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Abstract

Fractional Brownian motion (fBm) is a Gaussian stochastic process
B = {Bt, t ≥ 0} with zero mean and covariance function given by E(BtBs) =
1
2

�
s2H + t2H − |t− s|2H

�
, where 0 < H < 1 is the Hurst parameter. This

process has stationary increments, self-similarity and long-range depen-
dence properties. These properties make fBm a suitable driving noise in
different applications like mathematical finance and network traffic anal-
ysis. In order to develop these applications, one needs to construct a
stochastic calculus with respect to fBm. In the particular case H = 1

2
,

the process B is an ordinary Brownian motion but for H 6= 1
2

it is not a
semimartingale and we cannot use the classical Itô calculus. The objective
of these notes is to present some recent advances in the stochastic calculus
with respect to fractional Brownian motion (fBm) and their applications.
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1 Fractional Brownian motion

A centered Gaussian process B = {Bt, t ≥ 0} is called fractional Brownian mo-
tion (fBm) of Hurst parameter H ∈ (0, 1) if it has the covariance function

RH (t, s) = E(BtBs) =
1
2

(
s2H + t2H − |t− s|2H

)
. (1.1)

This process was first introduced by Kolmogorov [24] and studied by Man-
delbrot and Van Ness in [29], where a stochastic integral representation in terms
of a standard Brownian motion was established.

Fractional Brownian motion has the following self-similar property: For any
constant a > 0, the processes

{
a−HBat, t ≥ 0

}
and {Bt, t ≥ 0} have the same
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distribution. This property is an immediate consequence of the fact that the
covariance function (1.1) is homogeneous of order 2H.

From (1.1) we can deduce the following expression for the variance of the
increment of the process in an interval [s, t]:

E
(|Bt −Bs|2

)
= |t− s|2H . (1.2)

This implies that fBm has stationary increments.
By Kolmogorov’s continuity criterion and (1.2) we deduce that fBm has

a version with continuous trajectories. Moreover, by Garsia-Rodemich-Rumsey
inequality, we can deduce the following modulus of continuity for the trajectories
of fBm: For all ε > 0 and T > 0, there exists a nonnegative random variable
Gε,T such that E (|Gε,T |p) < ∞ for all p ≥ 1, and

|Bt −Bs| ≤ Gε,T |t− s|H−ε,

for all s, t ∈ [0, T ]. In other words, the parameter H controls the regularity of
the trajectories, which are Hölder continuous of order H − ε, for any ε > 0.

For H = 1
2 , the covariance can be written as R 1

2
(t, s) = t∧s, and the process

B is an ordinary Brownian motion. In this case the increments of the process in
disjoint intervals are independent. However, for H 6= 1

2 , the increments are not
independent. The covariance between two increments Bt+h−Bt and Bs+h−Bs,
where s + h ≤ t, and t− s = nh is

ρH(n) =
1
2
h2H

(
(n + 1)2H + (n− 1)2H − 2n2H

)

≈ h2HH(2H − 1)n2H−2 → 0

as n tends to infinity. Therefore:

i) If H > 1
2 , ρH(n) > 0 and

∑∞
n=1 ρH(n) = ∞.

ii) If H < 1
2 , ρH(n) < 0 and

∑∞
n=1 |ρH(n)| < ∞.

In case i) two increments of the form Bt+h − Bt and Bt+2h − Bt+h, are
positively correlated and the process presents an aggregation behavior. In case
ii) these increments are negatively correlated and we say that there is intermit-
tency.

1.1 Moving average representation

Mandelbrot and Van Ness obtained in [29] the following integral representation
of fBm in terms of a Wiener process on the whole real line (see also Samorod-
nitsky and Taqqu [42]):

Bt =
1

C1(H)

∫

R

[(
(t− s)+

)H− 1
2 − (

(−s)+
)H− 1

2
]
dWs,
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where {W (A), A Borel subset of R} is a Brownian measure on R and

C1(H) =
(∫ ∞

0

(
(1 + s)H− 1

2 − sH− 1
2

)2

ds +
1

2H

) 1
2

.

Proof. Set ft(s) = ((t− s)+)H− 1
2 − ((−s)+)H− 1

2 , s ∈ R, t ≥ 0. Notice
that

∫
R ft(s)2ds < ∞. In fact, if H 6= 1

2 , as s tends to −∞, ft(s) behaves as
(−s)H− 3

2 which is square integrable at infinity. For t ≥ 0 set

Xt =
∫

R

[(
(t− s)+

)H− 1
2 − (

(−s)+
)H− 1

2
]
dWs.

We have

E(X2
t ) =

∫

R

[(
(t− s)+

)H− 1
2 − (

(−s)+
)H− 1

2
]2

ds

= t2H

∫

R

[(
(1− u)+

)H− 1
2 − (

(−u)+
)H− 1

2
]2

du

= t2H

(∫ 0

−∞

[
(1− u)H− 1

2 − (−u)H− 1
2

]2

du +
∫ 1

0

(1− u)2H−1du

)

= C1(H)2t2H . (1.3)

Similarly, for any s < t we obtain

E(|Xt −Xs|2) =
∫

R

[(
(t− u)+

)H− 1
2 − (

(s− u)+
)H− 1

2
]2

du

=
∫

R

[(
(t− s− u)+

)H− 1
2 − (

(−u)+
)H− 1

2
]2

du

= C1(H)2|t− s|2H . (1.4)

From (1.3) and (1.4) we deduce that the centered Gaussian process {Xt, t ≥ 0}
has the covariance RH of a fBm with Hurst parameter H.

Notice that the above integral representation implies that the function RH

defined in (1.1) is a covariance function, that is, it is symmetric and nonnegative
definite.

It is also possible to establish the following spectral representation of fBm
(see Samorodnitsky and Taqqu [42]):

Bt =
1

C2(H)

∫

R

eits − 1
is

|s| 12−HdW̃s,

where W̃ = W 1 + iW 2 is a complex Gaussian measure on R such that W 1(A) =
W 1(−A), W 2(A) = −W 2(A), and E(W 1(A)2) = E(W 1(A)2) = |A|

2 , and

C2(H) =
(

π

HΓ(2H) sin Hπ

) 1
2

.

3



1.2 Hurst’s statistical phenomenon of self-similarity

Hurst developed in [23] a statistical analysis of the yearly water run-offs of
Nile river. Suppose that x1, . . . , xn are the values of n successive yearly water
run-offs. Denote by Xn =

∑n
k=1 xk the cumulative values. Then, Xk − k

nXn

is the deviation of the cumulative value Xk corresponding to k successive years
from the empirical means as calculated using data for n years. Consider the
range of the amplitude of this deviation:

Rn = max
1≤k≤n

(
Xk − k

n
Xn

)
− min

1≤k≤n

(
Xk − k

n
Xn

)

and the empirical mean deviation

Sn =

√√√√ 1
n

n∑

k=1

(
xk − Xn

n

)2

.

Based on the records of observations of Nile flows in 622-1469, Hurst discovered
that Rn

Sn
behaves as cnH , where H = 0.7. On the other hand, the partial sums

x1 + · · · + xn have approximately the same distribution as nHx1, where again
H is a parameter larger than 1

2 .
These facts lead to the conclusion that one cannot assume that x1, . . . , xn

are values of a sequence of independent and identically distributed random vari-
ables. Some alternative models are required in order to explain the empirical
facts. One possibility is to assume that x1, . . . , xn are values of the increments
of a fractional Brownian motion. Motivated by these empirical observations,
Mandelbrot has given the name of Hurst parameter to the parameter H of fBm.

1.3 Non semimartingale property

We have seen that for H 6= 1
2 fBm does not have independent increments. In

this subsection we will show that for H 6= 1
2 fBm is not a semimartingale. A

proof in the case H > 1
2 can be found in [25] (see also Example 4.9.2 in Liptser

and Shiryaev [26]). We will present here the proof given by Rogers in [38] for
any H 6= 1

2 . The main arguments of this proof are as follows. For p > 0 set

Yn,p = npH−1
n∑

j=1

∣∣Bj/n −B(j−1)/n

∣∣p .

By the self-similar property of fBm, the sequence {Yn,p, n ≥ 1} has the same
distribution as {Ỹn,p, n ≥ 1}, where

Ỹn,p = n−1
n∑

j=1

|Bj −Bj−1|p .

The stationary sequence {Bj − Bj−1, j ≥ 1} is mixing. Hence, by the Ergodic
Theorem Ỹn,p converges almost surely and in L1 to E (|B1|p) as n tends to
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infinity. As a consequence, Yn,p converges in probability as n tends to infinity
to E (|B1|p). Therefore,

Vn,p =
n∑

j=1

∣∣Bj/n −B(j−1)/n

∣∣p

converges in probability to zero as n tends to infinity if pH > 1, and to infinity
if pH < 1. Consider the following two cases:

i) If H < 1
2 , we can choose p > 2 such that pH < 1, and we obtain that

the p-variation of fBm (defined as the limit in probability limn→∞ Vn,p) is
infinite. Hence, the quadratic variation (p = 2) is also infinity.

ii) If H < 1
2 , we can choose p such that 1

H < p < 2. Then the p-variation is
zero, and, as a consequence, the quadratic variation is also zero. On the
other hand, if we choose p such that 1 < p < 1

H we deduce that the total
variation is infinite.

Therefore, we have proved that for H 6= 1
2 fBm cannot be a semimartingale.

In a recent paper [7] Cheridito has introduced the notion of weak semimartin-
gale as a stochastic process {Xt, t ≥ 0} such that for each T > 0, the set of
random variables





n∑

j=1

fj(Btj −Btj−1), n ≥ 1, 0 ≤ t0 < · · · < tn ≤ T,

|fj | ≤ 1, fj is FX
tj−1

-measurable
}

is bounded in L0, where for each t ≥ 0, FX
t is the σ-field generated by the

random variables {Xs, 0 ≤ s ≤ t}. It is important to remark that this σ-field
is not completed with the null sets. Then, in [7] it is proved that fBm is not a
weak semimartingale if H 6= 1

2 .
Let us mention the following surprising result also proved in [7]. Suppose

that {Bt, t ≥ 0} is a fBm with Hurst parameter H ∈ (0, 1), and {Wt, t ≥ 0} is
an ordinary Brownian motion. Assume they are independent. Set

MH
t = Bt + Wt.

Then {Mt, t ≥ 0} is not a weak semimartingale if H ∈ (0, 1
2 ) ∪ ( 1

2 , 3
4 ], and it

is a semimartingale, equivalent in law to Brownian motion on any finite time
interval [0, T ], if H ∈ ( 3

4 , 1).

1.4 Fractional integrals and derivatives

In this subsection we will recall the basic definitions and properties of the frac-
tional calculus. For a detailed presentation of these notions we refer to [41].
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Let a, b ∈ R, a < b. Let f ∈ L1 (a, b) and α > 0. The left and right-sided
fractional integrals of f of order α are defined for almost all x ∈ (a, b) by

Iα
a+f (x) =

1
Γ (α)

∫ x

a

(x− y)α−1
f (y) dy (1.5)

and

Iα
b−f (x) =

1
Γ (α)

∫ b

x

(y − x)α−1
f (y) dy, (1.6)

respectively. Let Iα
a+(Lp) (resp. Iα

b−(Lp)) the image of Lp(a, b) by the operator
Iα
a+ (resp. Iα

b−).
If f ∈ Iα

a+ (Lp) (resp. f ∈ Iα
b− (Lp)) and 0 < α < 1 then the left and

right-sided fractional derivatives are defined by

Dα
a+f (x) =

1
Γ (1− α)

(
f (x)

(x− a)α + α

∫ x

a

f (x)− f (y)
(x− y)α+1 dy

)
, (1.7)

and

Dα
b−f (x) =

1
Γ (1− α)

(
f (x)

(b− x)α + α

∫ b

x

f (x)− f (y)
(y − x)α+1 dy

)
(1.8)

for almost all x ∈ (a, b) (the convergence of the integrals at the singularity y = x
holds point-wise for almost all x ∈ (a, b) if p = 1 and moreover in Lp-sense if
1 < p < ∞).

Recall the following properties of these operators:

• If α <
1
p

and q =
p

1− αp
then

Iα
a+ (Lp) = Iα

b− (Lp) ⊂ Lq (a, b) .

• If α >
1
p

then

Iα
a+ (Lp) ∪ Iα

b− (Lp) ⊂ Cα− 1
p (a, b) ,

where Cα− 1
p (a, b) denotes the space of

(
α− 1

p

)
-Hölder continuous func-

tions of order α− 1
p in the interval [a, b].

The following inversion formulas hold:

Iα
a+

(
Dα

a+f
)

= f

for all f ∈ Iα
a+ (Lp), and

Dα
a+

(
Iα
a+f

)
= f

for all f ∈ L1 (a, b). Similar inversion formulas hold for the operators Iα
b− and

Dα
b−.
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We will make use of the following integration by parts formula:

∫ b

a

(
Dα

a+f
)
(s)g(s)ds =

∫ b

a

f(s)
(
Dα

b−g
)
(s)ds, (1.9)

for any f ∈ Iα
a+ (Lp), g ∈ Iα

b− (Lq), 1
p + 1

q = 1.

1.5 Representation of fBm on an interval

Fix a time interval [0, T ]. Consider a fBm {Bt, t ∈ [0, T ]} with Hurst parameter
H ∈ (0, 1). We denote by E the set of step functions on [0, T ]. Let H be the
Hilbert space defined as the closure of E with respect to the scalar product

〈
1[0,t],1[0,s]

〉
H = RH(t, s).

The mapping 1[0,t] −→ Bt can be extended to an isometry between H and
the Gaussian space H1(B) associated with B. We will denote this isometry by
ϕ −→ B(ϕ).

In this subsection we will establish the representation of fBm as a Volterra
process, following the lines of [4] (case H > 1

2 ) and [3] (general case).

1.5.1 Case H > 1
2

It is easy to see that the covariance of fBm can be written as

RH(t, s) = αH

∫ t

0

∫ s

0

|r − u|2H−2dudr, (1.10)

where αH = H(2H − 1). Formula (1.10) implies that

〈ϕ,ψ〉H = αH

∫ T

0

∫ T

0

|r − u|2H−2ϕrψududr (1.11)

for any pair of step functions ϕ and ψ in E .
We can write

|r − u|2H−2 =
(ru)H− 1

2

β(2− 2H,H − 1
2 )

×
∫ r∧u

0

v1−2H(r − v)H− 3
2 (u− v)H− 3

2 dv, (1.12)

where β denotes the Beta function. Let us show Equation (1.12). Suppose
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r > u. By means of the change of variables z = r−v
u−v and x = r

uz , we obtain

∫ u

0

v1−2H(r − v)H− 3
2 (u− v)H− 3

2 dv

= (r − u)2H−2

∫ ∞

r
u

(zu− r)1−2H
zH− 3

2 dz

= (ru)
1
2−H(r − u)2H−2

∫ 1

0

(1− x)1−2H
xH− 3

2 dx

= β(2− 2H, H − 1
2
)(ru)

1
2−H(r − u)2H−2.

Consider the square integrable kernel

KH(t, s) = cHs
1
2−H

∫ t

s

(u− s)H− 3
2 uH− 1

2 du, (1.13)

where cH =
[

H(2H−1)

β(2−2H,H− 1
2 )

]1/2

and t > s.
Taking into account formulas (1.10) and (1.12) we deduce that this kernel

verifies
∫ t∧s

0

KH(t, u)KH(s, u)du = c2
H

∫ t∧s

0

(∫ t

u

(y − u)H− 3
2 yH− 1

2 dy

)

×
(∫ s

u

(z − u)H− 3
2 zH− 1

2 dz

)
u1−2Hdu

= c2
Hβ(2− 2H, H − 1

2
)
∫ t

0

∫ s

0

|y − z|2H−2dzdy

= RH(t, s). (1.14)

Formula (1.14) implies that the kernel RH is nonnegative definite and pro-
vides an explicit representation for its square root as an operator.

From (1.13) we get

∂KH

∂t
(t, s) = cH

(
t

s

)H− 1
2

(t− s)H− 3
2 . (1.15)

Consider the linear operator K∗
H from E to L2(0, T ) defined by

(K∗
Hϕ)(s) =

∫ T

s

ϕ(t)
∂KH

∂r
(t, s)dt. (1.16)

Notice that (
K∗

H1[0,t]

)
(s) = KH(t, s)1[0,t](s). (1.17)

The operator K∗
H is an isometry between E and L2(0, T ) that can be ex-

tended to the Hilbert space H. In fact, for any s, t ∈ [0, T ] we have using (1.17)
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and (1.14)
〈
K∗

H1[0,t],K
∗
H1[0,s]

〉
L2([0,T ])

=
〈
KH(t, ·)1[0,t],KH(s, ·)1[0,s]

〉
L2(0,T )

=
∫ t∧s

0

KH(t, u)KH(s, u)du

= RH(t, s) =
〈
1[0,t],1[0,s]

〉
H .

The operator K∗
H can be expressed in terms of fractional integrals:

(K∗
Hϕ) (s) = cHΓ(H − 1

2
)s

1
2−H(IH− 1

2
T− uH− 1

2 ϕ(u))(s). (1.18)

This is an immediate consequence of formulas (1.15), (1.16) and (1.6).
For any a ∈ [0, T ], the indicator function 1[0,a] belongs to the image of K∗

H

and applying the rules of the fractional calculus yields

(K∗
H)−1 (1[0,a]) =

1
cHΓ(H − 1

2 )
s

1
2−H

(
D

H− 1
2

a− uH− 1
2

)
(s)1[0,a](s). (1.19)

Consider the process W = {Wt, t ∈ [0, T ]} defined by

Wt = B((K∗
H)−1 (1[0,t])). (1.20)

Then W is a Wiener process, and the process B has the integral representation

Bt =
∫ t

0

KH(t, s)dWs. (1.21)

Indeed, for any s, t ∈ [0, T ] we have

E(WtWs) = E
(
B((K∗

H)−1 (1[0,t]))B((K∗
H)−1 (1[0,s]))

)

=
〈
(K∗

H)−1 (1[0,t]), (K∗
H)−1 (1[0,s])

〉
H

=
〈
1[0,t],1[0,s]

〉
L2(0,T )

= s ∧ t.

Moreover, for any ϕ ∈ H we have

B(ϕ) =
∫ T

0

(K∗
Hϕ) (t)dWt.

Notice that from (1.19), the Wiener process W is adapted to the filtration gener-
ated by the fBm B and (1.20) and (1.21) imply that both processes generate the
same filtration. Furthermore, the Wiener process /W that provides the integral
representation (1.21) is unique.

The elements of the Hilbert space H may not be functions but distributions
of negative order (see Pipiras and Taqqu [36], [37]). In fact, from (1.18) it follows

thatH coincides with the space of distributions f such that s
1
2−HI

H− 1
2

0+ (f(u)uH− 1
2 )(s)

is a square integrable function.
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We can find a linear space of functions contained in H in the following way.
Let |H| be the linear space of measurable functions ϕ on [0, T ] such that

‖ϕ‖2|H| = αH

∫ T

0

∫ T

0

|ϕr| |ϕu| |r − u|2H−2
drdu < ∞. (1.22)

It is not difficult to show that |H| is a Banach space with the norm ‖ · ‖|H| and
E is dense in |H|. On the other hand, it has been shown in [37] that the space
|H| equipped with the inner product 〈ϕ,ψ〉H is not complete and it is isometric
to a subspace of H.

The following estimate has been proved in [30]

‖ϕ‖|H| ≤ bH ‖ϕ‖
L

1
H ([0,T ])

, (1.23)

for some constant bH > 0.
Proof of (1.23). Using Hölder’s inequality with exponent q = 1

H in (1.22)
we get

‖ϕ‖2|H| ≤ αH

(∫ T

0

|ϕr|
1
H dr

)H



∫ T

0

(∫ T

0

|ϕu| (r − u)2H−2
du

) 1
1−H

dr




1−H

.

The second factor in the above expression, up to a multiplicative constant, it is
equal to the 1

1−H norm of the left-sided fractional integral I2H−1
0+ |ϕ|. Finally is

suffices to apply the Hardy-Littlewood inequality (see [45, Theorem 1, p. 119])
∥∥Iα

0+f
∥∥

Lq(0,∞)
≤ cH,p ‖f‖Lp(0,∞) , (1.24)

where 0 < α < 1, 1 < p < q < ∞ satisfy 1
q = 1

p − α, with the particular values
α = 2H − 1, q = 1

1−H , and p = 1
H .

As a consequence

L2(0, T ) ⊂ L
1
H (0, T ) ⊂ |H| ⊂ H.

The inclusion L2(0, T ) ⊂ |H| can be proved by a direct argument:

∫ T

0

∫ T

0

|ϕr| |ϕu| |r − u|2H−2
drdu ≤

∫ T

0

∫ T

0

|ϕu|2 |r − u|2H−2
drdu

≤ T 2H−1

H − 1
2

∫ T

0

|ϕu|2 du.

This means that the Wiener-type integral
∫ T

0
ϕ(t)dBt (which is equal to

B(ϕ), by definition) can be defined for functions ϕ ∈ |H|, and

∫ T

0

ϕ(t)dBt =
∫ T

0

(K∗
Hϕ) (t)dWt. (1.25)
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1.5.2 Case H < 1
2

We claim that the kernel

KH(t, s) = cH

[(
t

s

)H− 1
2

(t− s)H− 1
2 − (H − 1

2
)s

1
2−H

∫ t

s

uH− 3
2 (u− s)H− 1

2 du

]

where cH =
√

2H
(1−2H)β(1−2H,H+1/2) , satisfies

RH(t, s) =
∫ t∧s

0

KH(t, u)KH(s, u)du. (1.26)

To verify this relation is not so easy as in the case H < 1
2 . In the references

[16] and [37] this property is proved using the analyticity of both members as
functions of the parameter H. We will give here a direct proof using the ideas
of [31]. Notice first that

∂KH

∂t
(t, s) = cH(H − 1

2
)
(

t

s

)H− 1
2

(t− s)H− 3
2 . (1.27)

Proof of (1.26). Consider first the diagonal case s = t. Set φ(s) =∫ s

0
KH(s, u)2du. We have

φ(s) = c2
H

[∫ s

0

(
s

u
)2H−1(s− u)2H−1du

−(2H − 1)
∫ s

0

sH− 1
2 u1−2H(s− u)H− 1

2

(∫ s

u

vH− 3
2 (v − u)H− 1

2 dv

)
du

+(H − 1
2
)2

∫ s

0

u1−2H

(∫ s

u

vH− 3
2 (v − u)H− 1

2 dv

)2

du

]
.

Making the change of variables u = sx in the first integral and using Fubini’s
theorem yields

φ(s) = c2
H

[
s2Hβ(2− 2H, 2H)

−(2H − 1)sH− 1
2

∫ s

0

vH− 3
2

(∫ v

0

u1−2H(s− u)H− 1
2 (v − u)H− 1

2 du

)
dv

+2(H − 1
2
)2

∫ s

0

∫ v

0

∫ w

0

u1−2H(v − u)H− 1
2 (w − u)H− 1

2

×wH− 3
2 vH− 3

2 dudwdv
]
.

Now we make the change of variable u = vx, v = sy for the second term and
u = wx, w = vy for the third term and we obtain

φ(s) = c2
Hs2H

[
β(2− 2H, 2H) − (2H − 1)(

1
4H

+
1
2
)

×
∫ 1

0

∫ 1

0

x1−2H(1− xy)H− 1
2 (1− x)H− 1

2 dxdy

]

= s2H .
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Suppose now that s < t. Differentiating Equation (1.26) with respect to t,
we are aimed to show that

H(t2H−1 − (t− s)2H−1) =
∫ s

0

∂KH

∂t
(t, u)KH(s, u)du. (1.28)

Set φ(t, s) =
∫ s

0
∂KH

∂t (t, u)KH(s, u)du. Using (1.27) yields

φ(t, s) = c2
H(H − 1

2
)
∫ s

0

(
t

u

)H− 1
2

(t− u)H− 3
2

( s

u

)H− 1
2

(s− u)H− 1
2 du

−c2
H(H − 1

2
)2

∫ s

0

(
t

u

)H− 1
2

(t− u)H− 3
2 u

1
2−H

×
(∫ s

u

vH− 3
2 (v − u)H− 1

2 dv

)
du.

Making the change of variables u = sx in the first integral and u = vx in the
second one we obtain

φ(t, s) = c2
H(H − 1

2
) (ts)H− 1

2 γ(
t

s
)

−c2
H(H − 1

2
)2tH−

1
2

∫ s

0

vH− 3
2 γ(

t

v
) dv,

where γ(y) =
∫ 1

0
x1−2H(y − x)H− 3

2 (1 − x)H− 1
2 dx for y > 1. Then, (1.28) is

equivalent to

c2
H

[
(H − 1

2
)sH− 1

2 γ(
t

s
) − (H − 1

2
)2

∫ s

0

vH− 3
2 γ(

t

v
) dv

]

= H(tH−
1
2 − t

1
2−H(t− s)2H−1). (1.29)

Differentiating the left-hand side of equation (1.29) with respect to t yields

c2
H(H − 3

2
)
[
(H − 1

2
)sH− 3

2 δ(
t

s
) − (H − 1

2
)2

∫ s

0

vH− 5
2 δ(

t

v
) dv

]

: = µ(t, s), (1.30)

where, for y > 1,

δ(y) =
∫ 1

0

x1−2H(y − x)H− 5
2 (1− x)H− 1

2 dx.

By means of the change of variables z = y(1−x)
y−x we obtain

δ(y) = β(2− 2H, H +
1
2
)y−H− 1

2 (y − 1)2H−2. (1.31)

12



Finally, substituting (1.31) into (1.30) yields

µ(t, s) = c2
Hβ(2− 2H, H +

1
2
)(H − 3

2
)(H − 1

2
)

×t−H− 1
2 s(t− s)2H−2 +

1
2
t−H− 1

2 ((t− s)2H−1 − t2H−1)

= H(1− 2H)
(

t−H− 1
2 s(t− s)2H−2 +

1
2
(t− s)2H−1t−H− 1

2 − 1
2
tH−

3
2

)
.

This last expression coincides with the derivative with respect to t of the right-
hand side of (1.29). This completes the proof of the equality (1.26).

The kernel KH can also be expressed in terms of fractional derivatives:

KH(t, s) = cHΓ(H +
1
2
)s

1
2−H

(
D

1
2−H
t− uH− 1

2

)
(s). (1.32)

Consider the linear operator K∗
H from E to L2(0, T ) defined by

(K∗
Hϕ)(s) = KH(T, s)ϕ(s) +

∫ T

s

(ϕ(t)− ϕ(s))
∂KH

∂r
(t, s)dt. (1.33)

Notice that (
K∗

H1[0,t]

)
(s) = KH(t, s)1[0,t](s). (1.34)

From (1.26) and (1.34) we deduce as in the case H > 1
2 that the operator

K∗
H is an isometry between E and L2(0, T ) that can be extended to the Hilbert

space H.
The operator K∗

H can be expressed in terms of fractional derivatives:

(K∗
Hϕ) (s) = dH s

1
2−H(D

1
2−H

T− uH− 1
2 ϕ(u))(s), (1.35)

where dH = cHΓ(H + 1
2 ). This is an immediate consequence of (1.33) and the

equality
(
D

1
2−H
t− uH− 1

2

)
(s)1[0,t](s) =

(
D

1
2−H

T− uH− 1
2 1[0,t](u)

)
(s).

Using the alternative expression for the kernel KH given by

KH(t, s) = cH(t− s)H− 1
2 + sH− 1

2 F1(
t

s
), (1.36)

where

F1(z) = cH(
1
2
−H)

∫ z−1

0

θH− 3
2 (1− (θ + 1)H− 1

2 )dθ,

one can show that H = I
1
2−H

T− (L2) (see [16] and Proposition 8 of [3]). Notice
that

Cγ([0, T ]) ⊂ H
if γ > 1

2 −H.
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On the other hand, (1.35) implies that

H = {f : ∃K∗
Hf ∈ L2(0, T ) : f(s) = d−1

H s
1
2−H(I

1
2−H

T− uH− 1
2 K∗

Hf(u))(s)},
with the inner product

〈f, g〉H =
∫ T

0

K∗
Hf(s)K∗

Hg(s)ds.

Consider process W = {Wt, t ∈ [0, T ]} defined by

Wt = B((K∗
H)−1 (1[0,t])).

As in the case H > 1
2 , we can show that W is a Wiener process, and the process

B has the integral representation

Bt =
∫ t

0

KH(t, s)dWs.

Therefore, in this case the Wiener-type integral
∫ T

0
ϕ(t)dBt can be defined for

functions ϕ ∈ I
1
2−H

T− (L2), and (1.25) holds.
Define the left and right-sided fractional derivative operators on the whole

real line for 0 < α < 1 by

Dα
−f(s) :=

α

Γ(1− α)

∫ ∞

0

f(s)− f(s + u)
u1+α

du

and

Dα
+f(s) :=

α

Γ(1− α)

∫ ∞

0

f(s)− f(s− u)
u1+α

du,

s ∈ R, respectively. Then, the scalar product in H has the following simple
expression

〈f, g〉H = e2
H

〈
D

1
2−H
− f,D

1
2−H
+ g

〉
L2(R)

, (1.37)

where eH = C1(H)−1Γ(H + 1
2 ), f, g ∈ H, and by convention f(s) = g(s) = 0 if

s /∈ [0, T ].
In [3] these results have been generalized to Gaussian Volterra processes of

the form

Xt =
∫ t

0

K(t, s)dWs,

where {Wt, t ≥ 0} is a Wiener process and K(t, s) is a square integrable kernel.
Two different types of kernels can be considered, which correspond to the cases
H < 1

2 and H > 1
2 :

i) Singular case: K(·, s) has bounded variation on any interval (u, T ], u > s,
but

∫ T

s
|K|(dt, s) = ∞ for every s.

ii) Regular case: The kernel satisfies
∫ T

s
|K|((s, T ], s)2ds < ∞ for each s.

14



2 Stochastic calculus of variations with respect
to fBm

Let B = {Bt, t ∈ [0, T ]} be a fBm with Hurst parameter H ∈ (0, 1). Let S be
the set of smooth and cylindrical random variables of the form

F = f(B(φ1), . . . , B(φn)), (2.1)

where n ≥ 1, f ∈ C∞b (Rn) (f and all its partial derivatives are bounded), and
φi ∈ H.

The derivative operator D of a smooth and cylindrical random variable F
of the form (2.1) is defined as the H-valued random variable

DF =
n∑

i=1

∂f

∂xi
(B(φ1), . . . , B(φn))φi.

The derivative operator D is then a closable operator from Lp(Ω) into Lp(Ω;H)
for any p ≥ 1. For any integer k ≥ 1 we denote by Dk the iteration of the
derivative operator. For any p ≥ 1 the Sobolev space Dk,p is the closure of S
with respect to the norm

‖F‖p
k,p = E (|F |p) +

k∑

j=1

E
(∥∥DjF

∥∥p

H⊗j

)
.

In a similar way, given a Hilbert space V we denote by Dk,p(V ) the corresponding
Sobolev space of V -valued random variables.

The divergence operator δ is the adjoint of the derivative operator. We say
that a random variable in L2(Ω;H) belongs to the domain of the divergence
operator, denoted by Dom δ, if

|E (〈DF, u〉H)| ≤ cu ‖F‖L2(Ω)

for any F ∈ S. In this case δ(u) is defined by the duality relationship

E(Fδ(u)) = E (〈DF, u〉H) , (2.2)

for any F ∈ D1,2.
The following are two basic properties of the divergence operator:

i) D1,2(H) ⊂Dom δ and for any u ∈ D1,2(H)

E
(
δ(u)2

)
= E

(
‖u‖2H

)
+ E

(〈
Du, (Du)∗

〉
H⊗H

)
, (2.3)

where (Du)∗ is the adjoint of (Du) in the Hilbert space H⊗H.

ii) For any F in D1,2 and any u in the domain of δ such that Fu and Fδ(u)+
〈DF, u〉H are square integrable, then Fu is in the domain of δ and

δ(Fu) = Fδ(u)− 〈DF, u〉H . (2.4)
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2.1 Transfer principle

Recall that the operator K∗
H is an isometry between H and a closed subspace

of L2(0, T ). Moreover, Wt = B((K∗
H)−1 (1[0,t])) is a Wiener process such that

Bt =
∫ t

0

KH(t, s)dWs,

and for any ϕ ∈ H we have B(ϕ) = W (K∗
Hϕ).

A similar relation holds for the derivative and divergence operators with
respect to the processes B and W . That is:

(i) For any F ∈ D1,2
W = D1,2

K∗
HDF = DW F,

where DW denotes the derivative operator with respect to the process
W , and D1,2

W the corresponding Sobolev space.

(ii) Domδ = (K∗
H)−1 (DomδW ), and for any H-valued random variable u in

Dom δ we have δ(u) = δW (K∗
Hu), where δW denotes the divergence

operator with respect to the process W .

Suppose H > 1
2 . We denote by |H| ⊗ |H| the space of measurable functions

ϕ on [0, T ]2 such that

‖ϕ‖2|H|⊗|H| = α2
H

∫

[0,T ]4

∣∣ϕr,θ

∣∣ ∣∣ϕu,η

∣∣ |r − u|2H−2 |θ − η|2H−2
drdudθdη < ∞.

Then, |H| ⊗ |H| is a Banach space with respect to the norm ‖ · ‖|H|⊗|H|. Fur-
thermore, equipped with the inner product

〈ϕ,ψ〉H⊗H = α2
H

∫

[0,T ]4
ϕr,θψu,η |r − u|2H−2 |θ − η|2H−2

drdudθdη

the space |H| ⊗ |H| is isometric to a subspace of H ⊗H. A slight extension of
the inequality (1.23) yields

‖ϕ‖|H|⊗|H| ≤ bH ‖ϕ‖
L

1
H ([0,T ]2)

. (2.5)

For any p > 1 we denote by D1,p(|H|) the subspace of D1,p(H) formed by
the elements u such that u ∈ |H| a.s., Du ∈ |H| ⊗ |H| a.s., and

E
(
‖u‖p

|H|
)

+ E
(
‖Du‖p

|H|⊗|H|
)

< ∞.
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3 Stochastic integrals with respect to fractional
Brownian motion

In the case of an ordinary Brownian motion, the adapted processes in L2([0, T ]×
Ω) belong to the domain of the divergence operator, and on this set the diver-
gence operator coincides with Itô’s stochastic integral. Actually, the divergence
operator coincides with an extension of Itô’s stochastic integral introduced by
Skorohod in [44]. In this context a natural question is to ask in which sense
the divergence operator with respect to a fractional Brownian motion B can be
interpreted as a stochastic integral. Note that the divergence operator provides
an isometry between the Hilbert Space H associated with the fBm B and the
Gaussian space H1(B), and gives rise to a notion of stochastic integral in the
space of deterministic functions |H| included in H.

Different approaches have been used in the literature in order to define
stochastic integrals with respect to fBm. Lin [25] and Dai and Heyde [15] have
defined a stochastic integral

∫ T

0
φsdBs as limit in L2 of Riemann sums in the

case H > 1
2 . This integral does not satisfy the property E(

∫ T

0
φsdBs) = 0 and

it gives rise to change of variable formulae of Stratonovich type. A new type of
integral with zero mean defined by means of Wick products was introduced by
Duncan, Hu and Pasik-Duncan in [17], assuming H > 1

2 . This integral turns
out to coincide with the divergence operator.

A construction of stochastic integrals with respect to fBm with parameter
H ∈ (0, 1) by a regularization technique was developed by Carmona and Coutin
in [6]. The integral is defined as the limit of approximating integrals with
respect to semimartingales obtained by smoothing the singularity of the kernel
KH(t, s). The techniques of Malliavin Calculus are used in order to establish
the existence of the integrals. The ideas of Carmona and Coutin were further
developed by Alòs, Mazet and Nualart in the case 0 < H < 1

2 in [2].
The interpretation of the divergence operator as a stochastic integral has

been first studied by Decreusefont and Üstünel in [16]. A stochastic calculus for
the divergence process has been developed by Alòs, Mazet and Nualart in [3].

In this section we will discuss the relation between the divergence operator
and the path-wise stochastic integral with respect to fBm with parameter H ∈
(0, 1) defined as the limit of the integrals with respect to a regularization of fBm
by the convolution with a constant function. The results will be based on the
papers [4] (case H > 1

2 ), [1] and [9] (case H > 1
2 ).

The following definition of the symmetric stochastic integral was introduced
by Russo and Vallois in [39]. By convention we will assume that all processes
and functions vanish outside the interval [0, T ].

Definition 1 Let u = {ut, t ∈ [0, T ]} be a stochastic process with integrable
trajectories. The symmetric integral of u with respect to the fBm B is defined
as the limit in probability as ε tends to zero of

(2ε)−1

∫ T

0

us(Bs+ε −Bs−ε)ds,
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provided this limit exists, and it is denoted by
∫ T

0
utdBt.

3.1 The divergence integral in the case H > 1
2

The following proposition gives sufficient conditions for the existence of the
symmetric integral, and provides a representation of the divergence operator as
a stochastic integral (see [4]).

Proposition 2 Let u = {ut, t ∈ [0, T ]} be a stochastic process in the space
D1,2(|H|). Suppose also that a.s.

∫ T

0

∫ T

0

|Dsut| |t− s|2H−2
dsdt < ∞. (3.1)

Then the symmetric integral exists and we have

∫ T

0

utdBt = δ(u) + αH

∫ T

0

∫ T

0

Dsut |t− s|2H−2
dsdt. (3.2)

Remark 1 Under the assumptions of the Proposition 2 the integral
∫ T

0
utdBt

also coincides with the forward and backward integrals.

Remark 2 A sufficient condition for (3.1) is

∫ T

0

(∫ T

s

|Dsut|p dt

)1/p

ds < ∞

for some p > 1
2H−1 .

Sketch of the proof:. Approximate u by

uε
t = (2ε)−1

∫ t+ε

t−ε

usds.

We have
‖uε‖2D1,2(|H|) ≤ dH ‖u‖2D1,2(|H|) ,

for some positive constant dH . Using (2.4) we obtain

(2ε)−1

∫ T

0

us(Bs+ε −Bs−ε)ds = δ(uε) + (2ε)−1

∫ T

0

〈
Dus,1[s−ε,s+ε]

〉
H ds.

Finally, take the limit as ε tends to zero.
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3.1.1 Estimates for the divergence integral

Suppose that u = {ut, t ∈ [0, T ]} is a stochastic process in the space D1,2(|H|)
such that condition (3.1) holds. Then, for any t ∈ [0, T ] the process u1[0,t]

also belongs to D1,2(|H|) and satisfies (3.1). Hence, by Proposition 2 we can
define the indefinite integral

∫ t

0
usdBs =

∫ T

0
us1[0,t](s)dBs and the following

decomposition holds
∫ t

0

usdBs = δ(u1[0,t]) + αH

∫ t

0

∫ T

0

Drus |s− r|2H−2
drds.

The second summand in this expression is a process with absolutely contin-
uous paths. Therefore, in order to deduce Lp estimates and to study continuity
properties of

∫ t

0
usdBs we can reduce our analysis to the process δ(u1[0,t]). In

this section we will establish Lp maximal estimates for this divergence process.
We will make use of the notation

∫ t

0

usδBs = δ
(
u1[0,t]

)
.

By Meyer’s inequalities (see for example [32]), if p > 1, a process u ∈
D1,p(|H|) belongs to the domain of the divergence in Lp(Ω), and we have

E (|δ (u)|p) ≤ CH,p

(
‖E (u)‖p

|H| + E
(
‖Du‖p

|H|⊗|H|
))

.

As a consequence, applying (2.5) we obtain

E (|δ (u)|p) ≤ CH,p

(
‖E (u)‖p

L1/H([0,T ])
+ E

(
‖Du‖p

L1/H([0,T ]2)

))
.

Let pH > 1. Denote by L1,p
H the space of processes u ∈ D1,2(|H|) such that

‖u‖p,1 :=




∫ T

0

E(|us|p)ds + E




∫ T

0

(∫ T

0

|Drus|
1
H dr

)pH

ds







1
p

< ∞.

Using Meyer’s inequality and a convolution argument the following maximal Lp

inequality for the divergence integral has been established in [4]:

E

(
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

usδBs

∣∣∣∣
p
)
≤ C ‖u‖p

p,1 ,

where the constant C > 0 depends on p, H and T .
Assume pH > 1 and suppose that u ∈ L1,p

H . Set Xt =
∫ t

0
usδBs. Then, the

process Xt has a version with continuous trajectories and for all γ < H − 1
p

there exists a random variable Cγ such that

|Xt −Xs| ≤ Cγ |t− s|γ .
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This result is also proved in [4]. As a consequence, for a process u ∈ ∩p>1L1,p
H ,

the indefinite integral process X =
{∫ t

0
usδBs, t ∈ [0, T ]

}
is γ-Hölder contin-

uous for all γ < H. If we assume also that hypothesis (3.1) holds, we deduce
analogous continuity results for the symmetric integral process

∫ t

0
usdBs.

3.1.2 Itô’s formula for the divergence integral

Suppose that f, g : [0, T ] −→ R are Hölder continuous functions of orders α
and β with α + β > 1. Young [46] proved that the Riemann-Stieltjes integral∫ T

0
fdg exists. As a consequence, if F is a function of class C2, and H > 1

2 ,
the path-wise Riemann-Stieltjes integral

∫ t

0
F ′(Bs)dBs exists for each t ∈ [0, T ].

Moreover the following change of variables formula holds:

F (Bt) = F (0) +
∫ t

0

F ′(Bs)dBs. (3.3)

In fact, it suffices to show that the second order term

Rπ :=
n∑

i=1

F ′′(Xi)(Bti −Bti−1)
2

converges to zero almost surely as the norm of the partition π = {0 = t0 < t1 <
· · · < tn = t} tends to zero, where Xi is an intermediate value between Btiand
Bti−1 . This follows immediately from the estimate

|Rπ| ≤ Cε ‖F ′′‖∞
n∑

i=1

|ti − ti−1|2H−ε.

Moreover, the Riemann-Stieltjes path-wise integral
∫ t

0
F ′(Bs)dBs coincides

with the symmetric integral in the Russo-Vallois sense introduced in Definition
1.

Suppose that F is a function of class C2(R) such that

max {|F (x)|, |F ′(x)|, |F ′′(x)|} ≤ ceλx2
, (3.4)

where c and λ are positive constants such that λ < 1
4T 2H . This condition implies

E

(
sup

0≤t≤T
|F (Bt)|p

)
≤ cpE

(
epλ sup0≤t≤T |Bt|2

)
< ∞

for all p < T−2H

2λ . In particular, we can take p = 2. The same property holds
for F ′ and F ′′.

Then, if F satisfies the growth condition (3.4), the process F ′(Bt) belongs
to the space D1,2(|H|) and (3.1) holds. As a consequence, from Proposition 2
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we obtain
∫ t

0

F ′(Bs)dBs =
∫ t

0

F ′(Bs)δBs + H(2H − 1)
∫ t

0

∫ s

0

F ′′(Bs)(s− r)2H−2drds

=
∫ t

0

F ′(Bs)δBs + H

∫ t

0

F ′′(Bs)s2H−1ds. (3.5)

Therefore, putting together (3.3) and (3.5) we deduce the following Itô’s formula
for the divergence process

F (Bt) = F (0) +
∫ t

0

F ′(Bs)δBs + H

∫ t

0

F ′′(Bs)s2H−1ds. (3.6)

The divergence operator has the following local property:

Lemma 3 Let u be an element of D1,2(H). If u = 0 a.s. on a set A ∈ F , then
δ(u) = 0 a.s. on A.

Given a set L of H-valued random variables we will denote by Lloc the set of
H-valued random variables u such that there exists a sequence {(Ωn, un)}, n ≥
1} ⊂ F × L with the following properties:

i) Ωn ↑ Ω a.s.

ii) u = un, a.e. on [0, T ]× Ωn.

We then say that {(Ωn, un)} localizes u in L. If u ∈ D1,2
loc(H) by Lemma 3

we can define without ambiguity δ(u) by setting

δ(u)|Ωn = δ(un)|Ωn

for each n ≥ 1, where {(Ωn, un)} is a localizing sequence for u in L.
We state the following general version of Itô’s formula proved in [4]:

Theorem 4 Let F be a function of class C2(R). Assume that u = {ut, t ∈
[0, T ]} is a process in the space D2,2

loc (|H|) such that the indefinite integral Xt =∫ t

0
usδBs is a.s. continuous. Assume that ‖u‖2 belongs to H. Then for each

t ∈ [0, T ] the following formula holds

F (Xt) = F (0) +
∫ t

0

F ′(Xs)usδBs

+ αH

∫ t

0

F ′′(Xs) us

(∫ T

0

|s− σ|2H−2

(∫ s

0

DσuθδBθ

)
dσ

)
ds

+ αH

∫ t

0

F ′′(Xs)us

(∫ s

0

uθ (s− θ)2H−2
dθ

)
ds. (3.7)
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Remark 1 If the process u is adapted, then the third summand in the right-
hand side of (3.7) can be written as

αH

∫ t

0

F ′′(Xs) us

(∫ s

0

(∫ θ

0

|s− σ|2H−2
Dσuθdσ

)
δBθ

)
ds.

Remark 2 2H−1
s2H−1 (s− θ)2H−21[0,s](θ) is an approximation of the identity as H

tends to 1
2 . Therefore, taking the limit as H converges to 1

2 in Equation (3.7) we
recover the usual Itô’s formula for the the Skorohod integral proved by Nualart
and Pardoux [33].

3.2 Stochastic integration with respect to fBm in the case
H < 1

2

The extension of the previous results to the case H < 1
2 is not trivial and new

difficulties appear. In order to illustrate these difficulties, let us first remark
that the forward integral

∫ T

0
BtdBt in the sense of Russo and Vallois (with the

convergence in L2) does not exists. In fact, a simple argument shows that, if
ti = iT

n , the expectation of the Riemann sums
n∑

i=1

Bti−1(Bti −Bti−1)

diverges:
n∑

i=1

E
(
Bti−1(Bti −Bti−1)

)
=

1
2

n∑

i=1

[
t2H
i − t2H

i−1 − (ti − ti−1)2H
]

=
1
2
T 2H

(
1− n1−2H

) → −∞,

as n tends to infinity. Notice, however, that the expectation of symmetric
Riemann sums is constant:

1
2

n∑

i=1

E
(
(Bti + Bti−1)(Bti −Bti−1)

)
=

1
2

n∑

i=1

[
t2H
i − t2H

i−1

]
=

T 2H

2
.

We recall that for H < 1
2 the operator K∗

H given by (1.35) is an isometry
between the Hilbert space H and L2(0, T ). We have the estimate :

∣∣∣∣
∂K

∂t
(t, s)

∣∣∣∣ ≤ cH(
1
2
−H) (t− s)H− 3

2 . (3.8)

Consider the following seminorm on the set E of step functions on [0, T ]:

‖ϕ‖2K =
∫ T

0

ϕ2(s)K(T, s)2ds

+
∫ T

0

(∫ T

s

|ϕ(t)− ϕ(s)| (t− s)H− 3
2 dt

)2

ds.
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We denote by HK the completion of E with respect to this seminorm. The space
HK is continuously embedded in H.

The following result is the counterpart of Proposition 2 in the case H < 1
2

and its has been proved in [1]:

Proposition 5 Let u = {ut, t ∈ [0, T ]} be a stochastic process in the space
D1,2(HK). Suppose that the trace defined as the limit in probability

TrDu := lim
ε→0

1
2ε

∫ T

0

〈
Dus,1[s−ε,s+ε]

〉
H ds

exists and

E

(∫ T

0

u2
s

(
s2H−1 + (T − s)2H−1

)
ds

)
< ∞,

E

(∫ T

0

∫ T

0

(Drus)
2 (

s2H−1 + (T − s)2H−1
)
dsdr

)
< ∞.

Then the symmetric stochastic integral of u with respect to fBm in the sense of
Definition 1 exists and

∫ T

0

utdBt = δ(u) + TrDu.

Consider the particular case of the process ut = F (Bt), where F is a contin-
uously differentiable function satisfying the growth condition

max {|F (x)|, |F ′(x)|, |F ′′(x)|} ≤ ceλx2
,

where c and λ are positive constants such that λ < 1
4T 2H . If H > 1

4 , the process
F (Bt) the process belongs toD1,2(HK). Moreover, TrDu exists and

TrDu = H

∫ T

0

F ′(Bt)t2H−1dt.

As a consequence we obtain
∫ T

0

F (Bt)dBt =
∫ T

0

F (Bt)δBt + H

∫ T

0

F ′(Bt)t2H−1dt.

3.2.1 Itô’s formulas for the divergence integral in the case H < 1
2

An Itô’s formula similar to (3.6) was proved in [3] for general Gaussian processes
of Volterra-type of the form Bt =

∫ t

0
K(t, s)dWs, where K(t, s) is a singular

kernel. In particular, the process Bt can be a fBm with Hurst parameter 1
4 <

H < 1
2 . Moreover, in this paper, an Itô’s formula for the indefinite divergence

process Xt =
∫ t

0
usδBs similar to (3.7) was also proved.
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On the other hand, in the case of the fractional Brownian motion with Hurst
parameter 1

4 < H < 1
2 , an Itô’s formula for the indefinite symmetric integral

Xt =
∫ t

0
usdBs has been proved in [1] assuming again 1

4 < H < 1
2 .

Let us explain the reason for the restriction 1
4 < H. In order to define

the divergence integral
∫ T

0
F ′(Bs)δBs, we need the process F ′(Bs) to belong to

L2(Ω;H). This is clearly true, provided F satisfies the growth condition (3.4),
because F ′(Bs) is Hölder continuous of order H − ε > 1

2 −H if ε < 2H − 1
2 . If

H ≤ 1
4 , one can show (see [9]) that

P (B ∈ H) = 0,

and the space D1,2(H) is too small to contains processes of the form F ′(Bt).
Following the approach of [9] we are going to extend the domain of the

divergence operator to processes whose trajectories are not necessarily in the
space H.

Using (1.35) and applying the integration by parts formula for the fractional
calculus (1.9) we obtain for any f, g ∈ H

〈f, g〉H = 〈K∗
Hf, K∗

Hg〉L2(0,T )

= d2
H

〈
s

1
2−HD

1
2−H

T− sH− 1
2 f, s

1
2−HD

1
2−H

T− sH− 1
2 g

〉
L2(0,T )

= d2
H

〈
f, sH− 1

2 s
1
2−HD

1
2−H
0+ s1−2HD

1
2−H

T− sH− 1
2 g

〉
L2(0,T )

.

This implies that the adjoint of the operator K∗
H in L2(0, T ) is

(
K∗,a

H f
)
(s) = dHs

1
2−HD

1
2−H
0+ s1−2HD

1
2−H

T− sH− 1
2 f.

Set H2 = (K∗
H)−1 (

K∗,a
H

)−1 (L2(0, T )).Denote by SH the space of smooth
and cylindrical random variables of the form

F = f(B(φ1), . . . , B(φn)), (3.9)

where n ≥ 1, f ∈ C∞b (Rn) (f and all its partial derivatives are bounded), and
φi ∈ H2.

Definition 6 Let u = {ut, t ∈ [0, T ]} be a measurable process such that

E

(∫ T

0

u2
t dt

)
< ∞.

We say that u ∈ Dom∗δ if there exists a random variable δ(u) ∈ L2(Ω) such
that for all F ∈ SH we have

∫

R
E(utK

∗,a
H K∗

HDtF )dt = E(δ(u)F ).

24



This extended domain of the divergence operator satisfies the following ele-
mentary properties:

1. Domδ ⊂ Dom∗δ, and δ restricted to Domδ coincides with the divergence
operator.

2. If u ∈ Dom∗δ then E(u) belongs to H.

3. If u is a deterministic process, then u ∈ Dom∗δ if and only if u ∈ H.

This extended domain of the divergence operator leads to the following ver-
sion of Itô’s formula for the divergence process, established by Cheridito and
Nualart in [9].

Theorem 7 Suppose that F is a function of class C2(R) satisfying the growth
condition (3.4). Then for all t ∈ [0, T ], the process {F ′(Bs)1[0,t](s)} belongs to
Dom∗δ and we have

F (Bt) = F (0) +
∫ t

0

F ′(Bs)δBs + H

∫ t

0

F ′′(Bs)s2H−1ds. (3.10)

Sketch of the proof. F ′(Bs)1[0,t](s) ∈ L2(Ω× [0, T ]) and

F (Bt)− F (0)−H

∫ t

0

F ′′(BH
s )s2H−1ds ∈ L2(Ω) .

Hence, it suffices to show that for any G ∈ SH we have

E
(〈

F ′(B·)1[0,t], D·G
〉
H

)
(3.11)

= E

[
G

(
F (Bt)− F (0)−H

∫ t

0

F ′′(BH
s )s2H−1ds

)]
.

Equality (3.11) is proved by choosing smooth and cylindrical random variables
of the form G = Hn(B(ϕ)), where Hn denotes the nth Hermite polynomial, and
applying an integration by parts formula.

3.2.2 Local time and Tanaka’s formula for fBm

Berman proved in [5] that that fractional Brownian motion B = {Bt, t ≥ 0} has
a local time lat continuous in (a, t) ∈ R× [0,∞) which satisfies the occupation
formula ∫ t

0

g(Bs)ds =
∫

R
g(a)lat da. (3.12)

for every continuous and bounded function g on R. Moreover, lat is increasing
in the time variable. Set

La
t = 2H

∫ t

0

s2H−1la(ds).
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It follows from (3.12) that

2H

∫ t

0

g(Bs)s2H−1ds =
∫

R
g(a)La

t da.

This means that a → La
t is the density of the occupation measure

µ(C) = 2H

∫ t

0

1C(Bs)s2H−1ds,

where C is a Borel subset of R. Furthermore, the continuity property of lat
implies that La

t is continuous in (a, t) ∈ R× [0,∞).
As an extension of the Itô’s formula (3.10), the following result has been

proved in [9]:

Theorem 8 Let 0 < t < ∞ and a ∈ R. Then

1{Bs>a}1[0,t](s) ∈ Dom∗δ ,

and

(Bt − a)+ = (−a)+ +
∫ t

0

1{Bs>a}δBs +
1
2
La

t . (3.13)

This result can be considered as a version of Tanaka’s formula for the fBm.
In [12] it is proved that for H > 1

3 , the process 1{Bs>a}1[0,t](s) belongs to Domδ
and (3.13) holds.

The local time λa
t has Hölder continuous paths of order δ < 1−H in time,

and of order γ < 1−H
2H in the space variable, provided H ≥ 1

3 (see Table 2 in
[21]). Moreover, λa

t is absolutely continuous in a if H < 1
3 , it is continuously

differentiable if H < 1
5 , and its smoothness in the space variable increases when

H decreases.
In a recent paper, Eddahbi, Lacayo, Solé, Tudor and Vives [18] have proved

that lat ∈ Dα,2 for all α < 1−H
2H . That means, the regularity of the local time

lat in the sense of Malliavin calculus is the same order as its Hölder continuity
in the space variable. This result follows from the Wiener chaos expansion (see
[12]):

lat =
∞∑

n=0

∫ t

0

s−nHp(s2H , a)Hn(as−H)In

(
KH(s, ·) ⊗n

)
ds.

In fact, the series

∞∑
n=0

(1 + n)αE

[(∫ t

0

s−nHp(s2H , a)Hn(as−H)In

(
KH(s, ·) ⊗n

)
ds

)2
]

=
∞∑

n=0

(1 + n)αn!
∫ t

0

∫ t

0

(sr)−nHp(s2H , a)p(r2H , a)Hn(as−H)Hn(ar−H)

×〈KH(s, ·), KH(r, ·) 〉H drds
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is equivalent to

∞∑
n=1

n−
1
2+α

∫ t

0

∫ t

0

RH(u, v)(uv)−nH−1dudv

=
∞∑

n=0

n−
1
2+α

∫ 1

0

RH(1, z)z−nH−1dz.

Then, the result follows from the estimate
∣∣∣∣
∫ 1

0

RH(1, z)z−nH−1dz

∣∣∣∣ ≤ Cn−
1

2H .

4 Stochastic differential equations driven by a
fBm

Let B = {Bt, t ≥ 0} be an m-dimensional fractional Brownian motion of Hurst
parameter H ∈ (

1
2 , 1

)
. This means that the components of B are independent

fBm with the same Hurst parameter H. Consider the equation on Rd

Xt = X0 +
∫ t

0

σ (s,Xs) dBs +
∫ t

0

b(s,Xs)ds, t ∈ [0, T ] , (4.1)

where X0 is a d-dimensional random variable. The integral with respect to B
is a path-wise Riemann-Stieltjes integral, and we know that this integral exists
provided that the process σ (s,Xs) has Hölder continuous trajectories of order
larger that 1−H.

In [27], Lyons considered deterministic integral equations of the form

xt = x0 +
∫ t

0

σ(xs)dgs,

0 ≤ t ≤ T , where the g : [0, T ] → Rd is a continuous functions with bounded
p-variation for some p ∈ [1, 2). This equation has a unique solution in the space
of continuous functions of bounded p-variation if each component of g has a
Hölder continuous derivative of order α > p− 1. Taking into account that fBm
of Hurst parameter H has locally bounded p-variation paths for p > 1/H, the
result proved in [27] can be applied to Equation (4.1) in the case σ(s, x) = σ(x),
and b(s, x) = 0, provided the coefficient σ has a Hölder continuous derivative
of order α > 1

H − 1.
Using the approach based on the notion of p-variation and the general limit

theorem proved by Lyons in [28] for differential equations driven by geometric
rough paths, Coutin and Qian [14], [13] have established the existence of strong
solutions and a Wong-Zakai type approximation limit for stochastic differential
equations driven by a fractional Brownian motion with parameter H > 1

4 .
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In [40] Ruzmaikina establishes an existence and uniqueness theorem for ordi-
nary differential equations with Hölder continuous forcing. The global solution
is constructed, first, in small time intervals where the contraction principle can
be applied, provided the Hölder constant is small enough. The main estimates
are deduced using Hölder norms.

In [48] the existence and uniqueness of solutions is proved for differential
equations driven by a fractional Brownian motion with parameter H > 1

2 , in a
small random interval, provided the diffusion coefficient is a contraction in the
space W β

2,∞, where 1
2 < β < H. Here W β

2,∞ denotes the Besov-type space of
bounded measurable functions f : [0, T ] → R such that

∫ T

0

∫ T

0

(f(t)− f(s))2

|t− s|2β+1
dsdt < ∞.

In [34] Nualart and Rascanu have established the existence and uniqueness
of solution for Equation (4.1) using an a priori estimate based on the fractional
integration by parts formula, following the approach of Zähle [47]. In this section
we will survey the main ideas and results of [34].

4.1 Generalized Stieltjes integrals

Given a function g : [0, T ] → R, set gT− (s) = g(s) − limε↓0(T − ε) provided
this limit exists. Take p, q ≥ 1 such that 1

p + 1
q ≤ 1 and 0 < α < 1. Suppose

that f and g are functions on [0, T ] such that g(T−) exists, f ∈ Iα
0+ (Lp) and

gT− ∈ I1−α
T− (Lq). Then the generalized Stieltjes integral of f with respect to g

is defined by (see [47])

∫ T

0

fdg =
∫ T

0

Dα
0+fa+ (s)D1−α

T− gT− (s) ds. (4.2)

In [47] it is proved that this integral coincides with the Riemann-Stieltjes
integral if f and g are Hölder continuous of orders α and β with α + β > 1.

Fix 0 < α < 1
2 . Denote by Wα,∞

0 (0, T ) the space of measurable functions
f : [0, T ] → R such that

‖f‖α,∞ := sup
t∈[0,T ]

(
|f(t)|+

∫ t

0

|f (t)− f (s)|
(t− s)α+1 ds

)
< ∞.

We have, for all 0 < ε < α

Cα+ε(0, T ) ⊂ Wα,∞
0 (0, T ) ⊂ Cα−ε(0, T ).

Denote by W 1−α,∞
T (0, T ) the space of measurable functions g : [0, T ] → R

such that

‖g‖1−α,∞,T := sup
0<s<t<T

( |g(t)− g(s)|
(t− s)1−α

+
∫ t

s

|g(y)− g(s)|
(y − s)2−α

dy

)
< ∞.
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We have, for all 0 < ε < α

C1−α+ε (0, T ) ⊂ W 1−α,∞
T (0, T ) ⊂ C1−α (0, T ) .

For g ∈ W 1−α,∞
T (0, T ) define

Λα(g) :=
1

Γ(1− α)
sup

0<s<t<T

∣∣(D1−α
t− gt−

)
(s)

∣∣

≤ 1
Γ(1− α)Γ(α)

‖g‖1−α,∞,T .

Finally, denote by Wα,1
0 (0, T ) the space of measurable functions f on [0, T ]

such that

‖f‖α,1 :=
∫ T

0

|f(s)|
sα

ds +
∫ T

0

∫ s

0

|f(s)− f(y)|
(s− y)α+1

dy ds < ∞.

If f is a function in the space Wα,1
0 (0, T ), and g belongs to W 1−α,∞

T (0, T ),
then the generalized Stieltjes integral

∫ t

0
fdg exists for all t ∈ [0, T ] and we have

∣∣∣∣
∫ t

0

fdg

∣∣∣∣ ≤ Λα(g) ‖f‖α,1 .

Indeed,
∣∣∣∣
∫ t

0

fdg

∣∣∣∣ =
∣∣∣∣
∫ t

0

(
Dα

0+f
)
(s)

(
D1−α

t− gt−
)
(s) ds

∣∣∣∣

≤ sup
0≤s≤t≤T

∣∣(D1−α
t− gt−

)
(s)

∣∣
∫ t

0

∣∣(Dα
0+f

)
(s)

∣∣ ds

≤ Λα(g) ‖f‖α,1 .

4.2 Main estimate

Fix 0 < α < 1
2 . Given two functions g ∈ W 1−α,∞

T (0, T ) and f ∈ Wα,1
0 (0, T ) we

set

ht =
∫ t

0

fdg.

Then for all s < t ≤ T we have

|ht|+
t∫

0

|ht − hs|
(t− s)α+1

ds ≤ Λα(g) c
(1)
α,T

t∫

0

(
(t− r)−2α + r−α

)

×

|fr|+

r∫

0

|fr − fy|
(r − y)α+1

dy


 dr, (4.3)
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where c
(1)
α,T is a constant depending on α and T .

As a consequence of this estimate, if f ∈ W 1−α,∞
T (0, T ) we have

∣∣∣∣
∫ t

s

fdg

∣∣∣∣ ≤ Λα(g) c
(2)
α,T (t− s)1−α ‖f‖α,∞ ,

and ∥∥∥∥
∫ ·

0

fdg

∥∥∥∥
α,∞

≤ Λα(g) c
(3)
α,T ‖f‖α,∞ .

Sketch of the proof of (4.3). Using the definition and additivity property
of the indefinite integral we obtain

|ht − hs| =
∣∣∣∣
∫ t

s

fdg

∣∣∣∣ =

∣∣∣∣∣∣

t∫

s

Dα
s+ (f) (r)

(
D1−α

t− gt−
)
(r) dr

∣∣∣∣∣∣

≤ Λα(g)




t∫

s

|fr|
(r − s)α

dr + α

t∫

s

r∫

s

|fr − fy|
(r − y)α+1

dydr


 . (4.4)

Taking s = 0 we obtain the desired estimate for |ht|. Multiplying (4.4) by
(t− s)−α−1 and integrating in s yields

t∫

0

|ht − hs|
(t− s)α+1

ds ≤ Λα(g)

t∫

0

(t− s)−α−1 (4.5)

×



t∫

s

|fr|
(r − s)α

dr + α

t∫

s

r∫

s

|fr − fy|
(r − y)α+1

dydr


 ds.

By the substitution s = r − (t− r)y we have
∫ r

0

(t− s)−α−1(r − s)−αds ≤ (t− r)−2α

∫ ∞

0

(1 + y)−α−1y−αdy (4.6)

and, on the other hand,
∫ y

0

(t− s)−α−1ds = α−1
[
(t− y)−α − t−α

] ≤ α−1(t− y)−α. (4.7)

Substituting (4.6) and (4.7) into (4.5) yields

t∫

0

|ht − hs|
(t− s)α+1

ds ≤ Λα(g)


c(1)

α

t∫

0

|fr|
(t− r)2α

dr

+

t∫

0

r∫

0

|f(r)− f(y)|
(r − y)α+1

(t− y)−αdydr


 ,
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where
c(1)
α =

∫ ∞

0

(1 + y)−α−1y−αdy = B(2α, 1− α).

4.3 Deterministic differential equations

Let 0 < α < 1
2 be fixed. Let gi ∈ W 1−α,∞

T (0, T ;Rm), j = 1, . . . , m. Consider
the deterministic differential equation on Rd

xt = x0 +
∫ t

0

b(s, xs)ds +
∫ t

0

σ (s, xs) dgs, t ∈ [0, T ] , (4.8)

where x0 ∈ Rd.
Let us introduce the following assumptions on the coefficients:

H1 σ(t, x) is differentiable in x, and there exist some constants 0 < β, δ ≤ 1
and for every N ≥ 0 there exists MN > 0 such that the following properties
hold:

|σ(t, x)− σ(t, y)| ≤ M0|x− y|, ∀x ∈ Rd, ∀ t ∈ [0, T ] ,

|∂xiσ(t, x)− ∂xiσ(t, y)| ≤ MN |x− y|δ, ∀ |x| , |y| ≤ N, ∀t ∈ [0, T ] ,

|σ(t, x)− σ(s, x)|+ |∂xiσ(t, x)− ∂xiσ(s, x)| ≤ M0|t− s|β ,

∀x ∈ Rd, ∀ t, s ∈ [0, T ] .

for each i = 1, . . . , d.

H2 The coefficient b(t, x) satisfies for every N ≥ 0

|b(t, x)− b(t, y)| ≤ LN |x− y|, ∀ |x| , |y| ≤ N, ∀t ∈ [0, T ] ,
|b(t, x)| ≤ L0|x|+ b0 (t) , ∀x ∈ Rd, ∀t ∈ [0, T ] ,

where b0 ∈ Lρ
(
0, T ;Rd

)
, with ρ ≥ 2 and for some constant LN > 0.

Theorem 9 Suppose that the coefficients σ and b satisfy the assumptions H1
and H2 with ρ = 1

α , 0 < β, δ ≤ 1 and 0 < α < α0 = min
(

1
2 , β, δ

δ+1

)
. Then

Equation (4.8) has a unique continuous solution such that xi ∈ Wα,∞
0 (0, T ) for

all i = 1, . . . , d.

Sketch of the proof. Suppose d = m = 1. Fix λ > 1 and define the
seminorm in Wα,∞

0 (0, T ) by

‖f‖α,λ = sup
t∈[0,T ]

e−λt

(
|ft|+

∫ t

0

|ft − fs|
(t− s)α+1

ds

)
.
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Consider the operator L on defined by

(Lf)t = x0 +
∫ t

0

b(s, fs)ds +
∫ t

0

σ (s, fs) dgs.

There exists λ0 such that for λ ≥ λ0 we have

‖Lf‖α,λ ≤ |x0|+ 1 +
1
2
‖f‖α,λ .

Hence, the operator L leaves invariant the ball B0 of radius 2 (|x0|+ 1) in the
norm ‖·‖α,λ0

of the space Wα,∞
0 (0, T ). Moreover, L is a contraction operator

in L (B0) with respect to a different norm ‖·‖α,λ for a suitable value of λ > 1.
A basic ingredient in the proof of this fact is the estimate

|σ (r, fr)− σ (s, fs)− σ (r, hr) + σ (s, hs)|
≤ M0|fr − fs − hr + hs|+ M0|fr − hr|(r − s)β

+ MN |fr − hr|
(
|fr − fs|δ + |hr − hs|δ

)
,

which is an immediate consequence of the properties of the function σ. This
implies the existence of a solution by a fixed point argument. The uniqueness
is proved again using the main estimate (4.3).

4.3.1 Estimates of the solution

Suppose that the coefficient σ satisfies the assumptions of the Theorem 9 and

|σ (t, x)| ≤ K0 (1 + |x|γ) , (4.9)

where 0 ≤ γ ≤ 1. Then, the solution f of Equation (4.8) satisfies

‖f‖α,∞ ≤ C1 exp (C2Λα(g)κ) , (4.10)

where

κ =





1
1−2α if γ = 1

> γ
1−2α if 1−2α

1−α ≤ γ < 1
1

1−α if 0 ≤ γ < 1−2α
1−α

and the constants C1 and C2 depend on T , α, and the constants that appear
in conditions H1, H2 and (4.9).

The proof of (4.10) is based on the following version of Gronwall lemma:

Lemma 10 Fix 0 ≤ α < 1, a, b ≥ 0. Let x : [0,∞) → [0,∞) be a continuous
function such that for each t

xt ≤ a + btα
∫ t

0

(t− s)−αs−αxsds. (4.11)
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Then

xt ≤ a + a

∞∑
n=1

bn Γ(1− α)n+1tn(1−α)

Γ[(n + 1)(1− α)]
.

≤ adα exp
[
cαtb1/(1−α)

]
, (4.12)

where ca and dα are positive constants depending only on α (as an example, one
can set cα = 2 (Γ(1− α))1/(1−α) and dα = 4e2 Γ(1−α)

1−α ).

This implies that there exists a constants cα, dα > 0 such that

xt ≤ adα exp
[
cαtb1/(1−α)

]
.

4.4 Stochastic differential equations with respect to fBm

Fix a parameter 1
2 < H < 1. Let B = {Bt, t ∈ [0, T ]} be a fractional Brownian

motion with parameter H. Choose α such that 1−H < α < 1
2 . By Fernique’s

theorem, for any 0 < δ < 2 we have

E
(
exp

(
Λα(B)δ

))
< ∞.

As a consequence, if u = {ut, t ∈ [0, T ]} is a stochastic process whose trajec-
tories belong to the space Wα,1

T (0, T ), almost surely, the path-wise generalized
Stieltjes integral integral

∫ T

0
usdBs exists and we have the estimate

∣∣∣∣∣
∫ T

0

usdBs

∣∣∣∣∣ ≤ G ‖u‖α,1 .

Moreover, if the trajectories of the process u belong to the space Wα,∞
0 (0, T ),

then the indefinite integral Ut =
∫ t

0
usdBs is Hölder continuous of order 1−α,

and its trajectories also belong to the space Wα,∞
0 (0, T ).

Consider the stochastic differential equation (4.1) on Rd where the process
B is an m-dimensional fBm with Hurst parameter H ∈ (

1
2 , 1

)
and X0 is a d-

dimensional random variable. Suppose that the coefficients σi,j , bi : Ω× [0, T ]×
Rd → R are measurable functions satisfying conditions H1 and H2, where the
constants MN and LN may depend on ω ∈ Ω, and β > 1−H, δ > 1

H − 1. Fix
α such that

1−H < α < α0 = min
(

1
2
, β,

δ

δ + 1

)

and α ≤ 1
ρ . Then the stochastic equation (4.3) has a unique continuous solution

such that Xi ∈ Wα,∞
0 (0, T ) for all i = 1, . . . , d. Moreover the solution is Hölder

continuous of order 1− α.
Assume that X0 is bounded and the constants do not depend on ω. Suppose

that
|σ (t, x)| ≤ K0 (1 + |x|γ) ,
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where 0 ≤ γ ≤ 1. Then,

‖X‖α,∞ ≤ C1 exp (C2Λα(B)κ) .

Hence,for all p ≥ 1

E
(
‖X‖p

α,∞
)
≤ Cp

1E (exp (pC2Λα(B)κ)) < ∞

provided κ < 2, that is,
γ

4
+

1
2
≤ H

and
1−H < α <

1
2
− γ

4
.

• If γ = 1 this means α < 1
4 and H ≤ 3

4

• If γ < 2− 1
H we can take any α such that 1−H < α < 1

2 .

5 Applications

In this section we will describe some applications of the stochastic calculus with
respect to fBm.

5.1 Vortex filaments based on fBm

The observations of three-dimensional turbulent fluids indicate that the vorticity
field of the fluid is concentrated along thin structures called vortex filaments.
In his book Chorin [10] suggests probabilistic descriptions of vortex filaments
by trajectories of self-avoiding walks on a lattice. Flandoli [19] introduced a
model of vortex filaments based on a three-dimensional Brownian motion. A
basic problem in these models is the computation of the kynetic energy of a
given configuration.

Denote by u(x) the velocity field of the fluid at point x ∈ R3, and let
ξ = curlu be the associated vorticity field. The kynetic energy of the field will
be

H =
1
2

∫

R3
|u(x)|2dx =

1
8π

∫

R3

∫

R3

ξ(x) · ξ(y)
|x− y| dxdy. (5.1)

We will assume that the vorticity field is concentrated along a thin tube
centered in a curve γ = {γt, 0 ≤ t ≤ T}. Moreover, we will choose a random
model and consider this curve as the trajectory of a stochastic process three-
dimensional fractional Brownian motion B = {Bt, 0 ≤ t ≤ T}. This can be
formally expressed as

ξ(x) = Γ
∫

R3

(∫ T

0

δ(x− y −Bs)
·
Bsds

)
ρ(dy), (5.2)
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where Γ is a parameter called the circuitation, and ρ is a probability measure
on R3 with compact support.

Substituting (5.2) into (5.1) we derive the following formal expression for
the kynetic energy:

H =
∫

R3

∫

R3
Hxyρ(dx)ρ(dy), (5.3)

where the so-called interaction energy Hxy is given by the double integral

Hxy =
Γ2

8π

3∑

i=1

∫ T

0

∫ T

0

1
|x + Bt − y −Bs|dBi

sdBi
t. (5.4)

We are interested in the following problems: Is H a well defined random
variable? Does it have moments of all orders and even exponential moments?

In order to give a rigorous meaning to the double integral (5.4) let us
introduce the regularization of the function |·|−1:

σn = |·|−1 ∗ p1/n, (5.5)

where p1/n is the Gaussian kernel with variance 1
n . Then, the smoothed inter-

action energy

Hn
xy =

Γ2

8π

3∑

i=1

∫ T

0

(∫ T

0

σn(x + Bt − y −Bs) dBi
s

)
dBi

t, (5.6)

is well defined, where the integrals are path-wise Riemann-Stieltjes integrals.
Set

Hn =
∫

R3

∫

R3
Hn

xyρ(dx)ρ(dy). (5.7)

The following result has been proved in [35]:

Theorem 11 Suppose that the measure ρ satisfies
∫

R3

∫

R3
|x− y|1− 1

H ρ(dx)ρ(dy) < ∞. (5.8)

Let Hn
xy be the smoothed interaction energy defined by (5.6). Then Hn defined

in (5.7) converges, for all k ≥ 1, in Lk(Ω) to a random variable H ≥ 0 that we
call the energy associated with the vorticity field (5.2).

If H = 1
2 , fBm B is a classical three-dimensional Brownian motion. In this

case condition (5.8) would be
∫
R3

∫
R3 |x − y|−1ρ(dx)ρ(dy) < ∞, which is the

assumption made by Flandoli [19] and Flandoli and Gubinelli [20]. In this last
paper, using Fourier approach and Itô’s stochastic calculus, the authors show
that Ee−βH < ∞ for sufficiently small negative β.

The proof of Theorem 11 is based on the stochastic calculus of variations
with respect to fBm and the application of Fourier transform.
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Sketch of the proof of Theorem 11. The proof will be done in two
steps:

Step 1(Fourier transform) Using

1
|z| =

∫

R3
(2π)3

e−i〈ξ,z〉

|ξ|2 dξ

we get

σn(x) =
∫

R3
|ξ|−2ei〈ξ,x〉−|ξ|2/2n dξ.

Substituting this expression in (5.6), we obtain the following formula for the
smoothed interaction energy

Hn
xy =

Γ2

8π

3∑

j=1

∫ T

0

∫ T

0

(∫

R3
ei〈ξ,x+Bt−y−Bs〉 e−|ξ|

2/2n

|ξ|2
)

dBj
sdBj

t

=
Γ2

8π

∫

R3
|ξ|−2ei〈ξ,x−y〉−|ξ|2/2n ‖Yξ‖2C dξ, (5.9)

where

Yξ =
∫ T

0

ei〈ξ,Bt〉dBt

and ‖Yξ‖2C =
∑3

i=1 Y i
ξ Yξ

i
. Integrating with respect to ρ yields

Hn =
Γ2

8π

∫

R3
‖Yξ‖2C |ξ|−2 |ρ̂(ξ)|2 e−|ξ|

2/2ndξ ≥ 0. (5.10)

From Fourier analysis and condition (5.8) we know that
∫

R3

∫

R3
|x− y|1− 1

H ρ(dx)ρ(dy) = CH

∫

R3
|ρ̂(ξ)|2 |ξ| 1

H−4dξ < ∞. (5.11)

Then, taking into account (5.11) and (5.10), in order to show the convergence
in Lk(Ω) of Hn to a random variable H ≥ 0 it suffices to check that

E
(
‖Yξ‖2k

C

)
≤ Ck

(
1 ∧ |ξ|k( 1

H−2)
)

. (5.12)

Step 2 (Stochastic calculus) We will present the main arguments for the proof of
the estimate (5.12) for k = 1. Relation (3.2) applied to the process ut = ei〈ξ,Bt〉

allows us to decompose the path-wise integral Yξ =
∫ T

0
ei〈ξ,Bt〉dBt into the sum

of a divergence plus a trace term:

Yξ =
∫ T

0

ei〈ξ,Bt〉δBt + H

∫ T

0

iξei〈ξ,Bt〉t2H−1dt. (5.13)
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On the other hand, applying the three dimensional version of Itô’s formula (3.6)
we obtain

ei〈ξ,BT 〉 = 1 +
3∑

j=1

∫ T

0

iξje
i〈ξ,Bt〉δBj

t −H

∫ T

0

t2H−1|ξ|2ei〈ξ,Bt〉dt. (5.14)

Multiplying both members of (5.14) by iξ|ξ|−2 and adding the result to (5.13)
yields

Yξ = pξ

(∫ T

0

ei〈ξ,Bt〉δBt

)
− iξ

|ξ|2
(
ei〈ξ,BT 〉 − 1

)
:= Y

(1)
ξ + Y

(2)
ξ ,

where pξ(v) = v− ξ
|ξ|2 〈ξ, v〉 is the orthogonal projection of v on 〈ξ〉⊥. It suffices

to derive the estimate (5.12) for the term Y
(1)
ξ . Using the duality relationship

(2.2) for each j = 1, 2, 3 we can write

E
(
Y

(1),j
ξ Y

(1),j

ξ

)
= E

(〈
ei〈ξ,B·〉, pj

ξD·

(
pj

ξ

∫ T

0

e−i〈ξ,Bt〉δBt

)〉

H

)
. (5.15)

The commutation relation 〈D(δ(u)), h〉H = 〈u, h〉H + δ(〈Du, h〉H) implies

Dk
r

(∫ T

0

e−i〈ξ,Bt〉δBj
t

)
= e−i〈ξ,Bk

r 〉δk,j + (−iξk)
∫ T

0

1[0,t](r)e−i〈ξ,Bt〉δBj
t .

Applying the projection operators yields

pj
ξDr

(
pj

ξ

∫ T

0

e−i〈ξ,Bt〉δBt

)
= e−i〈ξ,Br〉

(
I − ξ∗ξ

|ξ|2
)

j,j

= e−i〈ξ,Br〉
(

1−
(
ξj

)2

|ξ|2
)

Notice that the term involving derivatives in the expectation (5.15) vanishes.
This cancellation is similar to what happens in the computation of tha variance
of the divergence of an adapted process, in the case of the Brownian motion.
Hence,

3∑

j=1

E
(
Y

(1),j
ξ Y

(1),j

ξ

)
= 2 E

(〈
e−i〈ξ,B·〉, e−i〈ξ,B·〉

〉
H

)

= 2αH

∫ T

0

∫ T

0

E
(
ei〈ξ,Bs−Br〉

)
|s− r|2H−2 dsdr

= 2αH

∫ T

0

∫ T

0

e−
|s−r|2H

2 |ξ|2 |s− r|2H−2 dsdr,
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which behaves as |ξ| 1
H−2 as |ξ| tends to infinity. This completes the proof of the

desired estimate for k = 1.
In the general case k ≥ 2 the proof makes use of the local nondeterminism

property of fBm:

Var

(∑

i

(Bti −Bsi)

)
≥ kH

∑

i

(ti − si)
2H .

5.1.1 Decomposition of the interaction energy

Assume 1
2 < H < 2

3 . For any x 6= y, set

Ĥxy =
3∑

i=1

∫ T

0

(∫ t

0

1
|x + Bt − y −Bs| dBi

s

)
dBi

t. (5.16)

Then Ĥxy exists as the limit in L2(Ω) of the sequence Ĥn
xy defined using the ap-

proximation σn(x) of |x|−1 introduced in (5.5) and the following decomposition
holds

Ĥxy =
3∑

i=1

∫ T

0

∫ t

0

1
|x− y + Bt −Br|δB

i
rδB

i
t.

−H2

∫ T

0

∫ t

0

δ0(x− y + Bt −Br)(t− r)2(2H−1)drdt.

+H(2H − 1)
∫ T

0

(∫ t

0

1
|x− y + Bt −Br| (t− r)2H−2dr

)
dt

+H

∫ T

0

(
1

|x− y + BT −Br| (T − r)2H−2 +
1

|x− y + Br|r
2H−1

)
dr.

Notice that in comparison with Hxy, in the definition of Ĥxy we chose to
deal with the half integral over the domain

{0 ≤ s ≤ t ≤ T} ,

and to simplify the notation we have omitted the constant Γ2

8π . Nevertheless, it

holds that Hxy = Γ2

8π

(
Ĥxy + Ĥyx

)
, and we have proved using Fourier analysis

that Hxy has moments of any order.
The following results have been proved in [35]:

1. All the terms in the above decomposition of Ĥxy exists in L2(Ω) for x 6= y.

2. If |x − y| → 0, then the terms behave as |x − y| 1
H−1, so they can be

integrated with respect to ρ(dx)ρ(dy).

3. The bound H < 2
3 is sharp: For H = 2

3 the weighted self-intersection local
time diverges.
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5.2 Application to financial mathematics

Fractional Brownian motion has been applied to describe the behavior to prices
of assets and volatilities in stock markets. The long-range dependence self-
similarity properties make this process a suitable model to describe these quan-
tities.

5.2.1 Fractional Black Scholes model

Assume the price of a stock is modelled as

St = S0e
µt+σBt ,

where Bt is a fBm with Hurst parameter H and µ and σ > 0 are constants. If
H 6= 1

2 this model admits arbitrage (see [38], Shiryaev [43], Cheridito [8]). In
the case H > 1

2 , one can construct an arbitrage in the following way. Suppose
µ coincides with the interest rate r, and define the strategy (αt, βt), where αt

is the number of bonds and βt is the number of assets, by

αt = 1− e2Bt ,

βt = 1(eBt − 1).

The value of this strategy at time t is

Vt = αte
rt + βtSt = ert

(
eBt − 1

)2
.

This strategy is self-financing because

dVt = rert
(
eBt − 1

)2
dt + 2σert+σBt

(
eBt − 1

)
dBt

= rαte
rt + βtdSt,

however, V0 = 0 and Vt > 0 for all t > 0. So, this strategy is an arbitrage.

5.2.2 Stochastic volatility models

In Comte and Renault [11], and Hu [22], the following model with stochastic
volatility is considered. The price of an asset St is given by

dSt = µStdt + σtStdWt,

where σt = f(Yt) and

dYt = α(m− Yt)dt + βtdBt.

The process Wt is an ordinary Brownian motion and Bt is a fractional Brownian
motion with Hurst parameter H > 1

2 , independent of W . Notice that Yt is a
fractional Ornstein-Uhlenbeck process. Examples of functions f are f(x) = ex

and f(x) = |x|. Let us mention the following results on this model that are
proved in [22]:

39



1) The market is incomplete and martingale measures are not unique.

2) Set γt = (r − µ)/σt and

dQ

dP
= exp

(∫ T

0

γtdWt − 1
2

∫ T

0

|γt|2dt

)
.

Then, Q is the minimal martingale measure associated with P .

3) The risk minimizing-hedging price of an European call option is given by

v = e−rT EQ

[
(ST −K)+

]
.

If Gt denotes the filtration generated by fBm, it holds that

v = e−rT EQ

[
EQ

(
(ST −K)+ |GT

)]

= e−rT EQ [CBS(S0, σ)] ,

where σ =
√∫ T

0
σ2

sds.
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