Reverberation Mapping Measurements of Black Hole Masses in Six Local Seyfert Galaxies

K. D. Denney¹, B. M. Peterson^{1,2}, R. W. Pogge^{1,2}, A. Adair³, D. W. Atlee¹, K. Au-Yong³, M. C. Bentz^{1,4,5}, J. C. Bird¹, D. J. Brokofsky^{6,7}, E. Chisholm³, M. L. Comins^{1,8}, M. Dietrich¹, V. T. Doroshenko^{9,10,11}, J. D. Eastman¹, Y. S. Efimov¹⁰, S. Ewald³, S. Ferbey³, C. M. Gaskell^{6,12}, C. H. Hedrick^{6,8}, K. Jackson³, S. A. Klimanov^{10,11},
E. S. Klimek^{6,13}, A. K. Kruse^{6,14}, A. Ladéroute³, J. B. Lamb¹⁵, K. Leighly¹⁶, T. Minezaki¹⁷, S. V. Nazarov^{10,11}, C. A. Onken^{18,19}, E. A. Petersen⁶, P. Peterson²⁰, S. Poindexter¹,
Y. Sakata²¹, K. J. Schlesinger¹, S. G. Sergeev^{10,11}, N. Skolski³, L. Stieglitz³, J. J. Tobin¹⁵, C. Unterborn¹, M. Vestergaard^{22,23}, A. E. Watkins⁶, L. C. Watson¹, and Y. Yoshii¹⁷

¹Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA; denney@astronomy.ohio-state.edu

 2 Center for Cosmology and Astro Particle Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210, USA

³Centre of the Universe, Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada

⁴Present address: Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California at Irvine, Irvine, CA 92697-4575, USA

 $^5 {
m Hubble}$ Fellow

⁶Department of Physics & Astronomy, University of Nebraska, Lincoln, NE 68588-0111, USA.

⁷Deceased, 2008 September 13

⁸Current address: Astronomy and Astrophysics Department, Pennsylvania State University, 525 Davey
Laboratory, University Park, PA 16802, USA

⁹Crimean Laboratory of the Sternberg Astronomical Institute, p/o Nauchny, 98409 Crimea, Ukraine

¹⁰Crimean Astrophysical Observatory, p/o Nauchny, 98409 Crimea, Ukraine

¹¹Isaak Newton Institute of Chile, Crimean Branch, Ukraine

¹²Current address: Astronomy Department, University of Texas, Austin, TX 78712-0259, USA

 $^{13}\mathrm{Current}$ address: Astronomy Department, MSC 4500, New Mexico State University, PO BOX 30001, La Cruces, NM 88003-8001, USA

 $^{14}\mathrm{Current}$ address: Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA

¹⁵Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109-1040, USA

¹⁶Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, 440 W. Brooks St., Norman, OK 73019, USA

 17 Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan

¹⁸Plaskett Fellow; Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada

¹⁹Current address: Mount Stromlo Observatory, Research School of Astronomy & Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia

²⁰Ohio University, Department of Physics and Astronomy, Athens, OH 45701-2979, USA

²¹Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan

²²Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA

ABSTRACT

We present the final results from a high sampling rate, multi-month, spectrophotometric reverberation mapping campaign undertaken to obtain either new or improved ${\rm H}\beta$ reverberation lag measurements for several relatively low-luminosity AGNs. We have reliably measured the time delay between variations in the continuum and ${\rm H}\beta$ emission line in six local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) $R_{\rm BLR}-L$ relationship, where our results remove outliers and reduce the scatter at the low-luminosity end of this relationship. We also present velocity-resolved ${\rm H}\beta$ time delay measurements for our complete sample, though the clearest velocity-resolved kinematic signatures have already been published.

Subject headings: galaxies: active — galaxies: nuclei — galaxies: Seyfert

1. INTRODUCTION

The technique of reverberation mapping (Blandford & McKee 1982; Peterson 1993) has been used to directly measure black hole masses in relatively local broad-line (Type 1) AGNs for over two decades (see compilation by Peterson et al. 2004). In recent years, these measurements have become particularly desirable with the increasingly strong evidence (both observational and theoretical) that there is a connection between supermassive black hole (BH) growth and galaxy evolution (e.g., Silk & Rees 1998; Kormendy & Gebhardt 2001; Häring & Rix 2004; Di Matteo et al. 2005; Bennert et al. 2008; Somerville et al. 2008; Hopkins & Hernquist 2009; Shankar et al. 2009). Empirical relationships have been discovered for both quiescent and active galaxies that show similar correlations between the central BH and properties of the bulge of the host galaxy (well outside the gravitational sphere of influence of the black hole). Examples include correlations between the BH mass and total luminosity of stars in the galactic bulge — the $M_{\rm BH}$ - $L_{\rm bulge}$ relationship (Kormendy & Richstone 1995; Magorrian et al. 1998; Wandel 2002; Graham 2007; Bentz et al. 2009a) — and between BH mass and the bulge stellar velocity dispersion — the $M_{\rm BH}$ σ_{\star} relationship (Ferrarese & Merritt 2000; Gebhardt et al. 2000a,b; Ferrarese et al. 2001; Tremaine et al. 2002; Onken et al. 2004; Nelson et al. 2004).

 $^{^{23}\}mathrm{Dark}$ Cosmology Centre, Niels Bohr Institute, Copenhagan University

The current thrust to better understand this BH-galaxy connection relies on mass measurements of large samples of black holes in both the local and distant Universe. The masses of BHs in distant galaxies can only be measured indirectly using the scaling relationships mentioned above, as well as the AGN $R_{\rm BLR}$ –L relationship (Kaspi et al. 2000, 2005; Bentz et al. 2006, 2009b), which provides the capability to estimate BH masses from a single spectrum of an AGN (Wandel et al. 1999). In order to understand the evolution of BH and galaxy growth over cosmological times, it is useful to compare the location of distant galaxies on these relationships with local samples. This can only be done by calibrating the local relation with direct BH mass measurements.

Local masses are measured directly in quiescent galaxies using dynamical methods (see Kormendy & Richstone 1995; Kormendy & Gebhardt 2001; Ferrarese & Ford 2005, for reviews) that rely on resolving the motions of gas and stars within the sphere of influence of the central BH and are thus very resolution intensive and only applicable in the nearby Universe. Direct measurements can also be made from observations of megamasers sometimes seen in Type 2 AGNs, but making these observations relies on a particular viewing angle into the nuclear region of these galaxies and is thus not applicable to large numbers of objects. Direct mass measurements can also be made in Type 1 AGNs using reverberation mapping, which is a method that relies on time resolution to trace the light-travel time delay between continuum and broad emission-line flux variations to measure the characteristic size of the broad line region (BLR). Using virial arguments, this size is related to the black hole mass through the velocity dispersion of the BLR gas, determined from the broad emission-line width. Although reverberation mapping is technically applicable at all redshifts, the reverberation time-delay scales with the AGN luminosity (i.e., the $R_{\rm BLR}$ -L relationship), and this coupled with time dilation effects make it difficult and particularly time-consuming to make such measurements out to high redshift (see Kaspi et al. 2007).

The constraints for making direct BH mass measurements at large distances make the use of the $R_{\rm BLR}$ –L relationship particularly attractive for obtaining even indirect mass estimates at all redshifts for which a broad-line AGN spectrum can be obtained. In addition, masses can be estimated for large samples of objects (e.g., McLure & Dunlop 2004; Kollmeier et al. 2006; Salviander et al. 2007; Shen et al. 2008; Vestergaard et al. 2008), facilitating studies of the BH-galaxy connection and its evolution across cosmic time (e.g., Salviander et al. 2007; Vestergaard & Osmer 2009). However, in order to reliably apply these relationships to high redshift objects and determine any evolution in the relationships themselves, local versions of the relationships need to be well-populated with high-quality data, so that calibration of these local relationships is secure (i.e., observational scatter minimized) and any intrinsic scatter is well characterized (see, e.g., Bentz et al. 2006, 2009a,b; Graham 2007; Gültekin et al. 2009; Woo et al. 2010, for recent efforts to improve scaling

relation calibration and characterization of intrinsic scatter). Furthermore, systematic uncertainties also need to be understood and minimized so that the local relations, on which all other related studies are based, are as robust as possible. For instance, systematic uncertainties are present in the direct, dynamical mass measurements of the BHs in quiescent galaxies due to model-dependencies of the mass derivation (e.g., Gebhardt & Thomas 2009 find more than a factor of two difference in the measured BH mass in M87 when they include a dark matter halo in their model; see also Shen & Gebhardt 2010 and van den Bosch & de Zeeuw 2010 for more recent model-dependent changes made to previously measured quiescent black hole masses that change the masses by similar amounts, i.e., factors of ~ 2). On the other hand, the reverberation-based masses as we present them (measuring simply the mean BLR radius from the reverberation time-delay) do not rely on any physical models; instead, the largest systematic uncertainty comes from the additional zero-point calibration of the mass scale (Woo et al. 2010). This calibration is needed due to a number of uncertainties, such as the relationship between the line-of-sight (LOS) velocity dispersion measured from the broad-line width and the actual velocity dispersion of the BLR, systematic effects in determining the effective radius, and the role of non-gravitational forces.

In this work, we present new reverberation-mapping measurements of the BLR radius and black hole mass for several nearby Seyfert galaxies from an intensive spectroscopic and photometric monitoring program. The goals of this program are (1) to improve the calibration of local scaling relationships by populating them with not only additional high-quality measurements, but also replace previous measurements of either poor quality or that were suspect for one reason or another, and (2) to take the method of reverberation mapping one step past its currently successful application of measuring BLR radii and BH masses to uncover velocity-resolved structure in the reverberation delays from the $H\beta$ emission line. This velocity-resolved analysis is a first step towards recovering velocity-dependent $H\beta$ transfer functions, or "velocity-delay maps", which describe the response of the emission-line to an outburst from the ionizing continuum as a function of LOS velocity and light-travel time-delay (for a tutorial, see Peterson 2001; Horne et al. 2004). Creation of velocity-delay maps provides valuable knowledge of the structure, inclination, and kinematics of the BLR, which in turn will reduce systematic uncertainties in reverberation-based black hole mass measurements.

Our monitoring program spanned more than four months, over which primary spectroscopic observations were obtained nightly (weather permitting) for the first three months at MDM Observatory. Supplementary observations were gathered from other observatories around the world. Objects in our sample were targeted because (a) they had short enough expected lags (i.e., low enough luminosity) that we were likely to see sufficient variability over the course of our $\sim 3-4$ month campaign to securely measure a reverberation time delay,

(b) they appeared as outliers on AGN scaling relationships and/or had large uncertainties associated with previous results due to suspected undersampling or other complications, and (c) previous observations demonstrated the potential for our high sampling-rate observations to uncover a velocity-resolved line response to the continuum variations. We also note that some of the AGNs observed in this program are among the closest AGNs and are therefore the best candidates for measuring the central black hole masses by other direct methods such as modeling of stellar or gas dynamics, which will allow a direct comparison of mass measurements from multiple independent techniques. This paper is arranged such that we present our observations and analysis in Section 2, the black hole mass measurements are described in Section 3, any velocity-resolved structures that we uncovered are presented in Section 4, and our results are discussed in Section 5.

2. Observations and Data Analysis

Except where noted, data acquisition and analysis practices employed here follow closely those laid out by Denney et al. (2009b) for the first results from this campaign on NGC 4051. The reader is also referred to similar previous works, such as Denney et al. (2006) and Peterson et al. (2004), for additional details and discussions on these practices. Throughout this work, we assume the following cosmology: $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.70$, and $H_0 = 70$ km sec⁻¹ Mpc⁻¹.

2.1. Spectroscopy

Spectra of the nuclear region of our complete¹ sample (see Table 1) were obtained daily (weather permitting) over 89 consecutive nights in Spring 2007 with the 1.3 m McGraw–Hill telescope at MDM Observatory, and supplemental spectroscopic observations of most targets were obtained with the 2.6 m Shajn telescope of the Crimean Astrophysical Observatory (CrAO) and/or the Plaskett 1.8 m telescope at Dominion Astrophysical Observatory (DAO) to extend the total campaign duration to ~120 nights. We used the Boller and Chivens CCD spectrograph at MDM with the 350 grooves/mm grating (i.e., a dispersion of 1.33 Å/pix) to target the H β λ 4861 and [O III] $\lambda\lambda$ 4959, 5007 emission line region of the optical spectrum. The position angle was set to 0°, with a slit width of 5″.0 projected on the sky, resulting in a

¹We also monitored MCG 08-23-067, but because this object did not vary sufficiently during our campaign, we did not complete a full reduction and analysis of the data and do not include it as part of our final, complete sample.

spectral resolution of 7.6 Å across this spectral region. We acquired the CrAO spectra with the Nasmith spectrograph and SPEC-10 1340 × 100 pixel CCD. For these observations a 3".0 slit was utilized, with a 90° position angle. Spectral wavelength coverage for this data set was from ~3800–6000 Å, with a dispersion of 1.8 Å/pix and a spectral resolution of 7.5 Å near 5100 Å. The actual wavelength coverage is slightly greater than this, but the red and blue edges of the CCD frame are unusable due to vignetting. The DAO observations of the H β region were obtained with the Cassegrain spectrograph and SITe-5 CCD, where the 400 grooves/mm grating results in a dispersion of 1.1 Å/pix. The slit width was set to 3".0 with a fixed 90° position angle. This setup resulted in a resolution of 7.9 Å around the H β spectral region. Figure 1 shows the mean and rms spectra of our sample based on the MDM observations. Table 2 gives more detailed statistics of the spectroscopic observations obtained for each target, including number of observations, time span of observations, spectral resolution, and spectral extraction window.

A relative flux calibration of each set of spectra was performed using the χ^2 goodness of fit estimator algorithm of van Groningen & Wanders (1992) to scale relative fluxes to the [O III] $\lambda5007$ constant narrow-line flux. This algorithm not only makes a multiplicative scaling to account for the night-to-night differences in flux in this line caused primarily by aperture affects, but it also makes slight wavelength shifts to correct for zero-point differences in the wavelength calibration and small resolution corrections to account for small variations in the line width caused by variable seeing. The best-fit calibration is found by minimizing residuals in the difference spectrum formed between each individual spectrum and the reference spectrum, which was taken to be the average of the best spectra of each object (i.e., those obtained under photometric or near-photometric conditions). Because of this multiple-component calibration method, the final, scaled [O III] $\lambda5007$ line flux in each spectrum is not exactly the same as the reference spectrum. Instead, there is a small standard deviation in the mean line flux due to differences in data quality that averages $\sim1.2\%$ across our sample.

2.2. Photometry

In addition to spectral observations, we obtained supplemental V-band photometry from the 2.0 m Multicolor Active Galactic NUclei Monitoring (MAGNUM) telescope at the Haleakala Observatories in Hawaii, the 70 cm telescope of the CrAO, and the 0.4 m telescope of the University of Nebraska. The number of observations obtained from each telescope and the time span over which observations were made of each target are given in Table 3.

The MAGNUM observations were made with the multicolor imaging photometer (MIP)

as described by Kobayashi et al. (1998a,b), Yoshii (2002), and Kobayashi et al. (2004). Photometric fluxes were measured within an aperture with radius 8".3. Reduction of these observations was similar to that described for other sources by Minezaki et al. (2004) and Suganuma et al. (2006), except the host-galaxy contribution to the flux within the aperture was not subtracted and the filter color term was not corrected because these photometric data were later scaled to the MDM continuum light curves (as described below). Also, minor corrections (of order 0.01 mag or less) due to the seeing dependence of the host-galaxy flux were ignored.

The CrAO photometric observations were collected with the AP7p CCD mounted at the prime focus of the 70 cm telescope (f=282 cm). In this setup, the 512×512 pixels of the CCD field projects to a $15' \times 15'$ field of view. Photometric fluxes were measured within an aperture diameter of 15''.0. For further details of the CrAO V-band observations and reduction, see the similar analysis described by Sergeev et al. (2005).

The University of Nebraska observations were conducted by taking and separately measuring a large number of one-minute images (\sim 20). Details of the observing and reduction procedure are as described by Klimek et al. (2004). Comparison star magnitudes were calibrated following Doroshenko et al. (2005a,b) and Chonis & Gaskell (2008). To minimize the effects of variations in the image quality, fluxes were measured through an aperture of radius 8″.0. The errors given for each night are the errors in the means.

2.3. Light Curves

Except where noted below for individual objects, continuum and H β light curves were created as followed. Continuum light curves for each object were made with the V-band photometric observations and the average continuum flux density measured from spectroscopic observations over the spectral ranges listed in Table 2 (i.e., rest frame $\sim 5100 \,\text{Å}$). Continuum light curves from each source were scaled to the same flux scale following the procedure described by Denney et al. (2009b). Figure 2 (top panels) shows these merged light curves, where measurements from each different observatory are shown by the different symbols described in the figure caption.

Light curves of the H β flux were made by integrating the line flux above a linearly interpolated continuum, locally defined by regions just blueward and redward of the H β emission line. The H β emission line was defined between the observed frame wavelength ranges given for each object in Table 2. The H β light curves formed from each separate spectroscopic data set (i.e., MDM, CrAO, and DAO) were placed on the same flux scale

(i.e., that of the MDM observations) by again following the scaling procedures described by Denney et al. (2009b). An additional flux calibration step was used for NGC 3516, however, because it has a particularly extended [O III] narrow-line emission region. In an attempt to decrease the uncertainties in our relative flux calibration from slit losses of this extended emission, we made an additional correction to each MDM $H\beta$ flux measurement to account for possible differences in the observed $[O III] \lambda 5007$ flux due to seeing effects. To measure the expected differences in $[OIII] \lambda 5007$ flux entering the slit as a result of changes in the nightly seeing, we followed the procedure of Wanders et al. (1992), using their artificially seeing-degraded narrow-band image of the $[O III] \lambda 5007$ emission from the nuclear region of NGC 3516 (details regarding the narrow-band data are described by Wanders et al.). Using the differences in measured flux, we scaled our MDM flux measurements accordingly. We could only do this for the MDM measurements, since we do not have accurate seeing estimates for the CrAO and DAO data sets. Because of our deliberately large aperture (see Table 2, Column 8), the effect was not appreciable for most observations, and there is no indication that our inability to complete the same analysis for the CrAO and DAO data had any measurable effect on the subsequent time-series analysis. The lower panels of Figure 2 show the H β light curves for each object after merging the separate data sets into a single $H\beta$ light curve.

Before completing the time-series analysis, the light curves shown in Figure 2 were modified in the following ways:

- 1. An absolute flux calibration was applied to both continuum and H β light curves by scaling to the absolute flux of the [O III] $\lambda 5007$ emission line given for each object in Column 3 of Table 4. For objects in which there was not a previously reported absolute flux, we calculated one from the average line flux measured from only those observations obtained at MDM under photometric conditions.
- 2. The host galaxy starlight contribution to the continuum flux was subtracted. This contribution, listed for each target in Column 5 of Table 4, was determined using the methods of Bentz et al. (2009b) for all objects except Mrk 290, which had not been targeted for reverberation mapping prior to our observing campaign². For Mrk 290, we use an estimate made from the spectral decomposition (following decomposition method "B" described by Denney et al. 2009a) of an independent spectrum taken at MDM with nearly the same setup as our campaign observations but covering optical

 $^{^2}$ The 2008 LAMP campaign (Bentz et al. 2009c) subsequently monitored Mrk 290, and it is currently being targeted for HST observations (GO 11662, PI Bentz) to measure its host starlight contribution, but the observations have not yet been completed.

- wavelengths from 3500–7150 Å with a 1".5 slit. This value is only a lower limit, however, since this slit width was smaller than that of our campaign observations (i.e., 5".0).
- 3. We "detrended" any light curves in which we detected long-term secular variability over the duration of the campaign that is not associated with reverberation variations (Welsh 1999; see also Sergeev et al. 2007, who show that there is little correlation between long-term continuum variability and H β line properties, demonstrating the independence of this variability on reverberation processes). Detrending is important because if the time series contains long-term trends (i.e., compared to reverberation timescales), the flux measurements are not randomly distributed about the mean and are, thus, highly correlated on these long timescales. These long time scale correlations then dominate the results of the cross correlation analysis that determines the time delay, biasing the desired correlation due to reverberation. Welsh (1999) strongly recommends removing these low-frequency trends with low order polynomials (a linear fit at the very least) to improve the reliability of cross correlation lag determinations. We took a conservative approach and only linearly detrended light curves in which there was evidence for secular variability and for which the cross correlation analysis was improved upon detrending: both light curves from Mrk 290, the H β light curve from Mrk 817, and the continuum light curve from NGC 3227 (see Section 2.4 for further discussion). These fits are shown in Figure 2 for each of these respective light curves. It was unnecessary to detrend all light curves, as no improvement in the cross correlation analysis would result from detrending light curves that already have a relatively flat mean flux. Also, it is not surprising for associated continuum and line light curves to exhibit different long-term secular trends, since the relationship between the measured continuum and the ionizing continuum responsible for producing the emission lines may not be a linear one (Peterson et al. 2002), and the exact response of the line depends on the detailed structure and dynamics of the BLR.
- 4. We excluded the points from the Mrk 817 light curve with JD<2454200 because (1) there is a large gap in the data between these points and the rest of the light curve, and (2) there is little to no coherent variability pattern seen here (i.e., the continuum is relatively flat and noisy, and the H β fluxes are particularly noisy and are of otherwise little use, given there are no continuum points at earlier times).

Tabulated continuum and H β fluxes for all objects, except for NGC 4051 which were previously reported by Denney et al. (2009b), are given in Tables 5 and 6, respectively. Values listed represent the flux of each observation after completing all flux calibrations described above (i.e., absolute flux calibration based on the [O III] λ 5007 emission-line flux and host galaxy starlight subtraction), but before detrending, since this results in an arbitrary

flux scale normalized to 1.0. The final calibrated light curves used for the subsequent timeseries analysis are shown for each object in the left panels of Figure 3. Statistical parameters describing these calibrated light curves (again, before detrending) are given in Table 7, where Column (1) lists each object. Columns (2) and (3) are mean and median sampling intervals, respectively, between data points in the continuum light curves. The mean continuum flux is shown in column (4), while column (5) gives the excess variance, calculated as

$$F_{\text{var}} = \frac{\sqrt{\sigma^2 - \delta^2}}{\langle f \rangle} \tag{1}$$

where σ^2 is the variance of the observed fluxes, δ^2 is their mean square uncertainty, and $\langle f \rangle$ is the mean of the observed fluxes. Column (6) is the ratio of the maximum to minimum flux in the continuum light curves. Columns (7–11) display the same quantities as Columns (2–6) but for the H β light curves.

2.4. Time-Series Analysis

We performed a cross correlation analysis to evaluate the mean light-travel time delay, or lag, between the continuum and H β emission line flux variations. We primarily employed an interpolation scheme (Gaskell & Sparke 1986; Gaskell & Peterson 1987, with the modifications of White & Peterson 1994). Using this method, we first interpolate (with an interval equal to roughly half the median data spacing, i.e., \sim 0.5 day) between points in the emission-line light curve before cross correlating it with the original continuum light curve, calculating cross correlation coefficients, r, for many potential lag values (both positive and negative). We then average these cross correlation coefficients with those measured by imposing the same set of possible lag values in the case where we cross correlate an interpolated continuum light curve with the original emission-line light curve. This gives us a distribution of average cross correlation coefficients as a function of possible lags, known as the cross correlation function (CCF). We checked the results from this method with the discrete correlation method of Edelson & Krolik (1988), also employing the modifications of White & Peterson (1994), but we do not show these results here, since they are consistent with our primary cross correlation method, and provide no additional information.

The right panels of Figure 3 show the adopted cross correlation results for each object (i.e., after detrending selected light curves; see below for a discussion of the effect of detrending on this analysis). Here, the auto-correlation function (ACF), computed by cross correlating the continuum with itself, is shown in the top right panel for each object, and the CCF computed by cross correlating the H β light curve with that of the continuum, is shown

in the bottom right. Because the CCF is a convolution of the transfer function with the ACF, it is instructive to compare the two distributions, as the lag measured through this type of cross correlation analysis will depend not only on the delay map, but also on characteristic time scales of the continuum variations (see, e.g., Netzer & Maoz 1990). We characterize the time delay between the continuum and emission-line variations by the parameter $\tau_{\rm cent}$, the centroid of the CCF based on all points with $r \geq 0.8 r_{\rm max}$, as well at the lag corresponding to the peak in the CCF at $r = r_{\rm max}$, $\tau_{\rm peak}$. Time dilation-corrected values of $\tau_{\rm cent}$ and $\tau_{\rm peak}$ were determined for each object using the redshifts listed in Table 1, i.e., $\tau_{\rm rest} = \tau_{\rm obs}/(1+z)$, and are given in Table 8. Uncertainties in both lag determinations are computed via model-independent Monte-Carlo simulations that employ the bootstrap method of Peterson et al. (1998), with the additional modifications of Peterson et al. (2004).

Visual inspection of the CCFs of selected objects before and after detrending was made to determine if detrending these light curves was warranted. Based on the combined properties of the light curves shown in Figure 2 (whether or not an overall slope appeared in the flux across the extent of our campaign) and the CCFs, shown in Figure 4 for Mrk 290, Mrk 817, and NGC 3227 before and after detrending, we ultimately decided to adopt the detrending for the following reasons listed for each object:

Mrk 290 — The top panels of Figure 4 show that before detrending (left), the peak of the CCF is broader than the detrended peak (right) and is blended with an aliased peak at ~ 30 days. Since the reverberation lag is clearly seen in the Mrk 290 light curves in Figures 2 and 3 and the peak of highest significance is the same both before and after detrending, the presence of this alias only acts to decrease the precision of our lag measurements. While $\tau_{\rm cent}$ is roughly one day smaller after detrending (a difference less than even the measured uncertainty) due to the reduced significance of the aliased peak at ~ 30 days by a factor of almost 10, the detrended CCF is narrower and the measured lags more precise, so we adopt the detrended measurements.

 $Mrk\,817$ — The middle panels of Figure 4 show the original (left) and detrended (right) CCFs from the analysis of Mrk 817. The choice to detrend was marginal in this case. The process resulted in a larger observed lag ($\tau_{\rm cent}=14.48$ days versus $\tau_{\rm cent}=11.93$) after detrending, contrary to the typical expectation that lags will be underestimated after detrending (since the process removes low frequency variability). We adopt the detrended results because the resulting CCF is narrower, particularly with respect to lags $\lesssim 0.0$ days, and the resulting lag measurement is more consistent with past results that we hold to be reliable (see Section 5.1).

NGC 3227 — The bottom panels of Figure 4 show the original (left) and detrended (right)

CCFs from the analysis of NGC 3227. Here is it obvious that not detrending the light curves results in a non-physical measurement of the lag at \sim -33 days with a broad peak (due to aliasing effects between the features with the highest flux in each of the original continuum and H β light curves). While the physical peak (i.e, with positive lag, as seen and measured from the detrended CCF) is present, every lag is of low significance, i.e., $r \lesssim 0.4$. After detrending, the CCF peak at negative lags is still present, however the 'true' reverberation signal at a lag of \sim 4 days is rightfully more significant.

3. Black Hole Masses

We assume that the motions of the BLR are dominated by the gravity of the central black hole so that the mass of the black hole can be defined by

$$M_{\rm BH} = \frac{fc\tau(\Delta V)^2}{G}.$$
 (2)

Here, τ is the measured emission-line time delay, so that $c\tau$ represents the BLR radius, and ΔV is the BLR velocity dispersion. The dimensionless factor f depends on the structure, kinematics, and inclination of the BLR, and we adopt the value of Onken et al. (2004), $f = 5.5 \pm 1.4$, determined empirically by adjusting the zero-point of the reverberation-based masses to scale the AGN $M_{\rm BH}$ – σ_{\star} relationship to that of quiescent galaxies.

An estimate of the BLR velocity dispersion is made from the width of the Dopplerbroadened H β emission line. This line width is commonly characterized by either the FWHM or the line dispersion, i.e., the second moment of the line profile. Table 8 gives both FWHM and line dispersion, σ_{line} , measurements from the rms spectra of all objects except Mrk 817, in which the rms profile was not well defined (see Figure 1), and thus we measured the width from the mean spectrum. All widths and their uncertainties were measured employing methods described in detail by Peterson et al. (2004). We removed the narrow-line $[O III] \lambda\lambda 4959,5007$ emission and the narrow-line component of H β from all objects before these line widths were measured (except for NGC 4051, where this component could not be reliably isolated due to the line profile shape and, in any case, does not affect our rms line width measurements; see Denney et al. 2009b). Flux contributions from the narrow-line component will not contaminate the line widths measured in the rms spectrum (i.e., the narrow-line component does not vary in response to the ionizing continuum on reverberation timescales), so removal of this component was generally unnecessary for most objects in our sample; however, we do so for all objects anyway to check the accuracy of our H β to O III λ 5007 line ratio determinations (Table 4, column 4) by looking for any significant residual narrow-line emission in the rms spectra of Figure 1. The exception to this is for Mrk 817: since we measured the width in the mean spectrum, it was necessary to remove the narrow-line before measuring the line widths because the narrow-line component will bias (i.e., underestimate) line widths measured in the mean spectrum or in any single-epoch spectrum (see Denney et al. 2009a). Also, for the width measurements in two cases, Mrk 290 and NGC 3227, we narrowed the line boundaries to 4935–5064 Å and 4810–4942 Å, respectively, compared to what was used for the flux measurements, since the rms line profiles of these objects were clearly narrower than their mean profiles (the rms profile is often narrower than the mean profile, which is not surprising, given that likely not all flux seen in the mean spectrum varies in response to the continuum; see, e.g., Korista & Goad 2004).

Black hole masses for all objects, calculated from equation (2), are listed in Table 8 and were calculated using $\tau_{\rm cent}$, for the time delay, τ , and the quoted line dispersion, $\sigma_{\rm line}$, for the emission-line width, ΔV . This combination of measurements for the line width and reverberation lag is not only appropriate because it is the combination used by Onken et al. (2004) to determine the value of the scale factor, f, that we adopt here, but also because Peterson et al. (2004) show that this combination also results in the strongest virial relation between line width and BLR radius, i.e., $R \sim \Delta V^{-0.5}$. The exception to this prescription for the black hole mass calculation is Mrk 817, which has a poorly defined, triple-peaked rms line profile. Because the rms profile is weak and poorly-defined, we measure the line widths from the mean spectrum and use the Collin et al. (2006) calibration of the scale factor determined for the line dispersion measured from the mean spectrum, f = 3.85. Statistical and observational uncertainties have been included in these mass measurements, but intrinsic uncertainties from sources such as unknown BLR inclination cannot be accurately ascertained. We also note here that there has been some debate in the literature as to the importance of radiation pressure on black hole masses calculated using virial assumptions, since the outward radiation force has the same radial dependence as gravity (see Marconi et al. 2008; Netzer 2009; Marconi et al. 2009). As there is not yet conclusive evidence suggesting a radiation-pressure correction is important for the relatively low Eddington ratio objects we present here, we do not make this correction, but a radiation-pressure corrected mass can be computed from the observables given in Table 8 and the formulae provided by Marconi et al. (2008).

4. Velocity-Resolved Reverberation Lags

The primary cross correlation analysis presented above was intended to measure the average time delay across the full extent of the BLR from which to ascertain the mean, or

"characteristic," radius of the H β -emitting region of the BLR to use for calculating black hole masses. For this reason, we utilized the full line flux from which to measure the reverberation signal. However, the BLR is an extended region, and therefore, the light-travel time for the ionizing continuum to reach different volume elements within the BLR will vary across the extent of the emitting region. The expectation is then that the responding BLR gas variations will lag the continuum variations on slightly different time scales as a function of the line of sight velocity. Measuring and mapping these slight differences in the BLR response time across velocity space recovers the transfer function, which is easily visualized as a velocity—delay map (see Horne et al. 2004). Recovering an unambiguous velocity—delay map is a continuing goal of reverberation mapping analyses, as the construction and analysis of such a map is our best hope, with current technology, of gaining insight into the geometry and kinematics of the BLR.

The construction and analysis of full two-dimensional velocity—delay maps is beyond the scope of this work and remains the focus of future research. However, we do present a more simple reconstruction of the velocity-dependent reverberation signal, observed across the H β emission line region when we divide the line flux into eight velocity-space bins of equal flux. These results for NGC 4051, NGC 3516, NGC 3227, and NGC 5548 have been previously published (Denney et al. 2009b,c) but are included again here for completeness. Line boundaries are the same as those used in the full line analysis, except where noted in Table 2. In these cases the narrowed boundaries given above for Mrk 290 were used, and a discussion of the difference in boundary choices for the other objects is presented by Denney et al. (2009c). Light curves were created from measurements of the integrated H β flux in each bin and then cross correlated with the continuum light curve following the same procedures described above. Figure 5 shows the results of this analysis for all objects, where the top panel shows the division of each rms H β line profile into the eight velocity bins, and the bottom panels shows the lag measurements and uncertainties for each of these bins. Error bars in the velocity direction represent the bin width. We see a variety of velocity-resolved responses that we discuss in further detail below.

5. Discussion

5.1. Comparison with Previous Results

Some of the objects in this campaign were targeted, at least in part, because they have previously appeared as outliers on AGN scaling relationships, in particular, the $R_{\rm BLR}$ –L relationship. As such, all objects except Mrk 290 have previous reverberation results, several of which were suspect for one reason or another and warranted re-observation. Based

on the outcomes of the current analysis, we will group our results into three categories: (1) new measurements for an object never before targeted, i.e., Mrk 290, (2) replacement measurements for objects that had uncertain results (typically due to undersampling) and for which our results completely replace any previous measurements of the H β reverberation lag, i.e., NGC 3227, NGC 3516, and NGC 4051, and (3) additional measurements of objects for which we already trust the previous lag measurements, i.e., NGC 5548 and Mrk 817. In this context, we can compare our new results to previously published results.

5.1.1. New Measurements

At the time of our campaign (first half of 2007), reverberation mapping had never before targeted Mrk 290. However, in 2008 LAMP also monitored Mrk 290 for a reverberation analysis (see Bentz et al. 2009c), although they were unable to recover an unambiguous reverberation lag measurement from their data because Mrk 290 exhibited little variability during their campaign. Therefore, the results we present here are the only reverberation measurements of this object.

5.1.2. Replacement Measurements

Our current measurements of NGC 3227, NGC 3516, and NGC 4051 should completely supersede previous results measuring a reverberation radius based on H β and the black hole mass. A thorough comparison between our new measurement of the BLR radius of NGC 4051 and that from past studies is discussed by Denney et al. (2009b), and the reader is referred to this work for details. However, the main conclusion of that comparison is that the light curves from which previous measurements of the lag were made (e.g., Peterson et al. 2000) were undersampled, leading to an overestimate of the lag. Our current study remedied this problem with a much higher sampling rate, routinely obtaining more than one observation per day.

Previous reverberation lag measurements of the H β -emitting region in NGC 3227 (Salamanca et al. 1994; Winge et al. 1995; Onken et al. 2003) were reanalyzed by Peterson et al. (2004). The H β light curves of Salamanca et al. (1994) from a Lovers of Active Galaxies (LAG) campaign were undersampled, and they do not even attempt to measure a time delay from them. Winge et al. (1995) report an H β lag of 18 \pm 5 days from observations taken during a period in which the optical luminosity was only \sim 0.3 dex larger than our current observations (i.e., a change in radius of \sim 40% is expected from such a change in luminosity, based on

a $R_{\rm BLR}$ -L relationship slope of ~ 0.5). However, their average and median sampling intervals were ~6 and four days, respectively, which is marginally sampled compared to what is needed for this low luminosity source. These early reverberation campaigns did not have the benefit of the predictive power that we currently have with the $R_{\rm BLR}$ -L relationship to use for planning campaign observations; i.e., these campaigns were fundamentally exploratory. A reanalysis of the LAG consortium data presented by Salamanca et al. (1994) was conducted by Onken et al. (2003) using the van Groningen & Wanders (1992) algorithm to reduce uncertainties in the relative flux calibration of the spectra. Onken et al. found an ${\rm H}\beta$ lag of $\tau_{\rm cent} = 12.0^{+26.7}_{-9.1}$ days, consistent with the results of Winge et al. (1995). Later, Peterson et al. (2004) also re-analyzed the CTIO data presented by Winge et al. (1995) with the van Groningen & Wanders (1992) algorithm and further re-examined the LAG data rescaled by Onken et al. (2003). This reanalysis resulted in some improvement in the $H\beta$ lag determinations and uncertainties, i.e., smaller overall lags, however, the reanalyzed values still had large uncertainties, resulting in a measurement consistent with zero lag: $\tau_{\rm cent}=8.2^{+5.1}_{-8.4}$ days and $\tau_{\rm cent}=5.4^{+14.1}_{-8.7}$ days for the CTIO and LAG data sets, respectively (Peterson et al. 2004). It is clear that our new measurement of the H β lag in NGC 3227 of $\tau_{\rm cent} = 3.75^{+0.76}_{-0.82}$ days should supersede these past results.

Likewise, the previous reverberation data for NGC 3516 also came from a LAG consortium campaign, also with a sampling interval of ~ 4 days (Wanders et al. 1993). Since the lag for this object was at least larger than the sampling rate, the undersampling was not as severe a handicap as for other objects in our sample, such as NGC 4051 and NGC 3227. Thus, reanalysis of the LAG data first by Onken et al. (2003) and then by Peterson et al. (2004) measure lags of $\tau_{\rm cent} = 7.3^{+5.4}_{-2.5}$ days and $\tau_{\rm cent} = 6.7^{+6.8}_{-3.8}$ days, respectively, that are consistent with the original analysis by Wanders et al., who measure the peak H β lag to be 7 ± 3 days, with the centroid of the CCF yielding a radius of 11 light days. All of these centroid measurements are consistent with our new measurement of $\tau_{\text{cent}} = 11.68^{+1.02}_{-1.53}$ days. Also, the LAG spectra were obtained through a narrow (2"0) slit; as the narrow-line region in this object is partially resolved, it was necessary to make seeing-dependent corrections to the continuum and emission-line measurements (Wanders et al. 1992) that are both large and uncertain. For our new measurements, the aperture corrections are small and have a negligible effect on the final results; the seeing-corrected and uncorrected fluxes differ by, on average, $0.09 \pm 0.05\%$, which is smaller than the standard deviation of our relative flux scaling of 1.6% for NGC 3516. Clearly, our new observations with an approximately daily sampling rate show great improvement over past campaigns, for these objects, and the results presented here should supersede past values of the H β lag measured for NGC 3227, NGC 3516, and NGC 4051.

5.1.3. Additional Measurements

The goals of this campaign were not only to re-observe outliers or objects with highly uncertain lag measurements but also to explore the possibility of uncovering velocity-resolved kinematic signatures and eventually reconstruct velocity—delay maps. Therefore, we also monitored two objects, NGC 5548 and Mrk 817, for which previous reverberation mapping results are solid, and lags measured from this campaign are simply to be considered additional measurements of the BLR radius. Reasons for making repeat reverberation measurements of AGNs include (1) exploring the radius-luminosity relationship in a single source, (2) checking the repeatability of the mass measurements for AGNs at different times, in different luminosity states, and with different line profiles, and (3) testing different characterizations of the line width (i.e., determining what line width measure leads to the most repeatable mass value). The mean lag and black hole mass results presented here for NGC 5548 are consistent with past results, taking into account the luminosity state of NGC 5548 during our campaign compared with other campaigns (i.e., NGC 5548 has been in a low luminosity state for the past several years, but the measured lags have been consistently smaller, as expected for this low state; also see Bentz et al. 2007, 2009c).

We also monitored Mrk 817, which is the highest luminosity object in our present sample. Previous measurements of the H β radius were made by Peterson et al. (1998) from an eightyear campaign to monitor nine Seyfert 1 galaxies. From this campaign, they separately measured the lag from three different observing seasons. The reanalysis of this data by Peterson et al. (2004) resulted in rest-frame τ_{cent} measurements of $19.0^{+3.9}_{-3.7}$, $15.3^{+3.7}_{-3.5}$, and $33.6_{-7.6}^{+6.5}$ days. Bentz et al. (2009b) calculate a weighted average of log $\tau_{\rm cent}$ from these three measurements of (converted back to linear space) $\langle \tau_{\text{cent}} \rangle_{\text{wt}} = 21.8^{+2.4}_{-3.0}$ days at an average luminosity of $\langle \log L_{5100} \rangle_{\rm wt} = 43.64 \pm 0.03$ to use in calibrating the $R_{\rm BLR}$ -L relationship. The luminosity of Mrk 817 during our campaign was only about 0.1 dex higher than the weighted average luminosity quoted by Bentz et al., and our measured lag of $\tau_{\rm cent} = 14.04^{+3.41}_{-3.47}$ days is highly consistent with the shortest lag of Peterson et al. and marginally consistent with the 19.0 day lag and the weighted average. Furthermore, the virial mass that we measure (see Column 8 of Table 8) is also consistent with those given by Peterson et al. (2004). Unfortunately, we were not able to improve on the uncertainties associated with these measurements, as our H β light curve for this object was rather noisy (see Figures 2 and 3), which decreases the certainty with which we are able to trace the reverberated continuum variations in the line light curve. Since there was neither an improvement over nor a discrepancy with past measurements, this new result is simply added to past results as an additional measurement of the H $\!\beta\text{-based}$ BLR radius and $M_{\rm BH}$ in Mrk 817.

5.2. The BLR Radius Luminosity Relationship

To investigate the outcome of our goal to improve the calibration of scaling relations by re-examining objects that had large measurements uncertainties and/or that appeared as outliers on these scaling relationships, we place our new measurements in context to the $R_{\rm BLR}$ -L relationship most recently calibrated by Bentz et al. (2009b). Luminosities were measured from the average, host-corrected continuum flux density measured within the 5100 Å rest-frame continuum windows listed for each object in Table 2. For most objects, we simply corrected for Galactic reddening along the line of sight (Schlegel et al. 1998); however, NGC 3227 and NGC 3516 show evidence of internal reddening that must be taken into account in determining the luminosity. Gaskell et al. (2004) argue that the UV-optical continua of AGNs are all very similar, so that the reddening can be estimated by dividing the spectrum of a reddened AGN by the spectrum of an unreddened AGN. In the case of NGC 3227, we use the value of A_B determined by Crenshaw et al. (2001) by comparing the UV-optical spectrum of NGC 3227 to the unreddened spectrum of NGC 4151. For NGC 3516, we consider two methods for estimating the reddening, which result in consistent estimates of A_B : (1) we follow the Crenshaw et al. method, comparing the spectrum of NGC 3516 again to that of NGC 4151, which results in $A_B = 1.72$, and (2) we use the Balmer decrement measured from the broad components of the H α and H β emission lines to estimate a reddening of $A_B = 1.68$. These two values are highly consistent, and we adopt the average between the two methods of $A_B = 1.70$. Our measured luminosities are given in Column 9 of Table 8, where the uncertainties in the luminosities are the standard deviation in the continuum flux over the course of the campaign, except for NGC 4051, where the uncertainty in the distance is added in quadrature to this (see Denney et al. 2009b).

The top panel of Figure 6 shows the Bentz et al. (2009b) $R_{\rm BLR}-L$ relationship, reproduced from the bottom panel of their Figure 5. Here, we have differentiated the objects targeted for our present campaign with solid squares, while all other objects presented by Bentz et al. are open squares. The bottom panel of Figure 6 shows our current results, where the objects for which our new measurements are either truly new (i.e., Mrk 290) or have become replacements for old values are shown by the solid stars, and we no longer plot the old values. Our additional measurements for NGC 5548 and Mrk 817 are shown with the open stars, and the previous weighted average lags and luminosities for these objects as reported by Bentz et al. are still present in this bottom panel. The reader should immediately notice the increased precision and accuracy of our new and replacement measurements, where it is important to note that we have *not* determined a new fit to the data³. Clearly, these

³Re-evaluating the fit to and scatter in this relationship is outside the scope of this paper but is planned

better measurements emphasize the small intrinsic scatter in this relationship, reinforcing the apparently homologous nature of AGNs, even over many orders of magnitude in luminosity. The results from this campaign also support the conclusion of Peterson (2010) that improving this relationship further will not come from simply obtaining more BLR radii measurements to "beat down" the noise, but rather, from more reliable, higher-precision measurements.

5.3. Velocity-Resolved Results

The cleanest cases of a velocity-resolved reverberation response are for NGC 3516, NGC 3227, and NGC 5548, where we see kinematic signatures indicating apparent infall, outflow, and non-radial, or "virialized," motions, respectively. Denney et al. (2009c) discuss the velocity-resolved results for these three objects and the implications of these different kinematic signatures in the context of our overall understanding of the BLR and the use of BLR radii measurements for determining black hole masses. In addition, Denney et al. (2009b) present and discuss the marginally velocity-resolved lags shown here for NGC 4051, and so those results are not discussed further here.

The objects not discussed in previous publications are Mrk 290 and Mrk 817. Figure 5 shows that there is very little variation in the reverberation lag across the full width of the Mrk 290 line profile, indicating that any differences in the reverberation lag across the extent of the H β -emitting region in this object were unresolvable with the sampling rate of our campaign. An additional possibility for the uniform response we observed (i.e., small range in lags and no short lags observed) could be that the highest velocity gas seen in the wings of the mean spectrum is optically thin, and therefore does not respond to the continuum variations. This is supported by the narrowness of the H β profile in the rms spectrum compared to that observed in the mean spectrum. On the other hand, based on the relative emission-line strengths of the high-velocity wings in several AGNs, Snedden & Gaskell (2007) argue against this interpretation.

At first glance, Mrk 817 appears to show an outflow signature similar to that of NGC 3227, however, cross correlation between the continuum light curve and those derived from the line flux in the first four velocity bins actually results in lag determinations that are, though negative, largely consistent with zero lag. Ignoring these first bins gives results similar to Mrk 290, where no velocity-dependent differences in the lags are resolved. Taken at face value, this result is curious. We present binned light curves of the Mrk 817 line profile in Figure 7,

for future work that will include all new, relevant data (see, e.g., Bentz et al. 2009c).

where to increase the clarity of the discrepancy between the red and blue sides of the line for this discussion, we have combined sets of two bins to make a total of 4 bins instead of eight, i.e., we plot the flux from bin 1 added to that of bin 2, bin 3 added to bin 4, etc. For completeness we also recompute the CCFs (also shown in Fig. 7) and velocity-resolved lag measurements for these four combined bins and find results consistent with simply taking the average of the lags of each set of two bins that we combined, though the uncertainties in the newly measured lags are generally smaller, particularly for the bluest and reddest bins. Upon inspection of the individual light curves for these bins, it becomes apparent that the cross correlation analysis for these bins essentially failed, not finding a strong correlation between the continuum flux variability and that seen in the light curves of Bin 1 and Bin 2. The light curves show a lack of variability in the flux in these bins during the first half of the campaign, and then a fairly monotonic rise in flux during the second half, so the peak in the continuum flux seen near $\sim JD2454230$ is not seen in the light curves of Bins 1 and 2, and instead, the feature the cross correlation analysis picks up is the trough near \sim JD2454282, apparently seen in the Bins 1 and 2 light curves \sim 8–10 days earlier. This combination causes the cross correlation analysis to give unreliable results. Furthermore, no real indication of the expected positive lag can been seen by eye, as can with the other bins (and other objects, for that matter). The observations could be explained by some gas having an unresolved velocity structure near the mean radius measured for this object and there also being an outflowing component in the BLR of this object, so that the blue-shifted gas is primarily along line of sight and a resulting zero day lag is measured. However, given that (1) the overall variability observed in this object was small during this campaign, and (2) the H β profile is very broad, leading to a small variability signal spread over a large wavelength range, we cannot make any strong conclusions at this time. Future efforts will be made both to glean further information from the velocity-delay map reconstructed from our current data as well as to re-analyze the previous monitoring data on this object in an attempt to search for any other indications of velocity-resolved signatures.

Despite the differences we see in the velocity-resolved kinematics across our sample of objects, we do not believe that there is cause for concern for the masses derived from the mean BLR radii measured from these reverberation lags. Obviously, observing unresolved, virial, or infalling gas motions certainly does not question the validity of our assumption that the BLR motions are gravitationally dominated, but indications of outflow may be more problematic. However, even given these signatures, the mean lag we measure is still consistent with lags derived from the majority of the emission-line gas. Besides, it is only gas outflowing at velocities larger than the escape velocity that would break the validity of our assumptions, and this does not seem to be the case. There are good observational and theoretical reasons to believe that there are multiple components within the BLR (e.g., disk

and wind components), and the disk-wind model of Murray et al. (1995), for example, is still able to justify the constraint of the black hole mass by the reverberation mapping radii measurements, even with the presence of a wind (see Chiang & Murray 1996).

From velocity-resolved studies such as the one discussed here and in our previous publications on this data set (Denney et al. 2009b,c), it is clear that high-cadence reverberation mapping studies are beginning to push the envelope with respect to the amount of information we are able to glean from data of high quality and homogeneity. The next goal is to attempt a reconstruction of the velocity-resolved transfer function through the production of velocity-delay maps, with priority placed on the objects shown here and discussed by Denney et al. (2009c) that exhibit statistically significant kinematic signatures of infall, outflow, and virialized motions (NGC 3516, NGC 3227, and NGC 5548, respectively). Preliminary results from this analysis show the potential to reveal the types of structured maps that will hopefully provide additional constraints on future models of the BLR and more clearly reveal distinct kinematic structures responsible for the velocity-resolved signatures we presented here.

6. Conclusion

We have reported the results for our complete sample of six local Seyfert 1 galaxies that were monitored in a reverberation mapping campaign that aimed to remeasure the BLR radius from H β emission in objects that previously had poor measurements (large measurement uncertainties and/or undersampled light curves) or that were targeted with the aim of recovery of velocity-resolved reverberation lag signals and/or transfer functions. Based on the measured luminosities of our sample over the course of our \sim 4 month campaign, we measure H β lags that are in excellent agreement with the expectations of the most recent calibration of the $R_{\rm BLR}$ -L relationship of Bentz et al. (2009b).

Combining these lag measurements with velocity dispersion measurements estimated from the width of the broad H β emission line, we make direct black hole mass measurements for our entire sample. Based on a comparison of our results with previous measurements (where available), most of our sample constitutes results that are either entirely new (Mrk 290) or supersede past measurements (NGC 3227, NGC 3516, and NGC 4051). However, for NGC 5548 and Mrk 817, we compared our current mass measurements with past results and find them consistent within the measurements uncertainties, and therefore, place these results under the category of "additional measurements" for these objects.

An additional goal of this campaign was to determine velocity-resolved reverberation

lags across the extent of the H β -emitting region of the BLR for use in future efforts to recover velocity-delay maps to help constrain the geometry and kinematics of the BLR. Though the velocity structure in some of our targets remained unresolved on sampling-rate-limited time scales, we still found some statistically significant and kinematically diverse velocity-resolved signatures, even within this small sample. We see indications of apparent infall, outflow, and virialized motions, which, if taken at face value, would indicate that the BLR is a complicated region that differs from object to object. However, given the small scatter in the $R_{\rm BLR}$ -L relation and the consistency with which we are able to measure the BLR radius and black hole mass in multiple objects across dynamical time scales (e.g., NGC 5548 and Mrk 817), it is unlikely that the steady-state dynamics within this region are truly this diverse. The BLR could be made up of multiple kinematic components with possible transient features such as winds and/or warped disks that travel through the line of sight to the observer over dynamical timescales. In such a scenario, evidence for different types of kinematic signatures would arise depending on the observer's line of sight through this region at a given time. In order to quantify such possibilities and fit models to the velocity-resolved data, it is necessary to collect more velocity-resolved reverberation mapping results for these objects, as well as others. This remains a goal for future observing programs, and efforts are focused on recovering velocity—delay maps for the current sample. Similar efforts are being made by the LAMP consortium (M. Bentz, priv. comm.) with the sample presented by Bentz et al. (2009c), increasing our probability of success for this elusive goal of reverberation mapping.

We would like to thank Luis Ho for providing the optical spectra of the H β and H α regions of NGC 3516 from which we calculated the Balmer decrement to determine the degree of internal reddening. We acknowledge support for this work by the National Science Foundation though grant AST-0604066 to The Ohio State University. MCB gratefully acknowledges support provided by NASA through Hubble Fellowship grant HF-51251 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. CMG is grateful for support by the National Science Foundation through grants AST 03-07912 and AST 08-03883. MV acknowledges financial support from HST grants HST-GO-10417, HST-AR-10691, and HST-GO-10833 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. The Dark Cosmology Centre is funded by the Danish National Research Foundation. VTD acknowledges the support of the Russian Foundation for Basic Research (project no. 09-02-01136a) to the Crimean Laboratory of the Sternberg Astronomical Institute. SGS acknowledges support through Grant No. 5-20 of the "Cosmomicrophysics" program of the National Academy of Sciences of Ukraine to CrAO. The CrAO CCD cameras have been purchased through the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union (CRDF) awards UP1-2116 and UP1-2549-CR-03. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

- Bennert, N., Canalizo, G., Jungwiert, B., Stockton, A., Schweizer, F., Peng, C. Y., & Lacy, M. 2008, ApJ, 677, 846
- Bentz, M. C., Peterson, B. M., Netzer, H., Pogge, R. W., & Vestergaard, M. 2009a, ApJ, 697, 160
- Bentz, M. C., Peterson, B. M., Pogge, R. W., & Vestergaard, M. 2009b, ApJ, 694, L166
- Bentz, M. C., Peterson, B. M., Pogge, R. W., Vestergaard, M., & Onken, C. A. 2006, ApJ, 644, 133
- Bentz, M. C., et al. 2007, ApJ, 662, 205
- —. 2009c, ApJ, 705, 199
- Blandford, R. D., & McKee, C. F. 1982, ApJ, 255, 419
- Chiang, J., & Murray, N. 1996, ApJ, 466, 704
- Chonis, T. S., & Gaskell, C. M. 2008, AJ, 135, 264
- Collin, S., Kawaguchi, T., Peterson, B. M., & Vestergaard, M. 2006, A&A, 456, 75
- Crenshaw, D. M., Kraemer, S. B., Bruhweiler, F. C., & Ruiz, J. R. 2001, ApJ, 555, 633
- Denney, K. D., Peterson, B. M., Dietrich, M., Vestergaard, M., & Bentz, M. C. 2009a, ApJ, 692, 246
- Denney, K. D., et al. 2006, ApJ, 653, 152
- —. 2009b, ApJ, 702, 1353
- —. 2009c, ApJ, 704, L80
- Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 604
- Doroshenko, V. T., Sergeev, S. G., Merkulova, N. I., Sergeeva, E. A., Golubinsky, Y. V., Pronik, V. I., & Okhmat, N. N. 2005a, Astrophysics, 48, 156
- —. 2005b, Astrophysics, 48, 304
- Edelson, R. A., & Krolik, J. H. 1988, ApJ, 333, 646
- Ferrarese, L., & Ford, H. 2005, Space Science Reviews, 116, 523

Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9

Ferrarese, L., Pogge, R. W., Peterson, B. M., Merritt, D., Wandel, A., & Joseph, C. L. 2001, ApJ, 555, L79

Gaskell, C. M., Goosmann, R. W., Antonucci, R. R. J., & Whysong, D. H. 2004, ApJ, 616, 147

Gaskell, C. M., & Peterson, B. M. 1987, ApJS, 65, 1

Gaskell, C. M., & Sparke, L. S. 1986, ApJ, 305, 175

Gebhardt, K., & Thomas, J. 2009, ApJ, 700, 1690

Gebhardt, K., et al. 2000a, ApJ, 539, L13

—. 2000b, ApJ, 543, L5

Graham, A. W. 2007, MNRAS, 379, 711

Gültekin, K., Richstone, D. O., Gebhardt, K., Lauer, T. R., Tremaine, S., Aller, M. C., Bender, R., Dressler, A., Faber, S. M., Filippenko, A. V., Green, R., Ho, L. C., Kormendy, J., Magorrian, J., Pinkney, J., & Siopis, C. 2009, ApJ, 698, 198

Häring, N., & Rix, H. 2004, ApJ, 604, L89

Hopkins, P. F., & Hernquist, L. 2009, ApJ, 694, 599

Horne, K., Peterson, B. M., Collier, S. J., & Netzer, H. 2004, PASP, 116, 465

Kaspi, S., Brandt, W. N., Maoz, D., Netzer, H., Schneider, D. P., & Shemmer, O. 2007, ApJ, 659, 997

Kaspi, S., Maoz, D., Netzer, H., Peterson, B. M., Vestergaard, M., & Jannuzi, B. T. 2005, ApJ, 629, 61

Kaspi, S., Smith, P. S., Netzer, H., Maoz, D., Jannuzi, B. T., & Giveon, U. 2000, ApJ, 533, 631

Klimek, E. S., Gaskell, C. M., & Hedrick, C. H. 2004, ApJ, 609, 69

Kobayashi, Y., Yoshii, Y., & Minezaki, T. 2004, Astronomische Nachrichten, 325, 537

Kobayashi, Y., Yoshii, Y., Peterson, B. A., Minezaki, T., Enya, K., Suganuma, M., & Yamamuro, T. 1998a, in Proc. SPIE, Vol. 3354, 769–776

Kobayashi, Y., et al. 1998b, in Proc. SPIE, Vol. 3352, 120–128

Kollmeier, J. A., et al. 2006, ApJ, 648, 128

Korista, K. T., & Goad, M. R. 2004, ApJ, 606, 749

Kormendy, J., & Gebhardt, K. 2001, in American Institute of Physics Conference Series, Vol. 586, 20th Texas Symposium on relativistic astrophysics, ed. J. C. Wheeler & H. Martel, 363–381

Kormendy, J., & Richstone, D. 1995, ARA&A, 33, 581

Magorrian, J., et al. 1998, AJ, 115, 2285

Marconi, A., Axon, D. J., Maiolino, R., Nagao, T., Pastorini, G., Pietrini, P., Robinson, A., & Torricelli, G. 2008, ApJ, 678, 693

Marconi, A., Axon, D. J., Maiolino, R., Nagao, T., Pietrini, P., Risaliti, G., Robinson, A., & Torricelli, G. 2009, ApJ, 698, L103

McLure, R. J., & Dunlop, J. S. 2004, MNRAS, 352, 1390

Minezaki, T., Yoshii, Y., Kobayashi, Y., Enya, K., Suganuma, M., Tomita, H., Aoki, T., & Peterson, B. A. 2004, ApJ, 600, L35

Murray, N., Chiang, J., Grossman, S. A., & Voit, G. M. 1995, ApJ, 451, 498

Nelson, C. H., Green, R. F., Bower, G., Gebhardt, K., & Weistrop, D. 2004, ApJ, 615, 652

Netzer, H. 2009, ApJ, 695, 793

Netzer, H., & Maoz, D. 1990, ApJ, 365, L5

Onken, C. A., Ferrarese, L., Merritt, D., Peterson, B. M., Pogge, R. W., Vestergaard, M., & Wandel, A. 2004, ApJ, 615, 645

Onken, C. A., Peterson, B. M., Dietrich, M., Robinson, A., & Salamanca, I. M. 2003, ApJ, 585, 121

Peterson, B. M. 1993, PASP, 105, 247

Peterson, B. M. 2001, in Advanced Lectures on the Starburst-AGN Connection, ed. I. Aretxaga, D. Kunth, & R. Mújica (Singapore: World Scientific), p. 3

—. 2010, in prep, (see also arXiv1001.3675)

Peterson, B. M., Wanders, I., Bertram, R., Hunley, J. F., Pogge, R. W., & Wagner, R. M. 1998, ApJ, 501, 82

Peterson, B. M., et al. 1991, ApJ, 368, 119

- —. 2000, ApJ, 542, 161
- —. 2002, ApJ, 581, 197
- —. 2004, ApJ, 613, 682

Salamanca, I., et al. 1994, A&A, 282, 742

Salviander, S., Shields, G. A., Gebhardt, K., & Bonning, E. W. 2007, ApJ, 662, 131

Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525

Sergeev, S. G., Doroshenko, V. T., Dzyuba, S. A., Peterson, B. M., Pogge, R. W., & Pronik, V. I. 2007, ApJ, 668, 708

Sergeev, S. G., Doroshenko, V. T., Golubinskiy, Y. V., Merkulova, N. I., & Sergeeva, E. A. 2005, ApJ, 622, 129

Shankar, F., Weinberg, D. H., & Miralda-Escudé, J. 2009, ApJ, 690, 20

Shen, J., & Gebhardt, K. 2010, ApJ, 711, 484

Shen, Y., Greene, J. E., Strauss, M. A., Richards, G. T., & Schneider, D. P. 2008, ApJ, 680, 169

Silk, J., & Rees, M. J. 1998, A&A, 331, L1

Snedden, S. A., & Gaskell, C. M. 2007, ApJ, 669, 126

Somerville, R. S., Hopkins, P. F., Cox, T. J., Robertson, B. E., & Hernquist, L. 2008, MNRAS, 391, 481

Suganuma, M., et al. 2006, ApJ, 639, 46

Tremaine, S., et al. 2002, ApJ, 574, 740

van den Bosch, R. C. E., & de Zeeuw, P. T. 2010, MNRAS, 401, 1770

van Groningen, E., & Wanders, I. 1992, PASP, 104, 700

Vestergaard, M., Fan, X., Tremonti, C. A., Osmer, P. S., & Richards, G. T. 2008, ApJ, 674, L1

Vestergaard, M., & Osmer, P. S. 2009, ApJ, 699, 800

Wandel, A. 2002, ApJ, 565, 762

Wandel, A., Peterson, B. M., & Malkan, M. A. 1999, ApJ, 526, 579

Wanders, I., Peterson, B. M., Pogge, R. W., Derobertis, M. M., & van Groningen, E. 1992, A&A, 266, 72

Wanders, I., et al. 1993, A&A, 269, 39

Welsh, W. F. 1999, PASP, 111, 1347

White, R. J., & Peterson, B. M. 1994, PASP, 106, 879

Whittle, M. 1992, ApJS, 79, 49

Winge, C., Peterson, B. M., Horne, K., Pogge, R. W., Pastoriza, M. G., & Storchi-Bergmann, T. 1995, ApJ, 445, 680

Woo, J., et al. 2010, ApJ, 716, 269

Yoshii, Y. 2002, in New Trends in Theoretical and Observational Cosmology, ed. K. Sato & T. Shiromizu (Tokyo: Universal Academy), 235

This preprint was prepared with the AAS LATEX macros v5.2.

Table 1. Object List

Objects (1)	z (2)	$\begin{array}{c} \alpha_{2000} \\ \text{(hr min sec)} \\ \text{(3)} \end{array}$	$ \begin{pmatrix} \delta_{2000} \\ (\circ ' '') \\ (4) \end{pmatrix} $	Host Classification (5)	$A_B \pmod{6}$
Mrk 290	0.02958	15 35 52.3	+57 54 09	E1 SBc SAB(s) pec (R)SB(s) SAB(rs)bc (R')SA(s)0/a	0.065
Mrk 817	0.03145	14 36 22.1	+58 47 39		0.029
NGC 3227	0.00386	10 23 30.6	+19 51 54		0.76 ^a
NGC 3516	0.00884	11 06 47.5	+72 34 07		1.70 ^a
NGC 4051	0.00234	12 03 09.6	+44 31 53		0.056
NGC 5548	0.01717	14 17 59.5	+25 08 12		0.088

 $^{^{\}rm a} \mbox{Values}$ have been adjusted to account for additional internal reddening as described in section 5.2.

Table 2. Spectroscopic Observations

Objects (1)	Observ. (2)	N_{obs} (3)	Julian Dates (-2450000) (4)	Res (Å) (5)	5100Å Cont. Window (Å) (6)	$H\beta$ Line Limits (Å) (7)	Extraction Window (") (8)
Mrk 290	MDM CrAO	71 18	4184–4268 4266–4301	7.6 7.5	5235–5265 5235–5265	4915–5086 ^{a,b} 4915–5086	5.0×12.75 3.0×11.0
	DAO	10	4262-4290	7.5 7.9	5235-5265 5235-5265	4915-5086	3.0×11.0 3.0×6.28
Mrk 817	MDM	65	4185–4269	7.6	5245-5275	4900-5099	5.0×0.25 5.0×12.75
	CrAO	23	4265-4301	7.5	5245-5275	4900-5099	3.0×11.0
NGC3227	MDM	75	4184-4268	7.6	5105-5135	$4795 - 4942^{\rm a,b}$	5.0×8.25
$\operatorname{NGC}3516$	MDM	74	4184 – 4269	7.6	5130 – 5160	$4845 – 4965^{\rm b}$	5.0×12.75
	CrAO	19	4266 – 4300	7.5	5130 – 5160	$4845 – 4965^{\rm b}$	3.0×11.0
${\rm NGC4051}$	MDM	86	4184 – 4269	7.6	5090 – 5130	4815 – 4920	5.0×12.75
	CrAO	22	4266 – 4300	7.5	5090 – 5130	4815 – 4920	3.0×11.0
NGC5548	MDM	77	4184 – 4267	7.6	5170 – 5200	$4845 - 5004^{\rm b}$	5.0×12.75
	CrAO	20	4265 – 4301	7.5	5170 – 5200	$4845 - 5004^{\rm b}$	3.0×11.0
	DAO	11	4276 – 4293	7.9	5170 – 5200	$4845 - 5000^{\rm b}$	3.0×6.28

 $^{^{\}rm a}{\rm H}\beta$ line limits were narrowed for the measurement of the line width in the rms spectrum. See Section 3 for details.

 $^{^{\}rm b}{\rm H}\beta$ line limits were changed for the velocity-resolved lag investigation. See Section 4 for details.

Table 3. Photometric Observations

Objects (1)	Observatory (2)	$N_{\rm obs}$ (3)	Julian Dates (-2450000) (4)
Mrk 290	MAGNUM	17	4200-4321
	CrAO	61	4180 – 4298
	UNebr	6	4199 – 4252
${ m Mrk}817$	MAGNUM	24	4185 – 4330
	CrAO	69	4180 – 4299
NGC3227	MAGNUM	19	4181 – 4282
	CrAO	58	4180 – 4263
	UNebr	19	4195 – 4276
NGC3516	MAGNUM	10	4190 – 4277
	CrAO	73	4181 – 4299
	UNebr	22	4195 – 4258
${\rm NGC4051}$	MAGNUM	23	4182 – 4311
	CrAO	76	4180 – 4299
	UNebr	28	4195 – 4290
$\operatorname{NGC}5548$	MAGNUM	48	4182 – 4332
	CrAO	71	4180 – 4299
	UNebr	13	4198 – 4289

Table 4. Constant Spectral Properties

Objects (1)	FWHM([O III] $\lambda 5007$) ^a rest frame (km s ⁻¹) (2)	$F([O III]\lambda 5007)$ (10 ⁻¹³ ergs s ⁻¹ cm ⁻²) (3)	$\begin{array}{c} {\rm H}\beta_{\rm nar} \\ {\rm Line~Strength^b} \\ (4) \end{array}$	F_{Host} (10 ⁻¹⁵ ergs s ⁻¹ cm ⁻² Å ⁻¹) (5)
Mrk 290	380	1.91 ± 0.12	0.08	1.79
${\rm Mrk}817$	330	1.32 ± 0.07	0.08	1.84 ± 0.17
$\operatorname{NGC}3227$	485	6.81 ± 0.54	0.088^{c}	7.30 ± 0.67
${\rm NGC3516}$	250	3.35 ± 0.42	0.07	16.1 ± 1.5
${\rm NGC4051}$	190	$3.91 \pm 0.12^{\rm c}$		9.18 ± 0.85
$\operatorname{NGC}5548$	410	$5.58 \pm 0.27^{ m d}$	$0.11^{\rm e}$	4.48 ± 0.41

^aFrom Whittle (1992).

^bRatio of narrow $F(H\beta_{nar})$ to $F([OIII]\lambda 5007)$.

^cFrom Peterson et al. (2000).

^dFrom Peterson et al. (1991).

^eFrom Peterson et al. (2004).

Table 5. V-band and Continuum Fluxes

Mı	rk 290	Mı	rk 817	NG	C 3227	NG	C 3516	NG	C 5548
$ m JD^a$	$F_{\rm cont}^{\rm b}$	$ m JD^a$	$F_{\rm cont}{}^{\rm b}$	$ m JD^a$	$F_{\rm cont}^{\rm b}$	$ m JD^a$	$F_{\rm cont}{}^{\rm b}$	$ m JD^a$	$F_{\rm cont}{}^{\rm b}$
4180.47p	1.083 ± 0.015	4180.44p	4.621 ± 0.038	4180.28p	3.959 ± 0.064	4181.33p	6.433 ± 0.104	4180.41p	2.800 ± 0.055
4181.54p	$1.070{\pm}0.015$	4181.52p	$4.622 {\pm} 0.036$	4181.32p	$3.971 {\pm} 0.057$	4182.39p	$6.135{\pm}0.126$	4181.50p	$2.878 {\pm} 0.058$
	1.102 ± 0.047	0		0				0	
	1.109 ± 0.047			-					
	1.102 ± 0.033	-				-			
	1.194 ± 0.048					-		-	
-	1.184 ± 0.021	_		_		-			
	1.242 ± 0.049	_		_				-	
	1.194 ± 0.018 1.188 ± 0.048					-			
	1.201 ± 0.023			•				-	
-	1.229 ± 0.049					-			
	1.167 ± 0.025							U	
-	1.274 ± 0.050	0		•		0		-	
	1.225 ± 0.033	-				-			
4191.95m	$1.205 {\pm} 0.048$	4192.56p	$4.756{\pm}0.059$	4192.61m	$4.495{\pm}0.165$	4192.40p	5.691 ± 0.179	4191.81m	2.771 ± 0.116
4192.58p	$1.187{\pm}0.026$	$4192.90\mathrm{m}$	$4.734 {\pm} 0.079$	$4193.66\mathrm{m}$	$4.096{\pm}0.160$	$4192.66\mathrm{m}$	$4.738 {\pm} 0.351$	4191.86g	$2.437{\pm}0.036$
$4192.94\mathrm{m}$	$1.270{\pm}0.050$	$4194.92\mathrm{m}$	$4.772 {\pm} 0.080$	$4193.80\mathrm{g}$	$3.737 {\pm} 0.031$	$4193.75\mathrm{m}$	$4.686{\pm}0.351$	$4192.54\mathrm{p}$	$2.414{\pm}0.125$
4194.96 m	1.249 ± 0.049	4200.55p	4.786 ± 0.042	$4194.62\mathrm{m}$	3.892 ± 0.157	$4194.68\mathrm{m}$	4.744 ± 0.352	4192.85 m	2.660 ± 0.114
	1.149 ± 0.047	_							
	1.181 ± 0.043	_						_	
	1.219 ± 0.049			-					
0	1.185 ± 0.026							U	
-	1.128 ± 0.016 1.140 ± 0.017								
	1.217 ± 0.049			0		0			
	1.153 ± 0.019	-				-			
-	1.110 ± 0.017							_	
	1.063 ± 0.046	-		-		-			
4205.49p	1.090 ± 0.019	4207.92m	5.046 ± 0.082	4199.63 m	4.235 ± 0.161	4201.29p	5.964 ± 0.134	4200.53p	$2.367 {\pm} 0.056$
4205.96 m	$1.059 {\pm} 0.046$	4208.48p	$5.043{\pm}0.053$	4200.36p	$4.278 {\pm} 0.059$	$4201.67\mathrm{m}$	$6.523 {\pm} 0.382$	$4200.83\mathrm{m}$	$2.461 {\pm} 0.111$
4206.40n	$1.071 {\pm} 0.064$	$4208.88\mathrm{m}$	$4.983 {\pm} 0.081$	$4200.62\mathrm{m}$	$4.597 {\pm} 0.166$	4202.35p	$5.754 {\pm} 0.121$	4201.05g	$2.368 {\pm} 0.029$
4207.97 m	1.013 ± 0.045	4209.53p	5.164 ± 0.048	4200.84g	$4.483{\pm}0.045$	$4204.69\mathrm{m}$	5.953 ± 0.372	4201.41p	2.341 ± 0.055
-	1.043 ± 0.015			_		-			
	0.978 ± 0.044								
-	1.024 ± 0.017			•		0		U	
	0.975 ± 0.044			0		-		-	
	1.030 ± 0.045			•					
	1.064 ± 0.024 1.085 ± 0.007								
_	1.065 ± 0.007 1.065 ± 0.046	_		_					
	1.037 ± 0.015					-			
	1.041 ± 0.045			-					
	1.070 ± 0.017	-							

Table 5—Continued

1Da P.		rk 290		rk 817		C 3227		C 3516		C 5548
4215.56m 1.034±0.045 4217.89m 5.013±0.082 4207.77m 4.346±0.163 4210.40m 6.825±0.150 4208.83m 2.219±0.107 4216.59m 1.098±0.046 4218.99m 5.102±0.033 4208.32p 4.301±0.059 4211.38p 5.942±0.098 4209.50p 2.259±0.051 4217.59p 1.108±0.047 4219.55p 5.208±0.040 4208.36m 4.033±0.109 4212.32p 5.504±0.096 4209.84m 2.160±0.107 4212.33m 1.102±0.047 4219.55p 5.208±0.040 4208.36m 4.033±0.119 4212.32p 5.504±0.096 4209.84m 2.160±0.107 4218.95m 1.094±0.046 4220.91m 5.079±0.083 4209.65m 4.114±0.160 4212.65m 6.556±0.838 4211.53p 2.284±0.060 4220.40m 1.067±0.043 4221.48p 5.192±0.073 4210.30m 4.332±0.072 4213.75m 6.288±0.118 4212.83m 2.203±0.107 4220.34m 1.067±0.043 4221.95m 5.200±0.084 4210.67m 4291±0.162 4214.31p 5.884±0.128 4212.83m 2.203±0.107 4220.38p 1.088±0.024 4222.99m 5.200±0.084 4210.67m 4291±0.162 4214.31p 5.884±0.128 4212.89m 2.257±0.035 4221.98m 1.131±0.047 4222.89m 5.407±0.071 4212.34m 4210.45m 4214.34m 5.894±0.128 4212.89m 4221.89m 4214.40m 4222.53p 5.067±0.025 4224.99m 5.287±0.085 4212.62m 3.892±0.157 4216.89m 5.540±0.036 4222.53m 1.037±0.047 4225.49p 5.407±0.041 4212.62m 3.892±0.157 4216.89m 5.640±0.084 4214.63m 3.992±0.057 4218.44m 2.121±0.105 4222.95m 1.137±0.047 4226.44p 5.447±0.064 4214.63m 3.992±0.057 4218.44m 5.687±0.074 4226.44m 5.447±0.064 4214.63m 3.992±0.057 4218.44m 5.687±0.074 4226.44m	$_{-}$ JD ^a	$F_{\rm cont}$ b	$ m JD^a$	$F_{\rm cont}^{\rm b}$	$ m JD^a$	$F_{\rm cont}^{\rm b}$	$ m JD^a$	$F_{\rm cont}^{\rm b}$	$ m JD^a$	F_{cont}
4215.56m 1.034±0.045 4217.89m 5.013±0.082 4207.77m 4.346±0.163 4210.40m 6.825±0.150 4208.83m 2.219±0.107 4216.59m 1.098±0.046 4218.99m 5.102±0.033 4208.32p 4.301±0.059 4211.38p 5.942±0.098 4209.50p 2.259±0.051 4217.59p 1.108±0.047 4219.55p 5.208±0.040 4208.36m 4.033±0.109 4212.32p 5.504±0.096 4209.84m 2.160±0.107 4212.33m 1.102±0.047 4219.55p 5.208±0.040 4208.36m 4.033±0.119 4212.32p 5.504±0.096 4209.84m 2.160±0.107 4218.95m 1.094±0.046 4220.91m 5.079±0.083 4209.65m 4.114±0.160 4212.65m 6.556±0.838 4211.53p 2.284±0.060 4220.40m 1.067±0.043 4221.48p 5.192±0.073 4210.30m 4.332±0.072 4213.75m 6.288±0.118 4212.83m 2.203±0.107 4220.34m 1.067±0.043 4221.95m 5.200±0.084 4210.67m 4291±0.162 4214.31p 5.884±0.128 4212.83m 2.203±0.107 4220.38p 1.088±0.024 4222.99m 5.200±0.084 4210.67m 4291±0.162 4214.31p 5.884±0.128 4212.89m 2.257±0.035 4221.98m 1.131±0.047 4222.89m 5.407±0.071 4212.34m 4210.45m 4214.34m 5.894±0.128 4212.89m 4221.89m 4214.40m 4222.53p 5.067±0.025 4224.99m 5.287±0.085 4212.62m 3.892±0.157 4216.89m 5.540±0.036 4222.53m 1.037±0.047 4225.49p 5.407±0.041 4212.62m 3.892±0.157 4216.89m 5.640±0.084 4214.63m 3.992±0.057 4218.44m 2.121±0.105 4222.95m 1.137±0.047 4226.44p 5.447±0.064 4214.63m 3.992±0.057 4218.44m 5.687±0.074 4226.44m 5.447±0.064 4214.63m 3.992±0.057 4218.44m 5.687±0.074 4226.44m	4214.95m	1.078 ± 0.046	4217.48p	5.059 ± 0.066	4207.39n	4.128 ± 0.072	4209.73m	5.659 ± 0.367	4208.37p	2.437 ± 0.053
4215.55m 1.098±0.016 4218.90m 5.106±0.083 4208.37p 4.203±0.115 4211.38p 5.942±0.098 4209.84m 2.160±0.107 4217.93m 1.102±0.047 4219.52p 5.280±0.047 4208.67m 4.077±0.160 4212.67m 6.556±0.383 4210.08g 2.208±0.049 4218.53p 1.102±0.017 4220.45p 5.117±0.059 4209.37p 4.204±0.058 4213.28p 5.921±0.111 4211.53p 2.284±0.060 4220.40m 1.067±0.043 4221.48p 5.192±0.073 4210.30m 4.322±0.072 4213.77g 6.283±0.114 4212.33m 2.203±0.107 4220.48p 1.084±0.024 4222.90m 5.200±0.084 4210.67m 4.291±0.162 4213.37p 5.884±0.128 4212.33m 2.393±0.033 4221.57g 1.073±0.050 4223.90m 5.421±0.087 4211.34p 4.150±0.055 4215.69m 5.740±0.084 4213.35p 2.383±0.053 4221.57g 1.073±0.050 4222.90m 5.287±0.085 4213.35p 3.963±0.055 4215.69m 5.740±0.084 4212.0057 4212.35p 3.084±0.047 4224.48p 5.407±0.087 4214.34p 5.884±0.129 4214.34p 4215.45p 2.383±0.053 4222.35p 1.067±0.054 4220.90m 5.287±0.085 4213.33p 3.994±0.059 4217.37p 6.017±0.137 4215.45p 2.155±0.055 4223.34m 1.19±0.047 4225.49p 5.447±0.064 4214.63m 3.992±0.057 4217.68m 6.634±0.237 4215.55m 2.081±0.105 4222.35m 1.19±0.047 4226.49p 5.447±0.084 4214.63m 3.992±0.057 4218.44p 5.687±0.107 4216.46p 2.089±0.057 4224.45p 1.09±0.042 4226.89m 5.569±0.089 4215.37p 4.100±0.066 4218.75m 4.792±0.353 4216.44m 4.200±0.061 4224.44p 1.19±0.044 4225.39m 5.785±0.089 4216.63m 3.901±0.157 4219.40m 6.157±0.091 4217.44p 2.041±0.061 4225.99m 1.055±0.019 4229.53p 5.505±0.089 4216.63m 3.901±0.157 4219.40m 6.157±0.091 4217.44p 2.041±0.061 4226.49m 0.055±0.044 4221.35p 5.285±0.068 4218.75m 4.470±0.061 4221.45m 0.055±0.044 4221.45m 5.285±0.068 4218.75m 4.470±0.061 4221.45m 0.055±0.049 4229.53p 5.500±0.064 4218.63m 3.901±0.157 4219.40m 5.190±0.069 4218.86m 2.060±0.055 4220.45m 5.050±0.044 4218.35p 5.285±0.068										
4215.55m 1.098±0.016 4218.90m 5.106±0.083 4208.37p 4.203±0.115 4211.38p 5.942±0.098 4209.84m 2.160±0.107 4217.93m 1.102±0.047 4219.52p 5.280±0.047 4208.67m 4.077±0.160 4212.67m 6.556±0.383 4210.08g 2.208±0.049 4218.53p 1.102±0.017 4220.45p 5.117±0.059 4209.37p 4.204±0.058 4213.28p 5.921±0.111 4211.53p 2.284±0.060 4220.40m 1.067±0.043 4221.48p 5.192±0.073 4210.30m 4.322±0.072 4213.77g 6.283±0.114 4212.33m 2.203±0.107 4220.48p 1.084±0.024 4222.90m 5.200±0.084 4210.67m 4.291±0.162 4213.37p 5.884±0.128 4212.33m 2.393±0.033 4221.57g 1.073±0.050 4223.90m 5.421±0.087 4211.34p 4.150±0.055 4215.69m 5.740±0.084 4213.35p 2.383±0.053 4221.57g 1.073±0.050 4222.90m 5.287±0.085 4213.35p 3.963±0.055 4215.69m 5.740±0.084 4212.0057 4212.35p 3.084±0.047 4224.48p 5.407±0.087 4214.34p 5.884±0.129 4214.34p 4215.45p 2.383±0.053 4222.35p 1.067±0.054 4220.90m 5.287±0.085 4213.33p 3.994±0.059 4217.37p 6.017±0.137 4215.45p 2.155±0.055 4223.34m 1.19±0.047 4225.49p 5.447±0.064 4214.63m 3.992±0.057 4217.68m 6.634±0.237 4215.55m 2.081±0.105 4222.35m 1.19±0.047 4226.49p 5.447±0.084 4214.63m 3.992±0.057 4218.44p 5.687±0.107 4216.46p 2.089±0.057 4224.45p 1.09±0.042 4226.89m 5.569±0.089 4215.37p 4.100±0.066 4218.75m 4.792±0.353 4216.44m 4.200±0.061 4224.44p 1.19±0.044 4225.39m 5.785±0.089 4216.63m 3.901±0.157 4219.40m 6.157±0.091 4217.44p 2.041±0.061 4225.99m 1.055±0.019 4229.53p 5.505±0.089 4216.63m 3.901±0.157 4219.40m 6.157±0.091 4217.44p 2.041±0.061 4226.49m 0.055±0.044 4221.35p 5.285±0.068 4218.75m 4.470±0.061 4221.45m 0.055±0.044 4221.45m 5.285±0.068 4218.75m 4.470±0.061 4221.45m 0.055±0.049 4229.53p 5.500±0.064 4218.63m 3.901±0.157 4219.40m 5.190±0.069 4218.86m 2.060±0.055 4220.45m 5.050±0.044 4218.35p 5.285±0.068	4216.54p	1.076 ± 0.014	4218.51p	5.172 ± 0.043	4207.82g	4.009 ± 0.056	4210.72m	6.637 ± 0.385	4208.99g	2.114 ± 0.069
1918-93m 1.102±0.047 4210.52p 5.28b±0.047 4208.67m 4.07\$±0.160 4213.28p 5.92\$±0.111 4210.84m 2.21\$±0.107 4218.59m 1.09\$±0.040 4220.49m 5.07\$±0.083 4209.68m 4.11\$±0.160 4213.69m 5.44\$±0.365 4211.53p 2.28\$±0.060 4220.49m 1.06\$±0.040 4222.90m 5.200\$±0.084 4210.67m 4291\$±0.162 4211.31p 5.88\$±0.128 4212.88m 2.03\$±0.053 4220.96m 1.13\$±0.047 4223.59p 5.200\$±0.084 4210.67m 4291\$±0.162 4211.31p 5.88\$±0.128 4212.88m 2.23\$±0.053 4220.96m 1.13\$±0.047 4224.88p 5.400\$±0.055 4211.34p 4.150\$±0.055 4211.34p 5.98\$±0.055 4221.98m 1.31\$±0.047 4224.88p 5.400\$±0.075 4211.34p 4.150\$±0.055 4211.68m 5.98\$±0.075 4214.0p 2.250\$±0.056 4222.53p 1.067\$±0.075 4224.89p 5.400\$±0.075 4212.63p 3.92\$±0.157 4216.68m 5.39\$±0.075 4214.48p 5.400\$±0.075 4212.63p 3.92\$±0.055 4213.37p 5.00\$±0.075 4214.0p 2.250\$±0.056 4222.53p 1.067\$±0.075 4224.69p 5.408\$±0.085 4213.33p 3.92\$±0.055 4213.37p 6.017\$±0.137 4214.48p 2.12\$±0.105 4222.95m 1.39\$±0.047 4226.46p 5.447\$±0.085 4216.63m 3.92\$±0.157 4218.44p 5.687\$±0.145 2.15\$±0.095 4224.94m 1.19\$±0.047 4226.44p 5.447\$±0.085 4215.64m 4.09\$±0.159 4218.34p 5.687\$±0.104 4224.94m 1.19\$±0.048 4227.53p 5.447\$±0.086 4215.64m 4.09\$±0.159 4219.49p 6.187\$±0.149 4216.46p 2.08\$±0.045 4224.94m 1.19\$±0.048 4227.89m 5.50\$±0.095 4217.63m 4219.49m 6.187\$±0.041 4217.44p 2.04\$±0.061 4225.52p 1.05\$±0.019 4229.84m 5.50\$±0.098 4217.63m 4.686\$±0.171 4220.27p 5.50\$±0.130 4218.74p 1.98\$±0.060 4226.44p 1.05\$±0.019 4229.84m 5.50\$±0.088 4218.63m 3.90\$±0.157 4219.49m 5.19\$±0.160 4218.47p 1.98\$±0.060 4226.49m 1.00\$±0.045 4229.84m 5.50\$±0.088 4218.63m 4.42\$±0.060 4226.49m 1.00\$±0.045 4229.84m 5.50\$±0.088 4218.63m 4.42\$±0.060 4226.49m 5.09\$±0.045 4229.84m 5.57\$±0.094 4218.43p 5.57\$±0.094 4218.63m 4.42\$±0.060 4226.49m 5.09\$±0.045	-		-		_				_	
4218.55p 1.112±0.017 4220.45p 5.117±0.050 4209.37p 4.204±0.056 4218.25ep 5.201±0.111 4210.84m 2.214±0.107 4220.40n 1.067±0.043 4221.48p 5.192±0.073 4210.50n 4.114±0.160 4213.69m 5.446±0.365 4211.53p 2.284±0.060 4220.40n 1.067±0.043 4221.48p 5.192±0.075 4210.67m 4.291±0.162 4211.31p 5.884±0.128 4212.83m 2.238±0.053 4221.57g 1.073±0.050 4223.90m 5.421±0.087 4211.34p 4.105±0.055 4215.69m 5.740±0.368 4213.85m 2.075±0.055 4222.53p 1.067±0.025 4224.90m 5.287±0.085 4212.62m 3.892±0.157 4216.68m 5.694±0.129 4214.40p 2.250±0.056 4222.53p 1.082.49p 5.408±0.058 4212.62m 3.892±0.157 4216.8m 5.616±0.388 4215.54p 2.56±0.056 4217.37p 6.077±0.174 4218.45p 2.08±0.054 4222.59p 5.408±0.058 4216.62m 3.90±0.157 4218.45m 5.616±0.388 4215.55m 2.08±0.0	4217.50p	1.108 ± 0.018	4219.03g	5.208 ± 0.026	4208.36n	4.203 ± 0.119	4212.32p	5.904 ± 0.096	4209.84m	2.160 ± 0.107
4218.95m 1.094±0.046 4220.91m 5.079±0.083 4290.65m 4.114±0.160 4213.69m 5.46±0.365 4211.32m 2.284±0.060 4220.49b 1.084±0.024 4222.99m 5.00±0.084 4210.67m 4231.131 5.883±0.114 4212.83m 2.205±0.035 4220.96m 1.084±0.024 4222.99m 5.00±0.084 4210.90g 4.044±0.091 421.68m 5.957±0.371 4213.85m 2.205±0.053 4221.95m 1.31±0.047 4224.48p 5.07±0.087 4211.34p 4.150±0.055 4215.68m 5.740±0.388 4213.85m 2.075±0.056 4222.53p 1.067±0.025 4224.90m 5.287±0.085 4212.69m 3.892±0.157 4216.68m 5.40±0.238 211.5±0.056 4222.59m 1.084±0.047 4226.69g 5.11±0.081 4212.29g 3.868±0.067 4217.37p 6.017±0.137 4216.45p 2.08±0.057 4223.94m 1.19±0.047 4226.49g 5.46±0.089 4215.37g 4.13±0.066 4218.49g 8.68±0.074 4218.49g 3.68±0.064 4221.49g 3.86±0.064 <t< td=""><td>4217.93m</td><td>1.102 ± 0.047</td><td>4219.52p</td><td>5.280 ± 0.047</td><td>4208.67 m</td><td>4.077 ± 0.160</td><td>4212.67m</td><td>$6.556 {\pm} 0.383$</td><td>4210.08g</td><td>2.208 ± 0.049</td></t<>	4217.93m	1.102 ± 0.047	4219.52p	5.280 ± 0.047	4208.67 m	4.077 ± 0.160	4212.67m	$6.556 {\pm} 0.383$	4210.08g	2.208 ± 0.049
4220.40n 1.067±0.043 4221.48p 5.192±0.078 4210.67m 4.291±0.162 4213.77g 6.283±0.114 4212.89m 2.203±0.107 4220.98m 1.183±0.047 4223.50p 5.316±0.065 4210.90g 4.044±0.091 4214.68m 5.957±0.373 4213.45p 2.238±0.053 4221.57g 1.073±0.050 4223.90p 5.421±0.07 4211.34p 4.150±0.055 4216.63m 5.694±0.129 4214.40p 2.205±0.056 4222.53p 1.067±0.025 4224.90p 5.287±0.085 4212.62m 3.892±0.157 4216.63m 5.694±0.129 4214.40p 2.205±0.056 4223.59m 1.067±0.025 4226.06g 5.511±0.081 4214.29p 3.868±0.067 4217.68m 5.616±0.368 4215.54p 5.411±0.045 4223.59m 1.19±0.047 4226.49g 5.447±0.064 4214.63m 3.920±0.157 4218.44p 5.687±0.071 4216.6p 2.09±0.057 4223.5pm 1.19±0.047 4226.49p 5.447±0.064 4214.63m 3.920±0.157 4218.4p 5.687±0.013 4211.59m 4211.59m	4218.53p	1.112 ± 0.017	4220.45p	5.117 ± 0.059	4209.37p	4.204 ± 0.058	4213.28p	5.921 ± 0.111	4210.84m	2.214 ± 0.107
4220.40n 1.067±0.043 4221.48p 5.192±0.078 4210.67m 4.291±0.162 4213.77g 6.283±0.114 4212.89m 2.203±0.107 4220.98m 1.183±0.047 4223.50p 5.316±0.065 4210.90g 4.044±0.091 4214.68m 5.957±0.373 4213.45p 2.238±0.053 4221.57g 1.073±0.050 4223.90p 5.421±0.07 4211.34p 4.150±0.055 4216.63m 5.694±0.129 4214.40p 2.205±0.056 4222.53p 1.067±0.025 4224.90p 5.287±0.085 4212.62m 3.892±0.157 4216.63m 5.694±0.129 4214.40p 2.205±0.056 4223.59m 1.067±0.025 4226.06g 5.511±0.081 4214.29p 3.868±0.067 4217.68m 5.616±0.368 4215.54p 5.411±0.045 4223.59m 1.19±0.047 4226.49g 5.447±0.064 4214.63m 3.920±0.157 4218.44p 5.687±0.071 4216.6p 2.09±0.057 4223.5pm 1.19±0.047 4226.49p 5.447±0.064 4214.63m 3.920±0.157 4218.4p 5.687±0.013 4211.59m 4211.59m	4218.95m	1.094 ± 0.046	4220.91m	5.079 ± 0.083	4209.65m	4.114 ± 0.160	4213.69m	5.446 ± 0.365	4211.53p	2.284 ± 0.060
4220.96m 1.39±0.047 4223.50p 5.316±0.065 4210.90g 4.044±0.091 4214.68m 5.97±0.371 4213.45p 2.238±0.053 4221.98m 1.131±0.047 4224.89p 5.407±0.078 4211.34p 4216.31p 5.69±4.0129 4214.84p 2.007±0.056 4222.53p 1.067±0.025 4224.90p 5.408±0.058 4212.62m 3.892±0.157 4216.68m 6.342±0.377 4214.84p 2.155±0.056 4223.59m 1.137±0.047 4225.49p 5.408±0.058 4213.33p 3.924±0.059 4217.37p 6.017±0.137 4216.46p 2.155±0.095 4223.59m 1.19±0.047 4226.40p 5.447±0.064 4214.63m 3.920±0.157 4218.44p 5.661±0.368 4216.56p 2.089±0.057 4224.94m 1.19±0.047 4226.44p 5.447±0.068 4215.64m 3.90±0.157 4218.44p 5.687±0.013 2115.54m 2.00±0.016 4224.54p 1.05±0.004 4227.53p 5.569±0.089 4216.63m 3.90±0.157 4219.49p 5.51±0.333 216.406 4228.49p 5.61±0.039 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>									-	
4221.57g 1.073 ± 0.050 4223.90 m 5.421 ± 0.087 4211.34 p 4.150 ± 0.055 4215.69 m 5.400 ± 0.016 4211.60 m 5.400 ± 0.016 4211.60 m 5.400 ± 0.016 4211.60 m 5.694 ± 0.129 4214.40 m 2.250 ± 0.056 4222.59 m 1.131 ± 0.047 4224.48 m 5.287 ± 0.085 4216.68 m 5.694 ± 0.129 4214.40 m 2.250 ± 0.056 4222.95 m 1.137 ± 0.047 4225.49 m 5.408 ± 0.058 4213.33 m 3.924 ± 0.059 4217.37 m 6.017 ± 0.137 4215.45 m 2.155 ± 0.056 4223.49 m 1.199 ± 0.047 4226.69 m 5.511 ± 0.081 4214.63 m 3.920 ± 0.157 4218.68 m 5.616 ± 0.368 4215.58 m 2.089 ± 0.057 4224.49 m 1.199 ± 0.048 4225.89 m 5.699 ± 0.089 4215.37 m 4.130 ± 0.066 4218.79 m 4.792 ± 0.333 4216.49 m $4.204.49$ m $4.225.99$ m 1.133 ± 0.047 4227.99 m 5.447 ± 0.089 4216.68 m 3.091 ± 0.157 4219.49 m $4.192.49$ m $4.194.49$ m <t< td=""><td>4220.48p</td><td>1.084 ± 0.024</td><td>4222.90m</td><td>5.200 ± 0.084</td><td>4210.67 m</td><td>4.291 ± 0.162</td><td>4214.31p</td><td>5.884 ± 0.128</td><td>4212.89g</td><td>2.257 ± 0.035</td></t<>	4220.48p	1.084 ± 0.024	4222.90m	5.200 ± 0.084	4210.67 m	4.291 ± 0.162	4214.31p	5.884 ± 0.128	4212.89g	2.257 ± 0.035
4221.98m1.131 \pm 0.0474224.48p5.407 \pm 0.0714212.30p3.963 \pm 0.0554216.31p5.694 \pm 0.12p4214.40p2.250 \pm 0.0564222.55p1.067 \pm 0.0254224.49p5.287 \pm 0.0854212.62p3.892 \pm 0.1574216.68m6.342 \pm 0.3774214.84m2.121 \pm 0.1054223.55p1.098 \pm 0.0244226.06g5.511 \pm 0.0854213.33p3.924 \pm 0.0594217.68m5.616 \pm 0.3684215.55p2.155 \pm 0.0954224.45p1.199 \pm 0.0474226.69g5.511 \pm 0.0814214.29p3.868 \pm 0.0594217.68m5.616 \pm 0.3684215.55p2.081 \pm 0.1064224.4p1.199 \pm 0.0474226.8pm5.447 \pm 0.0644214.63m3.920 \pm 0.1574218.4pm5.687 \pm 0.1074216.46p2.089 \pm 0.0574224.4pm1.195 \pm 0.0244226.8pm5.569 \pm 0.0894215.37p4.109 \pm 0.0664218.7pm4.792 \pm 0.3534216.4tp2.021 \pm 1.0164225.5pm1.134 \pm 0.0474228.9pm5.784 \pm 0.0894216.63m3.901 \pm 0.1574219.40p6.157 \pm 0.2014217.4tp2.011 \pm 0.0614225.4pm1.055 \pm 0.0194229.5pm5.785 \pm 0.0894218.2pm4.625 \pm 0.074219.00p5.235 \pm 0.3064218.4pm1.984 \pm 0.0694226.9pm1.055 \pm 0.0194229.8pm5.500 \pm 0.0364218.2pm4.220.00r5.919 \pm 0.0164218.8pm2.045 \pm 0.0694228.9pm1.985 \pm 0.0144231.4pm5.524 \pm 0.0894218.2pm4220.4pm5.919 \pm 0.0164218.8pm2.017 \pm 0.054229.9pm1.986 \pm 0.014	4220.96m	1.139 ± 0.047	4223.50p	5.316 ± 0.065	4210.90g	4.044 ± 0.091	4214.68m	5.957 ± 0.371	4213.45p	2.238 ± 0.053
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4221.57g	1.073 ± 0.050	4223.90m	5.421 ± 0.087	4211.34p	4.150 ± 0.055	4215.69m	5.740 ± 0.368	4213.85m	2.075 ± 0.105
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4221.98m	1.131 ± 0.047	4224.48p	5.407 ± 0.071	4212.30p	3.963 ± 0.055	4216.31p	5.694 ± 0.129	4214.40p	2.250 ± 0.056
4233.53p 1.098±0.024 4226.06g 5.511±0.081 4214.29p 3.868±0.067 4217.68m 5.616±0.368 4215.85m 2.081±0.057 4224.45p 1.19±0.047 4226.44p 5.467±0.084 4214.63m 3.90±0.157 4218.44p 5.687±0.107 4216.64p 2.089±0.057 4224.49m 1.195±0.048 4227.53p 5.569±0.089 4215.37p 4.130±0.066 4218.7bp 4.792±0.353 4216.84m 2.020±0.104 4225.52p 1.035±0.026 4227.90m 5.542±0.089 4217.31p 4.247±0.071 4219.40p 6.157±0.201 4217.84m 2.115±0.105 4226.42p 1.055±0.019 4229.53p 5.500±0.066 4217.63m 4.866±0.171 4220.2pp 5.506±0.130 4218.87p 2.045±0.069 4227.95m 1.098±0.045 4231.8pp 5.52±0.088 4218.3pp 4.260.2pp 5.506±0.130 4218.8pp 2.066±0.054 4229.4pm 0.998±0.043 4231.4pp 5.317±0.088 4218.2pp 4.220.6pm 5.47±0.367 4219.8pp 2.017±0.095 4229.4pm <td< td=""><td>4222.53p</td><td>1.067 ± 0.025</td><td>4224.90m</td><td>5.287 ± 0.085</td><td>4212.62m</td><td>3.892 ± 0.157</td><td>4216.68m</td><td>$6.342 {\pm} 0.377$</td><td>4214.84m</td><td>2.121 ± 0.105</td></td<>	4222.53p	1.067 ± 0.025	4224.90m	5.287 ± 0.085	4212.62m	3.892 ± 0.157	4216.68m	$6.342 {\pm} 0.377$	4214.84m	2.121 ± 0.105
4233.9√m 1.119±0.047 4226.4√p 5.447±0.064 4214.63m 3.920±0.157 4218.44p 5.687±0.107 4216.46p 2.089±0.057 4224.45p 1.094±0.024 4226.89m 5.569±0.089 4215.37p 4.103±0.066 4218.75m 4.792±0.333 4216.84m 2.002±0.104 4224.94m 1.035±0.026 4227.90m 5.542±0.089 4216.63m 3.901±0.157 4219.28p 5.851±0.110 4217.44p 2.041±0.061 4225.92m 1.035±0.026 4228.91m 5.718±0.091 4217.31p 4.427±0.071 4219.79m 5.235±0.360 4218.47p 1.984±0.060 4226.94m 1.050±0.049 4229.88m 5.545±0.089 4218.29p 4.269±0.058 4220.40p 5.919±0.160 4218.76p 2.066±0.054 4228.94m 0.965±0.044 4231.91m 5.524±0.088 4218.30p 4.419±0.106 4221.84p 6.051±0.199 4219.86m 2.066±0.054 4229.95p 0.965±0.044 4231.91m 5.317±0.086 4219.30p 4.19±0.106 4221.84p 5.405±0.104 4219.30p 4.19±0.106 <td>4222.95m</td> <td>1.137 ± 0.047</td> <td>4225.49p</td> <td>5.408 ± 0.058</td> <td>4213.33p</td> <td>3.924 ± 0.059</td> <td>4217.37p</td> <td>6.017 ± 0.137</td> <td>4215.45p</td> <td>2.155 ± 0.095</td>	4222.95m	1.137 ± 0.047	4225.49p	5.408 ± 0.058	4213.33p	3.924 ± 0.059	4217.37p	6.017 ± 0.137	4215.45p	2.155 ± 0.095
4224.45p 1.094±0.024 4226.89m 5.569±0.089 4215.37p 4.130±0.066 4218.75m 4.792±0.353 4216.44m 2.020±0.104 4224.94m 1.195±0.048 4227.59p 5.447±0.085 4215.64m 4.049±0.159 4219.28p 5.851±0.110 4217.44p 2.041±0.061 4225.52p 1.035±0.026 4227.90m 5.718±0.091 4217.31p 4.427±0.071 4219.79m 5.235±0.360 4218.47p 1.198±0.060 4226.42p 1.055±0.019 4229.83m 5.504±0.088 4218.32p 4.269±0.058 4220.40n 5.919±0.160 4218.47p 1.988±0.064 4226.94m 1.020±0.045 4229.88m 5.545±0.088 4218.30n 4.417±0.086 4220.40n 5.919±0.160 4218.45p 1.830±0.066 4229.49m 0.965±0.044 4231.45p 5.385±0.083 4218.30n 4.417±0.086 4220.39m 5.64±0.366 4218.30n 4.419±0.066 4221.33p 6.051±0.199 4219.35p 1.33±0.066 4229.99m 0.953±0.014 4231.45p 5.275±0.038 4219.30n 4.231±0.06			-		-		-		-	
224.94m 1.95 ± 0.048 $4227.53p$ 5.447 ± 0.085 4215.64m 4.049 ± 0.159 $4219.28p$ 5.81 ± 0.10 $4217.44p$ 2.041 ± 0.061 $4225.52p$ 1.035 ± 0.026 $4227.90m$ 5.542 ± 0.089 $4216.63m$ 3.901 ± 0.157 $4219.40m$ 6.157 ± 0.201 $4217.84m$ 2.115 ± 0.105 $4225.92m$ 1.055 ± 0.019 $4229.53p$ 5.500 ± 0.060 $4217.63m$ 4217.6071 $4219.79m$ 5.235 ± 0.360 $4218.76m$ 1.984 ± 0.060 $4226.94m$ 1.020 ± 0.045 $4229.83m$ 5.504 ± 0.089 $4218.29p$ 4.269 ± 0.058 $4220.40m$ 5.919 ± 0.160 $4218.86m$ 20.066 ± 0.006 $4227.95m$ 0.988 ± 0.044 $4230.91m$ 5.284 ± 0.088 $4218.30m$ 4.17 ± 0.086 $4220.69m$ 5.547 ± 0.367 $4219.50p$ 1.830 ± 0.066 $4229.45p$ 0.953 ± 0.014 $4231.43p$ 5.385 ± 0.063 $4218.70m$ 4.337 ± 0.163 $4221.39m$ 5.466 ± 0.036 $4221.49p$ $4.191.006$ $4229.45p$ 0.953 ± 0.014 $4231.43p$ 5.317 ± 0.086 $4219.30p$ $4.191.006$ $4221.69m$ 5.466 ± 0.036 $4220.40p$ 2.107 ± 0.096 $4229.45p$ 0.941 ± 0.043 $4232.34p$ 5.275 ± 0.039 $4219.30p$ 4.066 ± 0.076 $4221.69m$ 5.66 ± 0.376 $4220.69m$ 4.066 ± 0.076 $4231.43p$ 0.896 ± 0.043 $4232.90m$ 5.407 ± 0.087 $4220.40m$ 4.066 ± 0.076 $4222.69m$ 5.66 ± 0.371 $4221.6p$ 4.066 ± 0.076 $4231.50p$ 0.88	4223.94m	1.119 ± 0.047	4226.44p	5.447 ± 0.064	4214.63m	3.920 ± 0.157	4218.44p	5.687 ± 0.107	4216.46p	2.089 ± 0.057
4225.52p 1.035±0.026 4227.90m 5.542±0.089 4216.63m 3.901±0.157 4219.40m 6.157±0.201 4217.84m 2.115±0.105 4226.92m 1.134±0.047 4228.91m 5.718±0.091 4217.31p 4.427±0.071 4219.79m 5.235±0.360 4218.47p 1.984±0.060 4226.42p 1.055±0.019 4229.88m 5.50±0.066 4217.63m 4.666±0.171 4220.40m 5.50±1.060 4218.20m 5.50±0.080 4218.20m 5.91±0.080 4218.70m 5.06±0.030 5.91±0.160 4218.70m 2.066±0.035 5.547±0.367 4219.50p 1.830±0.066 4228.94m 0.965±0.044 4231.91m 5.317±0.086 4218.30m 4.417±0.086 4221.69m 5.547±0.367 4219.015 4.238±0.066 4221.33p 6.051±0.199 4219.85m 2.136±0.015 4220.40m 5.436±0.365 4220.41m 2.017±0.095 4229.45p 0.951±0.014 4231.45p 5.175±0.039 4219.34p 4.666±0.167 4221.38p 6.462±0.146 4220.60m 1.885±0.101 4231.45p 4.205.60m 1.885±0.101 4220.86m 1.885±0.10	4224.45p	1.094 ± 0.024	4226.89m	5.569 ± 0.089	4215.37p	4.130 ± 0.066	4218.75m	4.792 ± 0.353	4216.84m	2.020 ± 0.104
4225.92m1.134 \pm 0.0474228.91m5.718 \pm 0.0914217.31p4.427 \pm 0.0714219.79m5.235 \pm 0.3604218.47p1.984 \pm 0.0604226.42p1.055 \pm 0.0194229.53p5.500 \pm 0.0664217.63m4.866 \pm 0.1714220.27p5.506 \pm 0.1304218.77g2.045 \pm 0.0694226.94m1.020 \pm 0.0454229.88m5.545 \pm 0.0884218.30p4.417 \pm 0.0864220.40m5.19 \pm 0.1064218.86m2.066 \pm 0.1054227.95m0.988 \pm 0.0444231.45p5.524 \pm 0.0884218.30p4.417 \pm 0.0864220.69m5.47 \pm 0.0764219.86m1.830 \pm 0.0664229.45p0.955 \pm 0.0444231.45p5.385 \pm 0.0634218.70m4.337 \pm 0.1664221.3p5.436 \pm 0.0154220.40p5.436 \pm 0.3054220.40p4219.00p4229.93m0.941 \pm 0.0434232.3p5.494 \pm 0.214219.30p4.19 \pm 0.0664221.69m5.466 \pm 0.1144220.60m1.968 \pm 0.1144231.45p0.952 \pm 0.0174232.90m5.449 \pm 0.0874219.93p4.066 \pm 0.1674222.38p5.601 \pm 0.1144220.60m1.885 \pm 0.1014231.45p0.880 \pm 0.0334233.44p5.275 \pm 0.0324220.29p4.232 \pm 0.0754222.39p5.601 \pm 0.3144221.67g2.063 \pm 0.0344231.45p0.880 \pm 0.0344233.49p5.407 \pm 0.0524220.29p4.232 \pm 0.0754223.34p5.661 \pm 0.3144221.54p1.997 \pm 0.0904232.38p0.860 \pm 0.0144234.3p5.215 \pm 0.0524220.3p4.311 \pm 0.0644224.5p5.785 \pm 0.1044221.6p	4224.94m	1.195 ± 0.048	4227.53p	5.447 ± 0.085	4215.64m	4.049 ± 0.159	4219.28p	5.851 ± 0.110	4217.44p	2.041 ± 0.061
4226.42p 1.055±0.019 4229.53p 5.50±0.066 4217.63m 4.866±0.171 420.27p 5.506±0.130 4218.7g 2.045±0.069 4226.94m 1.020±0.045 4229.88m 5.545±0.089 4218.29p 4.269±0.058 4220.40m 5.919±0.160 4218.86m 2.066±0.105 4227.95m 0.988±0.044 4230.91m 5.524±0.088 4218.30m 4.417±0.086 4220.69m 5.547±0.367 4219.50p 1.830±0.066 4228.94m 0.953±0.014 4231.45p 5.375±0.086 4219.30m 4.337±0.163 4221.33p 6.051±0.199 4219.80m 2.136±0.105 4229.95m 0.953±0.014 4231.91m 5.375±0.039 4219.30m 4.239±0.068 4221.84p 6.462±0.146 4220.41p 2.017±0.095 4231.43p 0.927±0.017 4232.90m 5.494±0.218 4219.93p 4.066±0.051 4222.33p 5.601±0.149 4220.60m 1.988±0.014 4231.43p 0.927±0.017 4232.90m 5.494±0.087 4220.3p 4.232±0.075 4223.3p 5.667±0.168 4221.6p 1.997±0.094	4225.52p	1.035 ± 0.026	4227.90m	5.542 ± 0.089	4216.63m	3.901 ± 0.157	4219.40n	6.157 ± 0.201	4217.84m	2.115 ± 0.105
4226.94m 1.020±0.045 4229.88m 5.545±0.089 4218.29p 4.269±0.058 4220.40m 5.919±0.160 4218.86m 2.066±0.105 4227.95m 0.988±0.044 4230.91m 5.524±0.088 4218.30m 4.417±0.086 4220.69m 5.547±0.367 4219.50p 1.830±0.066 4228.94m 0.965±0.044 4231.45p 5.385±0.063 4218.30m 4.419±0.106 4221.33p 6.051±0.199 4219.88m 2.136±0.105 4229.95m 0.953±0.014 4231.91m 5.317±0.086 4219.30m 4.419±0.106 4221.83p 6.661±0.146 4220.40m 1.968±0.143 4230.95m 0.896±0.043 4232.43p 5.275±0.039 4219.30m 4.606±0.167 4222.38p 5.601±0.149 4220.60m 1.968±0.114 4231.43p 0.927±0.017 4232.90m 5.449±0.087 4219.93g 4.066±0.167 4222.89m 5.916±0.314 4221.07g 2.063±0.014 4231.45p 0.880±0.033 4233.94m 5.275±0.052 4202.93p 4.320±0.09 4223.34p 5.766±0.371 4221.84p 1.997±0.09 <td>4225.92m</td> <td>1.134 ± 0.047</td> <td>4228.91m</td> <td>5.718 ± 0.091</td> <td>4217.31p</td> <td>4.427 ± 0.071</td> <td>4219.79m</td> <td>5.235 ± 0.360</td> <td>4218.47p</td> <td>1.984 ± 0.060</td>	4225.92m	1.134 ± 0.047	4228.91m	5.718 ± 0.091	4217.31p	4.427 ± 0.071	4219.79m	5.235 ± 0.360	4218.47p	1.984 ± 0.060
4227.95m0.988±0.0444230.91m5.524±0.0884218.30m4.417±0.0864220.69m5.547±0.3674219.50m1.830±0.0664228.94m0.965±0.0444231.45p5.385±0.0634218.70m4.337±0.1634221.33p6.051±0.1994219.88m2.136±0.1054229.45p0.953±0.0144231.91m5.317±0.0864219.30p4.419±0.1064221.69m5.436±0.3654220.41p2.017±0.0954229.93m0.941±0.0434232.43p5.275±0.0394219.30n4.239±0.0884221.84g6.462±0.1464220.60m1.968±0.1434231.43p0.927±0.0174232.90m5.449±0.0874219.93g4.066±0.0514222.69m5.916±0.3714221.07g2.063±0.0344231.50g0.880±0.0354233.49m5.475±0.0524220.29p4.232±0.0754223.34p5.867±0.1684221.46p1.997±0.0904231.55m0.882±0.0434233.89m5.407±0.0874220.31n4.500±0.0964223.34p5.867±0.1844221.46p1.997±0.0904232.35m0.860±0.0144234.43p5.215±0.0404220.64m4.411±0.0964224.69m5.70±0.1844222.51p1.890±0.0944233.47p0.863±0.0144236.45p5.36±0.0864221.32p4.320±0.0804224.69m5.70±0.1554223.05p1.942±0.0944233.49m0.816±0.0424235.90m5.358±0.0864221.35p4.35±0.0734226.71m5.376±0.3624223.48p2.029±0.0734234.94m0.904±0.0434236.65p5.19±0.0454222.37p4.35	4226.42p	1.055 ± 0.019	4229.53p	5.500 ± 0.066	4217.63m	4.866 ± 0.171	4220.27p	5.506 ± 0.130	4218.77g	2.045 ± 0.069
4228.94m 0.965 ± 0.044 $4231.45p$ 5.385 ± 0.063 $4218.70m$ 4.337 ± 0.163 $4221.33p$ 6.051 ± 0.199 $4219.80m$ 2.136 ± 0.105 4229.45p 0.953 ± 0.014 $4231.91m$ 5.317 ± 0.086 $4219.30p$ 4.419 ± 0.106 $4221.69m$ 5.436 ± 0.365 $4220.41p$ 2.017 ± 0.095 4229.93m 0.941 ± 0.043 $4232.02g$ 5.494 ± 0.210 $4219.30m$ 4.239 ± 0.068 $4221.84g$ 6.462 ± 0.146 $4220.60m$ 1.968 ± 0.143 4230.95m 0.896 ± 0.043 $4232.39p$ 5.275 ± 0.039 $4219.93g$ 4.066 ± 0.167 $4222.38p$ 5.601 ± 0.149 $4220.86m$ 1.885 ± 0.101 4231.43p 0.927 ± 0.017 $4232.90m$ 5.449 ± 0.087 $4219.93g$ 4.066 ± 0.051 $4222.69m$ 5.160 ± 0.371 $4221.04p$ 2.063 ± 0.034 4231.50g 0.880 ± 0.035 $4233.44p$ 5.275 ± 0.052 $4220.29p$ 4.232 ± 0.075 $4223.34p$ 5.16 ± 0.370 $4221.46p$ 2.055 ± 0.104 4231.95m 0.880 ± 0.035 $4233.44p$ 5.275 ± 0.052 $4220.29p$ 4.232 ± 0.075 $4223.69m$ 5.766 ± 0.371 $4221.46p$ 1.997 ± 0.090 4231.95m 0.860 ± 0.014 $4234.43p$ 5.215 ± 0.087 $4221.32p$ 4.300 ± 0.099 $4223.69m$ 5.706 ± 0.370 $4222.51p$ 1.890 ± 0.095 4233.47p 0.863 ± 0.014 $4235.44p$ 5.270 ± 0.046 $4221.32p$ 4.350 ± 0.080 $4226.3p$ 5.700 ± 0.370 $4222.85m$ 4.300 ± 0.095 4234.46p 0.816 ± 0.042 $4235.46p$ 5.436 ± 0.042 $4235.46p$ $4.364+0.042$ 4	4226.94m	1.020 ± 0.045	4229.88m	5.545 ± 0.089	4218.29p	4.269 ± 0.058	4220.40n	5.919 ± 0.160	4218.86m	2.066 ± 0.105
4229.45p0.953±0.0144231.91m5.317±0.0864219.30p4.419±0.1064221.69m5.436±0.3654220.41p2.017±0.0954229.93m0.941±0.0434232.02g5.494±0.2104219.30n4.239±0.0684221.84g6.462±0.1464220.60n1.968±0.1434230.95m0.896±0.0434232.43p5.275±0.0394219.74m4.606±0.1674222.38p5.601±0.1494220.86m1.885±0.1014231.43p0.927±0.0174232.90m5.449±0.0874219.93g4.066±0.0514222.69m5.916±0.3714221.07g2.063±0.0344231.50g0.880±0.0354233.44p5.275±0.0524220.29p4.232±0.0754223.34p5.867±0.1684221.46p1.997±0.0904231.95m0.886±0.0434234.83p5.407±0.0874220.31n4.500±0.0994223.69m5.786±0.3714221.84m2.055±0.1044232.38p0.860±0.0144234.43p5.215±0.0404220.64m4.411±0.1644224.35p5.765±0.1494222.51p1.890±0.0954233.47p0.863±0.0144235.49m5.316±0.0864221.35p4.351±0.0734226.69p5.706±0.3704222.85m2.042±0.1044234.49m0.816±0.0424235.94p5.358±0.0864221.64m4.254±0.1614226.71m5.376±0.3624223.48p2.099±0.0734234.94m0.904±0.0434236.45p5.345±0.0864222.37p4.345±0.0734227.4pp5.486±0.1344224.1p2.033±0.0644235.46p0.843±0.0134237.44p5.154±0.0554223.36p	4227.95 m	0.988 ± 0.044	4230.91m	5.524 ± 0.088	4218.30n	4.417 ± 0.086	4220.69 m	5.547 ± 0.367	4219.50p	1.830 ± 0.066
4229.93m 0.941±0.043 4232.02g 5.494±0.210 4219.30n 4.239±0.068 4221.84g 6.462±0.146 4220.60n 1.968±0.143 4230.95m 0.896±0.043 4232.43p 5.275±0.039 4219.74m 4.606±0.167 4222.38p 5.601±0.149 4220.86m 1.885±0.101 4231.43p 0.927±0.017 4232.90m 5.449±0.087 4219.93g 4.066±0.051 4222.69m 5.916±0.371 4221.07g 2.063±0.034 4231.50g 0.880±0.035 4233.44p 5.275±0.052 4220.29p 4.232±0.075 4223.34p 5.867±0.168 4221.46p 1.997±0.090 4231.95m 0.880±0.014 4234.43p 5.215±0.040 4220.64m 4.411±0.164 4224.35p 5.725±0.149 4222.51p 1.890±0.095 4232.94m 0.883±0.014 4235.44p 5.270±0.046 4221.35p 4.351±0.073 4226.3pp 5.70±0.149 4222.51p 1.890±0.094 4233.47p 0.863±0.014 4235.49p 5.270±0.046 4221.35p 4.351±0.073 4226.3pp 5.70±0.135 4223.05g 1.94±0.044	4228.94 m	0.965 ± 0.044	4231.45p	5.385 ± 0.063	4218.70 m	4.337 ± 0.163	4221.33p	6.051 ± 0.199	4219.88m	2.136 ± 0.105
4230.95m 0.896 ± 0.043 $4232.43p$ 5.275 ± 0.039 $4219.74m$ 4.606 ± 0.167 $4222.38p$ 5.601 ± 0.149 $4220.86m$ 1.885 ± 0.101 4231.43p 0.927 ± 0.017 $4232.90m$ 5.449 ± 0.087 $4219.93g$ 4.066 ± 0.051 $4222.69m$ 5.916 ± 0.371 $4221.07g$ 2.063 ± 0.034 4231.50g 0.880 ± 0.035 $4233.44p$ 5.275 ± 0.052 $4220.2pp$ 4.232 ± 0.075 $4223.34p$ 5.867 ± 0.168 $4221.46p$ 1.997 ± 0.090 4231.95m 0.882 ± 0.043 $4234.43p$ 5.15 ± 0.040 $4220.64m$ 4.411 ± 0.164 $4224.35p$ 5.725 ± 0.149 $4222.51p$ 1.890 ± 0.095 4232.94m 0.832 ± 0.042 $4234.89m$ 5.316 ± 0.086 $4221.32p$ 4.320 ± 0.080 $4224.69m$ 5.706 ± 0.370 $4222.85m$ 2.042 ± 0.104 4233.94m 0.863 ± 0.014 $4235.44p$ 5.270 ± 0.046 $4221.35p$ 4.351 ± 0.073 $4226.3pp$ 5.709 ± 0.155 $4223.05g$ 1.942 ± 0.094 4234.46p 0.824 ± 0.014 $4236.45p$ 5.199 ± 0.045 $4222.37p$ 4.345 ± 0.073 $4226.7m$ 5.376 ± 0.362 $4223.48p$ 2.09 ± 0.073 4234.94m 0.904 ± 0.043 $4236.95m$ 5.345 ± 0.086 $4222.37p$ 4.345 ± 0.073 $4227.4p$ 5.486 ± 0.134 $4223.8pm$ 1.877 ± 0.101 4235.94m 0.883 ± 0.013 $4237.44p$ 5.154 ± 0.055 $4223.36p$ 4.358 ± 0.068 $4229.74p$ 5.385 ± 0.364 $4224.41p$ 2.033 ± 0.064 4235.94m 0.883 ± 0.013 $4237.95m$ 5.491 ± 0.035 $4230.95m$ 5.491 ± 0.035 423	4229.45p	$0.953 {\pm} 0.014$	4231.91m	5.317 ± 0.086	4219.30p	4.419 ± 0.106	4221.69m	$5.436 {\pm} 0.365$	4220.41p	2.017 ± 0.095
4231.43p 0.927 ± 0.017 4232.90m 5.449 ± 0.087 4219.93g 4.066 ± 0.051 4222.69m 5.916 ± 0.371 4221.07g2.063 ±0.034 4231.50g 0.880 ± 0.035 4233.44p 5.275 ± 0.052 4220.29p 4.232 ± 0.075 4223.34p 5.867 ± 0.168 4221.46p 1.997 ± 0.090 4231.95m 0.882 ± 0.043 4233.89m 5.407 ± 0.087 4220.31m 4.500 ± 0.099 4223.69m 5.786 ± 0.371 4221.84m 2.055 ± 0.104 4232.94m 0.860 ± 0.014 4234.43p 5.215 ± 0.040 4220.64m 4.411 ± 0.164 4224.35p 5.725 ± 0.149 4222.51p 1.890 ± 0.095 4233.47p 0.863 ± 0.014 4235.44p 5.270 ± 0.046 4221.35n 4.351 ± 0.073 4226.3pp 5.709 ± 0.155 4223.05g 1.942 ± 0.094 4233.94m 0.816 ± 0.042 4235.90m 5.358 ± 0.086 4221.64m 4.254 ± 0.161 4226.71m 5.376 ± 0.362 4223.48p 2.029 ± 0.073 4234.49m 0.904 ± 0.043 4236.45p 5.199 ± 0.045 4222.37p 4.345 ± 0.073 4227.41p 5.486 ± 0.134 4223.85m 1.877 ± 0.101 4235.49m 0.904 ± 0.043 4236.45p 5.159 ± 0.055 4223.36p 4.358 ± 0.068 4227.69m 5.385 ± 0.364 4224.41p 2.033 ± 0.064 4235.94m 0.843 ± 0.013 4237.44p 5.154 ± 0.055 4223.36p 4.358 ± 0.068 4229.73m 5.490 ± 0.363 4224.85m 2.000 ± 0.111 4237.95m 0.883 ± 0.013 4239.99m 5.491 ± 0.084 4233.89g 4.410 ± 0.055 4230.69m 5.382 ± 0.125 4225.46p 2.000 ± 0.111 </td <td>4229.93m</td> <td>$0.941 {\pm} 0.043$</td> <td>4232.02g</td> <td>$5.494 {\pm} 0.210$</td> <td>4219.30n</td> <td>$4.239 {\pm} 0.068$</td> <td>4221.84g</td> <td>$6.462 {\pm} 0.146$</td> <td>4220.60n</td> <td>1.968 ± 0.143</td>	4229.93m	$0.941 {\pm} 0.043$	4232.02g	$5.494 {\pm} 0.210$	4219.30n	$4.239 {\pm} 0.068$	4221.84g	$6.462 {\pm} 0.146$	4220.60n	1.968 ± 0.143
4231.50g0.880±0.0354233.44p5.275±0.0524220.29p4.232±0.0754223.34p5.867±0.1684221.46p1.997±0.0904231.95m0.882±0.0434233.89m5.407±0.0874220.31n4.500±0.0994223.69m5.786±0.3714221.84m2.055±0.1044232.38p0.860±0.0144234.43p5.215±0.0404220.64m4.411±0.1644224.35p5.725±0.1494222.51p1.890±0.0954232.94m0.832±0.0424234.89m5.316±0.0864221.32p4.320±0.0804224.69m5.706±0.3704222.85m2.042±0.1044233.94m0.863±0.0144235.99m5.385±0.0864221.35m4.351±0.0734226.39p5.709±0.1554223.05g1.942±0.0944233.94m0.816±0.0424235.99m5.385±0.0864221.64m4.254±0.1614226.71m5.376±0.3624223.48p2.029±0.0734234.94m0.904±0.0434236.95p5.199±0.0454222.37p4.345±0.0734227.41p5.486±0.1344223.85m1.877±0.1014235.94m0.904±0.0434236.99m5.345±0.0864222.63m4.532±0.0664227.69m5.385±0.3644224.41p2.033±0.0644235.94m0.818±0.0424237.90m5.451±0.0874223.64m4.439±0.1644229.73m5.490±0.3634225.66g1.971±0.0344236.95m0.851±0.0434239.99m5.46±0.0454224.33p4.365±0.0614230.69m5.340±0.3624225.89m1.908±0.1034237.95m0.784±0.0424240.48p5.346±0.0454224.63m	4230.95 m	$0.896 {\pm} 0.043$	4232.43p	5.275 ± 0.039	4219.74m	$4.606 {\pm} 0.167$	4222.38p	5.601 ± 0.149	4220.86 m	$1.885 {\pm} 0.101$
4231.95m0.882±0.0434233.89m5.407±0.0874220.31n4.500±0.0994223.69m5.786±0.3714221.84m2.055±0.1044232.38p0.860±0.0144234.43p5.215±0.0404220.64m4.411±0.1644224.35p5.725±0.1494222.51p1.890±0.0954232.94m0.832±0.0424234.89m5.316±0.0864221.32p4.320±0.0804224.69m5.706±0.3704222.85m2.042±0.1044233.94m0.816±0.0424235.90m5.385±0.0864221.64m4.254±0.1614226.71m5.376±0.3624223.48p2.029±0.0734234.46p0.824±0.0144236.45p5.199±0.0454222.37p4.345±0.0734227.41p5.486±0.1344223.85m1.877±0.1014234.94m0.904±0.0434236.90m5.345±0.0864222.63m4.532±0.1664227.69m5.385±0.3644224.41p2.033±0.0644235.94m0.818±0.0424237.90m5.451±0.0874223.64m4.439±0.1644229.73m5.490±0.3634225.66g1.971±0.0344236.95m0.851±0.0434239.99m5.491±0.0884223.83g4.410±0.0554230.27p5.382±0.1254225.89m1.908±0.1034237.95m0.784±0.0424240.48p5.342±0.0504224.63m4.476±0.1654231.41p5.622±0.1314226.83m1.908±0.1034238.49g0.844±0.0154240.88p5.226±0.0854225.33p4.396±0.0644231.70m6.147±0.3744226.83m1.943±0.1034239.57n0.804±0.0434241.44p5.240±0.0414226.26p <td< td=""><td>4231.43p</td><td>$0.927{\pm}0.017$</td><td>$4232.90 {\rm m}$</td><td>$5.449 {\pm} 0.087$</td><td>4219.93g</td><td>$4.066{\pm}0.051$</td><td>$4222.69\mathrm{m}$</td><td>5.916 ± 0.371</td><td>4221.07g</td><td>2.063 ± 0.034</td></td<>	4231.43p	$0.927{\pm}0.017$	$4232.90 {\rm m}$	$5.449 {\pm} 0.087$	4219.93g	$4.066{\pm}0.051$	$4222.69\mathrm{m}$	5.916 ± 0.371	4221.07g	2.063 ± 0.034
4232.38p 0.860±0.014 4234.43p 5.215±0.040 4220.64m 4.411±0.164 4224.35p 5.725±0.149 4222.51p 1.890±0.095 4232.94m 0.832±0.042 4234.89m 5.316±0.086 4221.32p 4.320±0.080 4224.69m 5.706±0.370 4222.85m 2.042±0.104 4233.47p 0.863±0.014 4235.44p 5.270±0.046 4221.35n 4.351±0.073 4226.39p 5.709±0.155 4223.05g 1.942±0.094 4233.94m 0.816±0.042 4235.90m 5.388±0.086 4221.64m 4.254±0.161 4226.71m 5.376±0.362 4223.48p 2.029±0.073 4234.94m 0.824±0.014 4236.45p 5.199±0.045 4222.37p 4.345±0.073 4227.41p 5.486±0.134 4223.85m 1.877±0.101 4234.94m 0.904±0.043 4236.90m 5.345±0.086 4222.37p 4.532±0.073 4227.41p 5.486±0.134 4223.85m 1.877±0.101 4234.94m 0.904±0.043 4237.44p 5.154±0.055 4223.36p 4.532±0.066 4227.69m 5.385±0.364 4224.41p 2.033±0.064 4235.94m 0.818±0.042 4237.90m 5.451±0.087	4231.50g	$0.880{\pm}0.035$	4233.44p	$5.275 {\pm} 0.052$	4220.29p	$4.232 {\pm} 0.075$	4223.34p	$5.867{\pm}0.168$	4221.46p	1.997 ± 0.090
4232.94m 0.832±0.042 4234.89m 5.316±0.086 4221.32p 4.320±0.080 4224.69m 5.706±0.370 4222.85m 2.042±0.104 4233.47p 0.863±0.014 4235.44p 5.270±0.046 4221.35m 4.351±0.073 4226.39p 5.709±0.155 4223.05g 1.942±0.094 4233.94m 0.816±0.042 4235.90m 5.358±0.086 4221.64m 4.254±0.161 4226.71m 5.376±0.362 4223.48p 2.029±0.073 4234.46p 0.824±0.014 4236.45p 5.199±0.045 4222.37p 4.345±0.073 4227.41p 5.486±0.134 4223.85m 1.877±0.101 4234.94m 0.904±0.043 4236.90m 5.345±0.086 4222.63m 4.532±0.166 4227.69m 5.385±0.364 4224.41p 2.033±0.064 4235.46p 0.843±0.013 4237.44p 5.154±0.055 4223.36p 4.358±0.068 4229.42p 5.783±0.150 4224.85m 2.062±0.105 4235.94m 0.818±0.042 4237.90m 5.491±0.088 4223.83g 4.410±0.055 4230.27p 5.382±0.125 4225.66p 1.971±0.034 4237.42p 0.823±0.013 4239.93g 5.346±0.04	4231.95 m	$0.882{\pm}0.043$	$4233.89\mathrm{m}$	$5.407{\pm}0.087$	4220.31n	$4.500 \!\pm\! 0.099$	$4223.69\mathrm{m}$	$5.786{\pm}0.371$	$4221.84\mathrm{m}$	$2.055 {\pm} 0.104$
4233.47p 0.863±0.014 4235.44p 5.270±0.046 4221.35n 4.351±0.073 4226.39p 5.709±0.155 4223.05g 1.942±0.094 4233.94m 0.816±0.042 4235.90m 5.358±0.086 4221.64m 4.254±0.161 4226.71m 5.376±0.362 4223.48p 2.029±0.073 4234.46p 0.824±0.014 4236.45p 5.199±0.045 4222.37p 4.345±0.073 4227.41p 5.486±0.134 4223.85m 1.877±0.101 4234.94m 0.904±0.043 4236.90m 5.345±0.086 4222.63m 4.532±0.166 4227.69m 5.385±0.364 4224.41p 2.033±0.064 4235.94m 0.843±0.013 4237.44p 5.154±0.055 4223.36p 4.358±0.068 4229.42p 5.783±0.150 4224.85m 2.062±0.105 4236.95m 0.818±0.042 4237.90m 5.451±0.087 4223.83m 4.439±0.164 4229.73m 5.490±0.363 4225.06g 1.971±0.034 4237.42p 0.823±0.013 4239.93m 5.346±0.040 4224.33p 4.365±0.061 4230.69m 5.340±0.362 4225.89m 1.908±0.103 4237.95m 0.844±0.015 4240.89m 5.226±0.085	4232.38p	$0.860 {\pm} 0.014$	4234.43p	$5.215{\pm}0.040$	$4220.64\mathrm{m}$	$4.411 {\pm} 0.164$	4224.35p	$5.725{\pm}0.149$	4222.51p	1.890 ± 0.095
4233.94m0.816±0.0424235.90m5.358±0.0864221.64m4.254±0.1614226.71m5.376±0.3624223.48p2.029±0.0734234.46p0.824±0.0144236.45p5.199±0.0454222.37p4.345±0.0734227.41p5.486±0.1344223.85m1.877±0.1014234.94m0.904±0.0434236.90m5.345±0.0864222.63m4.532±0.1664227.69m5.385±0.3644224.41p2.033±0.0644235.94m0.818±0.0424237.90m5.451±0.0874223.64m4.439±0.1644229.72m5.490±0.3634225.06g1.971±0.0344236.95m0.851±0.0434239.90m5.491±0.0884223.83g4.410±0.0554230.27p5.382±0.1254225.46p2.000±0.1114237.42p0.823±0.0134239.93g5.346±0.0404224.33p4.365±0.0614230.69m5.340±0.3624225.89m1.908±0.1034237.95m0.784±0.0424240.48p5.342±0.0504224.63m4.476±0.1654231.41p5.622±0.1314226.37p2.049±0.0574238.49g0.844±0.0154240.89m5.226±0.0854225.33p4.396±0.0644231.70m6.147±0.3744226.83m1.943±0.1034239.57n0.804±0.0434241.44p5.240±0.0414226.26p4.346±0.0714232.35p5.773±0.1154227.50p1.859±0.116	4232.94 m	$0.832 {\pm} 0.042$	$4234.89\mathrm{m}$	$5.316{\pm}0.086$	4221.32p	$4.320 \!\pm\! 0.080$	$4224.69\mathrm{m}$	$5.706 {\pm} 0.370$	$4222.85\mathrm{m}$	2.042 ± 0.104
4234.46p 0.824±0.014 4236.45p 5.199±0.045 4222.37p 4.345±0.073 4227.41p 5.486±0.134 4223.85m 1.877±0.101 4234.94m 0.904±0.043 4236.90m 5.345±0.086 4222.63m 4.532±0.166 4227.69m 5.385±0.364 4224.41p 2.033±0.064 4235.94m 0.818±0.042 4237.90m 5.451±0.087 4223.36p 4.358±0.068 4229.73m 5.490±0.363 4225.06g 1.971±0.034 4236.95m 0.851±0.043 4239.90m 5.491±0.088 4223.83m 4.410±0.055 4230.27p 5.382±0.125 4225.46p 2.000±0.111 4237.42p 0.823±0.013 4239.93m 5.346±0.040 4224.33p 4.365±0.061 4230.69m 5.340±0.362 4225.89m 1.908±0.103 4237.95m 0.784±0.042 4240.48p 5.342±0.050 4224.63m 4.476±0.165 4231.41p 5.622±0.131 4226.37p 2.049±0.057 4238.49g 0.804±0.043 4241.44p 5.240±0.041 4226.26p 4.366±0.061 4231.70m 6.147±0.374 4226.83m 1.943±0.103 4239.57n 0.804±0.043 4241.44p 5.240±0.041	4233.47p	$0.863 {\pm} 0.014$	4235.44p	$5.270{\pm}0.046$	4221.35n	$4.351 {\pm} 0.073$	4226.39p	$5.709 {\pm} 0.155$	4223.05g	$1.942 {\pm} 0.094$
4234.94m 0.904±0.043 4236.90m 5.345±0.086 4222.63m 4.532±0.166 4227.69m 5.385±0.364 4224.41p 2.033±0.064 4235.46p 0.843±0.013 4237.44p 5.154±0.055 4223.36p 4.358±0.068 4229.42p 5.783±0.150 4224.85m 2.062±0.105 4235.94m 0.818±0.042 4237.90m 5.451±0.087 4223.64m 4.439±0.164 4229.73m 5.490±0.363 4225.06g 1.971±0.034 4236.95m 0.851±0.043 4239.99m 5.491±0.088 4223.83g 4.410±0.055 4230.27p 5.382±0.125 4225.46p 2.000±0.111 4237.95m 0.784±0.042 4240.48p 5.342±0.050 4224.63m 4.476±0.165 4231.41p 5.622±0.131 4226.37p 2.049±0.057 4238.49g 0.844±0.015 4240.89m 5.226±0.085 4225.33p 4.396±0.064 4231.70m 6.147±0.374 4226.83m 1.943±0.103 4239.57n 0.804±0.043 4241.44p 5.240±0.041 4226.26p 4.346±0.071 4232.35p 5.773±0.115 4227.50p 1.859±0.116	4233.94 m	$0.816{\pm}0.042$	$4235.90\mathrm{m}$	$5.358{\pm}0.086$	$4221.64\mathrm{m}$	$4.254{\pm}0.161$	$4226.71\mathrm{m}$	$5.376{\pm}0.362$	4223.48p	2.029 ± 0.073
4235.46p 0.843±0.013 4237.44p 5.154±0.055 4223.36p 4.358±0.068 4229.42p 5.783±0.150 4224.85m 2.062±0.105 4235.94m 0.818±0.042 4237.90m 5.451±0.087 4223.64m 4.439±0.164 4229.73m 5.490±0.363 4225.06g 1.971±0.034 4236.95m 0.851±0.043 4239.90m 5.491±0.088 4223.83g 4.410±0.055 4230.27p 5.382±0.125 4225.46p 2.000±0.111 4237.42p 0.823±0.013 4239.93g 5.346±0.040 4224.33p 4.365±0.061 4230.69m 5.340±0.362 4225.89m 1.908±0.103 4237.95m 0.784±0.042 4240.48p 5.342±0.050 4224.63m 4.476±0.165 4231.41p 5.622±0.131 4226.37p 2.049±0.057 4238.49g 0.844±0.015 4240.89m 5.226±0.085 4225.33p 4.396±0.064 4231.70m 6.147±0.374 4226.83m 1.943±0.103 4239.57n 0.804±0.043 4241.44p 5.240±0.041 4226.26p 4.346±0.071 4232.35p 5.773±0.115 4227.50p 1.859±0.116	4234.46p	$0.824 {\pm} 0.014$	4236.45p	$5.199 {\pm} 0.045$	4222.37p	$4.345 {\pm} 0.073$	4227.41p	$5.486{\pm}0.134$	$4223.85\mathrm{m}$	$1.877 {\pm} 0.101$
4235.94m 0.818±0.042 4237.90m 5.451±0.087 4223.64m 4.439±0.164 4229.73m 5.490±0.363 4225.06g 1.971±0.034 4236.95m 0.851±0.043 4239.90m 5.491±0.088 4223.83g 4.410±0.055 4230.27p 5.382±0.125 4225.46p 2.000±0.111 4237.42p 0.823±0.013 4239.93g 5.346±0.040 4224.33p 4.365±0.061 4230.69m 5.340±0.362 4225.89m 1.908±0.103 4237.95m 0.784±0.042 4240.48p 5.342±0.050 4224.63m 4.476±0.165 4231.41p 5.622±0.131 4226.37p 2.049±0.057 4238.49g 0.844±0.015 4240.89m 5.226±0.085 4225.33p 4.396±0.064 4231.70m 6.147±0.374 4226.83m 1.943±0.103 4239.57n 0.804±0.043 4241.44p 5.240±0.041 4226.26p 4.346±0.071 4232.35p 5.773±0.115 4227.50p 1.859±0.116	4234.94 m	$0.904{\pm}0.043$	$4236.90\mathrm{m}$	$5.345{\pm}0.086$	$4222.63\mathrm{m}$	$4.532 {\pm} 0.166$	$4227.69\mathrm{m}$	$5.385{\pm}0.364$	4224.41p	$2.033 {\pm} 0.064$
4236.95m 0.851±0.043 4239.90m 5.491±0.088 423.83g 4.410±0.055 4230.27p 5.382±0.125 4225.46p 2.000±0.111 4237.42p 0.823±0.013 4239.93g 5.346±0.040 4224.33p 4.365±0.061 4230.69m 5.340±0.362 4225.89m 1.908±0.103 4237.95m 0.784±0.042 4240.48p 5.342±0.050 4224.63m 4.476±0.165 4231.41p 5.622±0.131 4226.37p 2.049±0.057 4238.49g 0.844±0.015 4240.48p 5.240±0.041 4226.26p 4.346±0.071 4232.35p 5.773±0.115 4227.50p 1.859±0.116	4235.46p	$0.843{\pm}0.013$	4237.44p	$5.154{\pm}0.055$	4223.36p	$4.358 {\pm} 0.068$	4229.42p	$5.783 {\pm} 0.150$	$4224.85\mathrm{m}$	$2.062 {\pm} 0.105$
4237.42p0.823±0.0134239.93g5.346±0.0404224.33p4.365±0.0614230.69m5.340±0.3624225.89m1.908±0.1034237.95m0.784±0.0424240.48p5.342±0.0504224.63m4.476±0.1654231.41p5.622±0.1314226.37p2.049±0.0574238.49g0.844±0.0154240.89m5.226±0.0854225.33p4.396±0.0644231.70m6.147±0.3744226.83m1.943±0.1034239.57n0.804±0.0434241.44p5.240±0.0414226.26p4.346±0.0714232.35p5.773±0.1154227.50p1.859±0.116	$4235.94\mathrm{m}$	$0.818 {\pm} 0.042$	$4237.90\mathrm{m}$	$5.451 {\pm} 0.087$	$4223.64\mathrm{m}$	$4.439 \!\pm\! 0.164$	$4229.73\mathrm{m}$	$5.490{\pm}0.363$	4225.06g	1.971 ± 0.034
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4236.95\mathrm{m}$	$0.851 {\pm} 0.043$	$4239.90\mathrm{m}$	$5.491 {\pm} 0.088$	$4223.83\mathrm{g}$	$4.410{\pm}0.055$	$4230.27\mathrm{p}$	$5.382 {\pm} 0.125$	4225.46p	2.000 ± 0.111
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4237.42p	$0.823 \!\pm\! 0.013$	4239.93g	$5.346{\pm}0.040$	4224.33p	$4.365 {\pm} 0.061$	$4230.69\mathrm{m}$	$5.340{\pm}0.362$	$4225.89\mathrm{m}$	1.908 ± 0.103
$4239.57n 0.804 \pm 0.043 4241.44p 5.240 \pm 0.041 4226.26p 4.346 \pm 0.071 4232.35p 5.773 \pm 0.115 4227.50p 1.859 \pm 0.116$	$4237.95\mathrm{m}$	$0.784 {\pm} 0.042$	4240.48p	$5.342 {\pm} 0.050$	$4224.63\mathrm{m}$	$4.476\!\pm\!0.165$	4231.41p	$5.622 {\pm} 0.131$	4226.37p	$2.049 {\pm} 0.057$
	$4238.49\mathrm{g}$	$0.844 {\pm} 0.015$	$4240.89\mathrm{m}$	$5.226{\pm}0.085$	4225.33p	$4.396 \!\pm\! 0.064$	$4231.70\mathrm{m}$	$6.147{\pm}0.374$	$4226.83\mathrm{m}$	1.943 ± 0.103
$4239.94\text{m} \ \ 0.818 \pm 0.042 \ \ 4241.89\text{m} \ \ 5.309 \pm 0.086 \ \ 4226.64\text{m} \ \ 4.346 \pm 0.163 \ \ 4232.68\text{m} \ \ 5.780 \pm 0.370 \ \ 4227.86\text{m} \ \ 2.054 \pm 0.104$	4239.57n	$0.804 {\pm} 0.043$	4241.44p	$5.240{\pm}0.041$	4226.26p	$4.346 \!\pm\! 0.071$	4232.35p	$5.773 {\pm} 0.115$	4227.50p	$1.859 {\pm} 0.116$
	$4239.94\mathrm{m}$	$0.818 {\pm} 0.042$	$4241.89\mathrm{m}$	5.309 ± 0.086	$4226.64\mathrm{m}$	$4.346 {\pm} 0.163$	$4232.68\mathrm{m}$	$5.780 {\pm} 0.370$	$4227.86\mathrm{m}$	2.054 ± 0.104

Table 5—Continued

	rk 290		rk 817		C 3227		C 3516	_	C 5548
$ m JD^a$	$F_{\rm cont}{}^{\rm b}$	$ m JD^a$	$F_{\rm cont}{}^{\rm b}$	$ m JD^a$	$F_{\rm cont}^{\ \rm b}$	$ m JD^a$	$F_{\rm cont}^{\ \rm b}$	$ m JD^a$	$F_{\rm cont}{}^{\rm b}$
4240.44p	0.873 ± 0.024	4242.49p	5.213 ± 0.050	4226.81g	4.447±0.045	4233.42n	5.834 ± 0.231	4228.86m	1.932 ± 0.103
_	0.858 ± 0.043	-		_					
	0.864 ± 0.015	-						-	
•	0.876 ± 0.043					-			
	0.871 ± 0.018			-					
•	0.899 ± 0.043	-				-		-	
	0.922 ± 0.014							0	
_	0.966 ± 0.044	-		-					
	0.944 ± 0.044							-	
	0.934 ± 0.016	_		-					
-	0.889 ± 0.043					-		_	
	0.915 ± 0.014			-					
•	0.994 ± 0.043	-						-	
	0.889 ± 0.043								
	0.918 ± 0.043			_				_	
	0.914 ± 0.043	-						-	
	0.875 ± 0.019			_					
•	0.829 ± 0.042	-		-				-	
	0.791 ± 0.026								
4252.49g	0.770 ± 0.015	4253.89m	4.987 ± 0.082	4236.29p	4.520 ± 0.055	4241.27p	5.557 ± 0.120	4237.60n	1.960 ± 0.195
4252.49p	0.763 ± 0.022	4254.85m	4.924 ± 0.081	4236.63m	4.569 ± 0.166	4241.45n	5.615 ± 0.281	4237.85m	1.942 ± 0.103
4252.57n	0.716 ± 0.085	4255.48p	4.958 ± 0.057	4237.26p	4.501 ± 0.058	4241.68m	6.231 ± 0.377	4237.92g	2.047 ± 0.027
4252.93 m	0.795 ± 0.042	4255.86m	4.780 ± 0.080	4237.64m	$4.467 {\pm} 0.165$	4242.35p	5.518 ± 0.106	4238.57n	2.167 ± 0.182
4253.94 m	0.764 ± 0.041	4256.50p	5.061 ± 0.052	4238.63 m	$4.467 {\pm} 0.165$	4242.40n	5.558 ± 0.311	4239.45p	2.062 ± 0.057
4254.90m	0.734 ± 0.041	4256.87m	4.868 ± 0.080	4238.79g	4.764 ± 0.024	4242.70m	5.973 ± 0.372	4239.85m	1.990 ± 0.104
4255.51p	0.723 ± 0.020	4257.49p	4.951 ± 0.044	4239.30p	4.374 ± 0.061	4243.35p	5.110 ± 0.136	4239.96g	2.041 ± 0.027
4255.91m	$0.584 {\pm} 0.038$	4258.51p	5.007 ± 0.062	4239.33n	4.204 ± 0.120	4243.69m	5.861 ± 0.371	4240.40p	2.032 ± 0.053
4256.47p	0.715 ± 0.017	4258.88m	5.094 ± 0.083	4239.66m	4.616 ± 0.167	4244.75m	5.083 ± 0.357	4240.84m	1.912 ± 0.103
4256.91m	0.628 ± 0.039	4259.42p	4.951 ± 0.039	4240.31p	4.542 ± 0.059	4245.30p	4.978 ± 0.136	4241.38p	2.016 ± 0.068
4257.46p	0.725 ± 0.015	4259.89m	5.012 ± 0.082	4240.63m	4.783 ± 0.169	4245.69m	4.521 ± 0.349	4241.50n	2.176 ± 0.195
4257.94m	0.610 ± 0.038	4259.99g	$4.935 {\pm} 0.094$	4241.29p	$4.641 {\pm} 0.058$	4246.36n	$4.467 {\pm} 0.171$	4241.84m	$2.236 {\pm} 0.108$
4258.48p	$0.724 {\pm} 0.015$	4260.49p	$4.959 {\pm} 0.043$	4241.63 m	$4.912 {\pm} 0.171$	4246.37p	$5.193 {\pm} 0.117$	4241.97g	$2.043 {\pm} 0.053$
4258.93 m	$0.665 {\pm} 0.039$	4260.89 m	$4.788 {\pm} 0.080$	4242.33p	4.903 ± 0.061	$4246.69\mathrm{m}$	$4.262 {\pm} 0.343$	4242.38p	2.078 ± 0.049
4259.45p	$0.696 {\pm} 0.014$	4261.41p	$4.924{\pm}0.038$	4242.64 m	$4.829 \!\pm\! 0.170$	$4247.69\mathrm{m}$	$4.152 {\pm} 0.342$	4242.92 m	1.960 ± 0.103
4259.47g	$0.636 {\pm} 0.014$	4261.89m	$4.820{\pm}0.080$	4243.31p	$4.726{\pm}0.069$	4247.86g	$5.191{\pm}0.127$	4243.38p	2.063 ± 0.049
$4259.94 {\rm m}$	$0.689 {\pm} 0.040$	4262.42p	$4.952 {\pm} 0.038$	$4243.64\mathrm{m}$	$5.024{\pm}0.173$	4248.36p	$4.939{\pm}0.134$	$4243.85\mathrm{m}$	$1.971 {\pm} 0.103$
4260.44p	$0.689 {\pm} 0.012$	4263.44p	$4.978 {\pm} 0.041$	4244.68 m	$5.191 {\pm} 0.174$	$4248.69\mathrm{m}$	$4.731{\pm}0.353$	$4244.85\mathrm{m}$	$2.033 {\pm} 0.104$
$4260.94 {\rm m}$	$0.612 {\pm} 0.038$	$4263.86\mathrm{m}$	$4.840{\pm}0.080$	4245.33p	$4.901 {\pm} 0.122$	4249.30p	$4.879 {\pm} 0.129$	4245.43p	$2.076 {\pm} 0.065$
4261.44p	$0.665 {\pm} 0.012$	4264.86 m	5.005 ± 0.082	$4245.65\mathrm{m}$	$5.126{\pm}0.174$	$4249.69\mathrm{m}$	$5.083 {\pm} 0.359$	$4245.85\mathrm{m}$	$2.133 {\pm} 0.105$
4261.93 m	$0.594{\pm}0.038$	4264.92g	$4.875 {\pm} 0.037$	4246.34n	$4.992 {\pm} 0.080$	4250.28p	$5.302 {\pm} 0.199$	$4245.89\mathrm{g}$	$2.007{\pm}0.066$
4262.45p	$0.625{\pm}0.014$	4265.44c	$4.870 {\pm} 0.094$	$4246.64\mathrm{m}$	$5.033 {\pm} 0.173$	$4250.69\mathrm{m}$	$4.822 {\pm} 0.354$	4246.40p	$2.172 {\pm} 0.057$
$4262.45\mathrm{g}$	$0.667{\pm}0.014$	$4265.88\mathrm{m}$	$4.967{\pm}0.081$	4246.76g	$4.919{\pm}0.057$	4251.34p	$5.179 {\pm} 0.156$	$4246.85\mathrm{m}$	$2.023 \!\pm\! 0.104$
4262.84d	$0.603 {\pm} 0.057$	4266.44c	$5.125{\pm}0.097$	$4247.65\mathrm{m}$	$4.820 \!\pm\! 0.170$	$4251.69\mathrm{m}$	$4.258{\pm}0.345$	$4247.84\mathrm{m}$	$2.042 {\pm} 0.104$
4263.50 p	$0.679 {\pm} 0.014$	$4266.86\mathrm{m}$	$5.041 {\pm} 0.082$	4248.30p	$4.608 \!\pm\! 0.084$	4252.37p	$4.897{\pm}0.145$	4248.41p	$2.194 {\pm} 0.164$
$4263.91\mathrm{m}$	$0.636 {\pm} 0.039$	$4267.42\mathrm{c}$	$4.985{\pm}0.095$	$4248.64\mathrm{m}$	$4.718 {\pm} 0.168$	4252.49n	$4.360{\pm}0.160$	$4248.85\mathrm{m}$	$2.140 {\pm} 0.105$

Table 5—Continued

	rk 290		rk 817		C 3227		C 3516		NGC 5548		
JD^{a}	$F_{\rm cont}^{\rm b}$	$ m JD^a$	$F_{\rm cont}^{\ \rm b}$	$ m JD^a$	$F_{\rm cont}{}^{\rm b}$	$\mathrm{JD^{a}}$	$F_{\rm cont}^{\ \rm b}$	$\mathrm{JD^{a}}$	$F_{\rm cont}{}^{\rm b}$		
4264.92m	0.645 ± 0.039	4267.86m	4.985 ± 0.082	4249.32p	4.522 ± 0.086	4252.69m	4.536 ± 0.347	4249.48p	1.985 ± 0.074		
4265.93 m	0.681 ± 0.040	4268.48c	5.206 ± 0.098	4249.64m	4.643 ± 0.167	4253.68m	5.022 ± 0.353	4249.85m	2.241 ± 0.108		
4266.48c	0.728 ± 0.057	4268.85m	4.899 ± 0.080	4249.80g	4.749 ± 0.066	4253.81g	5.044 ± 0.064	4249.94g	2.153 ± 0.034		
4266.91m	0.703 ± 0.040	4269.85m	4.852 ± 0.080	4250.31p	4.513 ± 0.122	4254.42n	4.558 ± 0.211	4250.84m	2.188 ± 0.107		
4267.44c	0.704 ± 0.056	4269.88g	4.922 ± 0.025	4250.64m	4.374 ± 0.163	4255.43p	4.199 ± 0.120	4251.38p	2.212 ± 0.079		
	0.771 ± 0.041	_	4.909 ± 0.095			-		-			
	0.713 ± 0.060		4.800 ± 0.093	4252.34p	4.219 ± 0.072	4255.71m	4.081 ± 0.341	4252.43p	2.116 ± 0.088		
4268.90m	0.762 ± 0.041	4272.45c		-			4.295 ± 0.116	_			
4269.46c	0.755 ± 0.058	4272.93g	4.849 ± 0.055	4252.64m	4.096 ± 0.160	4256.44n	4.633 ± 0.251	4252.84m	2.258 ± 0.108		
	0.798 ± 0.062	0	4.956 ± 0.095								
4270.85d	0.841 ± 0.063	4274.48c	4.870 ± 0.094	4254.40n	3.844 ± 0.080	4257.69m	3.544 ± 0.333	4253.84m	2.077 ± 0.105		
4273.45c	0.996 ± 0.063	4275.93g					4.365 ± 0.143				
4274.44c	0.946 ± 0.062	0		0		-	4.378 ± 0.181				
4274.47g	0.847 ± 0.020	4277.39c	4.902 ± 0.095	4255.67m	4.402 ± 0.164	4258.71m	4.111 ± 0.341	4255.41p	2.215 ± 0.062		
4276.43g	0.863 ± 0.012						4.073 ± 0.099				
4277.43c	0.936 ± 0.062			-		-	4.091 ± 0.336				
4277.89d	0.891 ± 0.064						4.104 ± 0.098				
4278.45p	0.880 ± 0.018	O				1	3.871 ± 0.334	1			
4278.46c	0.879 ± 0.061			-			4.108 ± 0.121				
4281.47p	0.912 ± 0.024	-		-		-	3.127 ± 0.323				
4282.37g	0.892 ± 0.014						3.566 ± 0.116				
4282.42p	0.885 ± 0.027			0		-	3.147 ± 0.321				
4282.46c	0.881 ± 0.061			-			3.638 ± 0.098				
	0.996 ± 0.067	0				•	3.264 ± 0.323				
4283.42c	0.848 ± 0.060						2.746 ± 0.319				
4283.47p	0.941 ± 0.026			-			1.946 ± 0.301	-			
4284.41c	0.837 ± 0.060						2.037 ± 0.345				
4284.42p	0.895 ± 0.024	-		-			2.377 ± 0.310	0			
4285.86d	0.816 ± 0.062	4290.41c					1.946 ± 0.303				
	0.822 ± 0.062			0			1.732 ± 0.339				
	0.835 ± 0.063						1.604 ± 0.296				
4288.44g	0.807 ± 0.015						2.226 ± 0.348				
4288.86d	0.686 ± 0.060	4295.40p					1.165 ± 0.288				
4289.42c	0.870 ± 0.061	4296.41p					1.918 ± 0.342	0			
4290.44c	0.813 ± 0.059						1.964 ± 0.297	-			
	0.800 ± 0.062			_		_	1.700 ± 0.338				
4291.41c	0.826 ± 0.059	-					1.744 ± 0.339	-			
4293.43p	0.826 ± 0.014		5.070 ± 0.096	0		4274.33c					
4296.42c	0.846 ± 0.060		5.218 ± 0.074				2.895 ± 0.084	0			
	0.860 ± 0.017		5.175 ± 0.098			0	3.374 ± 0.370				
4297.48c	0.983 ± 0.063		5.266 ± 0.059				2.843 ± 0.141				
4298.42c	1.034 ± 0.064	0	5.217 ± 0.099			O	3.672 ± 0.376				
4298.43p	0.905 ± 0.016		5.270 ± 0.117			4279.29c					
4300.38g	0.920 ± 0.033	0	5.655 ± 0.027				3.253 ± 0.187	O			
_	0.994 ± 0.063	_				•	2.974 ± 0.362				
							0.002	8	2		

Table 5—Continued

	rk 290		rk 817	NGC 3227	NG	C 3516	NG	C 5548
$ m JD^a$	$F_{\rm cont}{}^{\rm b}$	$ m JD^a$	$F_{\rm cont}{}^{\rm b}$	$\mathrm{JD^a}F_\mathrm{cont}{}^\mathrm{b}$	$ m JD^a$	$F_{\rm cont}{}^{\rm b}$	$ m JD^a$	$F_{\rm cont}{}^{\rm b}$
4301.46c	1.021±0.064	4319.83g	5.416±0.053		4280.41p	3.117±0.199	4272.89g	2.307±0.027
4306.36g	$0.975 {\pm} 0.046$	$4330.77\mathrm{g}$	$5.578 {\pm} 0.048$		4281.30p	$2.860{\pm}0.132$	$4274.87\mathrm{g}$	$2.335{\pm}0.021$
4310.33g	1.049 ± 0.022				$4281.42\mathrm{c}$	$2.761 {\pm} 0.358$	$4276.84\mathrm{d}$	2.089 ± 0.118
4318.33g	$1.126 {\pm} 0.015$				4282.31p	$2.816{\pm}0.130$	$4276.87\mathrm{g}$	2.379 ± 0.027
4321.33g	1.079 ± 0.013				$4283.29\mathrm{c}$	$2.665{\pm}0.356$	4277.80d	2.276 ± 0.122
					4283.31p	$3.087 {\pm} 0.112$	4278.35p	2.318 ± 0.104
					4284.29p	$2.822 {\pm} 0.109$	$4278.83\mathrm{d}$	2.596 ± 0.127
					$4284.33\mathrm{c}$	$2.548{\pm}0.354$	4279.36p	$2.348 {\pm} 0.082$
					$4290.28\mathrm{c}$	$2.676{\pm}0.357$	4281.37p	$2.207 {\pm} 0.111$
					$4291.32\mathrm{c}$	$2.386{\pm}0.351$	4282.37p	2.337 ± 0.086
					4293.29p	$3.044 {\pm} 0.099$	$4282.76\mathrm{d}$	2.592 ± 0.127
					4294.34p	$2.712 {\pm} 0.092$	4282.85g	2.474 ± 0.027
					4295.35p	$2.708 {\pm} 0.099$	$4283.41\mathrm{p}$	2.276 ± 0.084
					4296.29p	$2.561 {\pm} 0.102$	4284.33p	2.221 ± 0.066
					$4296.31\mathrm{c}$	$2.512 {\pm} 0.354$	$4284.90\mathrm{g}$	2.419 ± 0.027
					4298.31p	$2.797 {\pm} 0.087$	4285.77d	2.311 ± 0.122
					4299.33c	$2.761 {\pm} 0.358$	4286.76d	2.238 ± 0.121
					4299.34p	2.986 ± 0.097	4287.76d	2.341 ± 0.122
					4300.30c	3.347 ± 0.369	4288.76d	2.387 ± 0.123
							4288.85g	2.541 ± 0.021
							4289.39n	2.363 ± 0.117
							4290.75d	2.716 ± 0.130
							0	2.662 ± 0.035
								2.617 ± 0.127
								2.588 ± 0.056
								2.686 ± 0.129
							_	2.758 ± 0.036
							-	2.539 ± 0.056
							-	2.513 ± 0.058
							_	2.652 ± 0.053
							0	2.666 ± 0.035
								2.940 ± 0.051
							_	3.094 ± 0.068
							_	3.012 ± 0.036
							_	2.940 ± 0.036
							_	2.726 ± 0.070
							_	2.684 ± 0.042
							_	2.515 ± 0.048
							_	2.554 ± 0.042
							_	2.414 ± 0.034
							4332.77g	2.348 ± 0.060

 $^{^{\}rm a}$ Julian Dates are -2450000 and include the following observatory code to indicate the origin of the observation: MDM — m, MAGNUM — g, CrAO spectroscopy — c, CrAO photometry — p, UNebr. — n, and DAO — d.

^bContinuum fluxes are in units of 10^{-15} ergs s⁻¹ cm⁻² Å⁻¹ and represent the average continuum flux density measured ~ 5100 Å, rest-frame, from spectroscopic observations or the photometric V-band flux. Spectroscopic and photometric fluxes were scaled to a uniform scale as described in Section 2.3. All fluxes

have been corrected for host starlight contamination. $\,$

Table 6. $H\beta$ Fluxes

JD ^a	$\begin{array}{ccc} \operatorname{Mrk} 290 & \operatorname{Mrk} 817 \\ {}^{\mathrm{a}} & F_{\mathrm{H}\beta}{}^{\mathrm{b}} & \operatorname{JD}^{\mathrm{a}} & F_{\mathrm{H}\beta}{}^{\mathrm{b}} \end{array}$		NG JD ^a	$C3227$ $F_{H\beta}{}^{b}$	NG JD ^a	$C3516$ $F_{H\beta}{}^{b}$	NG JD ^a	$C5548$ $F_{\mathrm{H}\beta}{}^{\mathrm{b}}$	
JD	ΤΉβ	JD	ΤΉβ	JD	ΤΉβ	JD	ΤΉβ	JD	ТΗβ
4184.97 m	2.203 ± 0.049	4185.92 m	$2.491 {\pm} 0.082$	4184.68 m	3.559 ± 0.103	4184.74 m	$5.833 {\pm} 0.185$	4184.92 m	$2.285 {\pm} 0.212$
4185.96 m	$2.253{\pm}0.050$	$4186.87\mathrm{m}$	$2.515 {\pm} 0.083$	$4185.61\mathrm{m}$	$3.576 {\pm} 0.104$	$4185.66\mathrm{m}$	$6.170 \!\pm\! 0.195$	$4185.86\mathrm{m}$	2.298 ± 0.213
4186.94 m	$2.230{\pm}0.049$	$4188.91\mathrm{m}$	$2.340 \!\pm\! 0.077$	$4187.61\mathrm{m}$	$3.506{\pm}0.102$	$4188.66\mathrm{m}$	$6.150{\pm}0.195$	$4186.83\mathrm{m}$	$2.227{\pm}0.207$
4187.96 m	$2.196{\pm}0.048$	$4189.86\mathrm{m}$	$2.169 {\pm} 0.071$	$4188.61\mathrm{m}$	$4.066 \!\pm\! 0.118$	$4189.71\mathrm{m}$	$6.130 {\pm} 0.193$	$4188.86\mathrm{m}$	$2.184{\pm}0.203$
4188.95 m	$2.183{\pm}0.048$	$4191.86\mathrm{m}$	$2.518 {\pm} 0.083$	$4190.61\mathrm{m}$	3.690 ± 0.107	$4190.66\mathrm{m}$	$5.782 {\pm} 0.184$	$4189.81\mathrm{m}$	1.941 ± 0.181
$4189.90 {\rm m}$	$2.158{\pm}0.047$	$4192.90\mathrm{m}$	$2.450 {\pm} 0.080$	$4191.66\mathrm{m}$	$3.853 {\pm} 0.111$	$4191.71\mathrm{m}$	$5.633 {\pm} 0.179$	$4190.88\mathrm{m}$	1.830 ± 0.170
4190.93 m	$2.251{\pm}0.050$	$4194.92\mathrm{m}$	$2.261 {\pm} 0.075$	$4192.61\mathrm{m}$	$3.774 {\pm} 0.110$	$4192.66\mathrm{m}$	$5.495{\pm}0.175$	$4191.81\mathrm{m}$	1.730 ± 0.161
4191.95 m	$2.285{\pm}0.051$	$4201.90\mathrm{m}$	$2.416{\pm}0.080$	$4193.66\mathrm{m}$	$3.945{\pm}0.114$	$4193.75\mathrm{m}$	$5.534{\pm}0.176$	$4192.85\mathrm{m}$	1.517 ± 0.142
4192.94 m	$2.217{\pm}0.049$	$4204.85\mathrm{m}$	$2.389 {\pm} 0.079$	$4194.62\mathrm{m}$	$4.015{\pm}0.116$	$4194.68\mathrm{m}$	$5.674 {\pm} 0.181$	$4193.71\mathrm{m}$	1.572 ± 0.146
4194.96 m	$2.221 {\pm} 0.049$	$4205.86\mathrm{m}$	$2.537{\pm}0.083$	$4195.69\mathrm{m}$	$3.840 {\pm} 0.111$	$4196.67\mathrm{m}$	$5.466{\pm}0.174$	$4194.87\mathrm{m}$	1.764 ± 0.164
$4197.97 { m m}$	$2.261 {\pm} 0.050$	$4207.92\mathrm{m}$	$2.351 {\pm} 0.078$	$4196.81\mathrm{m}$	$4.010{\pm}0.116$	$4197.70\mathrm{m}$	$5.664 {\pm} 0.178$	$4197.92\mathrm{m}$	1.659 ± 0.155
4199.98 m	$2.323{\pm}0.051$	$4208.88\mathrm{m}$	$2.390{\pm}0.079$	$4197.64\mathrm{m}$	$4.052 {\pm} 0.118$	$4198.69\mathrm{m}$	$6.280 \!\pm\! 0.200$	$4198.84\mathrm{m}$	$1.353 {\pm} 0.126$
4201.95 m	$2.315{\pm}0.051$	$4209.89\mathrm{m}$	$2.380 {\pm} 0.079$	$4198.64\mathrm{m}$	$4.319 {\pm} 0.125$	$4200.67\mathrm{m}$	$5.621 {\pm} 0.179$	4199.93 m	1.672 ± 0.156
4204.90 m	$2.233 {\pm} 0.049$	$4210.89\mathrm{m}$	$2.312 {\pm} 0.077$	$4199.63\mathrm{m}$	$3.940{\pm}0.114$	$4201.67\mathrm{m}$	$5.840 \!\pm\! 0.186$	$4200.83\mathrm{m}$	1.730 ± 0.161
4205.96 m	$2.274{\pm}0.050$	$4212.88\mathrm{m}$	$2.314 {\pm} 0.077$	$4200.62\mathrm{m}$	$4.138 {\pm} 0.120$	$4204.69\mathrm{m}$	$5.804{\pm}0.185$	$4201.85\mathrm{m}$	$1.587 {\pm} 0.148$
4207.97 m	$2.240{\pm}0.049$	$4213.89\mathrm{m}$	$2.535 {\pm} 0.083$	$4201.62\mathrm{m}$	$4.138 {\pm} 0.120$	$4205.71\mathrm{m}$	$5.899 {\pm} 0.186$	$4204.79\mathrm{m}$	1.513 ± 0.140
4208.92 m	$2.281{\pm}0.050$	$4214.88\mathrm{m}$	$2.436 {\pm} 0.080$	$4204.64\mathrm{m}$	$4.481 {\pm} 0.130$	$4206.73\mathrm{m}$	$5.455 {\pm} 0.172$	$4205.82\mathrm{m}$	$1.427 {\pm} 0.133$
4209.94 m	$2.198{\pm}0.048$	$4215.89\mathrm{m}$	$2.531 {\pm} 0.083$	$4205.67\mathrm{m}$	$4.416{\pm}0.128$	$4208.72\mathrm{m}$	$5.886{\pm}0.188$	$4206.82\mathrm{m}$	1.392 ± 0.130
4210.96 m	$2.169 {\pm} 0.048$	$4216.88\mathrm{m}$	$2.367{\pm}0.078$	$4206.67\mathrm{m}$	$4.539 \!\pm\! 0.132$	4209.73 m	$6.035 {\pm} 0.192$	$4207.87\mathrm{m}$	$1.456 {\pm} 0.135$
4212.95 m	$2.169 {\pm} 0.048$	$4217.89\mathrm{m}$	$2.293{\pm}0.076$	$4207.77\mathrm{m}$	$4.573 \!\pm\! 0.133$	$4210.72\mathrm{m}$	$6.305 {\pm} 0.201$	$4208.83\mathrm{m}$	$1.581 {\pm} 0.147$
4213.96 m	$2.220{\pm}0.049$	$4218.90\mathrm{m}$	$2.536 {\pm} 0.083$	$4208.67\mathrm{m}$	$4.636 \!\pm\! 0.135$	$4212.67\mathrm{m}$	$6.385 {\pm} 0.204$	$4209.84\mathrm{m}$	$1.522 {\pm} 0.142$
4214.95 m	$2.214 {\pm} 0.049$	$4220.91\mathrm{m}$	$2.538 {\pm} 0.083$	$4209.65\mathrm{m}$	$4.672 {\pm} 0.135$	$4213.69\mathrm{m}$	$5.732 {\pm} 0.183$	$4210.84\mathrm{m}$	1.629 ± 0.152
4215.96 m	$2.214 {\pm} 0.049$	$4222.90\mathrm{m}$	$2.375 {\pm} 0.079$	$4210.67\mathrm{m}$	$4.708 \!\pm\! 0.136$	$4214.68\mathrm{m}$	$6.438 {\pm} 0.204$	$4212.83\mathrm{m}$	1.414 ± 0.131
4216.95 m	$2.129 {\pm} 0.047$	$4223.90\mathrm{m}$	$2.486 {\pm} 0.082$	$4212.62\mathrm{m}$	$4.658 {\pm} 0.135$	$4215.69\mathrm{m}$	$5.980 {\pm} 0.190$	$4213.85\mathrm{m}$	1.297 ± 0.121
4217.93 m	$2.149 {\pm} 0.047$	$4224.90\mathrm{m}$	$2.369 {\pm} 0.079$	$4214.63\mathrm{m}$	$4.249 \!\pm\! 0.123$	$4216.68\mathrm{m}$	$6.325 {\pm} 0.200$	$4214.84\mathrm{m}$	1.500 ± 0.139
4218.95 m	$2.253{\pm}0.050$	$4226.89\mathrm{m}$	$2.566 {\pm} 0.084$	$4215.64\mathrm{m}$	$4.041 {\pm} 0.117$	$4217.68\mathrm{m}$	$6.218 {\pm} 0.199$	$4215.85\mathrm{m}$	1.309 ± 0.122
4220.96 m	$2.265{\pm}0.050$	$4227.90\mathrm{m}$	$2.395{\pm}0.079$	$4216.63\mathrm{m}$	$4.169 {\pm} 0.121$	$4218.75\mathrm{m}$	$5.753 {\pm} 0.184$	$4216.84\mathrm{m}$	$1.348 {\pm} 0.125$
4221.98 m	$2.331 {\pm} 0.052$	$4228.91\mathrm{m}$	$2.519 {\pm} 0.083$	$4217.63\mathrm{m}$	$4.128 \!\pm\! 0.120$	$4219.79\mathrm{m}$	$5.699 {\pm} 0.181$	$4217.84\mathrm{m}$	1.305 ± 0.121
4222.95 m	$2.251{\pm}0.050$	$4229.88\mathrm{m}$	$2.618 {\pm} 0.086$	$4218.70\mathrm{m}$	$4.037{\pm}0.117$	$4220.69\mathrm{m}$	$5.870 \!\pm\! 0.188$	$4218.86\mathrm{m}$	1.126 ± 0.105
4223.94 m	$2.234 {\pm} 0.049$	$4230.91\mathrm{m}$	$2.639{\pm}0.087$	$4219.74\mathrm{m}$	$3.914 {\pm} 0.113$	$4221.69\mathrm{m}$	$5.930{\pm}0.189$	$4219.88\mathrm{m}$	$0.881 {\pm} 0.082$
4224.94 m	$2.212 {\pm} 0.049$	$4231.91\mathrm{m}$	$2.538 {\pm} 0.083$	$4220.64\mathrm{m}$	$3.961 {\pm} 0.115$	$4222.69\mathrm{m}$	$6.144{\pm}0.196$	$4220.86\mathrm{m}$	$0.987 {\pm} 0.092$
$4225.92 {\rm m}$	$2.246{\pm}0.050$	$4232.90\mathrm{m}$	$2.512 {\pm} 0.083$	$4221.64\mathrm{m}$	$3.899 {\pm} 0.113$	$4223.69\mathrm{m}$	$6.466 {\pm} 0.207$	$4221.84\mathrm{m}$	$0.845{\pm}0.078$
4226.94 m	$2.314 {\pm} 0.051$	$4233.89\mathrm{m}$	$2.516 {\pm} 0.083$	$4222.63\mathrm{m}$	$4.025 {\pm} 0.117$	$4224.69\mathrm{m}$	$6.518 {\pm} 0.209$	$4222.85\mathrm{m}$	$0.957 {\pm} 0.088$
4227.95 m	$2.303{\pm}0.051$	$4234.89\mathrm{m}$	$2.386{\pm}0.079$	$4223.64\mathrm{m}$	$4.311 {\pm} 0.125$	$4226.71\mathrm{m}$	$6.145{\pm}0.195$	$4223.85\mathrm{m}$	1.087 ± 0.101
4228.94 m	$2.256{\pm}0.050$	$4235.90\mathrm{m}$	$2.610 {\pm} 0.086$	4224.63 m	$4.467 {\pm} 0.130$	$4227.69\mathrm{m}$	$6.234{\pm}0.199$	$4224.85\mathrm{m}$	0.976 ± 0.091
4229.93 m	$2.291 {\pm} 0.051$	$4236.90\mathrm{m}$	$2.655{\pm}0.088$	$4226.64\mathrm{m}$	$4.022 {\pm} 0.117$	4229.73 m	$6.050 {\pm} 0.192$	$4225.89\mathrm{m}$	1.084 ± 0.101
4230.95 m	$2.313{\pm}0.051$	$4237.90\mathrm{m}$	$2.517{\pm}0.083$	$4227.64\mathrm{m}$	$4.001 {\pm} 0.116$	$4230.69\mathrm{m}$	$6.079 {\pm} 0.194$	$4226.83\mathrm{m}$	1.122 ± 0.104
4231.95 m	2.108 ± 0.046	$4239.90 {\rm m}$	$2.627{\pm}0.087$	$4228.75\mathrm{m}$	$4.069 {\pm} 0.118$	4231.70 m	$6.181 {\pm} 0.196$	$4227.86\mathrm{m}$	1.160 ± 0.108
4232.94 m	$2.214 {\pm} 0.049$	$4240.89\mathrm{m}$	$2.547{\pm}0.084$	$4229.68\mathrm{m}$	$3.858{\pm}0.112$	$4232.68\mathrm{m}$	$6.254{\pm}0.200$	$4228.86\mathrm{m}$	1.010 ± 0.094
4233.94 m	$2.169 {\pm} 0.048$	4241.89 m	$2.561 {\pm} 0.084$	4230.64 m	$3.888 {\pm} 0.113$	$4233.68\mathrm{m}$	$6.371 {\pm} 0.201$	4229.84 m	1.027 ± 0.095
4234.94 m	$2.074 {\pm} 0.045$	4243.90 m	$2.561 {\pm} 0.084$	4231.65 m	$3.847{\pm}0.111$	$4234.68\mathrm{m}$	$6.398 {\pm} 0.204$	$4230.86\mathrm{m}$	1.192 ± 0.111
4235.94 m	$2.164{\pm}0.048$	4244.90 m	$2.584{\pm}0.085$	4232.63 m	3.912 ± 0.113	4235.68 m	$6.395{\pm}0.204$	4231.86 m	1.009 ± 0.094
4236.95 m	$2.234 {\pm} 0.049$	$4245.90 {\rm m}$	$2.527{\pm}0.083$	4233.63 m	3.889 ± 0.113	$4236.68\mathrm{m}$	$6.522 {\pm} 0.208$	4232.85 m	0.890 ± 0.083
4237.95 m	2.176 ± 0.048	4246.89m	$2.565{\pm}0.084$	4234.64m	$3.855 {\pm} 0.111$	4237.69m	$6.256{\pm}0.200$	4233.85m	1.070 ± 0.100
4239.94 m	$2.164 {\pm} 0.048$	4247.88 m	2.609 ± 0.086	$4235.64\mathrm{m}$	$3.856{\pm}0.111$	$4238.68\mathrm{m}$	$6.196{\pm}0.197$	4234.85 m	0.997 ± 0.092

Table 6—Continued

4240.93m 2.143±0.047 4248.89m 2.615±0.086 4236.63m 3.830±0.111 4239.70m 6.131±0.195 4235.85m 1.010±0.094 4241.93m 2.115±0.046 4249.89m 2.421±0.080 4237.64m 3.718±0.108 4240.68m 6.304±0.201 4236.85m 0.875±0.085 42424.94m 2.074±0.045 4250.89m 2.571±0.085 4238.63m 3.756±0.109 4241.68m 6.493±0.207 4237.85m 0.955±0.084 4243.95m 2.114±0.046 4251.89m 2.521±0.083 4239.66m 3.991±0.116 4242.70m 6.323±0.201 4239.85m 0.905±0.084 4245.95m 2.073±0.045 4253.89m 2.480±0.081 4241.63m 3.930±0.114 4243.69m 6.602±0.213 4240.84m 0.952±0.088 4245.95m 2.073±0.045 4255.89m 2.480±0.081 4241.63m 4.028±0.117 4244.75m 6.223±0.198 4241.84m 0.981±0.091 4246.94m 2.141±0.047 4254.85m 2.405±0.080 4242.64m 3.816±0.110 4245.69m 6.208±0.198 4242.92m 0.950±0.088 4243.93m 2.043±0.045 4255.89m 2.600±0.086 4243.64m 4.363±0.120 4246.69m 6.139±0.195 4243.85m 0.095±0.084 4245.94m 2.114±0.046 4255.88m 2.600±0.086 4245.65m 4.207±0.122 4248.69m 6.103±0.195 4243.85m 0.992±0.092 4252.93m 2.181±0.048 4259.89m 2.434±0.080 4246.48m 4.049±0.122 4249.69m 6.103±0.195 4243.85m 0.992±0.092 4253.94m 2.157±0.047 4260.89m 2.544±0.084 4247.65m 4.200±0.122 4249.69m 6.103±0.195 4243.85m 0.740±0.068 4255.91m 2.027±0.044 4263.86m 2.335±0.077 4250.64m 4.138±0.122 4249.69m 5.698±0.182 4248.85m 0.740±0.068 4255.91m 2.027±0.044 4263.86m 2.335±0.077 4250.64m 4.138±0.122 4256.69m 5.698±0.182 4248.85m 0.740±0.069 4256.94m 2.002±0.044 4265.44c 2.157±0.080 4251.64m 4.738±0.124 4255.69m 5.698±0.182 4248.85m 0.801±0.074 4258.93m 2.005±0.044 4265.88m 2.335±0.077 4250.64m 4.138±0.112 4256.69m 5.698±0.182 4248.85m 0.801±0.074 4258.93m 2.005±0.044 4265.88m 2.335±0.077 4250.64m 4.138±0.112 4256.69m 5.698±0.182 4248.85m 0.801±0.074 4258.93m 2.005±0.044 4266.48c 2.326±0.086 4253.65m 3.873±0.112 4256.69m 5.698±0.182 4248.85m 0.801±0.074 4256.93m 2.005±0.044 4266.48c 2.326±0.086 4253.65m 3.873±0.112 4256.69m 5.698±0.182 4248.85m 0.801±0.074 4256.93m 2.005±0.044 4266.48c 2.326±0.086 4253.65m 3.873±0.112 4256.69m 5.698±0.182 4255.84m 0.891±0.004 4266.48c 2.326±0.089 4256.66m 3.857±0.112 4256.69m	Mrk 290			rk 817		C 3227		C 3516		C 5548
4241.93m 2.115±0.046 4249.89m 2.751±0.085 4237.64m 3.718±0.108 4240.68m 6.304±0.201 4237.85m 0.953±0.088 4243.95m 2.114±0.046 4251.89m 2.571±0.083 4238.66m 3.991±0.116 4242.70m 6.323±0.201 4239.85m 0.953±0.088 4244.94m 2.073±0.046 4252.88m 2.551±0.084 4240.63m 3.991±0.116 4242.70m 6.323±0.201 4240.84m 0.952±0.088 4245.95m 2.073±0.045 4253.89m 2.480±0.081 4241.63m 3.900±0.114 4243.69m 6.662±0.213 4240.84m 0.952±0.088 4246.94m 2.114±0.047 4254.85m 2.470±0.081 4241.63m 3.800±0.117 4244.75m 6.223±0.198 4241.84m 0.981±0.091 4248.94m 2.114±0.040 4255.86m 2.670±0.088 4243.44m 4.636±0.126 4266.69m 6.139±0.195 4243.85m 0.981±0.091 4248.94m 2.114±0.040 4255.88m 2.600±0.086 4245.65m 4.207±0.122 4248.69m 6.139±0.195 4243.85m 0.992±0.092 4259.39m 2.167±0.048 4255.89m 2.634±0.084 4247.65m 4.207±0.122 4248.69m 6.168±0.197 4246.85m 0.992±0.092 4259.39m 2.157±0.047 4266.89m 2.533±0.082 4246.64m 4.260±0.122 4250.69m 5.994±0.189 4247.85m 0.992±0.092 4255.91m 2.027±0.044 4263.86m 2.335±0.082 4248.64m 4.260±0.123 4256.69m 5.698±0.182 4248.85m 0.740±0.084 4255.94m 2.027±0.044 4265.44c 2.326±0.084 4236±0.074 4255.49m 2.002±0.044 4265.44c 2.326±0.078 4255.69m 3.873±0.112 4258.64m 5.56±0.183 4248.85m 0.698±0.061 4259.39m 1.998±0.042 4267.46c 2.326±0.089 4256.66m 3.857±0.112 4256.69m 5.56±0.138 4258.84m 0.081±0.078 4256.64m 4.336±0.112 4256.64m 4.266±0.133 4256.44m 4.273±0.134 4256.45m 4.266±0.134 4256.45m 4.266±0.134 4256.45m 4.266±0.134 4256.45m 4.266±0.134 4256.45m 4.266±0.134 4256.45m	$_{\mathrm{D}^{\mathrm{a}}}$	$F_{\mathrm{H}\beta}{}^{\mathrm{b}}$	$ m JD^a$	$F_{{ m H}eta}{}^{ m b}$	$ m JD^a$	$F_{{ m H}eta}{}^{ m b}$	$ m JD^a$	$F_{{ m H}eta}{}^{ m b}$	$ m JD^a$	$F_{{ m H}eta}{}^{ m b}$
4241.93m 2.115±0.046 4249.89m 2.751±0.085 4237.64m 3.718±0.108 4240.68m 6.304±0.201 4237.85m 0.953±0.088 4243.95m 2.114±0.046 4251.89m 2.571±0.083 4238.66m 3.991±0.116 4242.70m 6.323±0.201 4239.85m 0.953±0.088 4244.94m 2.073±0.046 4252.88m 2.551±0.084 4240.63m 3.991±0.116 4242.70m 6.323±0.201 4240.84m 0.952±0.088 4245.95m 2.073±0.045 4253.89m 2.480±0.081 4241.63m 3.900±0.114 4243.69m 6.662±0.213 4240.84m 0.952±0.088 4246.94m 2.114±0.047 4254.85m 2.470±0.081 4241.63m 3.800±0.117 4244.75m 6.223±0.198 4241.84m 0.981±0.091 4248.94m 2.114±0.040 4255.86m 2.670±0.088 4243.44m 4.636±0.126 4266.69m 6.139±0.195 4243.85m 0.981±0.091 4248.94m 2.114±0.040 4255.88m 2.600±0.086 4245.65m 4.207±0.122 4248.69m 6.139±0.195 4243.85m 0.992±0.092 4259.39m 2.167±0.048 4255.89m 2.634±0.084 4247.65m 4.207±0.122 4248.69m 6.168±0.197 4246.85m 0.992±0.092 4259.39m 2.157±0.047 4266.89m 2.533±0.082 4246.64m 4.260±0.122 4250.69m 5.994±0.189 4247.85m 0.992±0.092 4255.91m 2.027±0.044 4263.86m 2.335±0.082 4248.64m 4.260±0.123 4256.69m 5.698±0.182 4248.85m 0.740±0.084 4255.94m 2.027±0.044 4265.44c 2.326±0.084 4236±0.074 4255.49m 2.002±0.044 4265.44c 2.326±0.078 4255.69m 3.873±0.112 4258.64m 5.56±0.183 4248.85m 0.698±0.061 4259.39m 1.998±0.042 4267.46c 2.326±0.089 4256.66m 3.857±0.112 4256.69m 5.56±0.138 4258.84m 0.081±0.078 4256.64m 4.336±0.112 4256.64m 4.266±0.133 4256.44m 4.273±0.134 4256.45m 4.266±0.134 4256.45m 4.266±0.134 4256.45m 4.266±0.134 4256.45m 4.266±0.134 4256.45m 4.266±0.134 4256.45m	4240.93m	2.143 ± 0.047	4248.89m	2.615 ± 0.086	4236.63m	3.830 ± 0.111	4239.70m	6.131 ± 0.195	4235.85m	1.010 ± 0.094
4243.95m 2.114±0.046 4251.89m 2.521±0.083 4239.66m 3.931±0.116 4242.70m 6.323±0.201 4230.85m 0.905±0.084 4244.99m 2.073±0.045 4252.89m 2.551±0.084 4240.63m 3.930±0.114 4243.69m 6.223±0.213 4241.84m 0.952±0.088 4246.99m 2.141±0.047 4254.85m 2.405±0.088 424.64m 3.816±0.110 4245.69m 6.239±0.198 4241.84m 0.981±0.091 4248.99m 2.141±0.046 4256.87m 2.566±0.084 424.64m 3.816±0.110 4245.69m 6.139±0.195 4243.85m 1.981±0.094 4243.85m 0.984±0.091 4250.99m 2.141±0.04 4258.89m 2.344±0.080 4246.65m 4.072±0.122 4248.60m 6.168±0.193 4244.85m 0.984±0.091 4252.99m 2.157±0.044 4260.001 4250.69m 5.914±0.189 4244.85m 0.982±0.092 4254.90m 2.052±0.044 4263.65m 2.304±0.004 4275.40m 4250.60m 5.914±0.189 4248.85m 0.989±0.009 4255.94m 0.052±0.044 4275.40m 4.260±0.123										
4243.95m 2.114±0.046 4251.89m 2.521±0.083 4239.66m 3.931±0.116 4242.70m 6.323±0.201 4230.85m 0.905±0.084 4244.99m 2.073±0.045 4252.89m 2.551±0.084 4240.63m 3.930±0.114 4243.69m 6.223±0.213 4241.84m 0.952±0.088 4246.99m 2.141±0.047 4254.85m 2.405±0.088 424.64m 3.816±0.110 4245.69m 6.239±0.198 4241.84m 0.981±0.091 4248.99m 2.141±0.046 4256.87m 2.566±0.084 424.64m 3.816±0.110 4245.69m 6.139±0.195 4243.85m 1.981±0.094 4243.85m 0.984±0.091 4250.99m 2.141±0.04 4258.89m 2.344±0.080 4246.65m 4.072±0.122 4248.60m 6.168±0.193 4244.85m 0.984±0.091 4252.99m 2.157±0.044 4260.001 4250.69m 5.914±0.189 4244.85m 0.982±0.092 4254.90m 2.052±0.044 4263.65m 2.304±0.004 4275.40m 4250.60m 5.914±0.189 4248.85m 0.989±0.009 4255.94m 0.052±0.044 4275.40m 4.260±0.123	4242.94m	2.074 ± 0.045	4250.89m	2.571 ± 0.085	4238.63m	3.756 ± 0.109	4241.68m	6.493 ± 0.207	4237.85m	0.953 ± 0.088
4244.94m 2.078±0.046 4252.88m 2.551±0.084 4240.63m 3.930±0.114 4243.69m 6.623±0.213 4240.84m 0.952±0.088 4244.69m 2.141±0.047 4254.85m 2.065±0.008 4241.63m 4.028±0.117 4244.75m 6.223±0.198 4241.87m 0.950±0.008 4246.69m 2.141±0.047 4254.85m 2.060±0.088 4243.64m 4.363±0.126 4246.69m 6.208±0.198 4242.92m 0.950±0.008 4248.94m 2.141±0.046 4256.87m 2.566±0.084 4244.68m 4.033±0.126 4246.69m 6.103±0.195 4243.85m 1.037±0.096 4250.94m 2.167±0.048 4258.88m 2.600±0.086 4245.65m 4.070±0.122 4248.69m 6.103±0.195 4245.85m 0.992±0.092 4252.93m 2.181±0.048 4258.88m 2.600±0.086 4245.65m 4.207±0.122 4249.69m 6.103±0.195 4245.85m 0.992±0.092 4252.93m 2.181±0.048 4259.89m 2.434±0.080 4246.64m 4.218±0.122 4249.69m 6.103±0.195 4245.85m 0.992±0.092 4253.94m 2.055±0.045 4261.89m 2.503±0.082 4248.64m 4.220±0.122 4250.69m 5.093±0.189 4247.84m 0.958±0.090 4255.91m 2.027±0.044 4263.86m 2.319±0.077 4249.64m 4.273±0.124 4252.69m 5.093±0.184 4249.85m 0.740±0.063 4255.91m 2.027±0.044 4263.86m 2.335±0.077 4240.64m 4.273±0.124 4252.69m 5.093±0.184 4249.85m 0.740±0.063 4255.91m 2.022±0.044 4265.85m 2.346±0.084 4273±0.124 4252.69m 5.093±0.184 4249.85m 0.740±0.063 4255.91m 2.002±0.044 4265.85m 2.346±0.084 4273±0.124 4252.69m 5.093±0.184 4249.85m 0.740±0.063 4255.91m 2.002±0.044 4265.85m 2.346±0.084 4265.64m 4.130±0.124 4252.69m 5.093±0.184 4249.85m 0.846±0.073 4259.94m 1.928±0.043 4266.44c 2.326±0.084 4253.65m 3.873±0.124 4252.69m 5.093±0.184 4249.85m 0.846±0.073 4259.94m 1.928±0.043 4266.44c 2.326±0.084 4253.65m 3.873±0.112 4255.47m 6.062±0.184 4255.84m 0.801±0.054 4259.94m 1.958±0.044 4265.85m 2.341±0.078 4256.65m 3.873±0.112 4255.17m 6.062±0.184 4256.84m 0.801±0.054 4269.94m 1.958±0.044 4266.45c 2.369±0.084 4266.65m 3.873±0.112 4256.45m 5.03±0.112 4256.45m 0.801±0.078 4256.85m 0.873±0.078 4266.05m 3.873±0.112 4256.05m 5.883±0.113 4256.82m 0.801±0.078 4266.94m 1.300±0.081 4266.45m 0.326±0.078 4266.65m 3.873±0.014 4266.65m 5.326±0.044 4266.85m 0.326±0.078 4266.65m 3.873±0.044 4266.85m 0.326±0.078 4266.65m 3.873±0.014 4266.65m 0.326±0.078 4266.65m										
4245.95m 2.073±0.045 4258.85m 2.480±0.081 4241.63m 4.028±0.117 4244.57m 6.23±0.198 4241.93m 0.95±0.080 4242.94m 2.445.69m 6.208±0.198 4242.92m 0.95±0.080 4243.63m 3.81±0.010 4245.69m 6.138±0.195 4243.85m 1.037±0.096 4248.94m 2.114±0.046 4256.87m 2.566±0.084 4244.68m 4.049±0.118 4247.69m 5.749±0.183 4244.85m 0.984±0.091 4252.93m 2.181±0.048 4258.88m 2.600±0.086 4245.65m 4.207±0.122 4248.69m 6.163±0.195 4245.85m 0.992±0.092 4252.93m 2.181±0.048 4258.98m 2.343±0.080 4246.64m 4.207±0.122 4248.69m 6.163±0.197 4246.55m 0.741±0.066 4253.94m 2.157±0.047 4260.89m 2.343±0.084 4247.65m 4.220±0.122 4250.69m 5.914±0.189 4247.84m 0.985±0.096 4255.94m 2.027±0.044 4263.86m 2.319±0.077 4296.44m 4.273±0.124 4252.69m 5.805±0.184 4248.85m 0.744±0.066 4257.94m 2.027±0.044 4265.48c 2.157±0.084 4241.64m 4.266.14m 4.265.48m 4.265.44m 4.265.44										
4246,94m 2.141±0.047 4254.85m 2.405±0.080 4242.64m 3.816±0.110 4245.69m 6.208±0.198 4243.85m 1.037±0.008 4243.93m 2.043±0.045 4256.87m 2.566±0.088 4243.64m 4.363±0.126 4246.69m 6.139±0.195 4243.85m 1.037±0.008 4248.94m 2.167±0.048 4258.88m 2.600±0.086 4245.65m 4.207±0.122 4248.69m 6.103±0.195 4245.85m 0.99±0.092 4253.94m 2.167±0.048 4258.88m 2.600±0.086 4245.65m 4.207±0.122 4246.69m 6.168±0.197 4246.85m 0.741±0.063 4253.94m 2.157±0.047 4260.89m 2.544±0.084 4247.65m 4.220±0.122 4250.69m 5.698±0.182 4248.85m 0.741±0.063 4255.94m 2.027±0.044 4261.89m 2.335±0.077 4248.64m 4.273±0.124 4252.69m 5.80±0.182 2424.85m 0.741±0.063 4255.94m 2.002±0.044 4265.88m 2.335±0.077 4250.64m 4.034±0.12 4253.84m 5.80±0.18 4249.85m 0.84±0.079										
4247.93m 2.043±0.045 4255.86m 2.670±0.088 4244.68m 4.366.97m 6.139±0.195 4244.85m 1.07±0.086 4248.94m 2.116±0.048 4256.88m 2.600±0.086 4244.68m 4.049±0.118 4244.85m 6.168±0.195 7.49±0.183 4244.85m 0.99±0.0026 4252.93m 2.181±0.048 4258.89m 2.434±0.080 4246.64m 4.218±0.122 4246.69m 6.168±0.197 4247.84m 0.99±0.0026 4253.94m 2.055±0.048 4266.89m 2.505±0.084 4247.65m 4.220±0.122 4251.69m 5.68±0.187 24247.84m 0.98±0.002 4255.91m 2.027±0.044 4263.86m 2.319±0.077 4249.64m 4.273±0.124 4252.69m 5.805±0.184 24247.85m 0.740±0.006 4257.94m 2.002±0.044 4265.46m 2.35±1.64m 4.2861.0123 4255.1m 5.973±1.919 4251.84m 0.615±0.057 4258.93m 2.005±0.044 4265.86m 2.36±0.086 4253.65m 3.875±0.112 4256.95m 3.875±0.113 4257.69m 4255.84m 0.60±0.04										
4248.94m 2.114±0.046 4256.87m 2.566±0.084 4244.68m 4.049±0.118 4247.69m 5.749±0.183 4244.85m 0.984±0.091 4252.94m 2.167±0.048 4258.88m 2.600±0.086 4245.65m 4.207±0.122 4248.69m 6.103±0.195 4246.85m 0.99±0.092 4252.94m 2.181±0.048 4259.88m 2.344±0.084 4247.65m 4.220±0.122 4250.69m 5.914±0.189 4246.84m 0.741±0.068 4255.94m 2.057±0.047 4260.89m 2.184±0.047 4260.89m 2.199±0.077 4250.64m 4.260±0.123 4251.69m 5.698±0.182 4248.85m 0.740±0.069 4255.94m 2.002±0.044 4265.44m 2.335±0.077 4250.64m 4.139±0.120 4253.68m 5.898±0.184 4249.85m 0.659±0.061 4257.94m 2.002±0.044 4265.44m 2.346±0.048 4.268±0.123 4255.71m 5.973±0.190 4251.84m 0.615±0.057 4258.94m 2.092±0.044 4265.84m 2.346±0.086 4253.65m 3.873±0.112 4257.99m 5.567±0.178 4252.84m 0.891±0.047 4269.94m 1.928±0.043 4266.46m 2.341±0.078 4255.67m 3.695±0.107 4250.97m 5.887±0.184 4255.85m 0.891±0.047 4261.93m 1.908±0.042 4267.42m 2.392±0.089 4256.66m 3.857±0.112 4260.71m 5.631±0.178 4255.82m 0.870±0.081 4261.93m 1.908±0.042 4267.42m 2.392±0.089 4256.66m 3.857±0.112 4260.71m 5.631±0.178 4255.82m 0.870±0.081 4264.92m 1.895±0.041 4268.85m 2.447±0.080 4266.69m 3.875±0.112 4260.71m 5.631±0.178 4255.82m 0.891±0.041 4264.92m 1.865±0.041 4268.85m 2.447±0.080 4260.66m 3.875±0.112 4260.71m 5.631±0.178 4255.82m 0.0891±0.041 4264.92m 1.865±0.041 4270.47c 2.234±0.082 4260.66m 3.875±0.112 4260.71m 5.631±0.178 4255.82m 0.891±0.091 4266.94m 1.845±0.041 4270.47c 2.234±0.082 4260.66m 3.875±0.112 4260.69m 5.491±0.113 4258.83m 1.028±0.096 4266.94m 1.845±0.041 4270.47c 2.234±0.082 4260.66m 3.875±0.112 4260.69m 5.491±0.113 4258.83m 1.028±0.096 4266.94m 1.845±0.041 4270.47c 2.105±0.078 4266.65m 3.393±0.092 4265.67m 3.691±0.078 4266.89m 5.491±0.078 4266.89m 5.491±0.078 4266										
4250.94m 2.167±0.048 4258.88m 2.600±0.086 4245.65m 4.207±0.122 2424.69m 6.103±0.195 4245.5m 0.99±0.092 4253.94m 2.181±0.048 4259.98m 2.434±0.080 4246.64m 4.224±0.122 4245.669m 5.0145.081 4247.650m 4256.69m 5.014±0.084 4247.65m 4.220±0.122 4256.69m 5.014±0.184 4248.45m 0.741±0.063 4255.91m 2.027±0.044 4263.86m 2.319±0.077 4256.64m 4.260±0.123 4255.69m 5.08±0.182 2488.5m 0.740±0.063 4255.91m 2.022±0.044 4265.46c 2.319±0.077 4256.64m 4.33±0.121 4255.69m 5.08±0.188 4250.84m .669±0.061 4257.94m 2.002±0.044 4265.4cc 2.157±0.080 4251.64m 4.034±0.117 4257.69m 5.076±0.178 4251.84m 0.615±0.057 4259.94m 1.938±0.043 4266.8ca 2.341±0.078 4255.65m 3.673±0.112 4258.71m 5.076±0.178 4258.1m 0.070±0.058 4262.94m 1.915±0.060 4267.8ca										
4252.93m 2.181±0.048 4259.89m 2.434±0.080 4246.64m 4.218±0.122 4245.09m 5.168±0.197 4246.85m 0.741±0.069 4253.94m 2.157±0.047 4260.89m 2.544±0.084 4247.65m 4.220±0.122 4250.69m 5.914±0.189 2.494±0.006 4245.69m 5.914±0.189 2.494±0.006 4255.69m 5.914±0.189 2.494±0.006 4255.69m 5.805±0.184 4249.85m 0.740±0.068 4255.91m 2.148±0.047 4264.86m 2.335±0.077 4250.64m 4.139±0.120 4253.68m 5.895±0.184 4249.85m 0.665±0.057 4258.93m 2.005±0.044 4265.44c 2.355±0.077 4250.64m 4.034±0.117 4257.69m 5.766±0.178 4251.84m 0.801±0.074 4269.94m 1.928±0.043 4266.46c 2.324±0.088 4255.67m 3.675±0.112 4258.71m 6.662±0.193 4258.81m 0.887±0.077 4261.93m 1.909±0.043 4266.46c 2.35±0.098 4255.66m 3.57±0.112 4260.9m 5.493±0.174 4255.82m 1.079±0.106 4265.93m </td <td></td>										
4253.94m 2.157±0.047 2460.89m 2.54±0.08m 4.247.65m 4.220±0.122 4250.69m 5.91±0.189 4.247.85m 0.795±0.095 4255.91m 2.027±0.044 4263.86m 2.319±0.077 429.64m 4.226±0.123 425.69m 5.698±0.182 4248.85m 0.740±0.066 4256.91m 2.148±0.047 4264.86m 2.319±0.077 4250.64m 4.238±0.123 4253.68m 5.898±0.186 4250.84m 0.659±0.061 4258.94m 2.005±0.044 4265.88m 2.346±0.078 4252.64m 4.038±0.112 4255.71m 5.973±0.190 4251.84m 0.601±0.077 4269.94m 1.928±0.043 4266.48m 2.346±0.078 4252.64m 3.695±0.107 4255.71m 5.576±0.178 4252.84m 0.602±0.033 4253.85m 0.827±0.077 4262.94m 1.998±0.042 4267.42m 2.39±0.089 4256.66m 3.89±0.101 4260.71m 5.631±0.178 4254.81m 0.87±0.079 4262.94m 1.99±0.043 4268.85m 2.38±0.099 4257.64m 3.473±0.101 4261.69m 5.49±0.174										
4254.90m 2.055±0.045 2461.89m 2.03±0.072 2428.69m 4.260±0.123 4251.69m 5.698±0.182 2428.5m 0.740±0.069 4255.91m 2.027±0.044 4263.68m 2.315±0.077 4249.64m 4.273±0.124 4253.68m 5.808±0.186 429.85m 0.866±0.076 4257.94m 2.005±0.044 4265.48m 2.157±0.080 4251.64m 4.034±0.117 4255.61m 5.878±0.190 4251.84m 0.615±0.057 4259.94m 1.908±0.043 4266.48m 2.366±0.086 4253.65m 3.873±0.112 4258.76m 5.676±0.178 4252.84m 0.801±0.074 4260.94m 1.908±0.042 4267.42c 2.366±0.086 4253.65m 3.873±0.112 4258.71m 5.687±0.188 4252.84m 0.801±0.074 4266.94m 1.908±0.042 4267.42c 2.396±0.089 4256.65m 3.873±0.112 4260.71m 5.631±0.178 4255.84m 0.870±0.003 4263.93m 1.818±0.060 4267.42c 2.345±0.090 4256.65m 3.473±0.101 4266.34m 5.93±0.178 4256.82m 0.89±0.092										
4255.91m 2.027±0.044 4263.86m 2.319±0.077 4249.64m 4.273±0.124 4252.69m 5.805±0.184 4249.85m 0.846±0.079 4256.91m 2.148±0.047 4264.86m 2.335±0.077 4250.64m 4.268±0.123 4255.88m 5.898±0.186 4250.84m 0.659±0.061 4258.93m 2.005±0.044 4265.88m 2.346±0.078 4251.64m 4.034±0.11 4257.71m 5.973±0.19 4251.84m 0.659±0.057 4259.94m 1.928±0.043 4266.4cc 2.326±0.078 4255.67m 3.695±0.107 4259.70m 5.867±0.185 4253.84m 0.827±0.077 4260.94m 1.908±0.042 4267.4cc 2.392±0.078 4255.67m 3.857±0.112 4260.71m 5.631±0.178 4255.82m 0.872±0.061 4262.84d 1.915±0.060 4267.8cc 2.360±0.078 4257.6m 3.473±0.101 4261.9m 5.494±0.118 4257.8cc 0.988±0.002 4263.91m 1.920±0.043 4268.8cc 2.345±0.008 4256.66m 3.472±0.11 4262.9m 5.194±0.163 4258.8m 1.098±0.006										
4256.91m 2.148±0.047 4264.86m 2.335±0.077 4250.64m 4.139±0.120 4255.71m 5.898±0.186 4250.84m 0.659±0.061 4257.94m 2.005±0.044 4265.44c 2.157±0.080 4251.64m 4.034±0.117 4255.71m 5.973±0.190 4251.84m 0.615±0.057 4259.94m 1.928±0.043 4266.48c 2.346±0.086 4253.68m 3.873±0.112 4255.76m 5.576±0.185 4253.84m 0.827±0.077 4260.94m 1.938±0.044 4266.86m 2.341±0.078 4255.67m 3.695±0.107 4259.70m 5.887±0.185 4254.81m 0.870±0.081 4262.84d 1.915±0.060 4267.86m 3.695±0.107 4259.70m 5.887±0.185 4254.81m 0.870±0.0081 4263.91m 1.920±0.043 4268.48c 2.435±0.090 4256.65m 3.872±0.112 4266.79m 5.94±0.163 4257.81m 1.079±0.100 4265.92m 1.856±0.041 4268.85m 2.447±0.080 4266.65m 3.872±0.112 4266.79m 5.141±0.101 4263.88m 5.431±0.171 4258.88m 1.028±0.006 </td <td></td>										
4257.94m 2.002±0.044 4265.44c 2.157±0.80 4251.64m 4.268±0.123 4255.71m 5.973±0.190 4251.84m 0.615±0.057 4258.93m 2.005±0.044 4265.84m 2.336±0.078 4252.64m 4.034±0.117 4257.69m 5.576±0.178 4252.84m 0.821±0.074 4259.94m 1.928±0.043 4266.46cd 2.326±0.086 4253.65m 3.895±0.112 4258.71m 6.062±0.193 4253.84m 0.827±0.075 4261.93m 1.908±0.042 4267.4cc 2.392±0.089 4256.6fm 3.695±0.107 4250.70m 5.887±0.18 4255.82m 1.070±0.081 4263.93m 1.920±0.043 4268.8cc 2.435±0.098 4256.6fm 3.473±0.101 4261.69m 5.93±0.114 4256.82m 0.988±0.092 4265.93m 1.818±0.041 4268.8cc 2.447±0.080 4262.65m 3.183±0.092 4265.9m 5.417±0.173 4259.84m 1.074±0.093 4266.93m 1.885±0.041 4270.47c 2.234±0.082 4262.65m 3.183±0.092 4265.7m 5.417±0.173 4259.84m 1.094±0.093										
4259.94m 1.928±0.043 4266.46c 2.326±0.086 4253.65m 3.873±0.112 4258.71m 6.062±0.193 4253.84m 0.827±0.077 4260.94m 2.033±0.044 4266.86c 2.341±0.078 4255.67m 3.695±0.107 4259.70m 5.887±0.185 4258.481m 0.870±0.081 4262.94d 1.915±0.060 4267.86c 2.360±0.078 4257.64m 3.473±0.101 4261.69m 5.493±0.174 4256.82m 1.070±0.100 4263.91m 1.920±0.043 4268.8c 2.435±0.090 4256.66m 3.473±0.101 4261.69m 5.493±0.174 4256.82m 1.098±0.092 4263.93m 1.818±0.040 4268.8bc 2.447±0.080 4260.66m 3.476±0.101 4263.68m 5.431±0.171 4258.82m 1.098±0.092 4266.93m 1.818±0.041 4267.47c 2.234±0.082 4262.65m 3.183±0.092 4263.6bc 5.413±0.171 4258.84m 1.74±0.109 4267.91d 1.894±0.041 4271.4bc 2.166±0.080 4266.6bm 3.519±0.092 4266.3bc 5.161±0.163 4261.8bm 1.306±0.121 <td></td>										
4259.94m 1.928±0.043 4266.46c 2.326±0.086 4253.65m 3.873±0.112 4258.71m 6.062±0.193 4253.84m 0.827±0.077 4260.94m 2.033±0.044 4266.86c 2.341±0.078 4255.67m 3.695±0.107 4259.70m 5.887±0.185 4258.481m 0.870±0.081 4262.94d 1.915±0.060 4267.86c 2.360±0.078 4257.64m 3.473±0.101 4261.69m 5.493±0.174 4256.82m 1.070±0.100 4263.91m 1.920±0.043 4268.8c 2.435±0.090 4256.66m 3.473±0.101 4261.69m 5.493±0.174 4256.82m 1.098±0.092 4263.93m 1.818±0.040 4268.8bc 2.447±0.080 4260.66m 3.476±0.101 4263.68m 5.431±0.171 4258.82m 1.098±0.092 4266.93m 1.818±0.041 4267.47c 2.234±0.082 4262.65m 3.183±0.092 4263.6bc 5.413±0.171 4258.84m 1.74±0.109 4267.91d 1.894±0.041 4271.4bc 2.166±0.080 4266.6bm 3.519±0.092 4266.3bc 5.161±0.163 4261.8bm 1.306±0.121 <td>4258.93m</td> <td>2.005 ± 0.044</td> <td>4265.88m</td> <td>2.346 ± 0.078</td> <td>4252.64m</td> <td>4.034 ± 0.117</td> <td>4257.69m</td> <td>5.576 ± 0.178</td> <td>4252.84m</td> <td>0.801 ± 0.074</td>	4258.93m	2.005 ± 0.044	4265.88m	2.346 ± 0.078	4252.64m	4.034 ± 0.117	4257.69m	5.576 ± 0.178	4252.84m	0.801 ± 0.074
4260.94m 2.033±0.044 4266.86m 2.341±0.078 4255.67m 3.695±0.107 4259.70m 5.887±0.118 4254.81m 0.870±0.081 4261.93m 1.908±0.042 4267.42c 2.392±0.089 4256.66m 3.857±0.112 4260.71m 5.631±0.178 4255.82m 1.070±0.100 4262.84m 1.915±0.060 4267.84m 2.360±0.078 4257.64m 3.473±0.101 4261.69m 5.493±0.174 4256.82m 0.988±0.092 4263.93m 1.920±0.043 4268.48e 2.435±0.090 4259.65m 3.872±0.112 4266.69m 5.194±0.163 4257.81m 1.093±0.101 4266.59m 5.418±0.041 4268.85m 2.447±0.080 4260.66m 3.476±0.101 4263.68m 5.417±0.173 4258.83m 1.028±0.096 4265.93m 1.818±0.040 4269.85m 2.338±0.077 4261.65m 3.537±0.103 4264.70m 5.417±0.173 4258.83m 1.028±0.096 4266.95m 3.183±0.092 4265.72m 5.004±0.156 4260.84m 9.98±0.092 4267.97m 5.004±0.156 4260.84m 1.028±0.096 4267.97m 5.161±0.083 4267.87m 3.519±0.010										
4261.93m 1.908±0.042 4267.4cc 2.392±0.089 4256.6cm 3.857±0.112 4260.7tm 5.631±0.178 4255.8cm 1.070±0.100 4262.84d 1.915±0.606 4268.4cc 2.360±0.078 4257.6dm 3.473±0.101 4261.69m 5.493±0.174 4256.8cm 0.988±0.092 4263.91m 1.920±0.043 4268.8cs 2.435±0.099 4256.6cm 3.476±0.101 4262.6cm 5.491±0.163 4257.81m 1.098±0.092 4265.93m 1.818±0.040 4268.8sb 2.435±0.093 4260.6cm 3.476±0.101 4263.68m 5.431±0.171 4258.83m 1.028±0.096 4266.48c 1.820±0.061 4270.47c 2.234±0.082 4262.65m 3.183±0.092 4265.7cm 5.004±0.156 4260.84m 1.984±0.042 4267.4c 1.887±0.041 4271.4cc 2.105±0.078 4266.65m 3.537±0.103 4266.3ce 5.213±0.369 4261.84m 1.306±0.121 4267.9d 1.884±0.042 4271.4cc 2.16±0.088 4266.65m 3.59±0.018 4266.3ce 5.161±0.163 4263.8tm 1.121±0.104										
4262.84d 1.915±0.060 4267.86m 2.360±0.078 4257.64m 3.473±0.101 4261.69m 5.493±0.174 4256.82m 0.988±0.092 4263.91m 1.920±0.043 4268.48c 2.435±0.090 4259.65m 3.872±0.112 4262.69m 5.194±0.163 4257.81m 1.093±0.101 4264.92m 1.818±0.041 4268.85m 2.447±0.080 4260.66m 3.476±0.101 4263.68m 5.431±0.171 4258.83m 1.028±0.096 4266.95m 1.818±0.041 4270.47c 2.338±0.077 4261.65m 3.537±0.103 4264.70m 5.044±0.171 4259.84m 1.174±0.109 4266.91m 1.845±0.041 4271.42c 2.234±0.082 4262.65m 3.394±0.098 4266.57cm 5.004±0.156 4260.84m 0.984±0.091 4267.94c 1.887±0.062 4272.45c 2.254±0.083 4265.67m 3.471±0.100 4266.9m 5.233±0.165 4262.80m 1.200±0.112 4267.91m 1.770±0.055 4274.8c 2.170±0.080 4267.64m 3.661±0.106 4266.9m 5.161±0.163 4263.81m 1.121±0.104 4269.9m 1.876±0.482m 4269.42c 2.047±0.356										
4263.91m 1.920±0.043 4268.48c 2.435±0.090 4259.65m 3.872±0.112 4262.69m 5.194±0.163 4257.81m 1.093±0.101 4264.49m 1.856±0.041 4268.85m 2.447±0.080 4260.66m 3.476±0.101 4263.68m 5.431±0.171 4258.83m 1.028±0.096 4265.93m 1.818±0.040 4269.85m 2.338±0.077 4261.65m 3.537±0.103 4264.70m 5.417±0.173 4259.84m 1.174±0.109 4266.86m 1.804±0.041 4271.42c 2.234±0.082 4262.65m 3.83±0.092 4266.77m 5.004±0.156 4269.84m 1.174±0.109 4266.91m 1.884±0.041 4271.42c 2.254±0.083 4265.65m 3.394±0.098 4266.69m 5.238±0.165 4269.80m 1.200±0.112 4267.91m 1.770±0.055 4274.48c 2.170±0.080 4266.65m 3.519±0.102 4266.99m 5.101±0.163 4263.8tm 1.121±0.104 4269.94c 1.866±0.062 4277.39c 2.087±0.077 4268.64m 3.892±0.11 4269.99c 5.047±0.357 4265.8tm 1.114±0.104 4269.98c 5.047±0.357 4265.8tm 1.114±0.104										
4264.92m 1.856±0.041 4268.85m 2.447±0.080 4260.66m 3.476±0.101 4263.68m 5.431±0.171 4258.83m 1.028±0.096 4265.93m 1.818±0.040 4269.85m 2.338±0.077 4261.65m 3.537±0.103 4264.70m 5.417±0.173 4259.84m 1.174±0.109 4266.48c 1.820±0.061 4270.47c 2.234±0.082 4262.65m 3.183±0.092 4265.72m 5.004±0.156 4260.84m 0.984±0.091 4266.91m 1.845±0.041 4271.42c 2.105±0.078 4264.65m 3.394±0.092 4266.66m 5.213±0.369 4261.84m 1.306±0.121 4267.91m 1.894±0.042 4273.42c 2.166±0.083 4265.67m 3.471±0.100 4266.66m 5.61±0.163 4263.81m 1.200±0.111 4267.91m 1.770±0.055 4274.48c 2.170±0.088 4267.64m 3.661±0.102 4267.69m 5.161±0.163 4263.81m 1.211±0.104 4269.90m 1.894±0.049 4264.82m 1.089±0.101 4268.90m 1.894±0.049 4267.43c 2.182±0.080 4269.90m 5.047±0.357 4265.81m 1.114±0.104 4269.92m 5.047±0.357										
4266.48c 1.820 ± 0.061 $4270.47c$ 2.234 ± 0.082 $4262.65m$ 3.183 ± 0.092 $4265.72m$ 5.004 ± 0.156 $4260.84m$ 0.984 ± 0.091 4266.91m 1.845 ± 0.041 $4271.42c$ 2.105 ± 0.078 $4264.65m$ 3.394 ± 0.098 $4266.36c$ 5.213 ± 0.369 $4261.84m$ 1.306 ± 0.121 4267.44c 1.887 ± 0.062 $4272.45c$ 2.254 ± 0.083 $4265.67m$ 3.471 ± 0.100 $4266.69m$ 5.238 ± 0.165 $4262.80m$ 1.200 ± 0.112 4267.91m 1.770 ± 0.055 $4274.48c$ 2.166 ± 0.080 $4266.65m$ 3.519 ± 0.102 $4267.69m$ 5.161 ± 0.163 $4263.81m$ 1.121 ± 0.104 4268.90m 1.876 ± 0.042 $4274.48c$ 2.170 ± 0.080 $4267.64m$ 3.661 ± 0.106 $4268.34c$ 4.934 ± 0.040 $4264.82m$ 1.089 ± 0.101 4269.96c 1.866 ± 0.062 $4277.39c$ 2.087 ± 0.077 $4268.64m$ 3.892 ± 0.113 $4269.29c$ 5.047 ± 0.357 $4265.81m$ 1.114 ± 0.104 4269.87d 1.894 ± 0.060 $4278.42c$ 2.182 ± 0.080 $4271.37c$ $4269.29c$ 5.047 ± 0.357 $4266.41c$ 0.987 ± 0.094 4270.85d 1.805 ± 0.062 $4281.48c$ 2.148 ± 0.080 $4271.37c$ $4271.37c$ 4.018 ± 0.284 $4266.82m$ 1.095 ± 0.101 4273.45c 1.805 ± 0.062 $4283.39c$ 2.387 ± 0.088 $4271.37c$ $4271.33c$ 3.56 ± 0.254 $4267.89m$ 1.275 ± 0.101 4277.49c 1.942 ± 0.061 $4290.41c$ 2.211 ± 0.081 $4271.36c$ $4273.36c$ 3.521 ± 0.249 $4267.81m$ 1.275 ± 0.101 <t< td=""><td>4264.92m</td><td>1.856 ± 0.041</td><td>4268.85m</td><td>2.447 ± 0.080</td><td>4260.66m</td><td>3.476 ± 0.101</td><td>4263.68m</td><td>5.431 ± 0.171</td><td>4258.83m</td><td>1.028 ± 0.096</td></t<>	4264.92m	1.856 ± 0.041	4268.85m	2.447 ± 0.080	4260.66m	3.476 ± 0.101	4263.68m	5.431 ± 0.171	4258.83m	1.028 ± 0.096
4266.91m 1.845 ± 0.041 $4271.42c$ 2.105 ± 0.078 $4264.65m$ 3.394 ± 0.098 $4266.36c$ 5.213 ± 0.369 $4261.84m$ 1.306 ± 0.121 4267.44c 1.887 ± 0.062 $4272.45c$ 2.254 ± 0.083 $4265.67m$ 3.471 ± 0.100 $4266.69m$ 5.238 ± 0.165 $4262.80m$ 1.200 ± 0.112 4267.91m 1.770 ± 0.055 $4274.48c$ 2.170 ± 0.080 $4266.65m$ 3.519 ± 0.102 $4268.34c$ 4.934 ± 0.349 $4264.82m$ 1.089 ± 0.101 4268.90m 1.876 ± 0.042 $4276.40c$ 2.082 ± 0.077 $4268.64m$ 3.892 ± 0.113 $4268.69m$ 5.101 ± 0.160 $4265.38c$ 1.253 ± 0.120 4269.46c 1.866 ± 0.062 $4277.39c$ 2.067 ± 0.077 $4268.64m$ 3.892 ± 0.113 $4268.69m$ 5.01 ± 0.160 $4265.38c$ 1.114 ± 0.104 4269.87d 1.894 ± 0.060 $4278.42c$ 2.182 ± 0.080 $4271.37c$ $4269.69m$ 4768 ± 0.149 $4266.61c$ 0.987 ± 0.094 4270.85d 1.805 ± 0.057 $4281.48c$ 2.188 ± 0.080 $4271.37c$ 4018 ± 0.284 $4266.82m$ 1.095 ± 0.101 4274.44c 1.859 ± 0.062 $4283.39c$ 2.387 ± 0.088 $4273.36c$ 3.521 ± 0.249 $4267.8m$ 1.277 ± 0.118 4277.43c 1.982 ± 0.066 $4284.38c$ 2.288 ± 0.084 $4278.32c$ $4274.33c$ 3.911 ± 0.277 $4268.36c$ 1.248 ± 0.118 4277.89d 1.942 ± 0.061 $4290.41c$ 2.211 ± 0.081 $4278.32c$ 4500 ± 0.082 $4278.32c$ 4500 ± 0.082 $4278.32c$ 4500 ± 0.082 4282.81d 1.983 ± 0.062 42	4265.93m	1.818 ± 0.040	4269.85m	2.338 ± 0.077	4261.65m	3.537 ± 0.103	4264.70m	5.417 ± 0.173	4259.84m	1.174 ± 0.109
4267.44c 1.887±0.062 4272.45c 2.254±0.083 4265.67m 3.471±0.100 4266.69m 5.238±0.165 4262.80m 1.200±0.112 4267.91d 1.894±0.042 4273.42c 2.166±0.080 4266.65m 3.519±0.102 4267.69m 5.161±0.163 4263.81m 1.121±0.104 4267.91m 1.770±0.055 4274.48c 2.170±0.080 4267.64m 3.661±0.106 4268.34c 4.934±0.349 4264.82m 1.089±0.101 4268.90m 1.876±0.042 4276.40c 2.082±0.077 4268.64m 3.892±0.113 4268.69m 5.101±0.160 4265.38c 1.253±0.120 4269.87d 1.896±0.062 4277.39c 2.067±0.077 4268.64m 3.892±0.113 4269.99c 5.047±0.357 4265.81m 1.114±0.104 4269.87d 1.894±0.060 4278.42c 2.182±0.080 4269.69m 4.768±0.149 4266.41c 0.987±0.094 4273.45c 1.865±0.062 4282.50c 2.185±0.080 4272.33c 3.586±0.254 4267.39c 1.275±0.121 4277.49c 1.982±0.066 4284.38c 2.288±0.084 4274.33c 3.51±0.249 4267.81m 1.277±0.118 </td <td>4266.48c</td> <td>1.820 ± 0.061</td> <td>4270.47c</td> <td>2.234 ± 0.082</td> <td>4262.65m</td> <td>3.183 ± 0.092</td> <td>4265.72m</td> <td>5.004 ± 0.156</td> <td>4260.84m</td> <td>0.984 ± 0.091</td>	4266.48c	1.820 ± 0.061	4270.47c	2.234 ± 0.082	4262.65m	3.183 ± 0.092	4265.72m	5.004 ± 0.156	4260.84m	0.984 ± 0.091
4267.44c 1.887±0.062 4272.45c 2.254±0.083 4265.67m 3.471±0.100 4266.69m 5.238±0.165 4262.80m 1.200±0.112 4267.91d 1.894±0.042 4273.42c 2.166±0.080 4266.65m 3.519±0.102 4267.69m 5.161±0.163 4263.81m 1.121±0.104 4267.91m 1.770±0.055 4274.48c 2.170±0.080 4267.64m 3.661±0.106 4268.34c 4.934±0.349 4264.82m 1.089±0.101 4268.90m 1.876±0.042 4276.40c 2.082±0.077 4268.64m 3.892±0.113 4268.69m 5.101±0.160 4265.38c 1.253±0.120 4269.87d 1.896±0.062 4277.39c 2.067±0.077 4268.64m 3.892±0.113 4269.99c 5.047±0.357 4265.81m 1.114±0.104 4269.87d 1.894±0.060 4278.42c 2.182±0.080 4269.69m 4.768±0.149 4266.41c 0.987±0.094 4273.45c 1.865±0.062 4282.50c 2.185±0.080 4272.33c 3.586±0.254 4267.39c 1.275±0.121 4277.49c 1.982±0.066 4284.38c 2.288±0.084 4274.33c 3.51±0.249 4267.81m 1.277±0.118 </td <td>4266.91m</td> <td>1.845 ± 0.041</td> <td>4271.42c</td> <td>2.105 ± 0.078</td> <td>4264.65m</td> <td>3.394 ± 0.098</td> <td>4266.36c</td> <td>5.213 ± 0.369</td> <td>4261.84m</td> <td>1.306 ± 0.121</td>	4266.91m	1.845 ± 0.041	4271.42c	2.105 ± 0.078	4264.65m	3.394 ± 0.098	4266.36c	5.213 ± 0.369	4261.84m	1.306 ± 0.121
4267.91m 1.770 ± 0.055 4274.48c 2.170 ± 0.080 4267.64m 3.661 ± 0.106 4268.34c 4.934 ± 0.349 4264.82m 1.089 ± 0.101 4268.90m 1.876 ± 0.042 4276.40c 2.082 ± 0.077 4268.64m 3.892 ± 0.113 4268.69m 5.101 ± 0.160 4265.38c 1.253 ± 0.120 4269.46c 1.866 ± 0.062 4277.39c 2.067 ± 0.077 4268.64m 3.892 ± 0.113 4268.69m 5.047 ± 0.357 4265.81m 1.114 ± 0.104 4269.87d 1.894 ± 0.060 4278.42c 2.182 ± 0.080 4269.69m 4.768 ± 0.149 4266.41c 0.987 ± 0.094 4270.85d 1.865 ± 0.062 4281.48c 2.148 ± 0.080 4271.37c 4.018 ± 0.284 4266.82m 1.095 ± 0.101 4273.45c 1.859 ± 0.062 4283.39c 2.387 ± 0.088 4273.36c 3.586 ± 0.254 4267.39c 1.277 ± 0.118 4277.43c 1.982 ± 0.066 4284.38c 2.288 ± 0.084 4274.33c 3.911 ± 0.277 4268.36c 1.248 ± 0.118 4277.89d 1.942 ± 0.061 4290.41c 2.211 ± 0.081 4277.34c 4.500 ± 0.031 4269.40c 1.088 ± 0.104 4282.46c 1.872 ± 0.062 4291.38c 2.180 ± 0.080 4278.32c 4.500 ± 0.031 4271.39c 1.067 ± 0.101 4282.41c 1.943 ± 0.064 4299.38c 2.324 ± 0.086 4280.29c 3.619 ± 0.256 4273.38c 1.092 ± 0.101 4284.41c 1.974 ± 0.065 4300.36c 2.266 ± 0.084 4283.29c 3.692 ± 0.266 4276.84d 1.059 ± 0.082 4285.86d 1.950 ± 0.066 4301.43c 2.256 ± 0.083 4284.33c42										
4268.90m 1.876±0.042 4276.40c 2.082±0.077 4268.64m 3.892±0.113 4268.69m 5.101±0.160 4265.38c 1.253±0.120 4269.46c 1.866±0.062 4277.39c 2.067±0.077 4269.29c 5.047±0.357 4265.81m 1.114±0.104 4269.87d 1.894±0.060 4278.42c 2.182±0.080 4269.69m 4.768±0.149 4266.41c 0.987±0.094 4270.85d 1.805±0.057 4281.48c 2.148±0.080 4271.37c 4.018±0.284 4266.82m 1.095±0.101 4273.45c 1.865±0.062 4282.50c 2.185±0.080 4272.38c 3.586±0.254 4267.39c 1.275±0.121 4274.44c 1.859±0.062 4283.39c 2.387±0.088 4273.36c 3.521±0.249 4267.81m 1.277±0.118 4277.89d 1.942±0.061 4290.41c 2.211±0.081 4277.34c 3.974±0.281 4269.40c 1.088±0.104 4278.46c 1.893±0.062 4291.38c 2.159±0.080 4278.32c 4.500±0.319 4271.39c 1.067±0.101 4282.46c 1.872±0.062 4297.43c 2.180±0.080 4279.29c 3.776±0.267 4272.41c 1.0	4267.91d	1.894 ± 0.042	4273.42c	2.166 ± 0.080	4266.65m	3.519 ± 0.102	4267.69m	5.161 ± 0.163	4263.81m	1.121 ± 0.104
$4269.46c$ 1.866 ± 0.062 $4277.39c$ 2.067 ± 0.077 $4269.29c$ 5.047 ± 0.357 $4265.81m$ 1.114 ± 0.104 $4269.87d$ 1.894 ± 0.060 $4278.42c$ 2.182 ± 0.080 $4269.69m$ 4.768 ± 0.149 $4266.41c$ 0.987 ± 0.094 $4270.85d$ 1.805 ± 0.057 $4281.48c$ 2.148 ± 0.080 $4271.37c$ 4.018 ± 0.284 $4266.82m$ 1.095 ± 0.101 $4273.45c$ 1.865 ± 0.062 $4282.50c$ 2.185 ± 0.080 $4272.38c$ 3.586 ± 0.254 $4267.39c$ 1.275 ± 0.121 $4274.44c$ 1.859 ± 0.062 $4283.39c$ 2.387 ± 0.088 $4273.36c$ 3.521 ± 0.249 $4267.81m$ 1.277 ± 0.118 $4277.43c$ 1.982 ± 0.066 $4284.38c$ 2.288 ± 0.084 $4274.33c$ 3.911 ± 0.277 $4268.36c$ 1.248 ± 0.118 $4277.89d$ 1.942 ± 0.061 $4290.41c$ 2.211 ± 0.081 $4277.34c$ 3.974 ± 0.281 $4269.40c$ 1.088 ± 0.104 $4278.46c$ 1.893 ± 0.062 $4291.38c$ 2.159 ± 0.080 $4278.32c$ 4.500 ± 0.319 $4271.39c$ 1.067 ± 0.101 $4282.46c$ 1.872 ± 0.062 $4297.43c$ 2.180 ± 0.080 $4279.29c$ 3.776 ± 0.267 $4272.41c$ 1.006 ± 0.096 $4282.81d$ 2.008 ± 0.063 $4298.45c$ 2.324 ± 0.086 $4280.29c$ 3.619 ± 0.256 $4273.38c$ 1.039 ± 0.096 $4283.42c$ 1.943 ± 0.064 $4299.38c$ 2.219 ± 0.082 $4281.42c$ 3.889 ± 0.275 $4276.84d$ 1.059 ± 0.082 $4285.86d$ 1.950 ± 0.062 $4301.43c$ 2.256 ± 0.083 $4284.33c$ 4.070 ± 0.288 42	4267.91m	1.770 ± 0.055	4274.48c	2.170 ± 0.080	4267.64m	3.661 ± 0.106	4268.34c	4.934 ± 0.349	4264.82m	1.089 ± 0.101
$4269.87d$ 1.894 ± 0.060 $4278.42c$ 2.182 ± 0.080 $4269.69m$ 4.768 ± 0.149 $4266.41c$ 0.987 ± 0.094 $4270.85d$ 1.805 ± 0.057 $4281.48c$ 2.148 ± 0.080 $4271.37c$ 4.018 ± 0.284 $4266.82m$ 1.095 ± 0.101 $4273.45c$ 1.865 ± 0.062 $4282.50c$ 2.185 ± 0.080 $4272.38c$ 3.586 ± 0.254 $4267.39c$ 1.275 ± 0.121 $4274.44c$ 1.859 ± 0.062 $4283.39c$ 2.387 ± 0.088 $4273.36c$ 3.521 ± 0.249 $4268.36c$ 1.277 ± 0.118 $4277.43c$ 1.982 ± 0.066 $4284.38c$ 2.288 ± 0.084 $4274.33c$ 3.911 ± 0.277 $4268.36c$ 1.248 ± 0.118 $4277.89d$ 1.942 ± 0.061 $4290.41c$ 2.211 ± 0.081 $4277.34c$ 3.974 ± 0.281 $4269.40c$ 1.088 ± 0.104 $4278.46c$ 1.893 ± 0.062 $4291.38c$ 2.159 ± 0.080 $4278.32c$ 4.500 ± 0.319 $4271.39c$ 1.067 ± 0.101 $4282.46c$ 1.872 ± 0.062 $4297.43c$ 2.180 ± 0.080 $4279.29c$ 3.776 ± 0.267 $4272.41c$ 1.006 ± 0.096 $4283.42c$ 1.943 ± 0.064 $4299.38c$ 2.324 ± 0.086 $4280.29c$ 3.619 ± 0.256 $4273.38c$ 1.039 ± 0.096 $4284.41c$ 1.974 ± 0.065 $4300.36c$ 2.266 ± 0.084 $4283.29c$ 3.902 ± 0.276 $4276.84d$ 1.059 ± 0.082 $4285.86d$ 1.950 ± 0.062 $4301.43c$ 2.256 ± 0.083 $4284.33c$ 4.070 ± 0.288 $4277.80d$ 1.040 ± 0.081 $4286.86d$ 2.093 ± 0.066 $4200.26c$ $4270.26c$ $4277.80d$ $4200.28c$ $4277.80d$	4268.90m	1.876 ± 0.042	4276.40c	2.082 ± 0.077	4268.64m	3.892 ± 0.113	4268.69m	5.101 ± 0.160	4265.38c	1.253 ± 0.120
$4270.85d$ 1.805 ± 0.057 $4281.48c$ 2.148 ± 0.080 $4271.37c$ 4.018 ± 0.284 $4266.82m$ 1.095 ± 0.1016 $4273.45c$ 1.865 ± 0.062 $4282.50c$ 2.185 ± 0.080 $4272.38c$ 3.586 ± 0.254 $4267.39c$ 1.275 ± 0.1216 $4274.44c$ 1.859 ± 0.062 $4283.39c$ 2.387 ± 0.088 $4273.36c$ 3.521 ± 0.249 $4267.81m$ 1.277 ± 0.1186 $4277.43c$ 1.982 ± 0.066 $4284.38c$ 2.288 ± 0.084 $4274.33c$ 3.911 ± 0.277 $4268.36c$ 1.248 ± 0.1186 $4277.89d$ 1.942 ± 0.061 $4290.41c$ 2.211 ± 0.081 $4277.34c$ 3.974 ± 0.281 $4269.40c$ 1.088 ± 0.1046 $4278.46c$ 1.893 ± 0.062 $4291.38c$ 2.159 ± 0.080 $4278.32c$ 4.500 ± 0.319 $4271.39c$ 1.067 ± 0.1016 $4282.46c$ 1.872 ± 0.062 $4297.43c$ 2.180 ± 0.080 $4279.29c$ 3.776 ± 0.267 $4272.41c$ 1.006 ± 0.096 $4283.42c$ 1.943 ± 0.064 $4299.38c$ 2.324 ± 0.086 $4280.29c$ 3.619 ± 0.256 $4273.38c$ 1.039 ± 0.099 $4284.41c$ 1.974 ± 0.065 $4300.36c$ 2.266 ± 0.084 $4283.29c$ 3.902 ± 0.276 $4276.84d$ 1.059 ± 0.082 $4285.86d$ 1.950 ± 0.062 $4301.43c$ 2.256 ± 0.083 $4284.33c$ 4.070 ± 0.288 $4277.80d$ 1.040 ± 0.081 $4286.86d$ 2.093 ± 0.066 $4286.86d$ $4290.28c$ 4.150 ± 0.294 $4277.80d$ 1.040 ± 0.081	4269.46c	1.866 ± 0.062	4277.39c	2.067 ± 0.077			4269.29c	5.047 ± 0.357	4265.81m	1.114 ± 0.104
$4273.45c$ 1.865 ± 0.062 $4282.50c$ 2.185 ± 0.080 $4272.38c$ 3.586 ± 0.254 $4267.39c$ 1.275 ± 0.121 $4274.44c$ 1.859 ± 0.062 $4283.39c$ 2.387 ± 0.088 $4273.36c$ 3.521 ± 0.249 $4267.81m$ 1.277 ± 0.118 $4277.43c$ 1.982 ± 0.066 $4284.38c$ 2.288 ± 0.084 $4274.33c$ 3.911 ± 0.277 $4268.36c$ 1.248 ± 0.118 $4277.89d$ 1.942 ± 0.061 $4290.41c$ 2.211 ± 0.081 $4277.34c$ 3.974 ± 0.281 $4269.40c$ 1.088 ± 0.104 $4282.46c$ 1.893 ± 0.062 $4291.38c$ 2.159 ± 0.080 $4278.32c$ 4.500 ± 0.319 $4271.39c$ 1.067 ± 0.101 $4282.46c$ 1.872 ± 0.062 $4297.43c$ 2.180 ± 0.080 $4279.29c$ 3.776 ± 0.267 $4272.41c$ 1.006 ± 0.096 $4283.42c$ 1.943 ± 0.064 $4299.38c$ 2.324 ± 0.086 $4280.29c$ 3.619 ± 0.256 $4273.38c$ 1.039 ± 0.099 $4284.41c$ 1.974 ± 0.065 $4300.36c$ 2.219 ± 0.082 $4281.42c$ 3.889 ± 0.275 $4276.84d$ 1.059 ± 0.082 $4285.86d$ 1.950 ± 0.062 $4301.43c$ 2.256 ± 0.083 $4284.33c$ 4.070 ± 0.288 $4277.80d$ 1.040 ± 0.081 $4286.86d$ 2.093 ± 0.066 $4277.80d$ $4277.80d$ $4277.80d$ $4277.80d$ $4277.80d$ $4277.80d$ $4277.80d$	4269.87d	1.894 ± 0.060	4278.42c	2.182 ± 0.080			4269.69 m	4.768 ± 0.149	4266.41c	0.987 ± 0.094
$4273.45c$ 1.865 ± 0.062 $4282.50c$ 2.185 ± 0.080 $4272.38c$ 3.586 ± 0.254 $4267.39c$ 1.275 ± 0.121 $4274.44c$ 1.859 ± 0.062 $4283.39c$ 2.387 ± 0.088 $4273.36c$ 3.521 ± 0.249 $4267.81m$ 1.277 ± 0.118 $4277.43c$ 1.982 ± 0.066 $4284.38c$ 2.288 ± 0.084 $4274.33c$ 3.911 ± 0.277 $4268.36c$ 1.248 ± 0.118 $4277.89d$ 1.942 ± 0.061 $4290.41c$ 2.211 ± 0.081 $4277.34c$ 3.974 ± 0.281 $4269.40c$ 1.088 ± 0.104 $4282.46c$ 1.893 ± 0.062 $4291.38c$ 2.159 ± 0.080 $4278.32c$ 4.500 ± 0.319 $4271.39c$ 1.067 ± 0.101 $4282.46c$ 1.872 ± 0.062 $4297.43c$ 2.180 ± 0.080 $4279.29c$ 3.776 ± 0.267 $4272.41c$ 1.006 ± 0.096 $4283.42c$ 1.943 ± 0.064 $4299.38c$ 2.324 ± 0.086 $4280.29c$ 3.619 ± 0.256 $4273.38c$ 1.039 ± 0.099 $4284.41c$ 1.974 ± 0.065 $4300.36c$ 2.219 ± 0.082 $4281.42c$ 3.889 ± 0.275 $4276.84d$ 1.059 ± 0.082 $4285.86d$ 1.950 ± 0.062 $4301.43c$ 2.256 ± 0.083 $4284.33c$ 4.070 ± 0.288 $4277.80d$ 1.040 ± 0.081 $4286.86d$ 2.093 ± 0.066 $4277.80d$ $4277.80d$ $4277.80d$ $4277.80d$ $4277.80d$ $4277.80d$ $4277.80d$	4270.85d	1.805 ± 0.057	4281.48c	2.148 ± 0.080			4271.37c	4.018 ± 0.284	4266.82m	1.095 ± 0.101
$4277.43c$ 1.982 ± 0.066 $4284.38c$ 2.288 ± 0.084 $4274.33c$ 3.911 ± 0.277 $4268.36c$ 1.248 ± 0.118 $4277.89d$ 1.942 ± 0.061 $4290.41c$ 2.211 ± 0.081 $4277.34c$ 3.974 ± 0.281 $4269.40c$ 1.088 ± 0.104 $4278.46c$ 1.893 ± 0.062 $4291.38c$ 2.159 ± 0.080 $4278.32c$ 4.500 ± 0.319 $4271.39c$ 1.067 ± 0.101 $4282.46c$ 1.872 ± 0.062 $4297.43c$ 2.180 ± 0.080 $4279.29c$ 3.776 ± 0.267 $4272.41c$ 1.006 ± 0.096 $4282.81d$ 2.008 ± 0.063 $4298.45c$ 2.324 ± 0.086 $4280.29c$ 3.619 ± 0.256 $4273.38c$ 1.039 ± 0.099 $4283.42c$ 1.943 ± 0.064 $4299.38c$ 2.219 ± 0.082 $4281.42c$ 3.889 ± 0.275 $4274.35c$ 1.072 ± 0.101 $4284.41c$ 1.974 ± 0.065 $4300.36c$ 2.266 ± 0.084 $4283.29c$ 3.902 ± 0.276 $4276.84d$ 1.059 ± 0.082 $4285.86d$ 1.950 ± 0.062 $4301.43c$ 2.256 ± 0.083 $4284.33c$ 4.070 ± 0.288 $4277.36c$ 1.147 ± 0.109 $4286.86d$ 2.093 ± 0.066 $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$				2.185 ± 0.080			4272.38c	$3.586 {\pm} 0.254$	4267.39c	1.275 ± 0.121
4277.89d 1.942 ± 0.061 $4290.41c$ 2.211 ± 0.081 $4277.34c$ 3.974 ± 0.281 $4269.40c$ 1.088 ± 0.104 4278.46c 1.893 ± 0.062 $4291.38c$ 2.159 ± 0.080 $4278.32c$ 4.500 ± 0.319 $4271.39c$ 1.067 ± 0.101 4282.46c 1.872 ± 0.062 $4297.43c$ 2.180 ± 0.080 $4279.29c$ 3.776 ± 0.267 $4272.41c$ 1.006 ± 0.096 4282.81d 2.008 ± 0.063 $4298.45c$ 2.324 ± 0.086 $4280.29c$ 3.619 ± 0.256 $4273.38c$ 1.039 ± 0.099 4283.42c 1.943 ± 0.064 $4299.38c$ 2.219 ± 0.082 $4281.42c$ 3.889 ± 0.275 $4274.35c$ 1.072 ± 0.101 4284.41c 1.974 ± 0.065 $4300.36c$ 2.266 ± 0.084 $4283.29c$ 3.902 ± 0.276 $4276.84d$ 1.059 ± 0.082 4285.86d 1.950 ± 0.062 $4301.43c$ 2.256 ± 0.083 $4284.33c$ 4.070 ± 0.288 $4277.36c$ 1.147 ± 0.109 4286.86d 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066	4274.44c	$1.859 {\pm} 0.062$	4283.39c	$2.387 {\pm} 0.088$			4273.36c	$3.521 {\pm} 0.249$	4267.81 m	1.277 ± 0.118
4277.89d 1.942 ± 0.061 $4290.41c$ 2.211 ± 0.081 $4277.34c$ 3.974 ± 0.281 $4269.40c$ 1.088 ± 0.104 4278.46c 1.893 ± 0.062 $4291.38c$ 2.159 ± 0.080 $4278.32c$ 4.500 ± 0.319 $4271.39c$ 1.067 ± 0.101 4282.46c 1.872 ± 0.062 $4297.43c$ 2.180 ± 0.080 $4279.29c$ 3.776 ± 0.267 $4272.41c$ 1.006 ± 0.096 4282.81d 2.008 ± 0.063 $4299.38c$ 2.324 ± 0.086 $4280.29c$ 3.619 ± 0.256 $4273.38c$ 1.039 ± 0.099 4283.42c 1.943 ± 0.064 $4299.38c$ 2.219 ± 0.082 $4281.42c$ 3.889 ± 0.275 $4274.35c$ 1.072 ± 0.101 4284.41c 1.974 ± 0.065 $4300.36c$ 2.266 ± 0.084 $4283.29c$ 3.902 ± 0.276 $4276.84d$ 1.059 ± 0.082 4285.86d 1.950 ± 0.062 $4301.43c$ 2.256 ± 0.083 $4284.33c$ 4.070 ± 0.288 $4277.36c$ 1.147 ± 0.109 4286.86d 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066 2.093 ± 0.066	4277.43c			$2.288 {\pm} 0.084$			4274.33c	$3.911 {\pm} 0.277$	4268.36c	1.248 ± 0.118
$4278.46c$ 1.893 ± 0.062 $4291.38c$ 2.159 ± 0.080 $4278.32c$ 4.500 ± 0.319 $4271.39c$ 1.067 ± 0.101 $4282.46c$ 1.872 ± 0.062 $4297.43c$ 2.180 ± 0.080 $4279.29c$ 3.776 ± 0.267 $4272.41c$ 1.006 ± 0.096 $4282.81d$ 2.008 ± 0.063 $4298.45c$ 2.324 ± 0.086 $4280.29c$ 3.619 ± 0.256 $4273.38c$ 1.039 ± 0.099 $4283.42c$ 1.943 ± 0.064 $4299.38c$ 2.219 ± 0.082 $4281.42c$ 3.889 ± 0.275 $4274.35c$ 1.072 ± 0.101 $4284.41c$ 1.974 ± 0.065 $4300.36c$ 2.266 ± 0.084 $4283.29c$ 3.902 ± 0.276 $4276.84d$ 1.059 ± 0.082 $4285.86d$ 1.950 ± 0.062 $4301.43c$ 2.256 ± 0.083 $4284.33c$ 4.070 ± 0.288 $4277.80d$ 1.040 ± 0.081 $4286.86d$ 2.093 ± 0.066 $4286.86d$ $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$	4277.89d	1.942 ± 0.061	4290.41c				4277.34c	3.974 ± 0.281	4269.40c	1.088 ± 0.104
$4282.46c$ 1.872 ± 0.062 $4297.43c$ 2.180 ± 0.080 $4279.29c$ 3.776 ± 0.267 $4272.41c$ 1.006 ± 0.096 $4282.81d$ 2.008 ± 0.063 $4298.45c$ 2.324 ± 0.086 $4280.29c$ 3.619 ± 0.256 $4273.38c$ 1.039 ± 0.099 $4283.42c$ 1.943 ± 0.064 $4299.38c$ 2.219 ± 0.082 $4281.42c$ 3.889 ± 0.275 $4274.35c$ 1.072 ± 0.101 $4284.41c$ 1.974 ± 0.065 $4300.36c$ 2.266 ± 0.084 $4283.29c$ 3.902 ± 0.276 $4276.84d$ 1.059 ± 0.082 $4285.86d$ 1.950 ± 0.062 $4301.43c$ 2.256 ± 0.083 $4284.33c$ 4.070 ± 0.288 $4277.80c$ 1.147 ± 0.109 $4286.86d$ 2.093 ± 0.066 $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$ $4280.29c$	4278.46c	1.893 ± 0.062	4291.38c				4278.32c	4.500 ± 0.319	4271.39c	1.067 ± 0.101
4282.81d 2.008±0.063 4298.45c 2.324±0.086 4280.29c 3.619±0.256 4273.38c 1.039±0.099 4283.42c 1.943±0.064 4299.38c 2.219±0.082 4281.42c 3.889±0.275 4274.35c 1.072±0.101 4284.41c 1.974±0.065 4300.36c 2.266±0.084 4283.29c 3.902±0.276 4276.84d 1.059±0.082 4285.86d 1.950±0.062 4301.43c 2.256±0.083 4284.33c 4.070±0.288 4277.36c 1.147±0.109 4286.86d 2.093±0.066 4280.28c 4.150±0.294 4277.80d 1.040±0.081	4282.46c	1.872 ± 0.062	4297.43c	2.180 ± 0.080			4279.29c	3.776 ± 0.267	4272.41c	1.006 ± 0.096
$4283.42c$ 1.943 ± 0.064 $4299.38c$ 2.219 ± 0.082 $4281.42c$ 3.889 ± 0.275 $4274.35c$ 1.072 ± 0.101 $4284.41c$ 1.974 ± 0.065 $4300.36c$ 2.266 ± 0.084 $4283.29c$ 3.902 ± 0.276 $4276.84d$ 1.059 ± 0.082 $4285.86d$ 1.950 ± 0.062 $4301.43c$ 2.256 ± 0.083 $4284.33c$ 4.070 ± 0.288 $4277.36c$ 1.147 ± 0.109 $4286.86d$ 2.093 ± 0.066 $4290.28c$ 4.150 ± 0.294 $4277.80d$ 4.040 ± 0.081	4282.81d	2.008 ± 0.063	4298.45c	$2.324{\pm}0.086$			$4280.29\mathrm{c}$	$3.619 {\pm} 0.256$	4273.38c	1.039 ± 0.099
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4283.42c	1.943 ± 0.064					4281.42c	$3.889 {\pm} 0.275$	4274.35c	1.072 ± 0.101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4284.41c	1.974 ± 0.065	4300.36c	$2.266{\pm}0.084$				3.902 ± 0.276	4276.84d	1.059 ± 0.082
	4285.86d									1.147 ± 0.109
$4287.86d \ 2.041 \pm 0.064$ $4291.32c \ 3.658 \pm 0.259 \ 4278.39c \ 1.031 \pm 0.098$	4286.86d	2.093 ± 0.066					4290.28c	$4.150 {\pm} 0.294$	4277.80d	1.040 ± 0.081
	4287.86d	2.041 ± 0.064					4291.32c	$3.658 {\pm} 0.259$	$4278.39\mathrm{c}$	1.031 ± 0.098

Table 6—Continued

JD ^a	rk 290 $F_{\mathrm{H}\beta}{}^{\mathrm{b}}$	$Mrk 817$ $JD^a F_{H\beta}{}^b$	NGC 3227 JDa Fh B	NG JD ^a	C 3516 $F_{{\rm H}{eta}}{}^{ m b}$	NG JD ^a	$C 5548$ $F_{\mathrm{H}\beta}{}^{\mathrm{b}}$
	115	- 11 <i>p</i>	- 11ρ		115		116
$4288.86\mathrm{d}$	$2.061 {\pm} 0.065$			$4296.31\mathrm{c}$	$3.823{\pm}0.271$	$4278.83\mathrm{d}$	1.078 ± 0.083
4289.42c	$2.071 {\pm} 0.069$			$4299.33\mathrm{c}$	$3.655{\pm}0.259$	$4282.76\mathrm{d}$	1.161 ± 0.090
4290.44c	$1.935 {\pm} 0.064$			$4300.30\mathrm{c}$	$3.441 {\pm} 0.244$	4283.35c	1.223 ± 0.116
4290.85d	$2.134{\pm}0.067$					4284.35c	$0.933 {\pm} 0.088$
$4291.41\mathrm{c}$	$2.092 {\pm} 0.070$					$4285.77\mathrm{d}$	1.109 ± 0.086
4296.42c	$1.977 {\pm} 0.066$					$4286.76\mathrm{d}$	0.919 ± 0.070
4297.48c	$1.985 {\pm} 0.066$					4287.76d	$0.926 {\pm} 0.071$
4298.42c	$1.868 {\pm} 0.062$					$4288.76\mathrm{d}$	1.017 ± 0.078
4300.40c	$1.977 {\pm} 0.065$					$4289.34\mathrm{c}$	1.058 ± 0.100
4301.46c	2.001 ± 0.066					$4290.38\mathrm{c}$	1.085 ± 0.103
						4290.75d	1.153 ± 0.088
						4291.35c	1.118 ± 0.107
						4292.84d	1.101 ± 0.084
						4293.77d	1.143 ± 0.088
						4296.33c	1.215 ± 0.116
						4299.35c	$1.286 {\pm} 0.122$
						4300.32c	1.251 ± 0.118
						4301.38c	1.277 ± 0.121

 $^{^{\}rm a}{\rm Julian}$ Dates are -2450000 and include the same observatory codes as Table 5.

Table 7. Light Curve Statistics

		Conti	nuum St	${ m H}eta$ Line Statistics						
	Samp	ling(days)	Mean			Samp	ling(days)	Mean		
Objects	$\langle T \rangle$	T_{median}	$Flux^a$	$F_{\rm var}$	$R_{ m max}$	$\langle T \rangle$	T_{median}	$Flux^b$	$F_{\rm var}$	$R_{\rm max}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Mrk 290	0.77	0.52	0.94	0.18	2.18 ± 0.17	1.18	1.00	2.09	0.07	1.32 ± 0.05
$\mathrm{Mrk}817$	0.84	0.56	5.06	0.05	1.27 ± 0.03	1.33	1.00	2.41	0.05	1.29 ± 0.06
$\operatorname{NGC}3227$	0.55	0.45	3.27	0.10	1.88 ± 0.09	1.13	1.00	3.99	0.08	1.48 ± 0.06
NGC3516	0.60	0.54	4.86	0.28	5.90 ± 1.50	1.26	1.00	5.54	0.15	1.94 ± 0.15
${\rm NGC4051}$	0.56	0.45	4.49	0.09	1.69 ± 0.11	1.08	1.00	4.67	0.07	1.39 ± 0.07
NGC5548	0.70	0.48	2.29	0.11	1.71 ± 0.06	1.09	1.00	1.20	0.26	3.74 ± 0.49

^aFluxes are the same units as Table 5.

 $^{^{\}rm b}{\rm H}\beta$ flux is in units of $10^{-13}~{\rm ergs~s^{-1}~cm^{-2}}.$

^bFluxes are the same units as Table 6.

Table 8. Rest Frame Lags, Line Widths, Black Hole Masses, and Luminosities

Objects (1)	r_{max} (2)	$ au_{\mathrm{cent}}$ (days) (3)	$ au_{ m peak} \ m (days) \ m (4)$	$\sigma_{ m line} \ m (km/s) \ m (5)$	FWHM (km/s) (6)	$M_{\rm vir} \\ (\times 10^6 M_{\odot}) \\ (7)$	$M_{\rm BH}^{\rm a} \times 10^6 M_{\odot})$ (8)	$\log L_{5100}$ (ergs s ⁻¹) (9)
Mrk 290 Mrk 817 ^b NGC 3227 NGC 3516 NGC 4051	0.632 0.614 0.547 0.894 0.583	$8.72_{-1.02}^{+1.21}$ $14.04_{-3.47}^{+3.41}$ $3.75_{-0.82}^{+0.76}$ $11.68_{-1.53}^{+1.02}$ $1.87_{-0.50}^{+0.54}$	$9.2_{-1.4}^{+1.5}$ $16.0_{-5.3}^{+3.9}$ $2.99_{-1.00}^{+2.00}$ $7.43_{-0.99}^{+1.99}$ $2.60_{-1.40}^{+0.79}$	1609 ± 47 2025 ± 5 1376 ± 44 1591 ± 10 927 ± 64	4270 ± 157 5627 ± 30 3578 ± 83 5175 ± 96 1034 ± 41	$4.42_{-0.67}^{+0.67}$ $11.3_{-2.8}^{+2.7}$ $1.39_{-0.31}^{+0.29}$ $5.76_{-0.76}^{+0.51}$ $0.31_{-0.09}^{+0.10}$	$24.3_{-3.7}^{+3.7}$ $43.3_{-10.7}^{+10.5}$ $7.63_{-1.72}^{+1.62}$ $31.7_{-4.2}^{+2.8}$ $1.73_{-0.52}^{+0.55}$	$43.00^{+0.08}_{-0.08} \\ 43.78^{+0.02}_{-0.02} \\ 42.11^{+0.04}_{-0.015} \\ 43.17^{+0.15}_{-0.15} \\ 41.82^{+0.10}_{-0.36}$
NGC 5548	0.708	$12.40^{+2.74}_{-3.85}$	$6.1_{-2.8}^{+9.4}$	1822 ± 35	4849 ± 112	$8.04^{+1.80}_{-2.51}$	$44.2^{+9.9}_{-13.8}$	$42.91^{+0.05}_{-0.05}$

^aUsing Onken et al. (2004) calibration (except Mrk 817, see below).

^bThe weak and poorly defined, triple-peaked profile of the H β emission in the rms spectrum necessitated the use of the line width measured from the mean spectrum for Mrk 817 (Columns 5 and 6) and a black hole mass (Column 8) calculated with the scale factor determined by Collin et al. (2006) for the use of this line width measurement, f = 3.85, instead of the standard Onken et al. (2004) value of f = 5.5 that was used for all other objects.

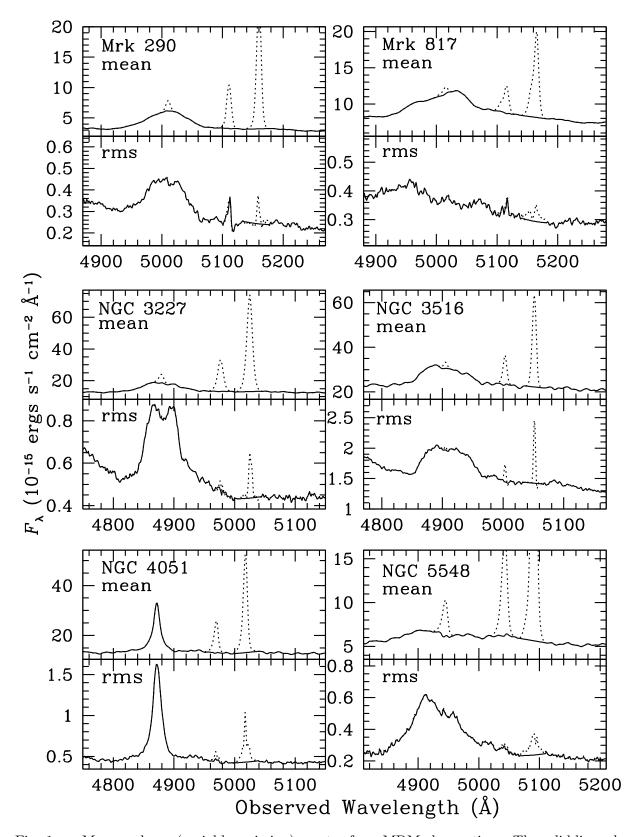


Fig. 1.—: Mean and rms (variable emission) spectra from MDM observations. The solid lines show the narrow-line subtracted spectra, while the dotted lines show the narrow-line component of H β and the [O III] $\lambda\lambda4959,5007$ narrow emission lines and rms residuals.

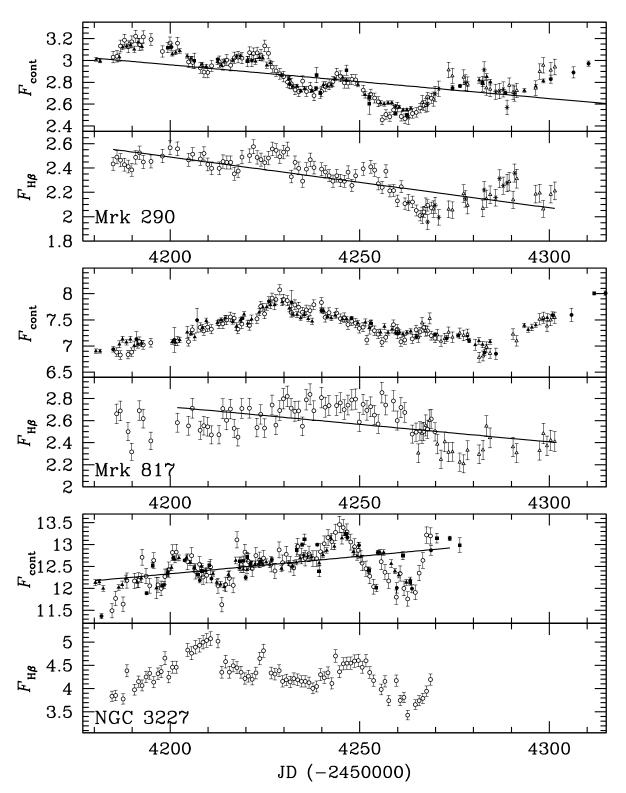


Fig. 2.—: Light curves showing complete set of observations from all sources for all objects. *Top:* The 5100 Å continuum flux in units of 10^{-15} ergs s⁻¹ cm⁻² Å⁻¹. *Bottom:* H β λ 4861 line flux in units of 10^{-13} ergs s⁻¹ cm⁻². Observations from different sources are as follows: CrAO photometry — solid triangles, MAGNUM photometry — solid circles, UNebr. photometry — solid squares, MDM spectroscopy — open circles, CrAO spectroscopy — open triangles, and DAO spectroscopy — asterisks. The solid lines show linear, secular-variation detrending fits to the light curves.

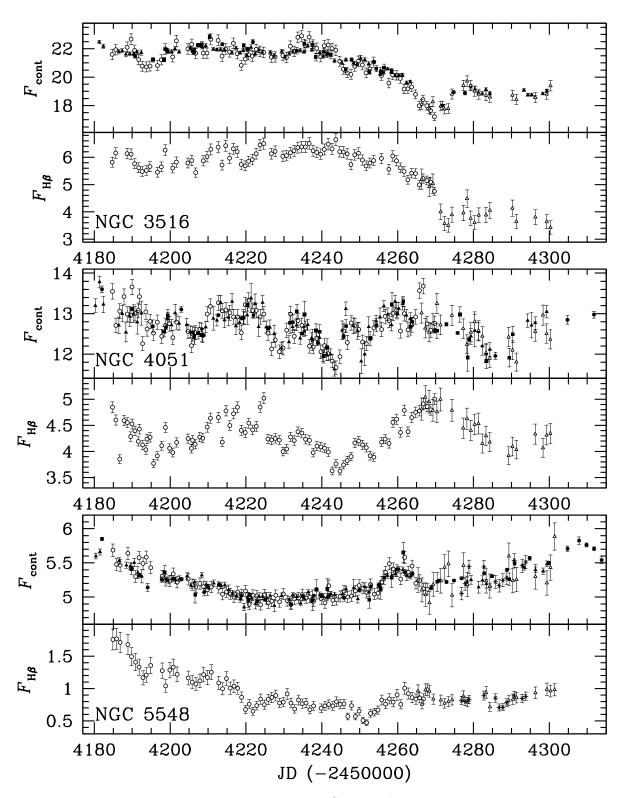


Fig. 2.—: Continued.

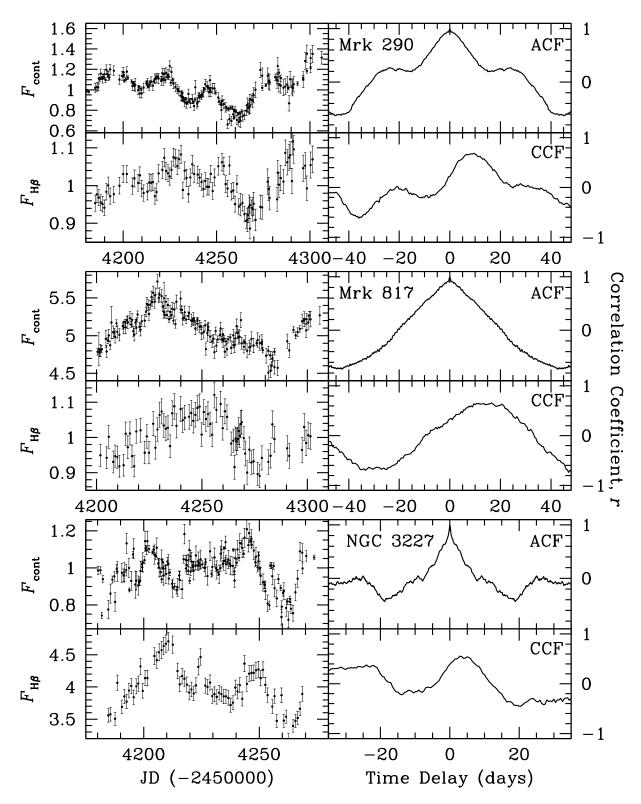


Fig. 3.—: Left panels: Merged and detrended (where applicable) continuum (top) and H β (bottom) light curves used for cross correlation analysis. Units are the same as Tables 5 and 6, but the flux scale of each detrended light curve is arbitrary. Right panels: Cross-correlation functions for the light curves. Each top panel shows the autocorrelation function of each continuum light curve, and the bottom panels show the cross-correlation function of H β with the continuum.

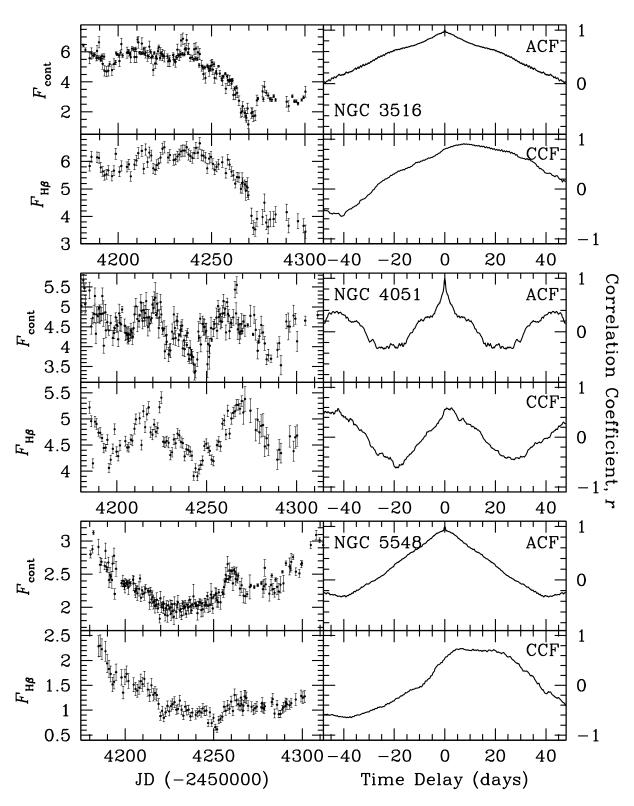


Fig. 3.—: Continued.

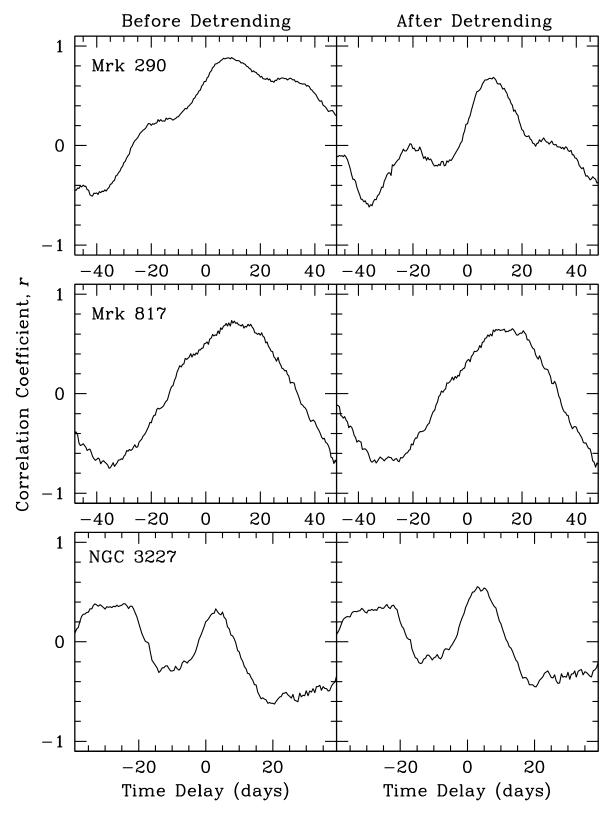


Fig. 4.—: CCFs before (left) and after (right) detrending selected light curves of Mrk 290 (top), Mrk 817 (middle), and NGC 3227 (bottom). See Section 2.4 for details.

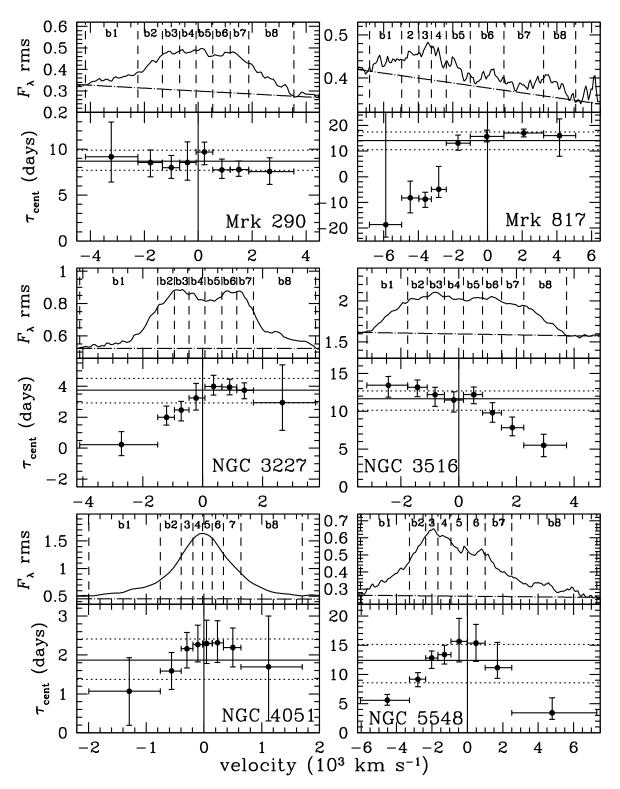


Fig. 5.—: Top panels: $H\beta$ rms spectral profile of each object broken into bins of equal flux (numbered and separated by dashed lines) with the linearly-fit continuum level shown (dotted-dashed line). Flux units are the same as in Fig. 1. Bottom panels: Velocity-resolved time-delay measurements. Time delay measurements and errors are determined similarly to those for the mean BLR lag, and error bars in the velocity direction show the bin size. The horizontal solid and dotted lines show the mean BLR centroid lag and associated errors, calculated in Section 2.4.

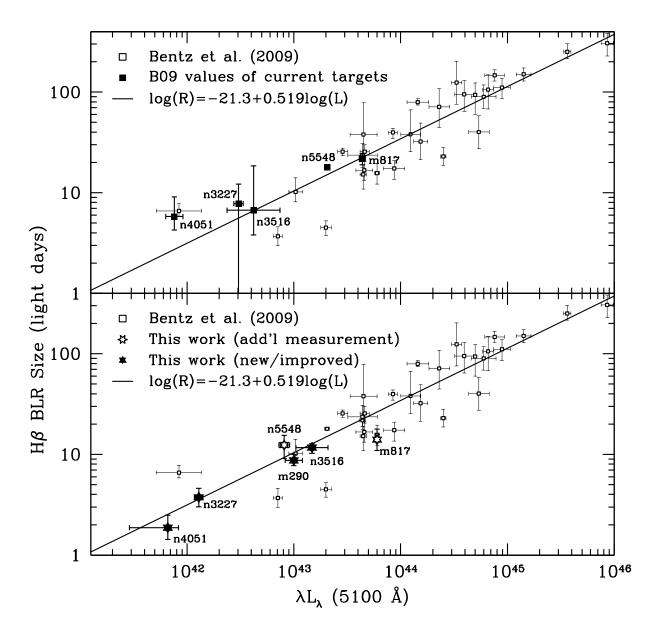


Fig. 6.—: Top: Most recently calibrated $R_{\rm BLR}-L$ relation (Bentz et al. 2009b, solid line). The closed points show the location of our targets, and open points show all other objects used by Bentz et al. Bottom: Same as top but with our new results displayed. Solid stars show new objects or improvements upon past results which replace solid points of NGC 4051, NGC 3227, NGC 3516, and Mrk 290 in top panel, and open points show results for NGC 5548 and Mrk 817, which serve as additional measurements for these objects but do not replace previous measurements. Note that we keep the same calibration of the relationship as determined by Bentz. et al.; no new fit has been calculated with our new results.

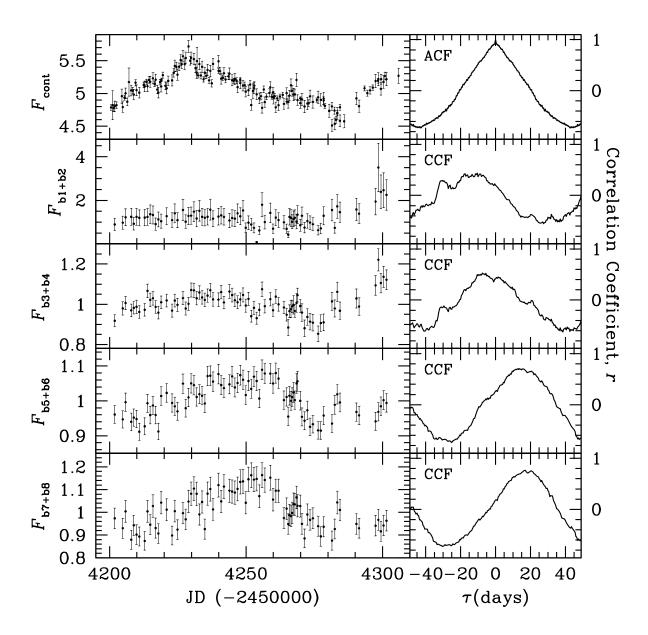


Fig. 7.—: Left panels: Continuum (top) and linearly detrended H β light curves of Mrk 817 from four equal flux bins. Units are the same as Tables 5 and 6. Right panels: Cross-correlation functions for the light curves. The top panel shows the autocorrelation function of the continuum light curve, and the lower panels show the cross-correlation function of each H β bin with the continuum.