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Abstract

Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human
activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th
century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the
degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a
meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological
structure (driven mostly by plant assemblages), and biogeochemical functioning (driven primarily by the storage of carbon
in wetland soils), remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been
very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also
found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (.100 ha) and
wetlands restored in warm (temperate and tropical) climates recovered more rapidly than smaller wetlands and wetlands
restored in cold climates. Also, wetlands experiencing more (riverine and tidal) hydrologic exchange recovered more rapidly
than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of
wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further
degradation, global loss of wetland ecosystem function and structure will spread.
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Introduction

From tropical mangroves to boreal peatlands, wetlands are

amongst the most productive and economically valuable ecosys-

tems in the world [1]. They provide critical ecosystem goods and

services, including carbon storage, biodiversity conservation, fish

production, fuel production, water purification, flood and

shoreline surge protection and erosion control, and recreation

[1–3]. However, owing to human activities, over half of the

wetland ecosystems existing in the early 20th century have been

lost in North America, Europe, Australia, and China [2]. Over the

last century, restoration of degraded wetlands and creation of new

ones have been attempted, in efforts to recover physical, chemical,

and biological processes and entities lost because of wetland

destruction or degradation [4]. Frequently, however, this ap-

proach does not restore ecosystem structure and functions to

preimpact levels [5–8]. In North America (including Canada,

United States, and Mexico) alone, over US$70 billion have been

spent attempting to restore more than 3,000,000 ha of wetlands in

the last 20 y (see Text S1) [9], but the recovery trajectories of

structure and functions in restored wetlands have not yet been

globally assessed [10,11].

After degradation or natural perturbation, ecosystem structure

and functions recover towards reference levels [7,12], but recovery

rates might be affected by the physical characteristics of the

ecosystem, the degrading activity, or the environmental setting

[7,12]. Abiotic factors, such as size of restored ecosystems and

climate, might affect recovery rates. It could be expected that

intensely engineered small (few hectares) wetlands might recover

faster than less manipulated, large wetlands (hundreds of hectares)

to their original characteristics, but this prediction remains

unconfirmed. Higher recovery rates could also be expected in

warmer climates than in cold ones, because of accelerated

ecosystem processes [7,13]. Restoration efforts during the recovery

process may lead ecosystems to reference states or redirect them

towards alternative states [14–16] that could also be initiated by

prerestoration disturbance itself. If recovery is slow, it could be

difficult to distinguish between these alternatives. We surveyed

long-term (up to 100 y, available for some but not all of the studied

variables) chronosequences of restored wetland ecosystems from

621 restored and created wetlands relative to 556 reference

wetlands (Figure S1). Following Article 1.1 of the Ramsar

Convention of Wetlands [17], we considered wetlands to be

marshes, peatlands, floodplains, mangroves, depressional wet-

lands, and lacustrine wetlands—submerged permanently or

periodically under flowing or still fresh, salty, or brackish water.

We compared structure and function of 401 wetlands restored on

sites where they had been previously degraded and 220 newly
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created wetlands (wetland creation de novo is currently accepted

for environmental mitigation [4]). We also examined how size of

ecosystem and its environmental setting (climate regime and

hydrologic connectivity) affected recovery. Using a standardized

method (see Materials and Methods), we selected 124 studies (see

Text S2) in which ecological responses were measured at known

time intervals since restoration. From the selected studies, we

extracted 1,501 data points (Tables 1, S1, and S2) comparing

hydrologic, biological, and biogeochemical variables in restored or

created and reference wetlands. Response ratios (see Materials and

Methods) were calculated for each data point. Variables selected

from the same studies were not necessarily independent (see

Materials and Methods), so statistical inferences must be

interpreted cautiously.

We compared recovery trajectories of hydrologic, biological,

and biogeochemical variables of restored and created wetlands to

address three questions: (a) How fast are biological and

biogeochemical components of restored ecosystems changing

relative to less perturbed reference ecosystems?; (b) Do these

changes trend towards or away from the predisturbed ecosystem

or parallel control ecosystems?; and (c) Does wetland size or

environmental setting (regional climate, hydrologic connectivity)

affect recovery?

Results/Discussion

Hydrologic and Biological Recovery
Some hydrologic features can often be restored by manipulating

local topography, soil permeability, surface and ground water

flows—physical features that are usually engineered in wetland

restoration projects. Hydrological features defined for these

analyses (Table 1) appeared to be recovered immediately after

restoration (Figure 1A), but see Cole [18], Hunt et al. [19], Ahn

and Dee [20], and Kumar and Zhao [21] for deeper consider-

ations of challenges to hydrologic restoration in wetlands (from

factors like climate variation [20] or complex flow paths of water

through heterogeneous vegetation and soils [21]). In addition, all

hydrologic variables reported in studies we reviewed were followed

only for 10 y to 15 y, so longer-term changes remain unknown.

In contrast to reported hydrologic performance, biological

structure (as defined in Table 1) in restored or created wetlands,

recovered to only 77% (on average) of reference values (Figure 1A

and 1B; Table S3), even 100 y after restoration, when data on 14

taxa from two studies of three wetland sites are available [22,23].

Abundance, species richness, and diversity of native animals and

plants in wetlands were severely reduced following degradation.

After restoration, recovery proceeded at different rates, and

trajectories plateaued at different levels. Vertebrate assemblages

reached similar structural values to those in reference wetlands

within 5 y (Figure 1B). Vertebrate richness recovered more slowly

than abundance (p = 0.021; Figure 2A), possibly reflecting

responses by a few highly mobile vertebrate species [24,25] once

Table 1. Variables measured simultaneously in restored or created and reference wetlands to estimate wetland restoration
performance over time.

Wetland Structure and Functions na Variables Measured

Hydrology 32 Water level, flooding regime, water storage

Biological components 809

Vertebrates 166 Abundance, density, species richness, occupancy

Macroinvertebrates 161 Density, abundance, species richness

Plants 439 Plant cover, species richness, biomass, abundance

Biogeochemistry 692

Carbon storage and cycling 103 Soil total and organic carbon, respiration rate, mineralization rate

Nitrogen storage and cycling 102 Soil total and organic nitrogen, denitrification, and nitrification

Phosphorus storage 103 Soil total and organic phosphorus, Ca-Fe-Al bounded phosphorus

Other elements storage 106 Salinity, soil Fe, Al, Ca, K, Mn, Mg, water dissolved oxygen

Organic matter accumulation 177 Soil organic matter, bulk density, soil texture, soil moisture

Only the most frequently measured variables were included (see Tables S1 and S2, for full description of the variables measuring restoration performance).
an = number of variables used to plot each chronosequence.
doi:10.1371/journal.pbio.1001247.t001

Author Summary

Wetlands, which include tropical mangroves and boreal
peatlands, are among the most valuable ecosystems in the
world because they provide critical ecosystem goods and
services, such as carbon storage, biodiversity conservation,
fish production, water purification, and erosion control. As
global change accelerates the loss of wetlands, attempts
are increasing to restore this fragile habitat and its
associated functioning. There has been no global evalua-
tion, however, of how effective such restoration efforts
have been. Here, we present a meta-analysis of the
biological structure (driven mostly by plant communities)
and biogeochemical functioning (driven primarily by the
storage of carbon in wetland soils) of 621 wetland sites.
Our analysis suggests that even a century after restoration
efforts, these parameters remained on average 26% and
23% (respectively) lower in restored or created wetlands
than in reference wetlands. Our results also indicate that
ecosystem size and the environmental setting significantly
affect the rate of recovery. Recovery may be more likely
and more rapid if more than 100 contiguous hectares of
habitat are restored. In warm climates, and in settings
linked to riverine or tidal flows, recovery can also proceed
more rapidly. In general, however, once disturbed,
wetlands either recover very slowly or move towards
alternative states that differ from reference conditions.
Thus, current restoration practice and wetland mitigation
policies will maintain and likely accelerate the global loss
of wetland ecosystem functions.

Functional Loss in Restored Ecosystems
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hydrological connectivity was restored. Macroinvertebrates (64%

noninsects) took 5 y to 10 y to statistically converge with reference

assemblages in restored and created wetlands (Figure 1B), and

average values never reached absolute reference levels. Many

macroinvertebrates cannot recolonize new or restored wetlands by

themselves, but are carried in by flowing water or other organisms

[26,27]; however, their short life cycles (often annual or semi-

annual) could accelerate population recovery after they arrive

[28,29].

Plant assemblages in restored and created wetlands were slowest

to recover. Plants took on average 30 y to converge statistically

with reference states; although again, absolute average values of

structural features of plant assemblages remained lower than

reference levels even after 100 y following restoration (Figures 1B

and 2B). The slow and incomplete recovery of plant assemblage

might be due to dispersal limitation, vulnerable early life history

stages, or sensitivity of any life stage to altered conditions (e.g.,

reduced organic content of soils, discussed below) during early

succession following disturbance [30,31]. Other factors, such as

exotic colonists, subsequent disturbance or altered disturbance

regimes, priority effects (historical legacies), and nonlinear

interactions may also lead to delayed recovery or persistent

differences between restored biota and those in reference wetlands

[6,31,32].

Biogeochemical Recovery
Four biogeochemical responses were sufficiently well document-

ed in some studies we reviewed to examine trends over time: these

were the storage of carbon, nitrogen, and phosphorus (Figure 1C)

(see also storage and cycling combined for carbon and nitrogen in

Figure S2A), and the accumulation of organic matter in soil

(Figure S2B). The storage and cycling of carbon and nitrogen were

drastically reduced from preimpact levels after degradation. In

contrast, phosphorus storage seemed unaffected. After restoration,

responses were variable. Initially, carbon storage increased slightly

but then plateaued below reference levels; nitrogen storage and

cycling increased slowly but continuously; and phosphorus storage

remained unaffected. Wetland degradation notoriously oxidizes

stores of accumulated organic carbon and releases CO2 to the

atmosphere, as aerobic conditions accelerate microbial respiration

[2,33]. After wetland hydrologic regimes are recovered, more

anaerobic conditions allow stores of organic carbon to slowly

reaccumulate in the soil. After 20 y, however, carbon storage in

restored and created wetland soils was still significantly lower (by

50%; p = 0.008) than in reference wetlands (Figure 1C; Table S3;

Text S1; data from six studies of 21 wetlands) Organic matter

accumulated slowly [34,35], so that average values remained only

62% of the value at the reference wetlands 20–30 y following

restoration (Figure S2B; data from seven studies of 21 wetlands).

Aerobic conditions in degraded wetlands also perturb nitrogen

storage and cycling, allowing mineralization of organic N and

transformation of ammonium to nitrate [2]. Nitrate is quickly

processed by microorganisms and plants, leaving the original pool

of nitrogen in the soil depleted or unavailable. Nitrogen storage

remained significantly lower in restored wetlands for 30 y after the

wetlands were restored or created (Figure 1C; Table S3). Depleted

or unavailable soil nitrogen can limit wetland productivity,

retarding carbon storage [33,36]. In contrast, total phosphorus

decreased only slightly in restored or created wetlands and did not

show significant differences with reference wetlands (Figure 1C).

Although, phosphorus chemical fractions could change in

representation, the amount of total phosphorus did not change

significantly [37]. This lack of variation in phosphorus might be

explained because of the more conservative cycling by phosphorus

(lack of exchange with the atmosphere) [38]. In addition, without

extrinsic inputs, phosphorus levels would be geologically deter-

mined.

After 50 y to 100 y, restored wetlands recovered only to an

average of 74% of their biogeochemical functioning relative to

reference wetlands (Figure 1A; data from two studies of seven

wetlands; data of wetlands recovering for more than 50 y after

Figure 1. Recovery trajectories of created and restored
wetlands. Chronosequences of the means (6standard error [SE]) of
the response ratios (see Materials and Methods) of restored and created
wetlands at successive age classes of 5 y or 10 consecutive y for
hydrology, biological structure, and biogeochemical functions (A) and
for the main biological structural components (B). Chronosequences of
the means (6SE) of the element loss in soils of restored or created
wetlands at successive age classes of 5 y or 10 consecutive y (C). The
zero value dashed line represents reference wetlands. Only trend lines
for those variables for which we had enough data points (see Materials
and Methods) were plotted (N, number of data points used to calculate
the mean [6SE] per age class; Y, years after restoration. Subscripts are
as follows: bp, biogeochemical processes; bs, biological structure; C,
carbon; hf, hydrological features; m, macroinvertebrates; N, nitrogen; p,
plants; P, phosphorus; v, vertebrates).
doi:10.1371/journal.pbio.1001247.g001

Functional Loss in Restored Ecosystems
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restoration were not plotted in Figure 1A because the sample size

did not meet our criteria for average points, see Materials and

Methods section, on this graph). Since phosphorus storage

appeared only slightly changed, the overall lack of recovery of

biogeochemical functioning may have been driven largely by the

low recovery of the carbon storage and the low accumulation of

soil organic matter (see Text S1).

Effects of Size and Environmental Setting
Comparing wetland recovery trajectories under different condi-

tions may shed light on factors that impede or facilitate recovery.

Although biogeochemical responses in both restored and created

wetlands were similar, biological structure in created wetlands

approached reference conditions more quickly (Figure S3A and

S3B; Table S5). Created wetlands may have been engineered to

force the initial system towards defined reference conditions [39].

Ecosystem size and local and regional context affect wetland

recovery. Large wetlands (.100 ha) appeared to recover their

biological structure and biogeochemical functions sooner after

restoration or creation than smaller wetlands (Figures 3 and S4;

Table S4; data from 13 studies of 25 wetlands). This differential

recovery suggests that small wetlands may not provide adequate

local resources or connectivity for local biota to restore preimpact

functioning. Restored and created wetlands, particularly if small,

may have become more isolated and surrounded by more

fragmented landscapes than they had been before impact [40].

Also, small wetlands would only be able to support a limited

number of individuals, and thus, will not be able to support all the

species, particularly taxa with large body sizes, formerly capable of

occupying the area [41].

Regional climate had a strong effect on the sequence and rate of

wetland recovery following restoration. As expected, warm

temperatures accelerate ecosystem processes [7,13,42], including

those mediating biological and biogeochemical recovery after

wetland restoration or creation. In tropical and summer-warm

temperate climates, wetlands approached reference conditions

relatively rapidly, while wetlands restored in cold climates had not

recovered to reference conditions after 50 y (Figure 4A and 4B;

Tables S3 and S5). In tropical climates only, biogeochemical

variables recovered to reference levels before biological structure

did (data from eight studies of eight wetlands). Whether this

difference in recovery sequence is a real aspect of tropical

wetlands, or an artifact of small sample size, remains to be seen. In

a much larger sample of studies from temperate climates this

sequence was reversed, and biogeochemical recovery was slower.

Biological structural variables appeared recovered 5 y after

restoration, while even 30 y after restoration, biogeochemical

functions had only recovered to 79% of reference levels (data from

83 studies of 302 wetlands). In cold climates, corresponding

biogeochemical recovery was only 53% 50 y after restoration;

both biogeochemical functions and biological structure variables

Figure 2. Recovery trajectories of animal and plant richness and density. Chronosequences of the means (6standard error [SE]) of the
response ratios (see Materials and Methods) of restored or created wetlands at successive age classes of 5 y or 10 consecutive y for vertebrates and
macroinvertebrates density and richness (A) and for plant density and richness (B). Insufficient data points meeting our plotting criteria (see Materials
and Methods) were available to plot for macroinvertebrate richness. The zero value dashed line represents reference wetlands (N, number of data
points used to calculate the mean [6SE] per age class; Y, years after restoration. Subscripts are as follows: md, macroinvertebrates density; pd, plant
density; pr, plant richness; vd, vertebrate density; vr, vertebrates richness).
doi:10.1371/journal.pbio.1001247.g002

Figure 3. Effect of size on wetland recovery. Evolution of the
mean (6standard error [SE]) of the response ratios (see Materials and
Methods) of restored or created wetlands at successive size categories
for wetlands between 0 y to 5 y after restoration or creation. The zero
value dashed line represents reference wetlands. Mean (6SE) at 0.1 ha
was estimated for wetlands with sizes #0.1 ha. Means (6SE) at 1 ha
were estimated for wetlands in which sizes ranged between 0.1 ha and
1 ha. The same approach was used to estimate the means (6SE) at 10,
100, 1,000, and 10,000 ha (N, number of data points used to calculate
the mean [6SE] per age class; size, size in hectares of the restored
wetlands. Subscripts are as follows: bp, biogeochemical processes; bs,
biological structure).
doi:10.1371/journal.pbio.1001247.g003

Functional Loss in Restored Ecosystems
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remained statistically distinct from reference conditions for the

entire (50-y) chronosequence (Figure 4A and 4B; Tables S3 and

S5; data from 33 studies of 311 wetlands).

Hydrologic setting [43] also affected recovery (Figure 4C and 4D;

Tables S3 and S5). Riverine and tidal wetlands, linked to larger

hydrologic regimes by natural flow variation, recovered biogeochem-

ical functions and biological structure after 20 y and 30 y,

respectively (data from 73 studies of 210 wetlands). These results

are similar to those (15 y to 25 y to recover the original biotic

composition and diversity) found by Borja et al. [8] in 51 globally

distributed estuarine and coastal ecosystems. In contrast, wetlands in

inland depressions that were watered by precipitation or groundwater

flow had not recovered to reference conditions even after 50 y

following restoration (data from 36 studies of 358 wetlands). Peatlands

(usually only the upper layer [,1 m] of peat was removed) recovered

biological structure immediately, but 30 y after restoration, biogeo-

chemical functioning in peatlands remained statistically lower than in

reference wetlands (data from 11 studies of 18 wetlands).

Slow Recovery or Alternative States?
Two hypotheses could explain the lag in biological and

biogeochemical recovery of the biological structure and biogeo-

chemical functioning. First, the chronosequences we examined

may be too short (,30 y) for full recovery, especially of carbon

and nitrogen storage [44]. Second, restored wetlands may have

shifted to alternative states, different from their condition before

degradation [14,15]. The subreference plateaus of soil organic

accumulation, carbon storage, and general biogeochemical

functioning could support the second hypothesis of alternative

states in restored systems. Slow recovery of plant density and

richness might be linked to lags in carbon storage. Mutualist

symbionts critical for plant productivity (e.g., N-fixing bacteria [2]

or mycorrhizal fungi [45]) may be absent in recently (,50 y)

restored wetland soils. Alternatively, fast-growing, early succes-

sional terrestrial plants, and potentially also wetland plants, usually

allocate most of their carbon to photosynthetically active structures

of low density and high nutrient content, which are easily grazed

or rapidly decomposed, retarding local storage of carbon [46,47].

Comparison with Other Findings
Two other studies have assessed recovery rates of large scale

natural ecosystems following disturbance or perturbations [7,12].

Both of these studies examined a broad range of ecosystem types

(terrestrial, freshwater, and marine), including wetlands. Jones and

Figure 4. Effects of climate and hydrology on wetland recovery trajectories. Chronosequences of the means (6standard error [SE]) of the
response ratios (see Materials and Methods) of restored and created wetlands at successive age classes of 5 y or 10 consecutive y for biogeochemical
functions and for biological structures under contrasting climates (A and B), and under different hydrologic connectivity (C and D) [31]. The zero value
dashed line represents reference wetlands. The arrow (B) indicates the outlier mean value of two restoration studies with extremely low recovery
rates (N, number of data points used to calculate the mean [6SE] per age class; Y, years after restoration. Subscripts are as follows: bp, boreal
peatland; d, depressional; hc, humid cold; ht, humid temperate; r, riverine; str, seasonal tropical; ste, seasonal temperate; t, tidal).
doi:10.1371/journal.pbio.1001247.g004

Functional Loss in Restored Ecosystems
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Schmitz [12] found that across ecosystems and perturbation types

(natural and human-caused), about half of the tracked response

variables were considered by original authors to have recovered to

preimpact states. Jones and Schmitz computed averaged recovery

times for the subsamples of variables and cases that primary

authors considered to have recovered over the course of their

studies. These recovery times ranged from about 10 y to 40 y, and

were longer for forests, and following human-caused, rather than

natural perturbations. To assess whether systems had recovered or

not, Jones and Schmitz used authors’ expert opinion, return to

historic initial conditions, or approach to parallel reference states

(our study evaluated recovery only for studies using the last of these

criteria). Given the narrower scope of our study (assessing wetlands

only), and our different analysis approach, estimated recovery

times from these two reviews are surprisingly similar. Rey Benayas

et al. [7] studied recovery across a wide range of human-perturbed

ecosystems, including wetlands. Using (as we did) the response

ratio of restored to reference ecosystems, Benayas et al. found

biodiversity and selected ecosystems services to be 86% and 80%

recovered in a sample of 89 cases pooled over all age categories

since perturbation. Interestingly, they reported slightly (6%) higher

recovery in biological variables compared to ecosystems services

(nutrient cycling; primary production; provisioning of timber, fish,

and food crops; and regulation of climate, water supply, and soil).

These ecosystem services overlap in part with categories of

biogeochemical variables in our study (e.g., carbon and nutrient

storage and cycling). The similarity between their results and our

finding (that biological variables were 9% more recovered than

these biogeochemical responses) suggests that structural recovery

might often be necessary to achieve functional recovery.

Conclusions
Our meta-analysis suggests that recovery of wetlands following

restoration as currently practiced is often slow and incomplete. In

warm climates, and in settings linked to riverine or tidal flows,

recovery may proceed more rapidly. Recovery may also be more

likely and more rapid if .100 contiguous ha are restored. In many

wetlands, however, ecosystem services may not be fully recovered

even when wetlands appear to be biologically restored. If markets

for ecosystem services and mitigation offsets from restored or

created wetlands are used to justify further wetland degradation,

net loss of global wetland services will continue and likely

accelerate (see also Race and Fonseca [48]). We join other

wetland ecologists and restoration scientists in calling for better

scientific understanding of biotic and abiotic factors that constrain

ecosystem restoration. For our common future, we need more

realistic, long-term evaluations to find better ways to alleviate

constraints limiting the recovery of wetland ecosystems.

Materials and Methods

Literature Search
On the 22nd of December 2010 a reference search was done in

the scientific database ISI Web of Science – SCI-Expanded. The

terms used were ‘‘(wetland* or floodplain*or peatland* or marsh*

or mangrove*) same (restor* or creat* or re-creat* or rehabilit*).’’

We used these terms to cover a wide variety of wetlands as defined

in the Article 1.1 of the Ramsar Convention text [7]. For this

analysis, we considered restored wetlands to be wetlands recreated

on sites where wetlands had formerly existed but been drained or

otherwise severely degraded. Created wetlands were described by

authors as wetlands built on sites that lacked previous wetland

history. We selected studies of wetlands under natural hydrological

regimes, planted with native species, and in which no allochtho-

nous substrates were imported during the restoration or creation

activities. For this reason, the term ‘‘construct*’’ was not included

in the search terms, because we found in an independent search

that .99% of the studies of constructed wetlands were of highly

artificial systems not maintained under natural conditions. The

search produced 2,959 selected articles. We applied the general

selection criterion: ‘‘Articles must compare measurements of

structural components and biogeochemical processes in restored

or created and reference wetlands at a known age.’’ Under this

criterion we selected 172 articles. These articles were read, and

those in which data were averaged over time intervals larger than

5 y, those in which sizes differing by more than one order of

magnitude were averaged, and those lacking reliable measure-

ments or comparable restored and reference conditions were

discarded, leaving 124 articles (see Text S2). Reference wetlands

were usually adjacent to restored or created wetlands, although in

some cases they were separated by several kilometers (maximum

distance found was ,100 km). In all cases, restored or created

wetlands were of the same wetland hydrogeomorphic type [17] as

reference wetlands with which they were compared. From the

selected articles, six were carried out on experimental wetlands,

the rest were carried out on wetland restoration or creation

projects. Studies either described measurements at a known age

after wetlands were restored or created, or a chronosequence of

the progression during the wetland restoration process. Restored

and created wetlands were located in 12 countries and totaled

.21,294 ha in area and reference wetlands .19,694 ha. The

exact total area is not known because it was not reported in 23 out

of the 124 selected studies.

Data Extraction
Measurements of structural components and biogeochemical

processes were extracted from the main text, tables, and figures of

the articles. When abundance of one species was measured at

different life stages, only the adult abundance of each species was

selected. Variables describing hydrological structure, biological

structure, element storage and cycling, and organic matter

accumulation were classified as structural components or biogeo-

chemical processes according to wetland functions described by

Smith et al. [42], and as ecosystem services described in the

Millennium Ecosystem Assessment (MEA) (organic matter accu-

mulation was sometimes designated as ‘‘soil formation’’ in the

MEA but not in other soil science references) [49].

Element storage and cycling variables measured processes

(mineralization or denitrification) and concentration of elements

in different pools (total content in soil, organic content in soil, or

content in roots), which suggest how nutrients are moving between

pools through biotic and abiotic processes (Tables S1 and S2). The

studies presented enough data points to plot recovery of storage of

carbon, nitrogen, and phosphorus.

Response Ratio Calculation
To standardize and compare data, we used standard response

ratios used in meta-analysis, ln(Xrest+1/Xref+1) [3], where Xrest is

the value of the measured variable in the restored or created

wetland and Xref is the value of the measured variable in the

reference wetland. To avoid the value ‘‘0’’ in the natural logarithm

of the equation, ‘‘1’’ was added to both values in restored or

created and reference wetlands. The effect of adding ‘‘1’’ to the

values in the response ratio equation has been demonstrated to

have little effect on conclusions [50]. The effect size was not

weighted because variance was reported for only 64% of the

variables. Differences between weighted and unweighted meta-

analysis statistics are generally small [7].

Functional Loss in Restored Ecosystems
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As variables depicting structural components and biogeochem-

ical processes in restored or created wetlands converged to values

in the reference wetlands, recovery of function was generally

enhanced. But for some variables, such as soil bulk density [51,52],

or proportions of exotic species [53,54], higher values are

associated with lower levels of wetland recovery. In some cases,

the specific context of a study made variables negative for recovery

of a particular restored wetland, e.g., the presence of woody

species where none had occurred in the reference wetlands

[55,56]. In these cases (11% of the collected variables), we changed

the sign to reverse the value of the response ratio.

Data Classification
For each variable we recorded the age of the restored or created

wetland, the wetland hydrogeomorphic type, the number of

restored or created and reference wetlands considered in a given

study, the size (ha) of the restored or created and reference

wetlands, the initial condition (restored or created), the geographic

location, and the climate. Most data (49%) were from wetlands

that had been restored or created for less than 5 y (Figure S1). If

data from several wetlands of different sizes were averaged in the

study, then we also averaged the sizes for our analysis. The

geographic location was registered as the latitude and longitude in

degrees of the center of the wetland or group of wetlands. The

climate was classified according to the last revision of the Köppen-

Geiger climate classification [57]. We used the name humid

temperate climate for Cf climate, humid cold climate for Df

climate, seasonal temperate climate for Cs climate (with dry

summer), and seasonal tropical for A climates. Two of our sampled

studies were done in seasonal temperate climate with dry winter

(Köppen-Geiger climate classification Cw), and were not consid-

ered in our climate study. Wetland hydrogeomorphic type was

classified according to Brinson [58] and Smith et al. [42] as

depressional, riverine, tidal, peatland, lacustrine, and seeping

slope. Only three studies were on lacustrine wetlands and one on

seeping slope wetlands, so these types were not considered in our

study of differences among wetland types.

In studies where more than one wetland was studied and data

were available for each individual wetland, data were collected for

each wetland. In 27 studies, more than one wetland was compared

with the same reference wetland, and in 11 studies, restored or

created wetlands were compared with more than one reference

wetland. All studies where more reference rather than restored or

created wetlands were studied provided only averaged data for

both groups of wetlands. We calculated contingency tables

between the wetland size, the initial conditions (created versus

restored), and the covariates included in the environmental setting

section (climate and wetland hydrogeomorphic type), using

contingency coefficients (C), to test for independence between

them. Wetland type showed relevant degrees of association with

the climate (C = 0.63) and wetland size (C = 0.58), the rest of

variables had coefficients below 0.5, indicating low degree of

association. These associations may be explained by the influence

of the climate on wetland types, e.g., peatlands are usually

associated to cold climates, and mangroves to tropical climates.

Also, peatlands usually extend over vast surfaces (hundreds or

thousands of hectares) and depressional wetlands are usually small

basins (less than 10 ha or few tens of hectares).

Statistical Analysis
Because data were non-normally distributed (according to the

Kolmogorov-Smirnoff test for normality), we used Wilcoxon

signed rank tests to test for significant deviations from zero (no

difference from reference conditions) for each estimated mean of

the response ratios for variables at each age interval of a restored

or created wetland. To test for differences between the same

variable measured under two different environmental settings at a

given recovery time, we used Kruskal-Wallis tests.

Chronosequences Plotting
To plot the temporal trends, the mean values and the standard

error of each variable with every age class of 5 y (0–4.9, 5–9.9, etc)

were used. The criterion for a mean for a certain age class to be

used in the plot was that it must have been derived from at least

nine different data points obtained from at least two different

studies. When this criterion was not fulfilled, the mean values and

standard error of age classes of 10 y (e.g., 10–19.9, or 20–30) were

used. Temporal trend lines were fitted when enough data to

calculate means for two or more age classes were available.
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ages for the 654 restored and created wetlands consid-
ered in the study.
(TIF)

Figure S2 Chronosequences for the storage and cycling
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Figure S3 Chronosequences for biogeochemical pro-
cesses (A) and for biological structures (B) under
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wetlands created de novo in dry lands).
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Figure S4 Evolution of the response ratios of restored
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creation.
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the means of the response ratios in restored or created
versus reference wetlands.
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the means of the response ratios in restored or created
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