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SUMMARY

1. The predictive modelling approach to bioassessment estimates the macroinvertebrate

assemblage expected at a stream site if it were in a minimally disturbed reference

condition. The difference between expected and observed assemblages then measures the

departure of the site from reference condition.

2. Most predictive models employ site classification, followed by discriminant function

(DF) modelling, to predict the expected assemblage from a suite of environmental

variables. Stepwise DF analysis is normally used to choose a single subset of DF predictor

variables with a high accuracy for classifying sites. An alternative is to screen all possible

combinations of predictor variables, in order to identify several ‘best’ subsets that yield

good overall performance of the predictive model.

3. We applied best-subsets DF analysis to assemblage and environmental data from 199

reference sites in Oregon, U.S.A. Two sets of 66 best DF models containing between one

and 14 predictor variables (that is, having model orders from one to 14) were developed,

for five-group and 11-group site classifications.

4. Resubstitution classification accuracy of the DF models increased consistently with

model order, but cross-validated classification accuracy did not improve beyond seventh

or eighth-order models, suggesting that the larger models were overfitted.

5. Overall predictive model performance at model training sites, measured by the root-

mean-squared error of the observed/expected species richness ratio, also improved

steadily with DF model order. But high-order DF models usually performed poorly at an

independent set of validation sites, another sign of model overfitting.

6. Models selected by stepwise DF analysis showed evidence of overfitting and were

outperformed by several of the best-subsets models.

7. The group separation strength of a DF model, as measured by Wilks’ K, was more

strongly correlated with overall predictive model performance at training sites than was

DF classification accuracy.

8. Our results suggest improved strategies for developing reliable, parsimonious

predictive models. We emphasise the value of independent validation data for obtaining a
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realistic picture of model performance. We also recommend assessing not just one or two,

but several, candidate models based on their overall performance as well as the

performance of their DF component.

9. We provide links to our free software for stepwise and best-subsets DF analysis.

Keywords: discriminant function, expected richness, model selection, model validation, O/E model,
RIVPACS

Introduction

The predictive modelling approach is widely used for

assessing the biological integrity of streams based

on their sampled macroinvertebrate assemblages

(Wright, Furse & Armitage, 1993; Parsons & Norris,

1996; Hawkins et al., 2000). The approach compares

the assemblage observed at a site with an assemblage

that would be expected if that site was in a minimally

disturbed ‘reference’ condition. The expected assem-

blage is predicted by a statistical model that relates

assemblages at reference sites throughout a large

region to natural environmental factors. A significant

difference between expected and observed assem-

blages then indicates that the assessed site is not in

reference condition and has likely been impacted by

human activities.

A variety of statistical model structures have been

suggested for predicting the expected assemblage

(Reynoldson et al., 1995; Chessman, 1999; Moss et al.,

1999; Linke et al., 2005). However, the structure

pioneered by the United Kingdom’s River Inverteb-

rate Prediction and Classification System (RIVPACS)

model remains the most widely implemented (Moss

et al., 1987; Clarke, Wright & Furse, 2003). In the

RIVPACS structure, a numerical clustering algorithm

is used to identify groups of reference sites within

which sampled macroinvertebrate assemblages are

most similar. A discriminant function (DF) model is

then developed to predict the probability that any

stream site is a member of each reference site group,

based on a suite of natural environmental variables.

The expected occurrence probability of each species at

any site can then be computed as a weighted average

of that species’ occurrence frequencies in the reference

site groups. The weights used for this averaging are

the group membership probabilities for the site, as

predicted by the DF model.

Although expected occurrence probabilities can be

compared with observed occurrences on a species-by-

species basis, such a comparison may involve from

tens to over one hundred species. As a result, various

summary indices of the two assemblages have been

formulated and used in comparisons (Clarke et al.,

1996, 2003). In this paper, we employ the widely used

ratio of observed to expected species richness, O/E,

where E is the sum of model-predicted occurrence

probabilities at a site, across a specified list of species,

and O is the total number of those species observed at

the site (Clarke et al., 1996; Parsons & Norris, 1996;

Hawkins et al., 2000). Hawkins & Carlisle (2001) give a

step-by-step example of developing a RIVPACS-type

predictive model, and Clarke et al. (1996, 2003) supply

statistical details.

In this paper, we focus on strategies for selecting the

‘best’ environmental predictor variables for inclusion

in the DF component of a predictive model. Variable

selection strategies have received little attention in the

predictive modelling literature, in contrast to the

study of alternative clustering strategies to achieve

optimal site classifications (Moss et al., 1999; Johnson,

2000). However, some general guidelines for choosing

predictor variables are available. First of all, candidate

predictors clearly should be known to have the

potential for influencing macroinvertebrate commu-

nities, either directly or as surrogates. Secondly,

predictive models attempt to explain the variability

of assemblages in minimally impacted (i.e. reference)

streams because of ‘natural’ factors. Thus, candidate

predictors should represent environmental gradients

that are relatively unaltered by pollution or other

anthropogenic stress (Hawkins & Carlisle, 2001;

Clarke et al., 2003). Finally, predictive model users

prefer predictor variables that are simple and accurate

to measure for any stream sampling location (Clarke

et al., 2003). Having satisfied these requirements, the

model developer is still likely to be left with a large

number of equally viable candidate predictors. For

example, viable candidates often include variables

representing geographic location (latitude, longitude,

ecoregion), stream topography (altitude, slope, sinu-

osity, valley landform, stream network structure),
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catchment or stream size and catchment or streambed

geology. Here, we focus on the problem of choosing

‘best’ DF predictors from a relatively long list of viable

candidates.

It is possible to include all viable candidates in a DF

model. However, this strategy can lead to an overfitted

DF model, that is, a model so closely tailored to the

particular data set used in model building that it

performs poorly when applied to new cases (Harrell,

2001; Burnham & Anderson, 2002). Predictive model

developers have often tried to avoid overfitting by

seeking a small subset of variables that nevertheless

provide reliable and accurate DF predictions of site

group membership. Users of a parsimonious predictive

model also benefit from the fact that the model’s need

for input data has been minimised (Moss et al., 1987).

Developers of predictive models have had few tools

available to help simplify their DF models. Early

versions of RIVPACS retained all candidate predic-

tors, numbering as many as 28, but those DFs (linear

combinations of the predictors) that were deemed

statistically non-significant were then eliminated

(Wright et al., 1984). This approach may have reduced

the risk of overfitting, but model users would still

have to measure a long list of predictor variables to

assess each new stream site. Later and current

versions of RIVPACS offer users several optional DF

models, each of which has a somewhat different

reduced set of predictors, to allow for maximum user

flexibility in data acquisition (Moss et al., 1987;

Wright, 2000). However, the method used by RIVP-

ACS developers to find these reduced subsets has not

been articulated.

Developers of most other predictive models have

relied heavily on the stepwise method to search for a

single best DF model employing a minimal set of

predictors (Parsons & Norris, 1996; Marchant et al.,

1997; Reynoldson et al., 1997; Hawkins et al., 2000;

Hawkins & Carlisle, 2001; Joy & Death, 2002).

However, stepwise DF analysis is vulnerable to the

same problems as stepwise regression analysis

(McKay & Campbell, 1982; Harrell, 2001; Burnham

& Anderson, 2002). First of all, the stepwise method

explores only a small subset of all possible DF models

that could be built from a set of candidate predictors.

Secondly, variable choices and stopping rules in the

stepwise method are based on partial F-tests for

inclusion of individual predictors. But because the

stepwise method performs an unpredictable and large

number of such tests, its nominal statements about

predictor significance are seriously compromised.

Another challenge to DF variable selection is the

lack of any clear linkage between the overall perfor-

mance of a predictive model and the performance of

its DF component. Because the DF component is used

to predict group memberships, predictive classifica-

tion accuracy of reference sites has, until now, been

the primary basis for selecting best DF models (Moss

et al., 1987; Reynoldson et al., 1997; Hawkins et al.,

2000; Joy & Death, 2002). In contrast, the overall

performance of a predictive model can be directly

assessed by how closely its predictions of expected

richness match the observed richness at reference

sites, that is, how close the O/E ratio is to unity (Moss

et al., 1999). If the mean value of O/E at reference sites

is equal to 1.0 then a predictive model is unbiased,

and a small standard deviation of O/E indicates a

model with high precision (Ostermiller & Hawkins,

2004; Van Sickle et al., 2005). We are unaware of any

research showing that the best DF model (i.e. highest

classification accuracy) will yield the best predictive

model (minimum bias and maximum precision of O/

E) for a given set of site groups.

In this paper we describe and implement a ‘best-

subsets’ approach to DF variable selection. Our

approach screens all possible candidate DF models

for a given site classification and then calculates

statistics ofO/E for a large subset of the best candidates.

We apply this approach to assemblage and predictor

data collected throughout the state of Oregon, U.S.A.

Our goal is to illustrate how the number of predictors

included in DF models affects DF model performance

as well as the overall performance of the predictive

model. The resulting patterns help identify overfitted

DF models, they show whether stepwise DF analysis

can reliably identify best models, and they show the

linkage between DF model performance and overall

predictive model performance. Based on these results,

we suggest some guidelines for developing the DF

component of a predictive model. Our software for the

best-subsets approach is made available free to readers.

Methods

Study area and data sources

Oregon is a large state in north-western U.S.A. that

includes land area from three major ecological regions
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(Fig. 1; Omernik, 1987; Commission for Environmen-

tal Cooperation, 1997). Proceeding from west to east in

Fig. 1, the Marine ecoregion includes low coastal

mountains dominated by conifer forests and receiving

high rainfall, as well as the agricultural and urban-

dominated Willamette Valley. The mountains of the

Western Cordillera ecoregion are also conifer-domin-

ated but have higher altitudes and a drier climate. The

Western Interior Basin and Range ecoregion is dom-

inated by semi-arid grasslands and high-altitude

deserts.

The Oregon State Department of Environmental

Quality sampled macroinvertebrate assemblages dur-

ing the summer months (from June until September),

1998–2003, from first to third order streams, with

stream order identified on 1 : 100 000 scale maps.

Sampling locations were chosen randomly with a

spatially systematic component from throughout

Oregon’s stream networks (Herlihy et al., 2000). Addi-

tional sites were handpicked for possible use in

predictive model development because they were

determined to be minimally affected by human

disturbance. The catchments of all random and

hand-picked sites were then screened using digital

maps for human disturbance factors in their drainage

areas such as high road density, urban and agricul-

tural use, active or recent logging and presence of

cattle grazing. Site visits were also made to identify

reach-level disturbance factors such as channel modi-

fication and land use activities within 10 m of the

stream bank (roads, mining activity, buildings, etc.).

Reach level and catchment assessments were com-

bined into an overall human disturbance score for

each sampling site, and all sampled sites were

assigned a disturbance grade based on a five-level

scale. Disturbance grades were verified, and altered if

necessary, after follow-up site sampling of water

chemistry and instream habitat variables (see Drake,

2004, for further details). We employed 199 sites from

the two least-disturbed grade levels and distributed

around Oregon (Fig. 1) as reference sites for predic-

tive model development. We randomly selected 133 of

the 199 sites to develop predictive models. We fitted

clustering and DF models to these 133 sites and refer

to them as model ‘training’ sites. We set aside the

remaining 66 sites for model validation.

Macroinvertebrates were sampled in riffle habitats

with kick-nets and then composited to give a single

assemblage for each site. Full details of macroinver-

tebrate sampling methods are given by Waite et al.

(2000) and Klemm et al. (2003). Composite samples

were sorted and subsampled to a maximum of 500

individuals and then identified to the lowest possible

taxonomic level (usually genus). A subsequent ran-

dom subsampling yielded a fix-count of 300 individ-

uals for each site in the reference data set.

0 100

Kilometers

N

         Sample site

         Western
         cordillera

         Marine west
         coast forest

         Western
         interior basins
         and ranges

Ecoregion

Fig. 1 Map of Oregon U.S.A., showing locations of 199 sampled reference sites.
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We employed 14 candidate predictors for our DF

models (Table 1). Except for ‘Julian day’, all candidate

predictors were estimated from geographical infor-

mation system (GIS) operations on digital maps. Our

reliance on map-based predictors was dictated by our

desire to build models that could estimate O/E from a

macroinvertebrate sample alone, without the need for

other field data. We recognised at the outset that our

models might show suboptimal performance because

instream site-level attributes such as stream chemistry

and local habitat were not included in our list of

candidates. Transformations of selected variables

were employed to induce approximate normality

(Table 1).

Predictive model construction

We calculated Bray–Curtis dissimilarities between all

pairs of the 133 training sites, based on arcsine square-

root transformed relative abundances of all 164

macroinvertebrate taxa found at one or more of these

sites. Training sites were then clustered using the

flexible-b algorithm with b ¼ )0.6 (Legendre &

Legendre, 1998; McCune & Grace, 2002). We pruned

the cluster dendrogram to yield two different site

classifications, comprised of five and 11 groups, that

each contained a minimum of five sites per group

with the exception of one group that had four sites

(Ostermiller & Hawkins, 2004). Separate follow-up

analyses were then conducted for each of the two

classifications.

We fitted DF models to training site data to predict

site membership in the groups of a single classifica-

tion, using the predictors in Table 1. We explored only

linear DF models that assume multivariate normality

of predictors with a common covariance matrix for all

groups (Legendre & Legendre, 1998; Clarke et al.,

2003). We retained the full set of canonical DFs in each

candidate model and employed group sizes as prior

weights when predicting posterior group membership

probabilities for each site (Clarke et al., 2003).

Choice and evaluation of candidate DF models

We wrote a computer program that implements a

‘best subsets’ algorithm to explore multiple candidate

DF models for a given site classification (McKay &

Campbell, 1982). The program first evaluates how

strongly the site groups are separated by each of the

(2p-1) possible models that can be constructed from a

set of p candidate predictors. Group separation is

measured by Wilks’ K, defined as the ratio between

the within-class and total generalised variances of the

predictors in a model (Johnson & Wichern, 1988;

Rencher, 2002). A small value of Wilk’s K denotes

strong group separation. We chose Wilks’ K because

Table 1 Candidate predictors for DF models

Description Name Source

Julian day of macroinvertebrate sampling SAMPDAY Calendar

Site longitude LONGITUDE 1:24000 scale map

Site latitude LATITUDE 1:24000 scale map

Catchment area (log-transformed) WS_AREA Catchments were hand-delineated from 1:24000 topographic maps

Stream gradient (square-root transformed) GRADIENT Estimated for sample reach from 1:24000 scale topographic maps

Indicator for Marine ecoregion MAR_ECO Commission for Environmental Cooperation (1997)

Indicator for Western Cordillera ecoregion WEST_ECO Commission for Environmental Cooperation (1997)

Mean annual precipitation at site PRECIP PRISM model: Daly, Neilson & Phillips (1994).

See also http://www.ncgc.nrcs.usda.gov/products/datasets/

climate/

Mean of long-term annual maximum

temperature at site

TEMP PRISM model: Daly et al. (1994).

See also http://www.ncgc.nrcs.usda.gov/products/datasets/

climate/

Indicator for site lithology type: sand,

loose sediment, and unstable alluvium

ALLUVIUM Walker & MacLeod (1991)

Indicator for site lithology type: igneous rock IGN_ROCK Walker & MacLeod (1991)

Indicator for site lithology type: sedimentary

and metasedimentary rock

SED_ROCK Walker & MacLeod (1991)

Site altitude (square-root transformed) ALTITUDE Digital elevation model at 30 m resolution

Stream power index (log-transformed) STRM_POW Product of stream gradient and square root of catchment area
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this statistic is the basis for the entry and removal of

predictors in stepwise DF analysis (Rencher, 2002).

Our program ranks the set of all possible models by

their values of Wilks’ K, separately within each model

order k ¼ 1, 2, … p, where a model’s order is defined

as the number of predictor variables it includes.

Program users may specify a number of best models

of each order to be retained for further evaluation. For

the example in this paper, we retained the five best DF

models each from orders 1, 2, …13, and also the single

model containing all 14 predictors, for a total of 66

candidate models. For each of these best models, the

program then calculates statistics of O/E separately for

training and validation sites. DF classification accura-

cies of training sites, based on leave-one-out cross-

validation as well as resubstitution, are also calculated

for each of the best models. In this paper we illustrate

patterns of model performance by plotting different

performance measures against model order, and

against each other, with each of the 66 models

contributing one point on each plot. Separate sets of

66 best models were developed for predictive models

based on the five-group and the 11-group site classi-

fications.

We also used both the stepwise forward and

stepwise backward DF analyses to select best models,

for comparison with the larger subsets of best models

provided by the best-subsets approach. The stepwise

algorithms were terminated when all predictors in the

model had nominal P-values <0.05, and all excluded

variables had P > 0.05, based on the partial Wilks’ K
statistic (Rencher, 2002).

Our programs for best-subsets and stepwise DF

analysis are written as function scripts for the R

language (Ihaka & Gentleman, 1996), and they can be

obtained free from the senior author upon request.

The R language itself is also available free at http://

www.r-project.org/.

Calculating O/E and evaluating overall model

performance

The RIVPACS model calculates O/E for a site based on

the full list of reference species, as well as for a subset

of ‘common’ species, defined as those having model-

predicted occurrence probabilities ‡0.5 for that site

(Wright, 2000). Here, we base O/E on only the

common species, as advocated by Parsons & Norris

(1996) and Hawkins et al. (2000).

The bias of a predictive model is given by B ¼
[Mean(O/E) ) 1.0], where Mean (O/E) denotes the

average O/E over a set of reference sites. As predictive

models are fitted to training sites, their bias is close to

zero for those sites. In this case, the standard

deviation of O/E, by itself, characterises the magni-

tude of prediction errors and hence overall model

performance. However, model predictions at valid-

ation sites may have a bias that is not negligible. As a

result, we used the root mean squared error (RMSE)

of O/E to combine the bias and variability of predic-

tion errors into a single overall measure of model

performance. The RMSE is given by:

RMSEðO=EÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X O

E
� 1

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ SD2

p
; ð1Þ

where the sum is across a collection of n reference

sites and SD is the standard deviation of O/E for those

sites (Rice, 1988).

Upper and lower baselines for model performance

The RMSE measures the relative overall performance

of alternative models. However, as Guthery et al.

(2005) point out, a sole reliance on relative statistics

allows model selection algorithms to ‘… identify

‘‘best’’ or ‘‘plausible’’ models in a set of outrageously

bad models’. For this reason, we used null-model

predictions of O/E and the replicate sampling stand-

ard deviation to provide upper and lower baselines,

respectively, for the model performance measured by

RMSE(O/E) (Van Sickle et al., 2005).

The null-model occurrence probability for any

species is estimated by the proportion of training sites

at which that species was observed to occur (Van

Sickle et al., 2005). The null model specifies its own

fixed set of common species to be those species having

null-model occurrence probabilities ‡0.5. Null-model

expected richness (EN) is the sum, over this set of

common species, of their null-model occurrence prob-

abilities. This single value EN is the expected richness

predicted by the null model for all sites, whether they

be a training, validation or ‘test’ sites. In the null-

model richness ratio, denoted by ON/EN, observed

richness (ON) is then defined as the number of null-

model common species observed at the assessed site.

A null model does not explain any of the variability

in species richness across sites. As a result, the

standard deviation of ON/EN over a set of training
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sites serves as an upper baseline on the standard

deviation of O/E from any predictive model, for that

same set of sites (Van Sickle et al., 2005). The null

model and any predictive model have exactly zero

and nearly zero bias, respectively, for training sites.

Thus, for the set of training sites, eqn 1 shows that

RMSE is either exactly or nearly equal to the standard

deviation of O/E, so that RMSE(ON/EN) also serves as

an upper baseline for RMSE(O/E). In short, the overall

performance of any predictive model at training sites

can be judged by how far it reduces RMSE(O/E) below

the upper baseline of RMSE(ON/EN).

When a predictive model is applied to set-aside

validation sites, one expects to see somewhat reduced

model precision as well as increased bias, relative to

its performance at training sites. However, we have

frequently observed a decrease in the standard devi-

ation of O/E at validation sites [see for example,

Table 1 of Hawkins (in press)]. If taken at face value,

such a decrease indicates greater model precision at

new sites, which is highly unlikely. This suggests that

sampling variation or other as-yet unidentified factors

contribute substantially to differences in O/E variab-

ility between training and validation sites. As a result,

a direct comparison of standard deviations or RMSE’s

between training and validation sites does not appear

to give a reliable measure of how a model’s perform-

ance alters when it is applied to new sites. For this

reason, we use RMSE(ON/EN), with ON values from

validation sites, as a separate baseline for assessing

predictive model performance at validation sites.

In addition to the null-model upper baseline, we

used the replicate sampling standard deviation (SDR)

to provide a lower baseline for model performance at

training sites (Van Sickle et al., 2005). Given the ‘true’

occurrence probabilities for all taxa at a site, SDR

measures the irreducible level of variability in O/E

across replicate observed assemblages that is due

solely to presence/absence realisations of those prob-

abilities. Because SDR assumes that true occurrence

probabilities are known exactly, Van Sickle et al.

(2005) argued that no predictive model can be expec-

ted to yield an SD for O/E at training sites that is less

than SDR, hence the utility of SDR as a lower baseline.

The derivation of SDR assumes zero bias in O/E at

training sites, so that SDR also serves as a lower

baseline for RMSE(O/E). As Van Sickle et al. (2005)

show, although SDR is based on true probabilities, it

can be reasonably well estimated for training sites

from their model-predicted taxon occurrence proba-

bilities. An analogous estimate of SDR could be made

for validation sites, but the accuracy of such estimates

are not yet known and we do not report them here.

Relative importance of predictor variables

Although DF models are intended purely for predic-

tion, assessing the relative importance of candidate

predictors in the model(s) helps identify the dominant

natural factors that control macroinvertebrate assem-

blages at reference sites. Hawkins et al. (2000) used the

partial F-statistics of predictors in their final, stepwise-

selected DF model to rank predictor importance.

Under our best-subsets approach, it is more appro-

priate to define the importance of a predictor in terms

of its ‘average’ role in multiple, nearly equal models

(Kruskal, 1987; Budescu, 1993; Burnham & Anderson,

2002). Specifically, we measure a variable’s import-

ance by the proportion of our 66 best models that

include that variable.

Results

Classification accuracy of DF models

The leave-one-out cross-validation approach gives a

more realistic estimate of DF model accuracy in

classifying new sites than does the resubstitution

method (Clarke et al., 1996; Reynoldson et al., 1997;

Rencher, 2002). For our best models, cross-validation

accuracies stopped increasing with model order, for

five-group models at about seventh order, and for 11-

group models at about eighth order (Fig. 2). Models

larger than these showed no further improvement in

classification accuracy. In contrast, resubstitution

accuracy increased steadily for models up to order

13, as DF models became increasingly better ‘tuned’ to

the training data. Thus, models larger than the order

(seventh or eighth) at which cross-validation and

resubstitution trajectories diverge are likely being

overfitted (Fig. 2).

Our sets of 66 best models included the best models

found by the forward and backward stepwise meth-

ods. For the five-group case the two algorithms

selected different eighth-order models, but they

selected the same 10th order model for the 11-group

case. Fig. 2 suggests that all of our stepwise-selected

models are probably somewhat overfitted. In addi-
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tion, some of the best models identified by the best-

subsets method had higher cross-validation accura-

cies than did the best stepwise-selected models, for

both the five-group and 11-group cases (Fig. 2).

Overall predictive model performance

For five-group predictive models, overall precision

and accuracy at training sites increased rapidly [that

is, RMSE(O/E) decreased] with the order of the best

DF models, up to about eighth order (Fig. 3a). Larger

DF models offering little additional improvement. At

training sites, the RMSE’s from DF models larger than

about fourth order were below the null-model base-

line, and between about 30% to 50% of the distance to

the replicate-sampling lower baseline (Fig. 3a). In

other words, these models could account for between

30% and 50% of the standard deviation explainable

by any predictive model. For the 11-group models, the

decline in RMSE(O/E) at training sites with model

order was not as rapid as for the five-group models,

and the decline in RMSE continued up to about the

12th order (Fig. 3b). The minimum RMSE achieved by

the 11-group models was slightly higher than that

achieved by five-group models.

Overall predictive model performance at the 66

validation sites was markedly inferior to training site

performance. RMSE(O/E) for five-group models de-
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Fig. 2 Percentage of 133 training sites correctly classified using resubstitution and also leave-one-out cross-validation. Classification

accuracies of 66 best DF models are given for the five-group classification and of another 66 models for the 11-group classification.

Larger, solid symbols denote best models selected by stepwise DF analysis. Lines connect the mean cross-validation (solid lines) and

resubstitution (dashed lines) accuracy for each model order.
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of O/E (triangles), from predictive models
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66 DF models and the 11-group classifi-

cation. Larger, solid triangles denote best

models selected by stepwise DF analysis.

Dashed lines denote RMSE of the null

model. Open circles denote replicate

sampling standard deviation (SDR) for

each model.
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clined gradually up to about the eighth order, but

then began to increase again, a sign that these larger

models were overfitted (Fig. 3a). Note the large

number of five-group models having lower accu-

racy and precision (higher RMSE) than the null model

at validation sites. Performance of 11-group models

was inferior to five-group models at validation sites

(Fig. 3b). RMSE actually increased with increasing DF

model order, indicating that model performance on

set-aside sites steadily declined as model complexity

increased. RMSE’s for all but a few of the lowest-order

11-group models were larger than that of the null

model (Fig. 3b). This suggests that, from the stand-

point of independent validation data, nearly all of the

11-group models were overfitted.

At both validation and training sites, and for both

the five-group and 11-group models, there were

several DF models among the best-model subsets that

yielded smaller RMSE’s than did the best model

selected by the stepwise forward algorithm (Fig. 3).

Relations between DF model performance and

overall predictive model performance

For the five-group DF models, both Wilks’ K and

cross-validated classification accuracy were clearly

related to overall predictive model performance at

training sites, as measured by the RMSE(O/E) (Fig. 4,

upper panels). The correlation with RMSE was

stronger for Wilks’ K than for classification accuracy,

for both the five-group and the 11-group sets of

models (Fig. 4; Table 2). But for the best-performing

models (highest classification accuracy, lowest Wilks’

K and lowest RMSE), there was considerable variation
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Fig. 4 RMSE of O/E at training sites (upper panels) and validation sites (lower panels), versus the performance of 66 DF models for five

site groups at training sites, as measured by Wilks’ K (left panels) and cross-validated classification accuracy (right panels).
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in RMSE across numerous DF models having about

the same levels of classification accuracy or Wilks’ K
(Fig. 4). This same pattern was observed in the 11-

group models (plot not shown).

Predictive model performance at validation sites

was only weakly related to DF performance at

training sites, for the set of five-group DF models

(Fig. 4, lower panels; Table 2). The best-performing

DF models, as measured by either classification

accuracy or Wilks’ K, yielded RMSE’s at validation

sites that spanned nearly the entire RMSE range. For

the 11-group case, better-performing DF models

(higher classification accuracy and lower Wilks’ K)

tended to yield degraded predictive models (higher

RMSE’s) at validation sites, a result predictable from

Fig. 3b (Table 2).

Predictor importance

Site elevation was the single most prevalent predictor,

appearing in every best five-group and 11-group

model that contained two or more predictors (Fig. 5).

Julian day of sampling was also included in about

80% of our best models. At the other extreme, site

latitude and ecoregion location indicators were each

included in fewer than 25% of best models. Catch-

ment area and stream power appeared in over 70% of

the best five-group models, but these two predictors

were less prevent in the 11-group models. Longitude

and the igneous rock indicator appeared in even

higher percentages of 11-group models than did

sampling day.

Discussion

Based on Fig. 3, our best predictive models employed

five groups and those sixth to eighth-order DF models

that yielded low RMSE’s at both training and valid-

Percent of best models
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5−group models
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Fig. 5 Percentage of models in which each

candidate predictor variable was inclu-

ded, for 66 best five-group models and

another 66 best 11-group models. Predic-

tors are defined in Table 1.

Table 2 Spearman rank correlation coefficients between RMSE’s

of O/E at training and validation sites, and measures of DF

model performance at training sites, across 66 best DF models

based on five site groups and another 66 models based on 11 site

groups

Site type Site groups Wilks’ K
Cross-validated

classification accuracy

Training 5 0.85 )0.57

Training 11 0.90 )0.43

Validation 5 0.11 )0.33

Validation 11 )0.51 0.43
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ation sites. These models reduced the RMSE of O/E at

training sites to only about 0.17, relative to the null-

model value of 0.20. This is not a large reduction, but

it does represent about 50% of the RMSE that could be

explained by any predictive model, relative to the SDR

lower baseline.

We emphasise that our overall model performance

statistics are based solely on the O/E comparison of

assemblage species richness. Performance statistics for

other indices comparing the observed and expected

assemblages, such as tolerance-weighted richness

measures or a species-by-species matching of predic-

ted occurrence probabilities with observed occur-

rences (Clarke et al., 1996), may give a different view

of overall model quality. Our best-subsets software

can be adapted by users to report alternative per-

formance measures.

For the Oregon data, our best-subsets approach

revealed that, for a given set of site groups, several DF

models fit the data nearly equally well. In such cases,

model performance alone is not a sensible basis for

choosing a single final model (McKay & Campbell,

1982). One can winnow a collection of best-perform-

ing models by examining the predictor variables

included in each DF component. Individual predictors

may be preferred because of their ease and accuracy

of measurement. In addition, certain subsets of

predictors may be desirable because they rarely lead

to predictive extrapolation, as evaluated by a chi-

squared test of the distance in predictor space

between a new site and the training data sites (Moss

et al., 1987; Clarke et al., 2003). It is not necessary for a

winnowing process to ultimately produce a single

‘best’ predictive model. For example, recent versions

of RIVPACS provide users with a system of alternat-

ive models having nearly equal performance (Moss

et al., 1987; Wright, 2000). As another approach, one

could estimate O/E from several best models, then

average the estimates, weighted perhaps by model

quality (Burnham & Anderson, 2002).

The single DF model selected by the stepwise

method for five groups was among our chosen sixth

to eighth-order models, but it did not give the best

overall performance. In addition, Figs 2 & 3 suggest

that the stepwise-selected model may be overfitted.

We strongly discourage modellers from relying solely

on stepwise DF analysis to select a single best model.

If the stepwise method is the only automated variable

selection tool accessible to modellers, then we

recommend manually fitting and evaluating addi-

tional DF models that are ‘near’ to the stepwise-

selected model, as well as a few lower-order models

that were visited during the forward stepping

sequence. Predictors that enter a DF model at early

steps in the forward algorithm tend to have greater

predictive value and can be included in all manually

selected models. For example, site altitude was selec-

ted at the first step for our five-group and 11-group

models, and it was also the most prevalent predictor

among best models for both groupings.

Our choice of prevalence to measure predictor

importance in multiple best models may have been

reasonable, but, like other such measures, it was also

somewhat ad hoc (Kruskal, 1987; Budescu, 1993). Our

measure could be upgraded by calculating the weigh-

ted prevalence for each predictor, using weights

derived from a measure of model quality (Burnham

& Anderson, 2002). Further research might identify a

single measure of predictive model quality that is

analogous to Burnham & Anderson’s (2002) use of the

Akaike information criterion (AIC), and it also might

suggest a scaling of quality weights that is analogous

to that of Burnham & Anderson (2002).

For our Oregon example, a measure of group

separation for DF predictors (Wilks’ K) was more

closely correlated with RMSE of O/E than was DF

classification accuracy. A weak relationship between

classification accuracy and overall predictive model

performance might be expected because a predictive

model employs predicted group membership proba-

bilities only to weight species occurrence rates, rather

than to assign sites to individual groups as done by

the BEAST model (Reynoldson et al., 1997). Although

classification accuracy may be more easily interpreted,

we recommend that Wilks’ K be used for selecting the

DF models most likely to yield high predictive model

performance. The high correlations between Wilks’ K
and RMSE at training sites (Table 2) support the

choice of Wilks’ K to screen the set of all possible

models in our best-subsets algorithm. However, as

Fig. 4 suggests, Wilks’ K is not a perfect indicator of

overall predictive model performance, especially for

the better DF models. We encourage model develop-

ers to choose among alternative DF models based on

the statistics of O/E rather than on DF model

performance alone.

Finally, Fig. 3 shows that many of our models

performed quite well on training data, but then
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performed poorly, even worse than the null model, on

data from an independent set of validation sites.

Fig. 3b also suggests that model performance at

validation sites can be degraded by using too many

site groups as well as too many DF predictors. Our

validation results indicate that overfitting is an issue

for the entire structure of a predictive model, not just

for its DF component.

Sample size permitting, we recommend that pre-

dictive model developers set aside at least 20 refer-

ence samples or sites to provide an independent,

realistic assessment of overall model quality. For

many model development projects, reference site

samples will be too precious for use only as validation

data (Harrell, 2001). In these cases, cross-validation of

the entire model-building process might be a more

efficient, but still realistic, way to estimate overall

predictive model performance.
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