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Abstract

Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated
codes exist to simulate the dynamical behaviour of such systems. We report on the first community activity
to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The
flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection
or due to moving boundaries. All problems defined have solutions that allow easy comparison, since they are
either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform
internal heating within the sphere under the Boussinesq approximation with boundary conditions that are
uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting
solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic,
flows and magnetic fields. In contrast Benchmark 3 is a hydrodynamic rotating bubble benchmark using no
slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported,
including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and
polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also
a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks
1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere
possessing an inner core) does not represent an adequate approximation to the system, since the results differ
from whole-sphere results.

keywords: Dynamo: theories and simulations, Planetary interiors, Numerical solutions

1 Introduction

The predominant theory for the generation mechanism of the Earth’s magnetic field is that of magnetic field
generation by thermal and compositional convection, creating the so-called self-excited dynamo mechanism.
Beginning with the first 3-D self-consistent Boussinesq models of thermal convection (Glatzmaier & Roberts,
1995; Kageyama et al., 1995), there has been burgeoning interest in numerical solutions to the underlying
equations of momentum conservation, magnetic field generation and heat transfer. Given the complexity
and non-linearity of the physics, it has been of importance to verify that the codes used correctly calculate
solutions to the underlying equations, and also to provide simple solutions that allow newly-developed codes
to be checked for accuracy. It is now over eleven years since the undoubtedly successful numerical dynamo
benchmark exercise of Christensen et al. (2001); Christensen et al. (2009), hereinafter B1. This benchmark
exercise was set in the geometry of a spherical shell, with convection driven by a temperature difference
between an inner core and the outer boundary of the spherical shell. In this respect the computational
domain is similar to that of the Earth, possessing as it does a small inner core. Three different benchmarks
were devised, the first being purely thermal convection, and the second and third being dynamos (supporting
magnetic fields). The latter two benchmarks differed in the treatment of the inner core: in one case the inner
core was taken to be electrically insulating and fixed in the rotating frame, and in the other case the core
was taken to be electrically conducting and free to rotate in response to torques that are applied to it, arising
from the convection in the outer core. Central to these benchmarks was the fact that all of them possessed
simple solutions, in the form of steadily drifting convection. As a result, energies are constant and, together
with other diagnostics, these provide very clear solutions that could be reproduced by different numerical
techniques. A measure of the success of this exercise is given by the fact that it has been used by numerous
groups to check their codes.

The present benchmarking exercise is one of two brethren designed to broaden the scope of the original
B1 and to provide further accurate solutions for a new generation of computer codes. The associated exercise
by Jackson et al. (2013) is also set in a spherical shell as in B1; it is similar to B1 but has been designed to
be particularly amenable to computer codes based on local (rather than spectral or global) descriptions of
the temperature, magnetic and velocity fields. Thus, that benchmark allows comprehensive checking of finite
element, finite volume and similar computer codes, as a result of the implementation of a local rather than
global magnetic boundary condition. The present paper treats a similar situation to B1 but differs in the
removal of the inner core, and thus treats only a whole sphere. Flows in the first two benchmarks thus defined
are driven by thermal convection, again under the Boussinesq approximation, and in the third by a boundary
forcing. There are two reasons for defining benchmarks set in the whole sphere rather than the spherical shell.
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Firstly the whole sphere represents a canonical problem, surely a simpler geometry than the shell. There is
one less degree of freedom, since the aspect ratio of the shell is no longer a defined parameter. Secondly,
in the context of rapidly rotating fluid dynamics, there is likely to be a simplification in the flow structures
generated because of the absence of an inner core. It is well-known that the dynamics of rapidly-rotating
systems is dominated by the Coriolis force, thus leading to the Proudman-Taylor constraint, the alignment
of flow structures with the rotation (z) axis. In a spherical shell when viscosity is reduced, as one moves from
outside the so-called tangent cylinder (the cylinder that just encloses the inner core) to inside the tangent
cylinder, a jump is present in the length of a column in the z direction. Hence there is the possibility of
the need to resolve very fine shear layers in this region; for a recent discussion see Livermore & Hollerbach
(2012). The presence of very fine structures that need to be resolved can have very deleterious effects on a
numerical method, particularly a spectral method based on spherical harmonics (again, for a discussion see
Livermore (2012)). Thus, the choice of a full sphere is likely to be advantageous in the limit in which the
viscosity is dropped to insignificant levels.

We note in passing that the whole sphere geometry is particularly relevant to the generation of magnetic
fields in the early Earth, prior to the formation of the inner core. In this time period the convection in the
core was driven by secular cooling (and possibly internal heating), and this is precisely the scenario studied
here in benchmarks 1 and 2. Associated with this geometry is a possible numerical obstacle, that has perhaps
been responsible for the dearth of full-sphere calculations in the literature. Working in a spherical coordinate
system (r, θ, φ), that is presumably convenient from the point of view of boundary conditions, the presence of
the origin of the spherical coordinate system (r = 0) in the integration domain leads to additional numerical
challenges. The results presented here show that the employed methods are able to correctly handle this
singularity in coordinates.

The benchmarks 1 and 2 set up here differ from those of B1 in their use of stress-free boundary conditions,
rather than non-slip conditions. This arose purely as a result of our survey of parameter space while searching
for whole-sphere dynamos that possess simple solutions with clear diagnostics suitable for a benchmark. In
performing this survey, we did not find a dynamo that had a steady character similar to that in B1; this is
not to say that one does not exist. The dynamo solution in benchmark 2 shows an exact periodic character
with energy conversion between kinetic and magnetic forms. It thus allows very precise comparison. The
use of stress-free boundaries can cause problems with angular momentum conservation (see the discussion in
Jones et al. (2011)), but these were handled gracefully in the solutions we report.

We mention in passing the other benchmarks that have recently been provided to the community. A new
benchmark for anelastic convection has recently been described by Jones et al. (2011) and already used as a
comparison for the newly-developed code of Zhan et al. (2012). This benchmark again is set in a spherical
shell, but has a background state with a very large change in density across the shell. Three solutions are
again compared, the first two (pure thermal convection and dynamo action respectively) possessing simple
drifting solutions with very precise diagnostics. A solar mean field benchmark has also recently been provided
by Jouve et al. (2008).

The layout of the paper is as follows: in §2 we describe the physical problems to be addressed. Benchmarks
1 and 2 are driven by internal heating and benchmark 3 by boundary forcing. In §3 we give a brief overview
of the different numerical methods that have been employed by the different contributing teams. In §4 we
present and discuss the results from the different codes.

2 Test cases

Three benchmarks for incompressible flows in a rapidly rotating whole sphere are considered. The first two test
problems, Benchmark 1 and Benchmark 2, are subject to the thermal forcing of a homogeneous distribution
of heat sources in the volume. Benchmark 1 is a purely hydrodynamical problem while Benchmark 2 consists
of a self-sustained dynamo problem. Benchmark 3 extends the scope of these test cases by considering the
mechanical forcing induced by moving boundaries. In all cases, the system consists of a whole sphere of radius
ro, filled with a fluid of density ρ and a kinematic viscosity ν. The system rotates at a rotation rate Ω. The
fluid motion is described by the velocity field u and, for Benchmark 1 and Benchmark 2, the temperature
field is denoted by T .
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2.1 Benchmark 1: Thermal convection

Benchmark 1 is a purely hydrodynamical problem with the motion of the fluid described in the reference
frame of the mantle. The system is described within the frame of the Boussinesq approximation, neglecting
the density fluctuations except for the ones responsible for the buoyancy. Under the action of a gravitational
field

g = g
r

ro
(1)

and in the presence of a homogeneous heat source distribution S, the basic state is given by

Tb =
β

2

(
r2o − r2

)
(2)

with β = S/3κ where κ is the thermal diffusivity. The equations are nondimensionalised using the radius ro
as length scale, the diffusion time r2o/ν as time scale and βr2o as temperature scale. The three nondimensional
parameters are chosen to be the Ekman number E

E =
ν

2Ωr2o
, (3)

the Prandtl number Pr
Pr =

ν

κ
, (4)

and the modified Rayleigh number Ra

Ra =
gαβr3o
2Ωκ

, (5)

with α the thermal expansion coefficient. The motion of the fluid is then described by the nondimensional
Navier-Stokes equation and the incompressibility condition for the velocity field u

E
(
∂t −∇2

)
u = Eu ∧ (∇∧ u) +RaTr − ẑ ∧ u−∇π, (6)

∇ · u = 0 (7)

with ẑ being the rotation axis. The evolution of the temperature T is described by the nondimensional
transport equation (

Pr∂t −∇2
)
T = S − Pru · ∇T, (8)

and the nondimensional basic state is given by

Tb =
1

2

(
1− r2

)
. (9)

The system is subject to stress-free and impenetrability mechanical boundary conditions and a fixed temper-
ature at the outer boundary. Thus, while the radial velocity component has to vanish, a non-zero horizontal
velocity component is possible at the boundary.

The benchmark solution is obtained for an Ekman number E = 3 · 10−4, a Prandtl number Pr = 1, a
Rayleigh number Ra = 95 and a source term S = 3. This choice of parameters is close to the critical values
for the onset of convection. More than one solution exists for this choice of parameters. To select the right
solution branch, the following initial condition should be used for the temperature field

T =
1

2

(
r20 − r2

)
+

10−5

8

√
35

π
r3

(
1− r2

)
(cos 3φ+ sin 3φ) sin3 θ. (10)

For the sake of completeness, the second solution branch might be selected by replacing the spherical
harmonic perturbation of degree and order 3 by a spherical harmonic perturbation of degree and order 4.
The velocity field can safely be initialised to zero

u = 0. (11)
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Figure 1: Equatorial slices of (a) the radial component ur and (b) the azimuthal component uϕ of the velocity
field for Benchmark 1. The velocity field is equatorially antisymmetric and thus the latitudinal component
uθ is zero in the equatorial plane.
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Figure 2: Meridional slices of the velocity field u for Benchmark 1: (a) radial component ur, (b) latitudinal
component uθ and (c) azimuthal component uϕ. The slices are chosen such that they contain the maximal
amplitude of the velocity field |u|.

After the initial transient, the solution to Benchmark 1 settles in a quasi-stationary solution with a 3-fold
symmetry. The alternative branch would lead to a similar solution with 4-fold symmetry. To illustrate the
solution, a few equatorial and meridional slices of the velocity field are provided in Figures 1 and 2.

Once the stable regime is reached, the solution exhibits a constant kinetic energy

Ek =
1

2

∫

V

u2dV (12)

providing an ideal diagnostic for the comparison among the different submissions (Figure 3).
Furthermore, the whole solution is slowly drifting at a constant drift frequency. Similarly to what was

done in B1, the velocity field of the solution can be described as

u = u(r, θ, ϕ− 2πfdt), (13)

where fd is the drift frequency in units of s−1. The drift frequency fd is related to the angular velocity or
drift rate ωd in units of rad · s−1 by

ωd =
2π

fd
. (14)
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Figure 3: Typical time evolution of the kinetic energy Ek for Benchmark 1. After the initial transient, the
kinetic energy reaches a constant value.

With this choice of definition, due to the 3-fold spatial symmetry (see Figure 1a), the drift frequency fd
represents the frequency at which a given flow pattern will pass through a fixed point in space. The whole
solution pattern completes a full rotation at a frequency f̃d = fd/3.

To compare the results of the six participants in Benchmark 1, the constant kinetic energy Ek and the
drift frequency fd of their solution were requested.

2.2 Benchmark 2: Thermally driven dynamo

Benchmark 2 extends the first benchmark by incorporating the generation and evolution of magnetic fields.
While still working within the frame of the Boussinesq approximation, the sphere is now filled with a con-
ducting fluid with magnetic diffusivity η and magnetic permeability µ. It is still thermally forced through the
presence of a homogeneous distribution of heat sources resulting in the basic state given by Equation 2. The
system of equations is extended by the induction equation to describe the evolution of the magnetic field B.
The equations are nondimensionalised using the radius ro as length scale, the magnetic diffusion time r2o/η
as time scale, βr2o as the temperature scale and the magnetic field is rescaled by

√
2Ωρµη. The four required

parameters are the Ekman number E

E =
ν

2Ωr2o
, (15)

the magnetic Rossby number (also referred to as the magnetic Ekman number) Ro

Ro =
E

Pm
=

η

2Ωr2o
, (16)

the Roberts number q

q =
Pm

Pr
=

κ

η
, (17)

with κ the thermal diffusivity and the Rayleigh number Ra

Ra =
gαβr3o
2Ωκ

, (18)

with α the thermal expansion coefficient. To ease the conversion to different choices of nondimensionalizations
the Prandtl number Pr

Pr =
ν

κ
=

Pm

q
=

E

qRo
, (19)

and the magnetic Prandtl number Pm

Pm =
ν

η
=

E

Ro
, (20)
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are also introduced. The motion of the conducting fluid is described by the nondimensional Navier-Stokes
equation and the incompressibility condition for the velocity field u

(
Ro∂t − E∇2

)
u = Rou ∧ (∇∧ u) + (∇∧B) ∧B + qRaTr − ẑ ∧ u−∇π, (21)

∇ · u = 0. (22)

The magnetic induction equation and the solenoidal condition for the magnetic field B read as

(
∂t −∇2

)
B = ∇∧ (u ∧B) , (23)

∇ ·B = 0, (24)

and finally the transport equation for the temperature T is given by

(
∂t − q∇2

)
T = S − u · ∇T. (25)

As for Benchmark 1, the outer boundary is maintained at fixed temperature and a stress-free mechanical
boundary condition is imposed. Furthermore, the outer region is considered to be perfect insulator.

The thermal dynamo solution for Benchmark 2 is obtained for an Ekman number E = 5 ·10−4, a magnetic
Rossby number Ro = 5

7 · 10−4, a Roberts number q = 7, a Rayleigh number Ra = 200 and a source term
S = 3q = 21. In terms of the Prandtl numbers, the Benchmark 2 is obtained for a Prandtl number Pr = 1 and
a magnetic Prandtl Pm = 7. This parameter regime is approximately two times supercritical and a magnetic
field is generated and sustained by the system. Although the solution for Benchmark 2 can be obtained by
starting from a small initial perturbation, the convergence to the final state is extremely slow and requires
prohibitively high computational resources. Furthermore, the presence of several solution branches can’t be
excluded even if it was not seen during the computations. To reduce the computational load to a reasonable
level, a special initial condition exhibiting a much faster convergence has been worked out.

The temperature field T should be initialised with the background conducting state with a small pertur-
bation as a spherical harmonic of degree and order 3

T =
1

2

(
r20 − r2

)
+

ǫ

8

√
35

π
r3

(
1− r2

)
(cos 3ϕ+ sin 3ϕ) sin3 θ. (26)

with ǫ = 10−5. The magnetic field should be initialised with a purely toroidal magnetic field given by

Br =0, (27)

Bθ =− 3

2
r
(
−1 + 4r2 − 6r4 + 3r6

)
(cosϕ+ sinϕ) , (28)

Bϕ = − 3

4
r
(
−1 + r2

)
cos θ

(
3r

(
2− 5r2 + 4r4

)
sin (θ) (29)

+2
(
1− 3r2 + 3r4

)
(cosϕ− sinϕ)

)
.

Finally, the velocity field should be initialised with a purely toroidal velocity given by

ur = 0, (30)

uθ = − 10r2

7
√
3
cos θ

(
3
(
− 147 + 343r2 − 217r4 + 29r6

)
cosϕ+ 14

(
− 9− 125r2 + 39r4 + 27r6

)
sinϕ

)
, (31)

uϕ = − 5r

5544

(
7
( (

43700− 58113r2 − 15345r4 + 1881r6 + 20790r8
)
sin θ (32)

+ 1485r2
(
−9 + 115r2 − 167r4 + 70r6

)
sin 3θ

)

+ 528
√
3r cos 2θ

(
14

(
−9− 125r2 + 39r4 + 27r6

)
cosϕ

+ 3
(
147− 343r2 + 217r4 − 29r6

)
sinϕ

))
.

7



For simulations using spherical harmonics and a toroidal/poloidal decomposition, the expression of the initial
conditions can be written in a simpler form. Assuming that the magnetic field is decomposed as B =
∇ ∧ T r +∇ ∧∇ ∧ Pr, the initial field is given by the two scalars

T = r

((
3

4
− 3r2 +

9

2
r4 − 9

4
r6
)
+

(
3

4
− 3r2 +

9

2
r4 − 9

4
r6
)
ı

)
Y1
1 (33)

+ r2
(
3

2
− 21

4
r2 +

27

4
r4 − 3r6

)
Y0
2 + c.c.,

P = 0, (34)

where c.c. stands for the complex conjugate without the m = 0 modes and Ym
l are Schmidt normalised

complex spherical harmonics. Similarly assuming that the velocity field is decomposed as u = ∇∧Tr+∇∧
∇ ∧ Pr, the initial condition is given by

T = r2
((

30 +
1250

3
r2 − 130r4 − 90r6

)
+

(
105− 245r2 + 155r4 − 145

7
r6
)
ı

)
Y1
2 (35)

+ r

(
−54625

198
+ 350r2 +

625

2
r4 − 325r6

)
Y0
1 + r3

(
45− 575r2 + 835r4 − 350r6

)
Y0
3

+ c.c.,

P = 0. (36)

Details of the definition and the normalisation of the spherical harmonics Ym
l are given in Appendix A.

The structure of the solution to Benchmark 2 is much more complicated than for Benchmark 1 and no
longer exhibits a simple symmetry. Nevertheless, after the initial transient the system settles into a regime
with periodic kinetic and magnetic energies. The amplitude and frequency of these oscillations provide a
good diagnostic for Benchmark 2 (Figure 4).
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Figure 4: Kinetic energy Ek and magnetic energy Em for Benchmark 2. (a) Typical time evolution of Ek

and Em. After the initial transient, both energies settle into a periodic oscillation. (b) Detailed view of the
oscillations in Ek and Em. The magnetic energy has been rescaled by ξ = Ck

Cm

≈ 39 (see Eq. 37 and Eq. 40)
to show the phase shift between Ek and Em.

To illustrate the structure of the velocity field, a few equatorial slices are shown in Figure 5. The time
dependent features of the solutions can be seen in the Hammer projection snapshots of the flow close to the
outer boundary (Figure 6) and the Hammer projections of the radial component of the magnetic field at the
outer boundary (Figure 7). The two comma shaped flux patches of opposite sign emerge periodically. The
lower part moves eastwards while rising to higher latitudes until they vanish. Figures 7 show snapshots over
approximately 2 periods.

The solution to Benchmark 2 will solely be characterised by the computed kinetic and magnetic energies.
Their periodic behaviour allow us to define several diagnostic quantities used to compare the solutions from
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Figure 5: Equatorial slices of the velocity field u at t = 4.43241 for Benchmark 2: (a) radial component ur,
(b) latitudinal component uθ and (c) azimuthal component uϕ
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Figure 6: Hammer projections of three snapshots of the azimuthal velocity component uϕ at the outer
boundary (r = ro) for Benchmark 2.
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Figure 7: Hammer projections of six snapshots, spanning approximatively two periods, of the radial magnetic
field Br at the outer boundary r = ro for Benchmark 2.

different simulations. The kinetic energy is decomposed into a constant component Ck, the amplitude of the
leading oscillating term Ak, the frequency of this oscillation fk and a phase shift ζk. Using these definitions,the
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kinetic energy Ek is written as

Ek =
1

2

∫

V

u2dV = Ck +Ak cos(2πfkt+ ζk) + . . . (37)

Furthermore, decomposing the velocity into its equatorially symmetric (labelled as (s)) and equatorially
anti-symmetric part (labelled as (a)), the velocity field was found to be purely equatorially symmetric

E
(s)
k =Ek, (38)

E
(a)
k =0. (39)

Using the same decomposition, the magnetic energy Em can be written as

Em =
1

2Ro

∫

V

B2dV = Cm +Am cos(2πfmt+ ζm) + . . . , (40)

Decomposing the magnetic field into its equatorially symmetric and anti-symmetric parts, the magnetic field
is found to be purely equatorially anti-symmetric

E(s)
m =0, (41)

E(a)
m =Em. (42)

It was found and confirmed by all participants that the oscillations in the magnetic energy and kinetic
energy have the same frequency. In addition, as can be seen in Figure 4b, there is a phase shift between the
magnetic and kinetic energy. This relative phase shift (ζk − ζm) is found to have value 1.91rad but is not
included in the benchmark. The six constants Ck, Ak, fk, Cm, Am and fm defined above are the diagnostic
values that were requested from all submissions to Benchmark 2..

The computation of decompositions 37 and 40 requires some further explanations as several different
approaches are possible. The first one involves computing the Fourier series. To reduce the spectral leakage,
a flat top window (Oliphant, 2007) is applied on the time-series. The amplitude of the different modes
can then easily be extracted as shown in Figure 8a. Conversely, to compute an accurate frequency, a Kaiser
window (Kaiser & Kuo, 1966) with parameter β = 14 is applied to the time-series. The peaks in the spectrum
are then well approximated with a parabolic fit allowing for interpolation between the available frequencies.
The peak for the main oscillation is shown in Figure 8b. The frequencies can also be computed by counting
the zero crossings. Both approaches provide the frequency within a relative error of 10−4%. There is a
simpler approach to obtain the requested data without using a Fourier transform. Assuming Emin

i , Emax
i

are the minimum and maximum of the time-series for the energy, the constant component is approximatively
given by

Ci ≈
Emin

i + Emax
i

2
, (43)

and the amplitude of the main oscillation is approximatively given by

Ai ≈
Emax

i − Emin
i

2
. (44)

These relations are not exact because the time-series do also include higher frequencies as shown in Figure
8a. Using the Fourier series, it is possible to bound the relative errors generated by the simplified approach.
By including the second peak with a frequency of 2fi and accounting for the phase shift, a comparison with
the approximations 43 and 44 provides the relative errors ǫCk

and ǫAk
on Ck and Ak for the kinetic energy

ǫCk
= 3 · 10−2%, (45)

ǫAk
= 5 · 10−2%. (46)
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Figure 8: (a) Frequency spectrum of the kinetic energy Ek and magnetic energy Em for Benchmark 2 after
a flat top window has been applied on the time-series. (b) Details of the peak of the main amplitude of
the kinetic and magnetic energies after a Kaiser window with parameter β = 14 has been applied to the
time-series. Note the use of a logarithmic scale for the ordinate, meaning that the frequency localisation is
extremely good. Both spectra have been obtained on a time-series over approximatively 0.35 diffusion times
at a sampling rate of 1.75 · 105 obtained by (MJ) at N = 31 and L = M = 63 (see Section 3 for details).

The same analysis on the magnetic energy provides the relative errors ǫCm
and ǫAm

on Cm and Am

ǫCm
= 0.4%, (47)

ǫAm
= 0.6%. (48)

These relative errors have been obtained by assuming that Emin
i and Emax

i are exact. An accurate value for
the minimum and maximum requires a time-series sampled at a high frequency but it does in principle only
require one cycle. On the other hand, an accurate Fourier series will require a long time-series. The errors
made by using this simplified approach depend strongly on the relative magnitude of the higher frequencies.
For the kinetic energy, the second oscillation with a frequency of 2fk has an approximatively 63 times smaller
amplitude which leads to the rather small errors given in Equations 45 and 46. On the other hand, the second
oscillation in the magnetic energy is only approximatively 10 times smaller leading to the larger errors given
in Equations 47 and 48. In both cases, the third oscillation with a freqency 3f can be negleted as it is more
than 20 times smaller than the second oscillation.

2.3 Benchmark 3: Boundary forced rotating bubble

Benchmark 3 is again a purely hydrodynamic problem. It provides a simple test problem for boundary driven
flows in a whole sphere as they might for example arise in precession or libration problems. The proposed
system describes the motion of an incompressible fluid inside a spherical bubble rising in a rotating fluid. It
is an important addition to the first two cases as it replaces the internal thermal forcing by a mechanical
forcing due to an imposed tangential flow over the boundary. The bubble is assumed to be of unit radius
ro = 1 and is described by the Navier-Stokes equation and incompressibility condition

∂tu+ u · ∇u+ 2Ωẑ ∧ u = −∇p+ ν∇2u, (49)

∇ · u = 0 (50)

with ν the viscosity of the fluid and Ω the rotation rate of the bubble. The rotation axis is parallel to ẑ.
The tangential flow over the boundary imposes a non-homogeneous boundary condition on the fluid at the
surface of the bubble

uθ = −u0 cos θ cosφ (51)

uφ = u0 sinφ (52)
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Ek =
1

2

∫

V

u2dV (53)

reached after the initial transient. When available, the energy in the spherical harmonic orders m = 0, m = 1
and m = 2 have also been collected. Second, the ẑ component of the angular momentum Lz is reported.
The three components of the velocity field u at the centre of the bubble provide that last diagnostic data.

3 Contributing numerical codes

There was a total of nine contributors to the benchmark but each did not necessarily provide results for
all three cases. A short description of the algorithm used by each simulation is provided below. Further
references are given for a more detailed description.

Marti and Jackson (MJ): Spectral simulation using spherical harmonics for the angular component and
polynomials developed by Worland (2004) and Livermore et al. (2007) in radius (see Marti (2012)). The
Worland polynomials satisfy exactly the parity and regularity conditions required at the origin of the spherical

coordinate system. Specifically, the radial basis used is of the form rlP
(−1/2,l−1/2)
n (2r2 − 1) for a given

harmonic degree l, with P
(α,β)
n (x) the Jacobi polynomials. The incompressibility condition is guaranteed by

the use of a Toroidal/Poloidal decomposition of the vector fields. A second order predictor-corrector scheme
is used for the time integration. No specific treatment is required to conserve angular momentum.

Hollerbach (H): An adaptation of the previous spherical shell code described by Hollerbach (2000), based
on spherical harmonics and a Toroidal/Poloidal decomposition of the vector fields. Instead of expanding
in the full set of Chebyshev polynomials in radius, regularity and parity conditions at the origin are now
accommodated by expanding as r · T2k−1(r) for odd harmonic degrees and r2 · T2k−1(r) for even harmonic
degrees for the toroidal/poloidal scalars. The temperature is similarly expanded as T2k−2(r) for degree l = 0,
r ·T2k−2(r) for odd degrees, and r2 ·T2k−2(r) for even degrees. Angular momentum conservation is explicitly
imposed by a modified stress-free boundary condition.

Aubert (A): Spectral simulation using the code PARODY-JA, which uses spherical harmonics for the
angular component and a second order finite differences in radius (see Dormy et al. (1998); Aubert et al.
(2008)). The time marching is done with a semi-implicit Crank-Nicolson/Adams-Bashforth scheme. The
radial mesh includes a grid point exactly at the centre of the sphere. Spectral toroidal and poloidal compo-
nents of order l behave like rl at the centre. Angular momentum conservation is achieved by correcting for
solid-body rotation at each time step.

Schaeffer (S): Spectral simulation using spherical harmonics for the angular component and second order
finite differences in radius (Monteux et al., 2012). The numerical instability near the origin is overcome
by truncating the spherical harmonic expansion at ℓtr(r) before computing the spatial fields that enter the

non-linear terms. Specifically, the truncation is ℓtr(r) = 1 + (ℓmax − 1)
(

r
ro

)α

, where α = 0.5 gives good

results, and also saves some computation time. The time-stepping uses a semi-implicit Crank-Nicholson
scheme for the diffusive terms, while the non-linear terms can be handled either by an Adams-Bashforth
or a Predictor-Corrector scheme (both second order in time). The SHTns library (Schaeffer, 2013) is used
for efficient spherical harmonic transforms. Angular momentum conservation is achieved by adjusting the
solid-body rotation component at each time step.

Takehiro, Sasaki and Hayashi (TSH): Spectral simulation using spherical harmonics for the angular
components and the polynomials developed by Matsushima & Marcus (1995) and Boyd (2001) in radius (see
Sasaki et al. (2012)). The radial basis functions satisfy exactly the parity and regularity conditions at the

origin of the spherical coordinate system. Specifically, the used radial basis is of the form rlP
(α,β)
n (2r2−1) for

a given harmonic degree l, with Pn(x) the Jacobi polynomials. The incompressibility condition is guaranteed
by the use of a Toroidal/Poloidal decomposition of the vector fields. The time integration is performed with
the Crank-Nicolson scheme for the diffusive terms and a second order Adams-Bashforth scheme for the other
terms. No specific treatment is required to conserve angular momentum.

Simitev and Busse (SB): Pseudo-spectral numerical code using spherical harmonics expansion in the
angular variables and Chebyshev polynomials in radius. Time stepping is implemented by a combination of
the implicit Crank-Nicolson scheme for the diffusion terms and the explicit Adams-Bashforth scheme for the
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Coriolis and the non-linear terms; both schemes are second order accurate. Early versions of the code are
described in Tilgner & Busse (1997) and Tilgner (1999). The code has been extensively modified and used for
a number of years (Simitev & Busse, 2005; Busse & Simitev, 2006, 2008; Simitev & Busse, 2009, 2012). This
is a spherical-shell code and no special effort was made to convert it to the full sphere geometry. Instead, the
full sphere is approximated by placing a tiny inner core with radius ratio ri/ro = 0.01 at the centre of the
shell. Angular momentum conservation is achieved by correcting for rigid-body rotation if required.

Cébron (C): Finite elements method simulation using the standard Lagrange element P2-P3, which is
quadratic for the pressure field and cubic for the velocity field, and a Galerkin Least-Squares (GLS) stabi-
lization method (Hauke & Hughes, 1994). The (unstructured) mesh is made of prisms in the boundary layer
and tetrahedrons in the bulk. The incompressibility is imposed using a penalty method. The timestepping
uses the Implicit Differential-Algebraic solver (IDA solver), based on variable-coefficient Backward Differ-
encing Formulas (eg Hindmarsh et al. (2005)). The integration method in IDA is variable-order, the order
ranging between 1 and 5. At each time step the system is solved with the sparse direct linear solver PAR-
DISO (www.pardiso-project.org) or a multigrid GMRES iterative solver. This is all implemented via the
commercial code COMSOL Multiphysics R©.

Nore, Luddens and Guermond (NLG): Hybrid Fourier and finite element method using a Fourier decom-
position in the azimuthal direction and the standard Lagrange elements P1-P2 in the meridian section (with
P1 for the pressure and P2 for the velocity field). The meridian mesh is made of quadratic triangles. The ve-
locity and pressure are decoupled by using the rotational pressure-correction method. The timestepping uses
the second-order Backward Difference Formula (BDF2). The non-linear terms are made explicit and approx-
imated using second-order extrapolation in time. The code is parallelised in Fourier space and in meridian
sections (domain decomposition with METIS (Karypis & Kumar, 2009)) using MPI and PETSC (Portable,
Extensible Toolkit for Scientific Computation) (Balay et al., 2012b,a, 1997). This is implemented in the code
SFEMaNS (for Spectral/Finite Element method for Maxwell and Navier-Stokes equations)(Guermond et al.,
2007, 2009, 2011).

Vantieghem (V): Unstructured finite-volume simulation (see Vantieghem (2011)) using a grid of tetra-
hedral elements with smaller elements close to the wall. The spatial discretisation is based on a centred-
difference-like stencil that is second-order accurate for regular tetrahedra. Time-stepping is based on a
canonical fractional-step method (Kim & Moin, 1985), and the equations are integrated in time with a 4th
order Runge-Kutta method. A BiCGstab(2)-algorithm is used to solve the pressure Poisson equation. The
reported Fourier components are obtained by an a posteriori interpolation of the results on a regular grid
in terms of spherical coordinates (Nr = 36, Nθ = Nϕ = 18), which is subject to considerable additional
numerical (interpolation) errors.

4 Results

There is a quite an important diversity in the type of simulations that took part in these benchmarks. All the
diagnostics that have been considered for these benchmarks should be straightforward to obtain whenever
the simulation code is based on some spectral expansion or on a local method. On the other hand, a direct
comparison of the resolution used is a more subtle problem. The comparison will be done by comparing
solutions based on the number of degrees of freedom present at the timestepping level. For local methods,

the resolution R is computed as R = N
1/3
grid whereNgrid is the number of grid points and for spherical harmonic

based codes R =
(
Nr ·

(
Lmax(2Mmax + 1)−M2

max +Mmax + 1
))1/3

. The same approach was used in B1.

Benchmark 1 There were six participants in Benchmark 1 and all of them used a spherical harmonics
based simulation. They agree qualitatively quite well and no important discrepancies were found. The details
of all the solutions obtained by the participants is given in Table 1. At the quantitative level, a few interesting
observations can be made. The results for the total kinetic energy are summarized in Figure 11a. The five
codes (MJ), (H), (TSH), (S), (A) do all eventually converge to the same solution within 5 · 10−2%. While
using a completely different radial expansion, (MJ) and (H) even converge very rapidly within 5 · 10−4%.
The last code (SB) working in spherical shell rather than a sphere comes within 0.4%. Note that the results
obtained with a very high radial resolution (1600 grid points) by (A) matches very closely to the solutions

14





Code Ek fd N L M
(MJ) 29.08502 12.38841 8 15 15
(MJ) 29.07661 12.38860 8 23 23
(MJ) 29.12178 12.38604 12 23 23
(MJ) 29.12064 12.38619 16 23 23
(MJ) 29.12064 12.38619 16 31 31
(MJ) 29.12068 12.38619 23 47 47
(MJ) 29.12068 12.38619 31 63 63
(H) 29.11784 12.3862 12 23 23
(H) 29.12054 12.3862 16 31 31
(H) 29.12053 12.3862 23 31 31
(H) 29.12053 12.3862 23 47 47
(H) 29.12053 12.3862 31 63 63
(S) 29.219 12.388 120 31 31
(S) 29.1446 12.387 250 63 63
(S) 29.13501 12.38648 320 85 85
(TSH) 29.03074 12.30769 16 21 21
(TSH) 29.12878 12.50000 32 42 42
(TSH) 29.12878 12.50000 48 85 85
(SB) 29.00617 11.89445 33 42 42
(A) 29.12062 12.3931 1600 63 63

Table 1: Contributions to Benchmark 1. The labels used for the different codes are defined in Section 3.
The values are shown with the number of significant digits provided by the authors. As all these codes are
based on a spherical harmonics expansion for the angular component, the resolution is given as the radial
resolution N , the highest harmonic degree L and the highest harmonic order M .

Benchmark 1: Thermal convection

Parameters
E Pr Ra

3 · 10−4 1 95

Boundary conditions
u: stress-free
T : fixed temperature

homogeneous heat sources

Requested values
Ek 29.1206 ± 1 · 10−4

fd 12.3862 ± 8 · 10−4

Table 2: Summary table and standard values obtained for Benchmark 1. The Ekman number E, the Prandtl
number Pr and the modified Rayleigh number Ra as well as the governing equation for the velocity u and
the temperature T are given in Section 2. The kinetic energy Ek is defined in Equation 12 and the drift
frequency by Equation 13.
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Code Ck Ak fk Cm Am fm N L M
(MJ) 35141.84 1836.287 302.2623 1153.695 51.77003 302.2623 12 23 23
(MJ) 35548.95 1881.661 302.6947 922.3073 38.54002 302.6947 16 31 31
(MJ) 35542.15 1880.460 302.6858 924.5757 38.48190 302.6858 23 31 31
(MJ) 35551.33 1880.055 302.7018 908.9870 37.47705 302.7018 23 47 47
(MJ) 35550.93 1879.837 302.7015 908.8059 37.45069 302.7015 31 63 63
(H) 35378. 1855 302.48 1043.77 46.16 302.48 12 23 23
(H) 35588. 1885 302.71 904.30 37.61 302.71 16 31 31
(H) 35540. 1881 302.66 925.64 38.50 302.66 23 31 31
(H) 35551. 1880 302.67 909.67 37.48 302.67 23 47 47
(H) 35550. 1880 302.67 909.46 37.47 302.67 31 63 63
(S) 35544. 1878.1 302.2 951.59 41.33 302.2 120 31 31
(S) 35568. 1881.0 302.65 908.69 37.951 302.65 250 63 63
(S) 35552. 1880.1 302.11 910.75 38.064 302.11 320 85 85
(TSH) 35619.63 1887.200 303.0303 881.6272 36.97913 303.0303 32 42 42
(TSH) 35564.30 1872.702 303.0303 905.8444 37.60794 303.0303 48 85 85
(SB) 35951.5 1843.38 304.308 1046.12 38.08 304.308 41 96 96

Table 3: Spectral method contributions to Benchmark 2. The labels used for the different codes are defined
in Section 3. The values are shown with the number of significant digits provided by the authors. The
decomposition of the kinetic energy Ek into Ck, Ak and fk is defined in Equation 37 and the equivalent
decomposition of the magnetic energy Em into Cm, Am and fm is defined in Equation 40. As all these codes
are based on a spherical harmonic expansion for the angular component, the resolution is given as the radial
resolution N , the highest harmonic degree L and the highest harmonic order M .

exhibit a very fast convergence. As was explained in Section 3, the extraction of the different components of
the energies requires some post processing. The choice of methodology by each author, for example to extract
the oscillation amplitude, might explain a part of the somewhat larger discrepancies compared to Benchmark
1. The standard values given in Table 4 are obtained by taking the average of the highest resolution by (MJ)
and (H). The error bars are chosen such that at least one additional solution is included in the error corridor.
This choice is based on the fast convergence of both codes to essentially the same value for all the requested
data.

While it was not part of the actual benchmark, the phase shift between the kinetic and magnetic energy
(see Figure 4b) is also reported in Table 4 to provide a more complete characterisation of the solution. The
reported value has been computed by (MJ) from time-series of the kinetic and magnetic energy at the highest
reported resolution (N = 31, L = M = 63). The phase shift has been extracted from the Fourier series shown
in Figure 8.

Benchmark 3 Benchmark 3 had the highest number of participants with 8 codes taking part. It is also
the only case where results from local methods are available. The computation for Benchmark 3 does not
require a very high horizontal resolution. For example, spherical harmonic based codes exhibit a very good
convergence at resolutions as low as Lmax = 30 and Mmax = 10. However, it is more demanding in the radial
direction. The centre requires a sufficiently high resolution to describe flow crossing it properly as well as
the moving outer boundary which is forcing the system.

The solutions obtained by the different groups are summarized in Figures 13a-e. Note that some of
the solutions obtained by spherical harmonics based codes have been obtained with a reduced longitudinal
resolution while a triangular truncation was used for Benchmarks 1 and 2. The details for each solution are
given in Table 5 for the spectral methods and in Table 6 for the local methods. A good convergence of the
kinetic energy Ek is observed. Surprisingly, it is the solution by (TSH) which shows the largest discrepancy
(0.4%) while all the other solutions agree within 0.1% at least. (MJ), (H), (S), (C) and (NLG) show the
clearest convergence with solutions within 8 · 10−3%. The values obtained for the vertical component of the
angular momentum show the largest discrepancies among the diagnostics for Benchmark 3. The solutions by
(H), (S), (C), (NLG), (V) seem to converge to the same value within 7 ·10−2%. While a very high agreement
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Benchmark 2: Thermally driven dynamo

Parameters
E Ro q Ra

5 · 10−4 5/7 · 10−4 7 200

Boundary conditions
u: stress-free
B: insulating
T : fixed temperature

homogeneous heat sources

Requested values
Kinetic energy Ek

Ck 35550.5 ± 1.5
Ak 1879.84 ± 0.26

Magnetic energy Em

Cm 909.133 ± 1.62
Am 37.4603 ± 0.1476

Frequency f = fk = fm 302.701 ± 0.33

Additional characteristic
Phase shift |ζk − ζm| 1.91 rad

Table 4: Summary table and standard values obtained for Benchmark 2. The number E, the magnetic
Rossby number Ro, the Roberts number q and the modified Rayleigh number Ra, as well as the governing
equations for the velocity u, the magnetic field B and the temperature T are given in Section 2. The
decomposition of the kinetic energy Ek into constant and oscillating components is defined in Equation 37
and the decomposition of the magnetic energy is defined in Equation 40.
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Code Ek Ek, m = 0 Ek, m = 1 Ek, m = 2 Lz Ux Uy N
1/3
grid

(C) 6.1814e-2 N/A N/A N/A 2.7553e-2 -8.8469e-3 4.0492e-2 26.4
(C) 6.1839e-2 N/A N/A N/A 2.7787e-2 -8.8469e-3 4.0492e-2 32.8
(C) 6.1831e-2 N/A N/A N/A 2.7808e-2 -8.2943e-3 3.8329e-2 45.0
(C) 6.1829e-2 N/A N/A N/A 2.7797e-2 -8.2943e-3 3.8329e-2 54.2
(C) 6.1830e-2 N/A N/A N/A 2.7797e-2 -8.2637e-3 3.8305e-2 74.5
(NLG) 6.1847e-2 4.4376e-4 6.1285e-2 1.1733e-4 2.8158e-2 -8.3649e-3 3.8332e-2 56.4
(NLG) 6.1831e-2 4.3534e-4 6.1277e-2 1.1754e-4 2.7803e-2 -8.2946e-3 3.8308e-2 82.0
(NLG) 6.1831e-2 4.3515e-4 6.1277e-2 1.1754e-4 2.7796e-2 -8.2686e-3 3.8307e-2 124.
(V) 6.19485e-2 4.2922e-4 5.6011e-2 1.1883e-4 2.77393e-2 -8.33047e-3 3.80877e-2 139.4
(V) 6.19288e-2 4.3333e-4 5.7559e-2 1.1808e-4 2.77620e-2 -8.31833e-3 3.82237e-2 206.3
(V) 6.18951e-2 4.3379e-4 5.7707e-2 1.1707e-4 2.77724e-2 -8.28240e-3 3.82734e-2 280.8

Table 6: Local method contributions to Benchmark 3. The labels used for the different codes are defined in
Section 3. The values are shown with the number of significant digits provided by the authors. The kinetic
energy Ek in the m = 0, m = 1 and m = 2 modes has to be computed in a post-processing step which is likely
to introduce additional errors in the codes (C) and (V). For this reason, these values were not mandatory for
Benchmark 3. The resolution R is given as the third root of the total number of grid points Ngrid.

was achieved for the kinetic energy solutions, simulations by (MJ), (TSH) and (A) seem to converge to a
lower value of Lz but still within 0.4%. The last two diagnostic values involve the evaluation of the velocity
field at the centre of the spherical domain. While all simulations lie within 0.15% for the velocity along the
y-axis, the velocity along the x-axis shows a larger discrepancy with values within 0.3%.

Considering the very fast convergence it showed for all diagnostics, the standard value will be taken as
the final solution by (H). As for the other two benchmarks, the error bars are chosen such that at least two
additional solutions lie within the given bounds. These standard values and error bars for Benchmark 3 are
given in Table 7.

5 Discussion

The combination of the results for all three test cases paints a uniform and unambiguous picture of a successful
benchmarking exercice. With the wide range of classes of problems covered by these three test cases, ranging
from purely hydrodynamic problems with thermal or boundary forcing to non-linear dynamo simulations,
these results do support the confidence that is put into numerical simulations in a full sphere geometry.
The different codes used to compute numerical solutions, while based on wide range of numerical methods,
all agreed very well with each other. As was observed in similar benchmarking exercices (e.g. Christensen
et al. (2001) and Jackson et al. (2013)) in a spherical shell geometry, the fully spectral simulations showed
the fastest convergence to the final solutions followed by the mixed spherical harmonics and finite difference
codes. The simulations using local methods exhibited a very good agreement but required a much higher
resolution to converge. However, one should keep in mind that the simple spherical geometry and solutions
with a simple structure do favor spectral methods.

With at least five different implementations taking part in each benchmark case, the provided standard
values and error bounds can be trusted to be accurate. Benchmark 1 showed the strongest convergence
among all the solutions proposed. Maybe somewhat suprisingly, Benchmark 2 showed a somewhat larger
discrepancy. Benchmark 3 showed also quite good convergence from all codes, except for the value of the
angular momentum where a larger scatter in the solutions was observed also among the spectral codes that
agreed well for Benchmark 1 and Benchmark 2. Interestingly the two codes by (MJ) and (H) did exhibit
a remarkably similar behaviour and produced neearly the same results for all values in Benchmark 1 and
Benchmark 2. While both use a spherical harmonic expansion, the radial discretisation is quite different.
(H) uses a parity constrained Chebyshev expansion while (MJ) uses a basis set that satisfies the regularity
conditions at the origin exactly.

Two physical issues have emerged as part of these calculations. The use of stress-free boundary conditions
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Benchmark 3: Boundary forced rotating bubble

Parameters
ν Ω u0

10−2 10
√

3
2π

Boundary conditions
Tangential flow: ubc = u0∇Y1

1 (θ, φ)

Requested values
Ek 6.1831 · 10−2 ± 1 · 10−6

Lz 2.7796 · 10−2 ± 1 · 10−6

Velocity through centre

ux −8.2644 · 10−3 ± 2.3 · 10−6

uy 3.8307 · 10−2 ± 2 · 10−6

Table 7: Table of the standard values obtained for Benchmark 3. The viscosity ν, the rotation rate Ω and
boundary velocity u0 are used to parametrize Benchmark 3. The governing equation for the velocity u is
given in Section 2. The kinetic energy Ek is defined in Equation 53. Lz is the ẑ component of the angular
momentum. ux and uy are the x̂ and ŷ components of the velocity through the centre of the bubble.

in Benchmark 1 and Benchmark 2 imply that angular momentum must be conserved. As was also discovered
in Jones et al. (2011), it was not the case in all the codes. Several groups simply monitored the evolution of
the angular momentum and reported no problem with the provided resolutions. On the other hand, some of
the codes needed to correct every few time steps to avoid building up unphysical angular momentum. The
relatively long integration time required to reach Benchmark 2 did exacerbate the problem as even small
errors do accumulate to a sizeable value over a large number time steps. (H) did follow a different approach
and imposed a modified boundary condition to explicitly impose conservation.

The full sphere dynamo problem is of great geophysical importance, as it accurately represents the Early
Earth prior to the formation of the inner core (see Jacobs (1953)). The results from Benchmark 1 and
Benchmark 2 show that even a small inner core may result in solutions that strongly differ from the full sphere
solutions. Indeed the use of a small inner core systematically produced less accurate solutions. Problems in
a full sphere geometry, like the simulation of Early Earth’s dynamo, should be addressed with specialized
codes. It is expected that this issue will become even more important in more complex flows.
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A Spherical harmonics

The Schmidt quasi-normalised spherical harmonic basis was used to provide a simpler expression for the
initial conditions. The spherical harmonic Ym

l of degree l and order m is given by

Ym
l (θ, ϕ) = Pm

l (cos θ)eimϕ, (54)

where the Pm
l (cos θ) are the Schmidt quasi-normalized associated Legendre functions. The above definition

of the spherical harmonic can also be written as function of the normalized associated Legendre functions
P̂m
l (cos θ) leading to the expression

Ym
l (θ, ϕ) =

√
(l −m)!

(l +m)!
P̂m
l (cos θ)eimϕ. (55)

The orthogonality relation for the Ym
l defined above is given by

∫ π

0

∫ 2π

0

Ym
l Ym′

l′
∗
dΩ =

4π(2− δm0)

2l + 1
δll′δmm′ , (56)

where the ∗ denotes the complex conjugate.
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