
ICSI [15]. This component used a two step algorithm. Firstly,
a silence-based set-up was used to find all segments with low
energy. It was assumed that silence was the only form of non-
speech in the meetings and that this first step was able to find
enough representative speech and silence segments to use in
the second step. In this second step, the segments were used
to train a model-based system with two states: one for speech
and one for non-speech. The HMM was used to re-segment the
data and using the new segmentation, new Gaussian Mixture
Models (GMM) were trained. After a number of iterations the
final speech/non-speech segmentation was obtained.

The appealing feature of the original SAD algorithm was
that it did not apply any models or parameters that needed
tuning on an in-domain training set. Unfortunately, the energy
based method used to generate an initial segmentation for
training the speech and silence models did not always work
well. When audible non-speech is expected to be present in
the audio, a bootstrap classification based on silence will not
be sufficient. Our new approach addresses the problem by
applying a model-based classification component to create
the bootstrap classification. After the initial classification step,
three models are trained on the audio to be processed: a model
trained on silence, a model trained on audible non-speech and
a model trained on speech. Each of these models is trained on

the data to be segmented. By applying the three models, the
system is able to perform high quality SAD.

The downside of our new method is that the models for
the bootstrapping classifier need to be trained on external
data. Fortunately, the initial segmentation does not need to
be perfect. We have shown that it is even possible to use
bootstrapping models trained on Dutch broadcast news data
for use in English meeting recordings.

Overlapping speech: In [12] it is shown that overlapping
speech is a problem in two ways. Firstly, because our system
is not able to output overlapping speech segments. The Viterbi
segmentation only outputs the one most likely speaker at
each time. Second, during the training process of the speaker
models, the overlapping speech segments act as noise. Because
the overlapping speech is not at all similar to the speech of
the individual speakers, it only degrades the models and with
that, the final segmentation.

In [14] we have attempted to improve our system by trying
to avoid to use overlapping speech segments during the model
training phase and by assigning multiple speakers to these
overlapping regions. In line with our approach for diarization,
we tried to detect overlapping speech segments without the use
of models trained on a development set. Instead we generated
overlapping speech models during a first diarization run and
applied these models in a second iteration. In [14] we show
that by applying this two-pass approach, it is possible to obtain
a modest gain in system performance (0.33% DER absolute?),
but we feel that this very modest system improvement does
not justify inclusion of this component in our detailed analysis
in this work. Although we feel that our approach is promising,
we clearly need to perform more research to improve our
overlap detection system. Note that a number of other research
institutes currently also investigate the overlapping speech
problem [12], [16].

Delay feature stream: One improvement, adding a delay
feature stream, was not obtained by performing the analysis
but by comparing our system to that of others (see Sec-
tion I-C). The delays between microphones with which a
sound is recorded are a by-product of the beam forming toolkit
and can be used as a second feature stream. The probability
density function of each state is then modelled by two GMMs:
one for the MFCC stream and one for the delay stream. In the
original study in [17] this decreased DER by 21% relative.
We adopt this approach for the system that we analyze in the
following section.

IV. ORACLE BASED ANALYSIS

The performance of our system on the NIST 2009 rich
transcription evaluation was poorer than expected. Instead of
analyzing our system on the evaluation set directly, we decided
to first analyze its behavior on a bigger test set, composed
from recordings of earlier NIST evaluations. In this section
we discuss the evaluation on this set. Both the top-down
and bottom-up series of oracle experiments are performed as
described in Section II-D. Table I contains the meetings from

3This result is obtained on the same test set as used in Section IV where
we show that the total error due to overlapped speech is ten times as high.
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which we have compiled the test set. The reference segmen-
tations were obtained by forced alignment of the reference
speech transcriptions in order to avoid inconsistencies in the
placement of segment boundaries.

TABLE I

THE 27 CONFERENCE MEETINGS OF THE TEST SET

Meeting ID

AMI20041210-1052
CMU20050301-1415
CMU20061115-1030
EDI20050218-0900
ICS120000807-1000
NIST20030925-1517
NIST20051104-1515
VT20050304-1300
VT20050425-1000

AMI20050204-1206
CMU20050912-0900
CMU20061115-1530
EDI20061113-1500
ICSI120010208-1430
NIST20051024-0930
NIST20060216-1347
VT20050318-1430
VT20050623-1400

CMU20050228-1615
CMU20050914-0900
EDI20050216-1051
EDI20061114-1500
NIST20030623-1409
NIST20051102-1323
TNO20041103-1130
VT20050408-1500
VT20051027-1400

A. Top-down analysis

In Table II, the results of the six oracle experiments are
listed for our most recent system with- and without the use
of delay features. The SAD error on our test set is 6.7%,
consisting of 4.8% missed speech and 1.9% false alarms.

TABLE 11
THE RESULTS OF THE ORACLE EXPERIMENTS WITH- AND WITHOUT
APPLYING DELAY FEATURES.

Oracle experiment MFCC  MFFCé&delay

% DER % DER
1. Optimal models 5.70 4.98
2. Speech Activity Detection 8.90 8.18
3. Iterative merging 10.09 8.66
4. Model Initialization 10.89 9.19
5. Merge Candidate Selection 14.24 11.20
6. Stop Criterion 16.50 12.66

As can be seen in Table II, the delay features improve the
system considerably for each experiment. The improvement
in the real system, without the use of oracle components, is
3.84% DER absolute (experiment 6).

The six experiments from Table II were used to perform
the blame assignment. For example, the error due to the
inability to model overlapping speech (error A) is the missed
speech error from experiment 1 where a perfect (one-speaker)
segmentation was used. Note that this error of 3.5% (error
A) is just the fraction of overlapping speech. The remaining
part of the error in experiment 1 is due to imperfect modeling
(error B). The SAD error (error C) is obtained by subtracting
the overlapping speech error (error A) from the SAD error of
the actual component (6.7%) in experiment 2.

In this manner we have assigned part of the overall di-
arization error rate to each of the system components (see
Section II-D). In Table III the contribution of each component
to the total DER is listed. Solely relying on these top-down
analysis results it seems that overlapping speech and speech
activity detection are still responsible for a large fraction of the
error. New compared to our previous analysis is that, especially
for the system set-up without delay features, a high percentage
of the DER is due to errors in combining models. Twenty
percent of the total error is due to model merging errors.

7
TABLE III
BLAME ASSIGNMENT ON THE TEST SET.
Error name MFCC  MFCCé&delay
% DER % DER
A. Overlapping speech 3.50 (21.21) 3.50 (27.65)
B. Modeling/segmentation 2.20 (13.33) 1.48 (11.69)
C. Speech Activity Detection 3.20 (19.39) 3.20 (25.28)
D. Iterative merging 1.19 (7.21) 0.48 (3.79)
E. Non-perfect initial clusters 0.80 (4.85) 0.53 (4.19)
F. Combining wrong models 3.35 (20.30) 2.01 (15.88)
G. Stop clustering too early/late | 2.26 (13.70) 1.46 (11.53)
System DER (sum) 16.5 (100.0) 12.66 (100.0)

B. Bottom-up analysis

Because the component for model merging seems to func-
tion suboptimal, it is interesting to analyze the system in
the bottom-up approach described in Section II-E. For the
system set-up that does not apply the delay features, we have
performed the five oracle experiments for this analysis and
listed the results in Table IV. What stands out is that the
stopping criterion experiment resulted in a very high error rate
of 42%. We experienced that testing the stopping criterion on
its own is difficult. For each recording, at one point the BIC
score is negative for a pair of clusters that should be merged
according to the oracle merging component. If the system is
actually stopped at this point, the DER is very high. Normally,
the merging component provides the pair of clusters with the
highest BIC score — this is not necessarily the same as found
by the oracle, but also not necessarily wrong. This will lead
to higher BIC scores and to a lower probability of premature
stopping. This shows that it is hard and maybe even less
meaningful to separate the merging and stopping components.
The results of the remainder of experiments on the test set
are more according to expectations. The difference in DER
between each step is similar to the differences observed in the
top-down analysis.

TABLE IV
THE RESULTS OF THE BOTTOM-UP ORACLE EXPERIMENTS ON THE TEST
SET WITH A SYSTEM SET-UP WITHOUT DELAY FEATURES.

Oracle experiment % DER
1. Cheat all 9.21

2. Stopping criterion 42.0
3. Merge candidate selection 10.22
4. Perform re-segmentation 15.75
5. Non-perfect initialization and SAD 16.50

We observe that when given perfect input, the step for
selecting models to merge does not perform poor at all. Both
the stopping criterion and the models selection component
perform well with perfect input, but when re-segmentation is
switched on, the performance drops. Note that in the fourth
experiment when re-segmentation is performed, the initial
segmentation is still perfect. This means that somehow the
perfect segmentation is corrupted during the iterations of re-
training the models and re-segmenting the data. We have
investigated three hypotheses that can cause this performance
drop: 1) it is possible that the perfect segmentation consists of
so many short speaker segments that it is impossible for the
system to generate a segmentation that is close enough to the
truth; or 2) the initial models are not trained well enough to
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generate a good initial segmentation so that the system starts
essentially with an almost random segmentation after the first
Viterbi run (as is the case normally without cheating); or 3)
the merge candidate selection and stopping components are
not robust enough to handle non-perfect input.

1) Impossible segmentation: 1If it is true that with the
chosen HMM topology and the restricted number of Gaussians
for each GMM it is not possible to generate a segmentation
close enough to the truth for the remaining steps to work with,
then the optimal segmentations that where generated in the
second experiment of the first series would have to be very
poor input for the system. In the second experiment, the actual
SAD segmentation was used to train a GMM for each speaker
in the recording with as many Gaussians that would optimally
be used for each speaker in the normal system set-up. The
final Viterbi segmentation in that experiment is generated with
all the limitations that the system has due to its topology or
number of Gaussians and it is as close as the system can get
in generating the perfect segmentation.

In the third experiment of our bottom-up analysis we have
replaced the reference segmentation by the near-perfect seg-
mentation output of the second experiment from the top-down
analysis. If the first hypothesis is true, the model combining
and stopping step should fail on this segmentation and the
output of this experiment should be poor. However, the result
of this experiment for our test set was 10.93% DER. This
is similar to the DER of the third experiment (10.22%). In
fact, the speaker error was 4.10% in both experiments and the
difference is completely due to the increase in SAD error.

2) Poor initial modeling: 1t is very easy to test the hypoth-
esis if the first models are too weak to generate good initial
segmentations. If this would be the case, the segmentation after
the first few Viterbi iterations would be so poor that even if
all clusters would be assigned to the actual speakers (perfect
merging and stopping), the diarization error rate would be very
high.

We stored the segmentation after each Viterbi iteration
and relabeled and scored these segmentations as described in
Section II-E. The DER after the first Viterbi run (and with
perfect merging and stopping) is 9.82%. This is only 0.61 %
above the optimal result of 9.21%. After ten iterations, the
best possible DER is 11.26%, which is still reasonable. We
therefore deduce that modeling and re-segmenting is going
well and that the problem must lie in the robustness of the
component for picking clusters to merge.

3) Robustness problem: We observe that the merging and
stopping components seem to work fine for (near-)perfect
input, but that the performance drops as soon as the input
is corrupted by imperfect segmentation. With the reference
input, the DER is 10.22% and with the near-perfect input in the
experiment above (“Impossible segmentation”) the DER was
10.94% while with linear segmentation and even when perfect
initial models are created, the DER is 16.5% and 15.75%
respectively.

In the previous two experiments, we could not prove that the
input is unfit to be used by the merging component. We there-
fore conclude that this component is just not robust enough
for the actual input and that the system performance can

only be improved by either developing (near-)perfect initial
components or by developing a more robust merging/stopping
component.

In the next section we try to specify if it is the merging
component that is not robust, if it is the stopping component
or if both components are not robust against corrupted input.

V. THE RT09S EVALUATION

The performance of our system on the RT09s evaluation
set is 30.98% DER for the setup without delay features and
26.61% DER for the setup that does apply delay features. In
Table V, we have conducted the top-down blame assignment
on the RT(09s data.

TABLE V
BLAME ASSIGNMENT ON RT09S. FRACTION OF THE DER, IN %,
ABSOLUTE, AND RELATIVE IN PARENTHESES.

Error name MFCC  MFCCé&delay
A. Overlapping speech 5.6 (18.08) 5.6 (21.04)
B. Modeling/segmentation 2.34 (7.55) 1.36 (5.11)
C. Speech Activity Detection 5.3 (17.11) 5.3 (19.92)
D. Iterative merging 3.85 (12.43) 1.32 (4.96)
E. Non-perfect initial clusters 1.43 (4.62) 0.02 (0.08)
F. Combining wrong models 6.83 (22.05) 9.38 (35.25)
G. Stop clustering too early/late 5.63 (18.17) 3.63 (13.64)
System DER (sum) 30.98 (100.0) 26.61 (100.0)

What stands out from this analysis is that there is a lot more
overlapping speech in this set than we have observed in the
test set, that the SAD component is not performing as well as
before and that the merging and stopping components are not
performing well. The fact that we observe a lot more overlap-
ping speech indicates that the meetings are less structured and
perhaps more informal than before (more interruptions, people
arguing) and therefore more difficult to process.

All the overlapping speech and the increase in false alarms
of the SAD component (the sum of errors A and C; 10.9% for
RT09s against 6.7% for the test set) act as noise for the other
components. This might explain why the merging and stopping
component are not performing well. In order to test this
hypothesis we have performed an experiment on the system
without delay features and without any oracle components,
except that for training the models we have filtered-out all
overlapping speech and SAD false alarms. If the increase in
error is due to these two sources of noise, the DER should drop
considerably in this experiment. For the test set, this was only
true in part. The DER dropped from 16.5% to 14.83%. For
the RT09s evaluation set the DER was reduced from 30.98%
to 27.51%.

A. Top-down, bottom-up analysis

For both the test set and the RT(09s evaluation set, we have
performed a bottom-up analysis where we also performed a
top-down analysis for each bottom-up experiment so that we
could observe the growth in error for each component for each
bottom-up step (see Section II-E). Figure 3 contains the results
of this analysis for the system without delay features. We have
focussed on the stopping criterion and merging component in
three cases: one where the perfect initial segmentation is used
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throughout the entire process (cf. Table IV, line 3; Figure 3,
1st bar), one where we started with the perfect segmentation
but re-segmented the data during the process (line 4; 2nd bar)
and finally the case where we ran the system without cheating
(line 5; 3rd bar). Note that the error region “modeling” in
this graph also contains the errors due overlapping speech and
SAD.

Figure 3 shows that, as we have noted before, Viterbi
segmentation is performing well and that the stopping criterion
and model selection for merging, even with perfect input,
are not performing well. It is surprising that for both sets,
the stopping criterion performs poorly even if the perfect
segmentation is used. In this case, the clusters are very pure
and it should not be very difficult to determine the optimal
stopping point. The merging selection component is not robust
against corrupted input. With perfect input the component
performs very well, but unfortunately, the performance drops
for the full system.

VI. DISCUSSION

In this paper we have analyzed our speaker diarization sys-
tem using oracle components. For each component an oracle
variant has been developed and in a set of experiments we have
replaced one or more components with their oracle variant
and measured the performance of the remaining components.
Although the oracle analysis method has its shortcomings,
we gained a good insight of the performance of individual
system parts. In this section we first discuss our findings of
the analysis method itself and then summarize the results of
the experiments.

A. Oracle based component tests

The golden rule of performing experiments is to change only
one aspect of the experimental set-up between experiments.
Applying this rule for experiments on a reasonably complex
application such as a speaker diarization system, the number
of experiments needed grows combinatorically. For the RT(09s
evaluation for example, we have stored the logging of 398
experiments and performed at least as many that we did not
log. For benchmarks we will probably stick to the tactics of
trying every possible system setting to tune the system as well
as possible, but we do feel that for obtaining better insights
during development it is better to also test components in an
oracle based experimental set-up.

The oracle based analysis as described in this paper has two
advantages over testing the entire system. The total analysis
is done with only 17 experiments*. After these experiments,
it is clear for each component how it performs under perfect
conditions and how robust it is against errors of other com-
ponents. This information will help to focus the remaining
experimental efforts towards the components that need most
attention.

Another advantage of the oracle set-up is that it can be
used to speed up individual experiments. When testing a new

4Six for the top-down analysis, five for the bottom-up analysis and six for
the combined bottom-up/top-down analysis

component it is not needed to run the entire system, but instead
oracle components can be used for the part of the system that
is not tested. Later, the component robustness can be tested
by placing back one or more other components.

We also acknowledge a number of disadvantages of the
method. The first shortcoming of the method is that although
we test the components with input of various quality to
measure their robustness, in the end the system performance
will depend on one particular set of components and the
interaction between these components. It is possible that a
component change that seems to work fine during analysis
has a negative effect in the actual system. The system is more
than the sum of its components. We believe that this might
especially be true for major component changes but we have
not yet experienced this ourselves.

The analysis is reasonably straightforward once an oracle
is created for each component; it is possible to automate the
entire analysis and run it overnight to have a clear picture of
the system performance every day. Unfortunately, developing
the entire oracle environment and creating an oracle for each
component is quite elaborate. This is only a minor problem if
the architecture of the system does not change often, but when
the architecture does change, it is likely that also the oracles
need to be developed again.

Finally, the error analysis can be a little bit misleading
because it is not necessarily true that the component that
is performing the least is also the component that can be
improved most easily. After a lot of effort on the development
of our SAD component for example, we still measure high
errors due to misclassified speech and non-speech.

B. Component performance

In this paper we have analyzed our most recent speaker
diarization system on a test set of 27 recordings and on
the RT09s evaluation set. The analysis showed on both sets
that speaker modeling, the iterative retraining process and
initialization perform reasonably well (errors B, D and E).
Judging solely on the basis of the top-down analysis of the test
set, it seemed that the lack of handling overlapping speech and
misclassifications in speech activity detection are responsible
for a large part of the diarization error rate (errors A and
C). The overlapping speech problem was shown even more
clearly in an additional test where we ran the system without
training the models on the overlapping regions (Section V).
This experiment showed that on top of the errors made because
of the lack of assigning speech to more than one speaker,
another 1.67% DER (absolute) is lost because of training
errors due to overlapping speech.

In the bottom-up analysis of the test set and also in the top-
down and bottom-up analysis on the RT09s evaluation set it
became clear that also the merging step and stopping criterion
were responsible for a large part of the DER (errors F and G).
Without combining the bottom-up and top-down analysis it is
hard to tell which of the two components is most to blame
for the poor performance. In Section V-A we combined both
methods and discovered that the merging component performs
well with pure clusters, but that it starts to make more errors
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if the input quality degrades. The stopping criterion is not
affected much by the input quality. Especially on the RT09s
evaluation set it performs poorly on both perfect input and on
the actual input (5% DER absolute).

In Section IV-B, we further investigated the role of the
SAD and resegmentation steps in the poor performance of the
merging component. The experiments show that the merging
component performs well when SAD and resegmentation are
done perfectly, but also when SAD is close to perfect, that
is, when overlapping speech errors are included in SAD and
minimum duration constraints are enforced (the “Impossible
segmentation” experiment). However, merging performance
drops for the actual SAD input. Although the top-down
analysis shows that the SAD component can be improved con-
siderably and that overlapping speech detection can potentially
improve the system, future research is needed to tell to what
extend the merging component will negate improvements to
SAD or overlap detection.
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