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Abstract

Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle
protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/
cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a
haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication
and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be
dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also
involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1
in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative
Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one
regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays
a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis
in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a
significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20
and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was
phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and
ookinetes. Changes in global protein phosphorylation patterns in the Dcdc20 mutant parasites were largely different from
those observed in the Dmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital
roles in male gametogenesis.
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Introduction

Progression of mitosis in the cell-cycle is dependent upon a

number of complex, sequential processes that are governed by a

series of essential cell cycle regulatory proteins. Anaphase and

mitotic exit is regulated by the conserved multi-subunit E3 ubiquitin

ligase Anaphase Promoting Complex/Cyclosome (APC/C), which

targets mitotic regulators such as securin and cyclin B for

destruction by the 26S proteosome [1]. Two of the major regulators

of APC/C activity are cell-division cycle protein 20 (CDC20) (also

known as Fizzy, p55CDC or Slp1 [2–4]) and its homologue, CDC20

homologue 1 (CDH1 – also known as Cdh1p/Hct1p, Fizzy-related,

Ste9, Srw1 or Ccs52 [5–8]). CDC20 and CDH1 are related

tryptophan-aspartic acid (WD)-40 repeat-containing adaptor pro-

teins, which are highly conserved throughout eukaryotic evolution.

They consist of approximately 40 amino acid-repeat motifs

that often contain a C-terminal Trp-Asp (WD) sequence, as well

as an N-terminal C-Box motif and C-terminal Ile-Arg (IR) residues,

along with a KEN-box, Mad2-interacting motif (MIM) and a CRY-

box [9].

CDC20 protein accumulates during S-phase, peaks in mitosis

and activates the phosphorylated APC/C complex (which is

phosphorylated by cyclin-dependent kinase 1 (CDK1) and other

mitotic kinases [10,11]) by physical association, which results in

the activation of the metaphase-anaphase transition [12] and

degradation of mitotic cyclins via ubiquitination [13]. Phosphor-

ylation of APC/CCDC20 and high levels of CDK prevent CDH1

interacting with APC/C during early mitosis [14], whereas a

reduction in CDK levels by the activity of APC/CCDC20 during

telophase/G1 results in CDH1 maintaining APC/C activity and
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cyclin degradation in proliferating cells [6] and exit from mitosis.

This shows that activity of CDC20 and CDH1 in the cell cycle is

temporally controlled and ensures that exit from mitosis does not

occur before sister chromatid separation has been initiated.

The activity of APC/CCDC20 is tightly regulated by a sur-

veillance mechanism known as the spindle assembly checkpoint

(SAC) [15]. The SAC is a pathway that prevents the unregulated

separation of sister chromatids [16] and consists of a number of

regulatory proteins including mitotic-arrest deficient (MAD) 1,

MAD2, MAD3, budding uninhibited by benzimidazoles (BUB) 1

and BUBR1. The SAC negatively regulates the activity of APC/

CCDC20 by preventing ubiquitination of securin and cyclin B and

subsequently prolongs prometaphase until all chromosomes have

been correctly oriented [15]. This process occurs at the

kinetochores, where MAD2 and BUBR1 interact with APC/

CCDC20 to form a mitotic checkpoint complex (MCC) [17], which

inhibits its activity. Once the chromatids are correctly oriented,

APC/CCDC20 becomes active as it is released from the MCC and

initiates anaphase, degrading securin and cyclin B and resulting in

reduced CDK activity. This reduction in kinase activity promotes

the formation of APC/CCDH1 and results in exit from mitosis via

degradation of APC/CCDC20, maintaining cyclin degradation in

G1 prior to a new round of DNA replication [18,19].

Regulation of the cell-cycle and DNA replication in the

unicellular apicocomplexan malaria parasite, Plasmodium, is known

to be highly complex and dependent on the activity of a number of

protein kinases [20]. Plasmodium is a haploid organism lacking sex

chromosomes but with a complex life-cycle involving both asexual

and sexual processes. Asexual multiplication occurs at three

particular stages of the parasites life-cycle: blood stage schizogony,

sporogony in the mosquito and pre-erythrocytic schizogony in

liver hepatocytes [21]. As with some, but not all apicomplexan

parasites multiplication involves repeated nuclear divisions before

daughter formation by a process termed schizogony. During these

stages genome duplication and segregation is accomplished using

an intra-nuclear spindle while retaining an intact nuclear

membrane without the formation of the typical morphological

features of mitosis [22,23]. In contrast, DNA replication during

Plasmodium sexual stages within male gametocytes occurs in the

mosquito vector and involves three rounds of genomic replication

resulting in eight microgamete nuclei and ultimately eight

microgametes [24–27].

Upon ingestion of a blood meal by the female Anopheles

mosquito, exposure of the male gametocyte to a slight drop in

temperature, a rise in intracellular Ca2+ concentration and the

mosquito-derived metabolic intermediate xanthurenic acid [28–

30] result in rapid DNA replication (within 12 min) and mitosis

giving rise to eight gametes, which egress out of the cell in a

process termed exflagellation. This process is known to be

dependent upon two protein kinases – calcium-dependent protein

kinase 4 (CDPK4) and mitogen-activated protein kinase 2 (MAP2)

[20,28,31–33]. Activation of CDPK4 results in genome replica-

tion, mitosis and axoneme assembly [28] and in a subsequent step;

MAP2 is activated and results in axoneme motility and cytokinesis

[32]. However, the cell division cycle proteins that interact with

these kinases are unknown. As described earlier, in human and

yeast cells CDC20 and CDH1 are known to play a major part in

cell cycle regulation [9] particularly during early mitosis, and

interact with regulatory kinases and phosphatases [3,7,34].

To examine the function of a single homologue of CDC20/

CDH1 (termed CDC20 for simplicity) in the complex life-cycle of

Plasmodium we used a rodent malaria model, P. berghei (Pb) in

laboratory mice, which is very amenable to analysis by reverse

genetics and where the entire life cycle, including within the

mosquito vector, can be analysed. The results presented here

suggest that CDC20 has an essential role in Plasmodium male

gamete formation, possibly through interacting with the kinase

regulator MAP2, but has no essential involvement in asexual

multiplication.

Results

Plasmodium has a single homologue for CDC20/CDH1
Sequence analyses of P. berghei identified a cdc20 gene

(PBANKA_051060) comprised of one exon. The protein contains

a classical KEN-box, RVL-cyclin binding motif, IR motif and

seven WD-40 repeat motifs as found in CDC20 and CDH1 of

other organisms (Figure 1A), but does not contain a C-box, D-box

or a Mad2-interacting motif. We were only able to identify a single

CDC20/CDH1 homologue coded in the genomes of Plasmodium

species, which has also been suggested for Trypanosomatidae [35].

To assess the evolutionary relationships between these CDC20

homologues we aligned (using ClustalW – Figure S1) the WD

domains and used the alignment to draw a phylogenetic tree using

the meiotic APC/C activator from yeast as an out group

(Figure 1B). In the resulting tree we see four clusters. Two

clusters, as expected, represent the CDC20 and CDH1 homo-

logues from a range of eukaryotic species. Another cluster contains

the CDC20/CDH1 homologues from Trypanosomatidae species.

The final cluster includes all the CDC20/CDH1 homologues from

Plasmodium species. These results suggest that Plasmodium species

contain only a single CDC20/CDH1 homologue and that the

Plasmodium APC/C has only one regulator.

CDC20-GFP shows nuclear expression through-out the
life-cycle, with highest expression in activated male
gametocytes

Little information is available regarding CDC20 expression and

localisation in the malaria parasite in both vertebrate and

mosquito hosts. Therefore, we generated a C-terminal green

fluorescent protein (GFP) fusion protein from endogenous cdc20

using a single crossover recombination strategy (Figure S2A–D).

Correct targeting was confirmed using integration PCR and

Southern blot (Figure S2B, C). Expression of CDC20-GFP in

Author Summary

Malaria parasites are single cell organisms that multiply via
asexual division at different stages in the life-cycle: in the
liver and red blood cells of the vertebrate host and gut of
the mosquito vector. The precursor sexual stages (male
and female gametocytes) form in red blood cells, then
following ingestion in a blood meal the male gametocytes
undergo three mitotic divisions resulting in eight male
gametes in the mosquito gut. In many organisms including
yeast and mice it has been shown that cell division and
mitosis are tightly regulated by a set of cell division cycle
proteins, namely CDC20 and CDH1. We studied the
function of the single homologue of CDC20/CDH1
expressed in the rodent malaria parasite, Plasmodium
berghei. We found that P. berghei CDC20 is not required for
asexual multiplication but is essential for male gamete
formation. Analysis of these mutant parasites revealed a
defect in male gametocyte division and differentiation
resulting in no male gamete formation with major defects
in cytokinesis. This phenotype is similar to that of a kinase
mutant (map2), suggesting that they play an independent
but essential role in progression of the sexual stage.

The Role of CDC20 in Plasmodium Male Gametogenesis
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transgenic parasites was confirmed by Western blotting using an

anti-GFP polyclonal antibody (Figure S2D). A protein band of

,92 kDa was present for all analysed CDC20-GFP samples,

which corresponds to the predicted mass of the CDC20-GFP

fusion protein (92.4 kDa). The line expressing the unfused GFP

[36] produced a band at 29 kDa and was used as a control (Figure

S2D). Expression of the CDC20-GFP fusion protein resulted in no

visible abnormalities. Low intensity CDC20-GFP expression was

detected during all stages of the life-cycle (data not shown) apart

from activated male gametocytes, which had the highest intensity

of GFP expression that co-localized with Hoechst nuclear staining

(Figure 2). We also generated a parasite line whereby CDC20-

GFP was expressed episomally (using the same plasmid utilised to

target the endogenous locus) under the control of the cdc20

promoter. This line showed high GFP fluorescence intensity at all

stages, which co-localised with Hoechst nuclear staining in

asexual, gametocyte and oocyst stages and an additional

cytoplasmic localisation in ookinetes (Figure S3).

CDC20 is critical to male gamete formation and
exflagellation

To discover the function of CDC20 in the Plasmodium life-cycle,

we used a double crossover homologous recombination strategy to

knockout the gene. This was achieved by replacing the

endogenous gene with a pyrimethamine resistant allele of the

dihydrofolate reductase-thymidine synthetase (dhfr/ts) gene from

Toxoplasma gondii (Figure S2E). Successful integration of the gene

was confirmed by a diagnostic PCR across the junction of the

expected integration site, as well as by Southern blot, pulsed-field

gel electrophoresis (PFGE) and quantitative reverse transcription

PCR (qRT-PCR) to indicate an absence of transcription (Figure

S2F–I).

Analysis of two cdc20 deletion mutant clones, N10 cl7 and N10

cl9 (henceforward called Dcdc20), showed no developmental

abnormalities during asexual proliferation or gametocyte forma-

tion, as assessed on blood smears (data not shown). However, in

vitro cultures analysed for differentiation into ookinete stages

[20,37] showed complete ablation of ookinete development

(Figure 3A, B). To ascertain whether the block in ookinete

formation was a defect along the male or female line, we

performed genetic crosses as previously described [37,38].

Crossing of Dcdc20 with a cdpk4 deletion mutant (a previously

characterised male mutant [28], henceforward called Dcdpk4)

showed no rescue of the phenotype. Conversely, crossing with a

nek4 deletion mutant (a previously characterised female mutant

[38], henceforward called Dnek4) resulted in 36% ookinete

formation (Figure 3C). These data prove that Dcdc20 parasites

are defective along the male line. As a result of this observation,

we analysed exflagellation of the activated male gametocytes [26],

which was completely blocked in Dcdc20 parasites. To substan-

tiate the in vitro findings, we fed mosquitoes on mice infected with

either wild-type or Dcdc20 parasites and analysed oocyst

development. Wild type parasites developed normally and oocysts

were detected in the mosquito gut, whereas no oocysts were

found in the guts of mosquitoes fed on Dcdc20 parasites and

analysed 14 or 21 days after feeding (Figure 3D). This result

confirms that CDC20 is vital to male gamete development and

that fertilization/zygote formation/ookinete development is

completely blocked in the Dcdc20 parasites, preventing oocyst

formation.

Expression of cdc20 is up-regulated in Dcdpk4 and
Dmap2 mutants

Exflagellation of the activated microgametocyte proceeds via a

number of sequential steps prior to the formation of male gametes

[24,25]. These steps are dependent upon two protein kinases;

calcium-dependent protein kinase 4 (CDPK4), which is involved

in cell-cycle progression to S phase and mitogen-activated kinase

2 (MAP2), which is essential for replication and mitosis to be

completed before cytokinesis commences [20,28,31–33]. Both of

these kinases have previously been shown to be essential for male

gamete development and the exflagellation process [28,32]. As

the cdc20 deletion mutant line shows a similar phenotype,

we decided to analyse mRNA expression of cdc20, map2

(PBANKA_093370) and cdpk4 (PBANKA_061520) in our Dcdc20

line as well as the previously characterised Dmap2 and Dcdpk4

mutant lines.

Transcription of these three genes in total asexual blood,

schizont and gametocyte stages of wild type parasites showed a

similar profile, with highest mRNA levels found in gametocytes

(Figure 3E). When compared to wild-type, expression of both map2

and cdpk4 was not significantly altered at any stage in the Dcdc20

mutant; however, striking differences were found in cdc20 mRNA

levels in both the Dcdpk4 and Dmap2 mutants. cdc20 was found to

be significantly down-regulated in Dcdpk4 asexual blood and

schizont stages (p = 0.037 and 0.009 respectively). In contrast,

expression in activated Dcdpk4 activated gametocytes was signif-

icantly up-regulated (p = 0.001), but was not altered in non-

activated blood stage gametocytes. The greatest change in cdc20

expression was observed in both non-activated and activated

gametocyte stages of the Dmap2 parasites, where expression was

significantly up-regulated (p = ,0.001 and 0.001 respectively).

Expression of map2 in the Dcdpk4 line was shown to be significantly

down-regulated in schizont and non-activated and activated

gametocyte stages (p = ,0.01 for all), whereas no significant

alteration in cdpk4 was observed at any stage of the Dmap2 parasites

analysed (Figure 3F).

Figure 1. Phylogenetic analysis of Plasmodium CDC20. A. Amino-acid sequence of a Plasmodium berghei putative CDC20. WD repeats are
shown in bold and underlined. Other motifs (highlighted) are the KEN box, RVL cyclin binding motif and IR motif. B. WD domains from various
eukaryotic Cdc20 and Cdh1 homologues were aligned and used to draw a phylogenetic tree. The S. cerevisiae meiotic APC/C regulator (Ama1) was
used as an out group. Four clusters are apparent. Two correspond to previously described Cdc20 and Cdh1 protein families. A third includes
homologues from Trypanosomatidae species. The fourth cluster includes all the identified CDC20/CDH1 homologues from Plasmodium species.
doi:10.1371/journal.ppat.1002554.g001

Figure 2. CDC20-GFP protein expression in activated male
gametocytes. High CDC20-GFP intensity was observed in activated
male gametocytes and co-localised with Hoechst nuclear staining in
both the microgametocyte body and exflagellating microgametes
(arrows). Bar = 5 mm.
doi:10.1371/journal.ppat.1002554.g002

The Role of CDC20 in Plasmodium Male Gametogenesis
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Figure 3. Phenotypic analysis of Dcdc20. A. Immunofluorescence images of Plasmodium cultures after 24 hr in vitro immunostained for the
female gamete/zygote/ookinete marker P28 (red) and counterstained with the nuclear marker Hoechst (blue). Development of elongated ookinetes
was completely ablated in Dcdc20 lines, which produced only round female gametes. Bar = 5 mm. B. Bar graph illustrating ookinete conversion in
wild-type and Dcdc20 parasites. The conversion rate is the percentage of P28-positive parasites that had successfully differentiated into elongated
‘banana-shaped’ ookinetes (error bar = arithmetic mean 6SD; n = 3). C. Ookinete conversion after crossing Dcdc20 parasites with a female-defective
nek4 mutant (Dnek4) and a male-defective cdpk4 mutant (Dcdpk4). Wild-type parasites were used as a control. Bar graph represents the percentage of
round P28-positive parasites that had converted into elongated ookinetes (arithmetic mean 6SD; n = 3). D. Bar graph showing average numbers of
oocysts per gut (error bar indicates 6SEM; n = 60 of wild-type or Dcdc20 infected mosquitoes from three independent experiments). Overall infection
prevalence was 80% for wild-type and 0% for Dcdc20. E. Wild-type mRNA expression of cdc20, cdpk4 and map2 relative to hsp70 and arginyl-tRNA
synthetase as endogenous controls (DDCt method). Error bars represent 6SEM, n = 3 from three independent experiments. The key to the shading of
bars is indicated in F. F. Relative expression of cdc20, cdpk4 and map2 in Dcdc20, Dcdpk4 and Dmap2 parasites compared to wild-type parasites (Pfaffl
method). Error bars represent 6SEM, n = 3 from three independent experiments. ASB = Asexual blood; Sch = Schizont; IG = Inactivated
gametocytes; AG = Activated gametocytes; RQ = relative quantification.
doi:10.1371/journal.ppat.1002554.g003
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CDC20 is not essential for genome replication in
activated microgametocytes, but regulates cytokinesis
and subsequent exflagellation

Due to the ablation of exflagellation in the Dcdc20 line and the

significant alteration in cdc20 expression in the Dmap2 line, we

analysed axoneme formation and DNA replication in both

mutants by direct immunofluorescence and fluorometric estima-

tion of DNA content respectively. Staining of a-tubulin in both

Dcdc20 and Dmap2 lines revealed normal formation of axonemes

and their characteristic circling of the nucleus by the axonemes in

concentric rings 8 min post activation (mpa) (Figure 4A). Howev-

er, differentiation and shortening of the spindle microtubules did

not occur in either mutant 15 mpa. Furthermore, nuclear DNA in

the enlarged nucleus of activated microgametocytes remained

uncondensed in both mutants at 15 mpa; whereas wild-type

microgametocytes had started to undergo exflagellation and

nuclear divison resulting in the release of normal microgametes

containing haploid nuclei with condensed DNA. These observa-

tions suggest that development of mutant microgametocytes after

activation is blocked at a very late stage, possibly after the third

round of DNA replication.

To test whether mutant microgametocyte development was

blocked after completing the three rounds of DNA replication, we

analysed DNA replication by determination of the DNA content

of activated microgametocytes by fluorescence microscopy and by

FACS after staining with the DNA-specific dyes 4,6-diamidino-2-

phenylindole (DAPI) and Hoechst 33258, respectively. The DNA

content of activated microgametocytes at 8 mpa, as determined by

fluorescence microscopy, was similar in wild-type and mutant

parasites, with nuclei of mutant parasites also increasing their

DNA content to the octoploid level at 8 mpa (Figure 4A, B; upper

and middle panels). At 15 mpa the activated Dcdc20 and Dmap2

microgametocytes still contained a single enlarged nucleus with

octoploid DNA content, but in contrast, in wild type microgame-

tocytes nuclear division and gamete formation resulted in the

formation of gametes with haploid DNA content (Figure 4A, B;

lower panels). Genome replication in activated microgametocytes

was confirmed using FACS analysis of purified gametocytes that

were stained with Hoechst 33258. At 8 mpa both Dcdc20 and

Dmap2 microgametocytes showed strongly increased DNA content

similar to that of wild-type parasites (Figure 4C, D). Purified

gametocytes of the previously characterised Dcdpk4 parasite line

[28] were used as a control and did not undergo DNA replication.

Together these results suggest that CDC20 acts downstream of

CDPK4 and has an essential role in axoneme motility, DNA

condensation and cytokinesis, similar to MAP2 [32], but does not

play a role in activation of genome replication.

cdc20 mutants show defects in nuclear pole and
kinetochore progression

Due to the similar morphology and dynamics of DNA

replication of cdc20 and map2 mutants as analysed by direct

immunofluorescence and DNA content analysis, respectively, we

next examined whether deletion of the endogenous cdc20 locus

resulted in structural defects that were similar to those associated

with the map2 mutant line by electron microscopy. Ultrastructure

analyses were performed on wild-type, Dcdc20 and Dmap2

gametocytes at 15 and 30 mins after activation. The appearance

of the cytoplasm was similar for all three lines with the formation

of a number of axonemes (Figure 5A, B, C). The microgametocyte

nucleus also appeared similar in all three strains with homoge-

neous electron lucent nucleoplasm and the formation of nuclear

poles with radiating microtubules and attached kinetochores

(Figure 5B, C, E, and F). However, only in the wild-type was it

possible to observe nuclear poles with condensed chromatin

consistent with later stages in microgamete nucleus formation

(Figure 5A, D), whereas the mutants showed defects in

chromosome condensation.

To identify any quantitative differences, 100 parasites of each

line and time point were examined with nuclear appearance

divided into four categories. When the number of microgameto-

cytes displaying the various nuclear appearances was counted,

while the mutants appeared similar, significant differences were

observed between the mutants and the wild type (Table 1). It was

observed that wild-type parasites exhibited all stages of microga-

mete nuclear development with reduced numbers of the early

stages with tubules and kinetochores (21% compared to 10%) and

increased numbers of the later stages with condensed chromatin

(42% compared to 29%) at 30 mins compared to 15 mins post-

activation (Table 1). In both mutants approximately half the nuclei

exhibited early stage microtubules and attached kinetochores (49–

60%) and parasites with dense nuclear pole or chromatin

condensation (0–3%) were rarely observed irrespective of the time

point (Table 1). While no structural abnormality was observed, the

quantitative differences are consistent with the two mutants being

‘‘frozen’’ at the nuclear spindle kinetochore formation stage.

Furthermore, chromosome condensation was not observed in

either cdc20 or map2 mutants as compared to wild type parasites.

Phosphorylation of CDC20 during gametogenesis
Reversible phosphorylation is an important regulatory mecha-

nism in mitotic progression. In human and yeast cells, phosphor-

ylation of CDC20 is known to be an essential step during anaphase

and early mitosis [11,39]. As exflagellation of Dcdc20 parasites is

completely ablated, but DNA replication and axoneme motility in

activated microgametocytes was indistinguishable from wild-type

parasites, we hypothesised that phosphorylation of CDC20 could

be a vital regulator of Plasmodium gametogenesis. Analysis of

CDC20 phosphorylation was performed before, during and after

completion of microgametogenesis (i.e. in schizont, activated

gametocyte and ookinete stages respectively) in CDC20-GFP

parasites metabolically labelled with 32P-orthophosphate [40] and

immunoprecipitated by GFP-trap. 32P-orthophosphate labelling in

whole cell lysates of schizonts, activated gametocytes and ookinetes

showed similar profiles and confirmed efficient uptake of 32P-

orthophosphate in all stages. Autoradiography showed that

CDC20 is phosphorylated at all three stages (Figure 6A) but

phosphorylation levels were higher in activated gametocytes and

ookinetes compared to schizonts (1.70 and 2.48 times higher

respectively) (Figure 6A, B). The GFP-tagged CDC20 protein

appeared as a doublet by Western Blot in schizonts (Figure 6B),

whereas only a single band was detected on the corresponding

autoradiograph (Figure 6A), suggesting that the upper band on the

Western Blot may represent a phosphorylated form of CDC20-

GFP and the lower band a non-phosphorylated form of the

protein. Interestingly, in activated gametocytes and ookinetes, only

the upper GFP-immunoreactive band is present, which may reflect

a higher degree of phosphorylation of CDC20-GFP in sexual

stages compared to schizonts.

Deletion of cdc20 and map2 affects specific protein
phosphorylation in activated gametocytes

In order to examine whether or not CDC20 has a role in

pathways of protein phosphorylation similar to those of the

kinase MAP2, we compared the global phosphorylation profile

of wild type activated gametocytes with that of Dcdc20 and

Dmap2 lines using metabolic labelling with 32P-orthophosphate

The Role of CDC20 in Plasmodium Male Gametogenesis
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[40]. This approach employs metabolic labelling of parasites

followed by fractionation by ion exchange chromatography.

The experiment was performed in triplicate and in each

experiment 20 fractions were collected, resolved by SDS-PAGE

and an autoradiograph obtained for seven of them to reveal the

phosphorylation profile. Shown in Figure 7 are three fractions

from the ion exchange fractionation where differences in the

phosphorylation profile between the wild type and mutant

parasite strains were observed. Importantly, the Coomassie

blue stain of the SDS-PAGE gels demonstrated that the overall

protein expression profiles of the wild type and mutant parasite

lines were very similar (Figure 7). Despite this similarity, there

were clear differences in the phosphorylation profile between

the parasite lines. The phosphorylated band labelled A in

Figure 7 was significantly decreased in the Dmap2 mutant,

whereas the Dcdc20 mutant showed increased phosphorylation.

Bands C, D, F, G, H and J showed altered phosphorylation

status only in the Dmap2 mutant, whereas bands A, E and I

were changed only in the Dcdc20 mutant. Only one band (band

B) showed a similar change in both the Dmap2 and Dcdc20

mutants. This analysis indicated that although the phosphor-

ylation profile of the parasite was affected by the deletion of

map2 and cdc20, the proteins that showed a change in

phosphorylation status in the two mutant lines were (with the

exception of one protein) different. It seems unlikely there-

fore that MAP2 and CDC20 regulate the same network of

Figure 4. Analysis of genome replication in activated male gametocytes by direct (immuno) fluorescence microscopy and FACS
analysis. A. Direct immunolabelling of a-tubulin (red) and DNA (Hoechst – blue) in activated gametocytes fixed at different time points post
activation (pa). Representative cells from one of three experiments are shown. The 8 min time point shows characteristic axonemic circling of the
nucleus (arrow) whereby each of the 8 axonemes lie completely within the cytoplasm, coiled around the nucleus. The 15 min time point illustrates an
exflagellating wild-type microgametocyte with condensed DNA entering the flagella (indicated by *). Dcdc20 and Dmap2 parasites are arrested at the
exflagellation stage. Bar = 5 mm. mpa = minutes post-activation. B. Fluorometric anaylsis of DNA content (n) after DAPI nuclear staining.
Microgametocytes were at 0 mpa (non-activated), 8 mpa or 15 mpa. The mean DNA content (and standard deviation) of 10 nuclei per sample are
shown. Values are expressed relative to the average fluorescence intensity of 10 haploid ring-stage parasites from the same slide [69]. All values were
corrected for background fluorescence. C. Determination of DNA content of purified, activated male gametocytes at 8 mpa by FACS analyses of
Hoechst-stained parasites [63]. Dot plots show the mean percentage of gametocytes in gate G1 (inactivated and activated female gametocytes) and
G2 (activated gametocytes with an 8n DNA content. Wild-type, Dcdc20 and Dmap2 parasites show a high percentage of activated male gametocytes
with an 8n DNA content (see D). The previously characterised Dcdpk4 parasites [28] were used as a control as they do not undergo DNA replication
upon activation. FI = Fluorescence Intensity. D. Mean Hoechst fluorescence intensity (DNA content) (6SD) of gametocytes in gates G1 and G2 in
three independent experiments. The DNA content of Dcdc20 and Dmap2 male gametocytes (gate G2) at 8 mpa is comparable to that of wild-type
gametocytes whereas activated, DNA replicating males are absent in Dcdpk4 parasites. FI = Fluorescence Intensity; ND = not determined.
doi:10.1371/journal.ppat.1002554.g004

Figure 5. Ultrastructural analysis of Dcdc20 and Dmap2 parasite lines. Electron micrographs of wild-type (A, D), Dcdc20 (B, E) and Dmap2 (C,
F) gametocytes 15 min after activation. A. Late stage wild-type microgametocyte exhibiting areas of electron dense chromatin (arrows) budding from
the nucleus (N). A = axonemes. B and C. Mutant microgametocytes at an early stage in microgametocyte development showing multiple nuclear
poles (arrows) with radiating microtubules. N = nucleus; A = axoneme. D. Detail from A. showing the nuclear pole (NP) and areas of electron dense
chromatin (Ch). A = axoneme. E and F. detail from the two mutants (B, C) showing the nuclear pole (NP) with radiating microtubules and attached
kinetochores (K) but an absence of condensed chromatin. A = axoneme; B = basal body.
doi:10.1371/journal.ppat.1002554.g005
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phospho-proteins. We are currently investigating this result

further using mass spectrometry-based phosphoproteomic

approaches.

Discussion

Mechanisms to control cell division and the cell cycle are

essential parts of the cell regulation machinery. These processes

are not well understood in unicellular protozoa such as the malaria

parasite Plasmodium. Plasmodium undergoes two distinct mitotic

processes; one involving repeated DNA duplication, in which

karyokinesis occurs after each replication and is associated with

asexual proliferation and the other involving endoreduplication,

with three rounds of replication prior to the simultaneous

formation of eight microgamete nuclei during microgametogen-

esis. Here, we describe a CDC20/CDH1 orthologue in Plasmodium

as an important regulator of mitosis during male gametogenesis,

but interestingly it has no effect on the mitotic process undergone

during schizogony.

Our bioinformatic studies suggest that in Plasmodium there is

only one gene representing CDC20 and its homologue CDH1,

and that the protein is a true structural homologue of CDC20/

CDH1, even though we could not complement CDC20 function

in yeast (data not shown). Although we cannot exclude the

possibility that we failed to detect a second highly spliced

Plasmodium cdc20/cdh1 homologue, the phylogenetic clustering of

all the Plasmodium CDC20 homologues gives confidence that there

is only a single CDC20 orthologue in Plasmodium species. This

suggests that Plasmodium diverged from other eukaryotes prior to

the duplication event that presumably gave rise to CDC20 and

CDH1 genes. It is interesting to note that the Plasmodium cluster is

distinct from the Trypanosomatidae cluster where there is also a

single corresponding gene in each genome. Furthermore, this

orthologue has a classical KEN box-like domain at the N-terminus

and an RVL domain and IR motif at the C-terminus, all of which

are required for cyclin degradation and binding to the APC/C

core [7]. The presence of these domains suggests that CDC20 in

Plasmodium could influence the cell cycle in a similar manner to

other systems, such as yeast, mammals and plants [9,41]. The lack

of a D-box and presence of a KEN-box are consistent with the

structure of CDC20 in humans, with the presence of a KEN-box

suggesting that Plasmodium CDC20 is a prime target for

ubiquitination, as suggested in a recent study [42]. Alternatively,

as Plasmodium CDC20 is the only orthologue of both CDC20 and

CDH1 present in other systems, it is plausible that ubiquitination

of CDC20 in Plasmodium is self-regulating, as CDC20 is known to

be degraded by APC/CCDH1 via its KEN-box [43] and could

therefore act as a ‘‘negative feedback’’ mechanism as seen in

human cells [44,45]. The seven conserved WD repeats in the

Plasmodium CDC20 protein also suggests that it does bind an as yet

unknown multi-protein complex. Plasmodium CDC20 shows some

differences from the ccs52 homologue reported in plants, such as

Medicago sativa [8], since it lacks a MAD-binding box and also the

D-box that appears to be specific for CDH1 and is not conserved

in CDC20 and FZY proteins. It has been reported recently that in

Arabidopsis thaliana there are five isoforms of CDC20, and two of

them are functional [41]. We did not observe any such expansion

of genes for this protein in Plasmodium.

Figure 6. Phosphorylation of CDC20 in schizonts, activated
gametocytes and ookinetes. Schizonts (Sch), activated gametocytes
(AG) and ookinetes (Ook) purified using the corresponding Nycodenz
protocols were metabolically labelled with 32P-orthophosphate for
30 min, lysed, and GFP-tagged CDC20 was immunoprecipitated using
GFP-TRAP beads. A. Phosphorylation of CDC20-GFP in schizonts,
activated gametocytes and ookinetes as assessed by autoradiography.
B. Protein expression levels by Western Blot using a polyclonal anti-GFP
antibody.
doi:10.1371/journal.ppat.1002554.g006

Table 1. Nuclear features of wild-type and mutant parasites
based on stage of microgametocyte development.

Strain Time (min) No features1 Early2 Mid3 Late4

Wild type 15 35 21 15 29

Dcdc20 15 46 51 2 1

Dmap2 15 40 60 0 0

Wild type 30 33 10 15 42

Dcdc20 30 40 58 2 0

Dmap2 30 48 49 3 0

Quantitation of the nuclear features observed by electron microscopy was
carried out at the 15 and 30 minute time points. This was based on the
examination of 100 microgametocytes identified by axoneme formation at each
time point. The features identified were nuclei with.
1no specific features in the plain of section,
2early stage exhibiting nuclear poles with spindle microtubules and
kinetochores,

3mid stage with nuclear pole but no attached kinetochores, and.
4late stage with the nucleus exhibiting areas of condensed chromatin.
Microgametogenesis is dynamic process and nuclear changes will relate to the
length of time spent in each phase allowing the identification of any
differences between parasite lines.

doi:10.1371/journal.ppat.1002554.t001
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Our CDC20-GFP expression studies showed that CDC20 is

highly expressed in activated male gametocytes (with gametocytes

showing highest expression at the mRNA level, in agreement with

previous transcriptomic studies [46]) but it is also present

throughout the life-cycle and located mainly in the nuclear

compartment, with some cytoplasmic localisation, consistent with

expression in other systems [47,48]. However, although previous

studies have shown cdc20 transcripts and protein to be highly

expressed in sporozoites of P. falciparum [46,49], we did not observe

high protein expression levels of CDC20-GFP in sporozoites.

Functional studies using a gene deletion strategy showed that

CDC20 controls male gamete development and deletion mutants

are impaired during transmission of the parasite to the mosquito

vector. Further in-depth analysis of these mutants using a

cross fertilisation approach showed that this defect is limited to

male gamete differentiation (exflagellation) and formation since

Dcdc20 macrogametocytes are fully capable of cross fertilization

with microgametes from donor strains. Hence, CDC20 has an

essential function for the transition of male gametocytes to

gametes. Gametogenesis in Plasmodium involves three rounds of

mitotic division in male gametocytes resulting in eight gametes

[24–26,50]. We have previously shown that CDPK4 is involved in

cell cycle progression to S phase and MAP2 may be essential for

replication and mitosis to be completed before cytokinesis

commences [28,32,33] (although it is important to note that

MAP2 is essential for asexual development in P. falciparum [51], so

there may be species-specific differences in the roles of different

kinases). As cdc20 mRNA levels are up regulated in both Dcdpk4

and Dmap2 mutants, this suggests that CDC20 may be interlinked

with these kinases and orchestrates the process of male

gametogenesis and is perhaps up-regulated to compensate for

the loss of these two kinases, but this suggestion requires further

investigation. The cdc20 deletion mutants formed axonemes and

mitotic spindles but failed to undergo karyokinesis or cytokinesis

and also did not form motile, flagellar gametes, a phenotype

similar to what we have observed with map2 deletion mutants. The

requirement for CDC20 during karyokinesis is consistent with the

known function of CDC20 and CDH1 in other systems [7]. As

described earlier, CDC20 is active during early mitosis in other

cells and its up-regulation in gametocytes suggests that it has an

essential role in the multiple rounds of DNA replication and the

chromosome separation specifically associated with this process.

Figure 7. Global phosphorylation in Dcdc20 and Dmap2 lines. Gametocytes from wild type, Dmap2 and Dcdc20 parasites were purified on 48%
Nycodenz and activated for 30 mins in ookinete medium before addition of 32P-orthophosphate for 30 mins. After washing, labelled activated
gametocytes were lysed with NP40 and fractionated using anion exchange chromatography on an AKTA system. Individual fractions were then
further resolved by SDS-PAGE and labelled bands detected by autoradiography. The Coomassie blue stained gel shows that protein loading was
similar between lanes. Several differences in the 32P signal (indicated by arrows) are observed between the three different parasites. Bands C, D, F, G H
and J indicate altered phosphorylation status only in the Dmap2 mutant. Bands A, E and I indicate changes only in the Dcdc20 mutant. Only one band
(band B) showed a similar change in both the Dmap2 mutant and Dcdc20 mutant.
doi:10.1371/journal.ppat.1002554.g007
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However, mutant cdc20 parasites do not arrest during asexual

proliferation and this suggests that Plasmodium CDC20 is

specifically required for microgametogenesis.

Functional studies in human systems have shown that a

deficiency of CDH1 results in delayed mitotic exit as well as an

accumulation of mitotic errors and difficulty in completion of

cytokinesis [52,53], similar to what is observed in our cdc20 and

map2 mutants. Therefore we suggest that CDC20 in Plasmodium

fulfils the function of both CDC20 and CDH1. Moreover, loss of

cdc20 results in arrest during metaphase to anaphase transition

[12,54,55], with sister chromatids failing to form. How the single

CDC20 protein may fulfil the roles of both CDC20 and CDH1

requires further investigation. Our ultrastructure studies for both

Dcdc20 and Dmap2 lines, reported for the first time to our knowledge;

show that these mutants have a similar arrest in cytokinesis and

karyokinesis detected by EM, with defects in nuclear spindle/

kinetochore movement and chromatin condensation, confirming

our initial light microscopy observation of Dmap2. Unlike the Dmap2

line, we never observed any exflagellation in the Dcdc20 line. As

suggested before [56], classical spindle checkpoints are not present

in Plasmodium since blockage of microtubule organisation does not

appear to block DNA synthesis. Therefore, MAP2 and CDC20 may

be involved in a critical cell cycle checkpoint during microgame-

togenesis that controls DNA replication and mitosis, prior to

karyokinesis and cytokinesis and is summarised in Figure 8.

DNA replication in the Dcdc20 line was similar to that in the

Dmap2 line, with both mutants undergoing octoploidy 8 mpa, but

not undergoing karyokinesis. As a result, we analysed whether

phosphorylation of CDC20 could be involved in mitotic

progression during microgametogenesis. In other systems, phos-

phorylation of CDC20 can be achieved by BUB1, CDK1, MAPK

[57,58] and also NEK2 [59], another protein kinase required for

zygote development in Plasmodium [60] and this modification is an

essential step for CDC20 inhibition by the SAC [61,62]. Here, we

have shown that CDC20 is more phosphorylated in activated

gametocytes and ookinetes (i.e. sexual stages) compared to schizont

(asexual stages), which suggests that phosphorylation of CDC20

may be a possible mechanism involved in gametogenesis.

Interestingly, the global phosphorylation profile of Dcdc20

parasites suggests that CDC20 regulates the phosphorylation of

specific proteins within the gametocytes. The proteins that are

regulated by CDC20 are; however, largely different from those

that appear to be regulated by MAP2. This would suggest that at

the level of phosphorylation CDC20 and MAP2 regulate different

pathways. It would be interesting in future studies to dissect out the

proteins regulated by MAP2 and CDC20 and in this way build a

network of phospho-proteins that regulate male gametogenesis.

In conclusion, this study identified significant differences in the

control of mitosis during asexual development compared to

microgametogenesis in the malaria parasite. We have also shown

that CDC20 and MAP2 may play independent but essential roles

in the mitotic division associated with microgametogenesis but are

not essential for mitosis during asexual stages in the malaria

parasite.

Materials and Methods

Ethics statement
All animal work has passed an ethical review process and was

approved by the United Kingdom Home Office. Work was carried

out in accordance with the United Kingdom ‘Animals (Scientific

Procedures) Act 1986’ and in compliance with ‘European

Directive 86/609/EEC’ for the protection of animals used for

experimental purposes. The permit number for the project licence

is 40/3344.

Animals
Either Tuck’s Original (TO) (Harlan) or CD1 (CRUK) outbred

mice were used for all experiments.

Generation of transgenic parasites
The targeting vector for cdc20 was constructed using the pBS-

DHFR cassette, in which polylinker sites flank a Toxoplasma gondii

dhfr/ts expression cassette conveying resistance to pyrimethamine.

PCR primers N10-1 (59-CCCCGGGCCCGAGCTGTCTACT

GCTCTGGTAAAGCC-39) and N10-2 (59-GGGGAAGCTT-

CATTATTCTGGATCATAGCTCTC-39) were used to generate

a 452 base pair (bp) fragment 59 upstream sequence of Pbcdc20

from genomic DNA, which was inserted into ApaI and HindIII

restriction sites upstream of the dhfr/ts cassette of pBS-DHFR. A

579 bp fragment generated with primers N10-3 (59-CCCCGAA-

TTCGGAACTTCTCTTGTTTCTGGATCTCC-39) and N10-4

(59-GGGGTCTAGAGCATGCTAATTAGCTTCACATCCG-39)

from the 39 flanking region of Pbcdc20 was then inserted

downstream of the dhfr/ts cassette using EcoRI and XbaI restriction

sites. The linear targeting sequence was released using ApaI/XbaI.

For GFP-tagging by single homologous recombination and

generation of the plasmid for episomal expression, a 2435 bp

region of Pbcdc20 starting 812 bp upstream of the start codon and

omitting the stop codon was amplified using primers T36-1 (59-

CCCCGGTACCCTTATTTATGAAAACGATTATAAGG-39)

and T36-2 (59-CCCCGGGCCCCCTGATTATTTCATAATA-

ATTTTCAAAGGG-39), producing an amplicon 2435 bp in

length. This was then inserted upstream of the gfp sequence in

the p277 vector using KpnI and ApaI restriction sites. The p277

vector contains the human dhfr cassette, also conveying resistance

to pyrimethamine. Before transfection, the sequence was linearised

using HindIII and P. berghei ANKA line 2.34 was then transfected

by electroporation [36]. Briefly, electroporated parasites were

mixed immediately with 200 ml of reticulocyte-rich blood from a

phenylhydrazine (Sigma) treated, naı̈ve mouse and incubated at

37uC for 30 minutes and then injected intraperitoneally. From day

1 post infection pyrimethamine (7 mg/ml) (Sigma) was supplied in

the drinking water for four days. Mice were monitored for 15 days

and drug selection repeated after passage to a second mouse, with

resistant parasites used for cloning by limiting dilution and

genotyping.

Genotypic analysis of mutants
Chromosomes of wild type and gene knockout parasites were

separated by pulsed field gel electrophoresis (PFGE) on a CHEF

Figure 8. Summary of phenotypes in mutants of cdpk4, map2
and cdc20. Cdpk4 mutants have been shown to arrest DNA synthesis
after activation, whereas cdc20 mutants show a similar phenotype to
map2 mutants.
doi:10.1371/journal.ppat.1002554.g008
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DR III (Bio-Rad) using a linear ramp of 60–500 s for 72 hr at

4 V/cm. Gels were blotted and hybridized with a probe

recognizing both the resistance cassette in the targeting vector

and, more weakly, the 39-untranslated region (UTR) of the P.

berghei dhfr/ts locus on chromosome 7. For the gene knockout

parasites, two diagnostic PCR reactions were used as illustrated

in Figure S2. Primer 1 (INT N10, 59-GTGTGCAATTTGG-

GAATTTAGCTAG-39) and primer 2 (ol248, 59-GATGTGT-

TATGTGATTAATTCATACAC-39) were used to determine

correct integration of the selectable marker at the targeted locus.

Primers 3 (N10 KO1, 59- GATAATAATTGGAATAGTCATT-

39) and 4 (N10 KO2, 59- TTACATGTATAACTATTCCA-39)

were used to verify deletion of the target gene. Having confirmed

integration, genomic DNA from wild type and mutant parasites

was digested with HindIII and the fragments were separated on a

0.8% agarose gel, blotted onto a nylon membrane (GE

Healthcare), and probed with a PCR fragment homologous to

the P. berghei genomic DNA just outside of the targeted region.

For the C-fusion GFP tagging parasites, one diagnostic PCR

reaction was also used as illustrated in Figure S2. Primer 1 (INT

T36, 59- CATTCCAAACTAGTATTATAAAATTTGTTG -39)

and primer 2 (ol492, 59- ACGCTGAACTTGTGGCCG-39) were

used to determine correct integration of the gfp sequence at the

targeted locus. Having confirmed correct integration, genomic

DNA from wild type and transgenic parasites was digested with

EcoRI and the fragments were separated on a 0.8% agarose gel,

blotted onto a nylon membrane, and probed with a PCR fragment

homologous to the P. berghei genomic cdc20 sequence using the

Amersham ECL Direct Nucleic Acid Labelling and Detection kit

(GE Healthcare). Parasites were also visualized on a Zeiss

AxioImager M2 (Carl Zeiss, Inc) microscope fitted with an

AxioCam ICc1 digital camera (Carl Zeiss, Inc) and analysed by

Western blot to confirm GFP expression as described.

Western blotting
Western blot analysis was performed on cell lysates prepared by

re-suspending parasite pellets in a 1:1 ratio of PBS containing

Protease inhibitor (Roche) and Laemmli sample buffer, boiling

and separating on a 12% SDS-polyacrylamide gel. Samples were

subsequently transferred to nitrocellulose membranes (Amersham

Biosciences) and immunoblotting performed using the Western

Breeze Chemiluminescent Anti-Rabbit kit (Invitrogen) and anti-

GFP polyclonal antibody (Invitrogen), according to the manufac-

turer’s instructions.

Alignment and phylogenetic analysis
The protein sequences of the highly conserved WD domain

from CDC20 and CDH1 homologues from a range of eukaryotes

were downloaded from NCBI. ClustalW was used to align the

sequences and construct a phylogenetic tree.

Phenotypic analysis
Phenotypic screening of cdc20 mutants was performed as

previously described [20,37]. Briefly, asexual proliferation and

gametocytogenesis were analysed using blood smears. Gamete

activation, zygote formation and ookinete conversion rates were

monitored by in vitro cultures using a marker for the surface

antigen P28 as previously described [37,38]. Hoechst 33342 was

used to stain parasite nuclei. Stained cells were analysed on a Zeiss

AxioImager M2 microscope (Carl Zeiss, Inc) fitted with an

AxioCam ICc1 digital camera (Carl Zeiss, Inc). For mosquito

transmission triplicate sets of 50–100 Anopheles stephensi mosquitoes

were allowed to feed on anaesthetized infected mice on days 4 to 5

following blood infection for 20 min at 20uC. Guts were analysed

14 and 21 days post infection for production of oocysts and

sporulating oocysts respectively.

Ookinete conversion assay
Parasite-infected blood was re-suspended in ookinete medium as

previously described [32,60]. After 24 hours, samples were re-

suspended in ookinete medium containing Hoechst DNA dye and

anti-P28 Cy3-conjugated 13.1 antibody [32,37] and examined

with the Zeiss AxioImager M2 microscope fitted with an AxioCam

ICc1 digital camera (Carl Zeiss, Inc). The percentage of ookinetes

to all 13.1-positive cells (unfertilised macrogametes (round cells)

and ookinetes) was then calculated.

Immunocytochemistry and analysis of DNA content
Gametocytes in parasite-infected blood (as described above)

were activated in ookinete medium, resuspended in 4% parafor-

maldehyde (PFA) (Sigma) diluted in microtubule stabilizing buffer

(MTSB) [32] and added to poly-L-lysine coated slides. Immuno-

cytochemistry was performed on the fixed parasite material using

primary mouse monoclonal anti-alpha tubulin antibody (Sigma,

used at 1 in 500). Secondary antibody was Alexa 547 conjugated

anti-mouse IgG (Molecular probes, used at 1 in 1000). The slides

were then mounted in Vectashield with DAPI (Vector Labs).

Parasites were visualized on a Zeiss AxioImager M2 microscope

(Carl Zeiss, Inc) fitted with an AxioCam ICc1 digital camera (Carl

Zeiss, Inc).

To measure nuclear DNA content of activated microgameto-

cytes by direct immunofluorescence, images of parasites fixed and

stained as above were analyzed using the ImageJ software (version

1.44) (National Institute of Health) as previously described [32].

To confirm nuclear DNA content of activated microgameto-

cytes by FACS, purified gametocytes were transferred to standard

ookinete culture medium for activation of gamete formation. At

8 mins after activation cells were pelleted by centrifugation (5 sec;

10,000 rpm), fixed in 0.25% glutaraldehyde/PBS solution and

stained with 2 mM Hoechst-33258. The Hoechst-fluorescence

intensity (DNA content) of the gametocytes was analyzed by FACS

using a LSR-II flow cytometer (Becton Dickinston). Cells were

analyzed at room temperature with the following filters (param-

eters/thresholds): UB 440/40 (Hoechst) (400/5000); FSC (250/

2000); SSC (200/5000). The cells for analysis were selected on size

by gating on FSC and SSC. A total of 10,000–500,000 cells were

analyzed per sample and all measurements were performed on

triplicate samples. To determine the Hoechst-fluorescence inten-

sity (DNA content) from the populations of activated female and

male gametocytes, gates were set as in [63]. Data processing and

analysis was performed using the program FlowJo (http://www.

flowjo.com).

Electron microscopy
Samples of wild type, cdc20 mutant and map2 mutant microga-

metocytes cultured as described above were fixed in 4%

glutaraldehyde in 0.1 M phosphate buffer and processed for routine

electron microscopy as described previously [64]. Briefly, samples

were post fixed in osmium tetroxide, treated en bloc with uranyl

acetate, dehydrated and embedded in Spurr’s epoxy resin. Thin

sections were stained with uranyl acetate and lead citrate prior to

examination in a JEOL12EX electron microscope (Jeol AB).

Quantitation of the nuclear features observed by electron

microscopy was carried out at 15 and 30 minutes. This was based

on the examination of 100 microgametocytes identified by

axoneme formation at each time point. The features identified

were 1nuclei with no specific features in the plan of section, 2early

stage exhibiting nuclear poles with spindle microtubules and
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kinetochores, 3mid stage with nuclear pole but no attached

kinetochores, and 4late stages with the nucleus exhibiting areas of

condensed chromatin.

Purification of gametocytes and ookinetes
Purification of gametocytes was achieved using a modified

protocol from [65]. Briefly, mice were treated by intra-peritoneal

injection of 0.2 ml of phenylhydrazine (6 mg/ml) (Sigma) in PBS

to encourage reticulocyte formation four days prior to infection

with parasites. Day four post infection (p.i.) mice were treated with

sulfadiazine (Sigma) at 20 mg/L in their drinking water for two

days to eliminate asexual blood stage parasites. On day six p.i.

mice were bled by cardiac puncture into heparin and gametocytes

separated from uninfected erythrocytes on a NycoDenz gradient

made up from 48% NycoDenz (27.6% w/v NycoDenz in 5 mM

Tris-HCl, pH 7.20, 3 mM KCl, 0.3 mM EDTA) and coelenter-

azine loading buffer (CLB), containing PBS, 20 mM HEPES,

20 mM Glucose, 4 mM sodium bicarbonate, 1 mM EGTA, 0.1%

w/v bovine serum albumin, pH 7.25. Gametocytes were harvested

from the interface and washed twice in RPMI 1640 ready for

activation of gamete formation. Blood from day 5 pi mice were

cultured for 24 hrs at 20uC for ookinetes as described above.

Ookinetes were purified on a 63% NycoDenz gradient and

harvested from the interface, washed and labelled.

Quantitative RT-PCR
Parasites were purified as described and frozen in Trizol (Sigma)

prior to RNA extraction. RNA was isolated according to

manufacturer’s instructions. Isolated RNA was treated with DNase

I (Promega) and used in reverse transcription reactions (Super-

Script III Reverse Transcription kit, Invitrogen) from 1 mg of total

RNA.

Gene expression was quantified by SYBR green PCR using Fast

mastermix on an ABI 7500 QPCR System (Applied Biosystems).

Primers were designed using the PerlPrimer software program [66]

to be 18–22 bps in length, with 30–60% GC content, to amplify a

region 50–150 bp long and when possible, to bind within 600 bp

of the 39 end of the genes of interest. Primer efficiencies were all

between 90–110%, with qRT-PCR resulting in no detectable

primer dimers, as determined by dissociation curves. cDNA was

diluted 1:20 with DEPC-treated water before use. Reactions

consisted of 3.6 ml of diluted cDNA, 5 ml SYBR green fast

mastermix (Applied Biosystems), 0.2 ml each of forward and

reverse primer and 1 ml of DEPC water. Cycling conditions were:

95uC for 20 sec followed by 40 cycles of 95uC, 3 secs, and 60uC,

30 secs, followed by dissociation curve. Three biological replicates,

with three technical replicates from each biological replicate were

performed for each assayed gene. Endogenous gene expression

was determined using the comparative cycle threshold method

[67], whereas relative quantification in mutant lines was

determined using the Pfaffl method [68]. Both methods used

hsp70 (PBANKA_081890) (forward, 59-GTATTATTAATGAx-

ACCCACCGCT-39; reverse, 59-GAAACATCAAATGTACC-

AxCCTCC-39) and arginyl-tRNA synthetase (PBANKA_143420)

(forward, 59-TTGATTCATGTTGGATTTGGCT-39; reverse,

59-ATCCTTCTTTGCCCTTTCAG-39) as reference genes.

cdc20 primers were: forward, 59-ATGTTTGGTAACTATT-

TGGCGG-39; reverse, 59-ATCCCATATTTCTACTGCACCA-

39. map2 (PBANKA_093370): forward, 59-AATGAAGAACCA-

GGGCCA-39; reverse, 59-ACCATCTAGTAACTACATGGCT-

39. cdpk4 (PBANKA_061520): forward, 59-AAATGTTGATGTA-

CACAAGTGC-39; reverse, 59-ATGTTCTAATGCATCTCT-

CTTGCT-39.

CDC20 phosphorylation in vivo
Blood aliquots from infected mice were incubated overnight,

from which schizonts and ookinetes were purified by using

Nycodenz protocols as described previously [36,65]. Gametocytes

were purified and activated for 25 min at 20uC in ookinete

medium as described above. Schizonts, activated gametocytes and

ookinetes were then washed in phosphate-free Kreb’s buffer and

metabolically labelled with 3–5MBq 32P-orthophosphate in

phosphate-free Kreb’s buffer for 30 min at 20uC. After two

washes in phosphate-free Kreb’s buffer, the labelled parasites were

lysed for 30 min at 4uC in lysis buffer (10 mM Tris pH 7.5,

150 mM NaCl, 0.5 mM EDTA, 0.5% NP-40) supplemented with

protease and phosphatase inhibitors (Roche), the resulting lysate

was centrifuged at 20,0006g for 5 min and the supernatant

collected. GFP-tagged CDC20 proteins were then immunopre-

cipitated using GFP-TRAP beads (ChromoTek). The immuno-

precipitated proteins were then resuspended in Laemmli sample

buffer and separated by SDS-PAGE. 32P-labelled proteins were

visualized using a phosphorimager (Molecular Dynamics) and

GFP-tagged proteins analysed by Western Blot as described above,

using an anti-GFP polyclonal antibody (Invitrogen). The relative

CDC20-GFP phosphorylation levels in activated gametocytes and

ookinetes with respect to schizonts were obtained by taking the

normalized ratio between the intensity of the phosphorylation

signal from the phosphorimager and the intensity of the GFP

immunoreactive signal from the corresponding Western Blot by

using the ImageJ software (National Institute of Health).

Metabolic labelling for phosphorylation profile
Gametocytes from wild type, cdc20 and map2 mutant parasites

were purified by using a Nycodenz protocol as described above

from the blood of infected mice. Purified gametocytes were placed

for 25 minutes in ookinete medium at 20uC to activate both male

and female gametocytes to form gametes. For metabolic labelling,

the parasites were washed once with 1 ml of phosphate-free Kreb’s

buffer: 118 mM NaCl, 4.7 mM KCl, 4.2 mM NaHCO3, 1.2 mM

MgSO4(2H2O), 11.7 mM glucose, 10 mM HEPES, 1.3 mM

CaCl2(2H2O), pH 7.4 and resuspended in 500 ml of the same

buffer. 20–25 ml 32P-orthophosphate (7–9.25MBq) was added to

the suspension and incubated at 37uC for 30 min. The labelled

parasites were then lysed in lysis buffer: 50 mM Tris, 0.5 mM

EDTA, 5% b-glycerolphosphate, pH 7.6, supplemented with

protease/phosphatase inhibitors (Roche) and 1% NP-40. Follow-

ing incubation on ice for 10 min, the samples were centrifuged

3 min at 200006g and the supernatants were collected for further

fractionation. Fractionation was carried out on an AKTA

chromatographer (Amersham Pharmacia Biotec) using Resource

Q (Amersham Pharmacia Biotec) anion-exchange column (matrix

volume 1 ml). The proteins were eluted using a linear gradient of

0–1.0 M NaCl in running buffer: 10 mM Tris, 5 mM EDTA and

20 mM b-glycerolphosphate, pH 7.4. Fractions (1 ml) were

collected and analysed further by resolution on SDS-PAGE gels.
32P-labelled proteins were visualised by autoradiography.

Statistical analyses
All statistical analyses were performed using GraphPad Prism

(GraphPad Software). For ookinete conversion rates, non-para-

metric t-tests were used. For relative quantification of qRT-PCR

reactions, two-way ANOVA was performed.

Supporting Information

Figure S1 Clustal W alignments used for phylogenetic
analyses. Multiple amino-acid sequence alignments of the
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conserved WD repeat domains from different species were per-

formed using the Clustal W program. Accession numbers used for

alignments were: S.cerevisiae Cdc20 (NP_011399.1), S.pombe Slp1

(NP_593161.1), L.major Cdc20 (XP_001683689), L.infantum Cdc20

(XP_003392580.1), L.braziliensis Cdc20 (XP_001565442.1), T.brucei

Cdc20 (XP_847480.1), T.cruzi Cdc20 (XP_819329.1), S.cerevisiae

Cdh1 (NP_011512.1), S.pombe Srw1 (CAB59693), H.sapiens Cdh1

(NP_057347.2), M.musculus Cdh1 (NP_062731.1), D.rerio fizzy-related

(NP_956547.1), D.melanogaster fizzy-related (CAA74575.1), C.elegans

fzr-1 (NP_496075.1), C.briggsae Cdh1 (XP_002648545.1), A.thaliana

Cdh1.1 (NP_192929.2), A.thaliana Cdh1.2 (NP_194022.3), A.thaliana

Cdh1.3 (NP_196888.2), V.carteri Cdc20 (XP_002950513.1), C.hominis

Cdc20 (XP_665894.1), C.parvum Cdc20 (XP_628181.1), C.muris

Cdc20 (XP_002142595.1), H.sapiens Cdc20 (NP_001246.2), M.mus-

culus Cdc20 (NP_075712.2), D.rerio Cdc20 (NP_998245.1), D.melano-

gaster fizzy (NP_477501.1), A.thaliana Cdc20.1 (NP_195053.1),

A.thaliana Cdc20.2 (AEE86199.1), A.thaliana Cdc20.3 (AED93647.1),

A.thaliana Cdc20.4 (AED93621.1), A.thaliana Cdc20.5 (AED93702.1),

Micromonas Cdc20 (XP_002502587.1), P.yoelii Cdc20 (XP_728399.1),

P.berghei Cdc20 (XP_679699.1), P.chaubaudi Cdc20 (XP_743667.1),

P.falciparum Cdc20 (XP_001347545.1), P.knowlesi Cdc20 (XP_

002261784.1), P.vivax Cdc20 (XP_001608503.1), S.cerevisiae Ama1

(NP_011741.3).

(PDF)

Figure S2 gfp tagging and targeted disruption of the
Pbcdc20 locus. A. Schematic representation of the gene

targeting strategy used for gene tagging the endogenous locus

with gfp via single homologous recombination. Primers 1+2 used

for diagnostic PCR are indicated, as well as the EcoRI site used for

Southern blotting. Probe location used for detection by Southern

blotting is indicated. B. Diagnostic PCR confirming successful

integration of the tagging sequence. C. Southern blot analysis of

EcoRI digested T36 genomic DNA using the 39 UTR of the

targeting construct as a probe. Band sizes for CDC20-GFP (tag)

and wild-type (wt) are indicated. D. Western blot analysis using an

anti-GFP antibody against control wild-type-GFP (wt) and

transgenic (tag) activated gametocytes showing bands of expected

sizes of 29 kDa for wild-type-GFP and 92 kDa for PbCDC20-

GFP. E. Schematic representation of the gene targeting strategy

used for gene disruption via double homologous recombination.

Primers 1–4 used for diagnostic PCR are indicated, as well as the

HindIII digestion site used for Southern blotting. Probe location

used for detection by Southern blotting is indicated. F. Diagnostic

PCR confirming successful integration of the disruption sequence

of cdc20 in mutants N10 clone 7 (cl7) and N10 clone 9 (cl9). Primers

1+2 were used to verify successful integration at the correct locus.

Primers 3+4 were used to confirm loss of the endogenous gene. G.

Southern blot analysis of HindIII digested N10 clone 7 genomic

DNA using the 59 UTR of the targeting construct as a probe.

Band sizes for N10 clone 7 (cl7) and wild-type (wt) are indicated. H.

Pulse-field gel electrophoresis blot hybridised with Pb 39UTR

which detects the endogenous chromosome 7 locus and disrupted

locus on chromosome 5 in both clones. I. Bar graph showing

relative expression of endogenous Pbcdc20 in Dcdc20 mutants using

qRT-PCR compared to wild-type. Error bars represent 6SEM,

n = 3 from three separate experiments in both clone 7 and clone 9.

(DOC)

Figure S3 Episomal expression of PbCDC20-GFP. Epi-

somal expression of CDC20-GFP throughout the life-cycle was

shown to co-localise with Hoechst staining at all stages with

addition cytoplasmic expression in ookinetes. High GFP intensity

was observed at all stages. Bar = 5 mm. Female gametes (*), zygotes

(z) and ookinetes (arrow) are indicated.

(TIF)
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