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Abstract. In the field of spatial analysis, the interest in modeling relationships between 

variables locally by some researchers has lead to the development of regression models 

with spatially varying coefficients. One such model that has been widely applied is 

geographically weighted regression (GWR). In the application of GWR, marginal 

inference on the spatial pattern of regression coefficients is often of interest, as is, less 

typically, prediction and estimation of the response variable. Empirical research and 

simulation studies have demonstrated that local correlation in explanatory variables can 

lead to estimated regression coefficients in GWR that are strongly correlated, and hence, 

problematic for inference on relationships between variables. We introduce in this paper 

a penalized form of GWR called the geographically weighted lasso (GWL) that adds a 

constraint on the magnitude of the estimated regression coefficients to limit the effects of 

explanatory variable correlation. The geographically weighted lasso also performs local 

model selection by potentially shrinking some of the estimated regression coefficients to 

zero in some locations of the study area. We introduce two versions of GWL, one 

designed to improve prediction of the response variable and one more oriented for 

constraining regression coefficients for inference. The results of applying GWL to 

simulated and real datasets show that this method stabilizes regression coefficients in the 

presence of collinearity and produces lower prediction and estimation error of the 
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response variable than does GWR and another constrained version of GWR, 

geographically weighted ridge regression. 

 

Key Words: geographically weighted regression, penalized regression, lasso, model 

selection, collinearity, ridge regression 

 

1 Introduction 

 

In the field of spatial analysis, the interest of some researchers in modeling 

relationships between variables locally has lead to the development of regression models 

with spatially varying coefficients. This is evidenced by the spatial expansion method 

(Casetti, 1992), geographically weighted regression (GWR) designed to model spatial 

parametric nonstationarity (Brunsdon et al, 1996; Fotheringham et al, 2002), and 

geographically weighted regression designed to model variance heterogeneity (Páez et al, 

2002). Of these, GWR as a model for spatial parametric nonstationarity has experienced 

the widest application to date, at least partly due to readily available software for this 

technique. One can see the similarities of GWR to nonparametric local, or locally 

weighted, regression models that were first developed in the field of statistics (Cleveland, 

1979; see also Loader, 1999 and Hastie et al, 2001 for more details). A clear 

methodological link between local regression and GWR is found in the similarity of the 

estimation procedures for loess smoothing, which is synonymous with local regression, in 

Martinez and Martinez (2002, p. 292-293) and the GWR model in Fotheringham et al 

(2002), which suggests viewing GWR as a local smoothing method. A key difference 
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between GWR and locally weighted regression is that in GWR weights arise from a 

spatial kernel function applied to observations in a series of related local weighted 

regression models across the study area, whereas the weights in locally weighted 

regression are from a kernel function applied in variable space. Historically, GWR is 

based on the replacement of attribute space in locally weighted regression for curve 

fitting with geographical space in locally weighted regression for modeling potentially 

spatially varying relationships. GWR also differs from local regression in the focus of its 

typical application. Most published applications of GWR are concerned with measuring 

statistically significant variation in the estimated regression coefficients and then 

visualizing and interpreting the varying regression coefficients, as is in line with the 

primary proposed benefit of GWR (Fotheringham et al, 2002). In contrast, local 

regression is concerned with fitting a curve to the response variable (Loader, 1999, p. 19). 

This difference in objectives may be summarized as one of inference on relationships in 

GWR and estimation and prediction of the response variable in local regression. The 

discrepancy between the principle applied focus of GWR and its methodological origins 

appears to be a noteworthy one, and perhaps a seemingly more appropriate use of GWR 

in line with its theoretical statistical origins is for estimation and prediction of the 

response variable. 

One issue of concern with GWR models expressed in the literature is with 

correlation in the estimated coefficients, at least partly due to collinearity in the 

explanatory variables of each local model. Wheeler and Tiefelsdorf (2005) show that 

while GWR coefficients can be correlated when there is no explanatory variable 

collinearity, the coefficient correlation increases systematically with increasingly more 
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collinearity. The collinearity in explanatory variables can apparently be increased by the 

GWR spatial kernel weights, and moderate collinearity of locally weighted explanatory 

variables can lead to potentially strong dependence in the local estimated coefficients 

(Wheeler and Tiefelsdorf, 2005), which makes interpreting individual coefficients 

problematic. As an additional example, Wheeler (2007) applies collinearity diagnostic 

tools in a Columbus, Ohio crime dataset to clearly link local collinearity to strong GWR 

coefficient correlation and increased coefficient variability for two covariates at 

numerous data locations with counter-intuitive regression coefficient signs.  

Another issue in GWR is with the customary standard error calculations 

associated with regression coefficient estimates. The standard error calculations in GWR 

are only approximate due to reuse of the data for estimation at multiple locations 

(Congdon, 2003; Lesage, 2004) and due to using the data to estimate both the kernel 

bandwidth and the regression coefficients (Wheeler and Calder, 2007). In addition, local 

collinearity can increase variances of estimated regression coefficients in the general 

regression setting (Neter et al, 1996). The issue with the standard errors implies that the 

confidence intervals for estimated GWR coefficients are only approximate and are not 

entirely reliable for local model selection via significance tests. An issue related to 

inference on the regression coefficients is that of multiple testing in GWR, where tests of 

coefficient significance are carried out at many locations using the same data. One 

potential solution is to use a Bonferroni adjustment to adjust the significance level of 

individual tests to achieve an overall significance level. 

There are methods in the statistical literature that attempt to circumvent 

collinearity in traditional linear regression models with constant coefficients. These 
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methods include ridge regression, the lasso, principal components regression, and partial 

least squares. Hastie et al (2001) and Frank and Friedman (1993) independently provide 

performance comparisons of these methods. Ridge regression and the lasso are both 

penalization, or regularization, methods that place a constraint on the regression 

coefficients, and principal components regression and partial least squares are both 

variable subset selection methods that use linear combinations of the explanatory 

variables in the regression model. Ridge regression was designed specifically to reduce 

collinearity effects by penalizing the size of regression coefficients and decreasing the 

influence in the model of variables with relatively small variance in the design matrix. 

The lasso is a more recent development that also shrinks the regression coefficients, but 

shrinks the least significant variable coefficients to zero, thereby simultaneously 

performing coefficient penalization and model selection. The name for the lasso 

technique is derived from its function as a “least absolute shrinkage and selection 

operator” (Tibshirani, 1996). Ridge regression and the lasso are deemed as better 

candidates than principal components regression and partial least squares to address 

collinearity in local spatial regression models because they more directly reduce the 

variance in the regression coefficients while retaining interpretability of covariate effects.  

To address the issue of collinearity in the GWR framework, Wheeler (2007) 

implemented a ridge regression version of GWR, called GWRR, and found it was able to 

constrain the regression coefficients to counter local correlation present in an existing 

dataset. Another finding was a reduced prediction error for the response variable in 

GWRR compared to that from GWR. The lasso has not yet been introduced into the 

GWR framework in the literature, and its implementation in GWR is the goal of this 
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paper. The lasso is appealing in the GWR framework due to its ability to carry out 

coefficient shrinkage and local model selection, as well as for its potential to improve on 

the performance of GWR for estimating the response variable, in terms of lower 

prediction and estimation errors. While ridge regression in GWR has the potential to 

control the variability in estimated regression coefficients, the lasso in theory should be 

able to constrain the coefficients and additionally perform local model selection by 

eliminating covariates from individual local models. Thus, the lasso offers a key 

advantage to ridge regression in the GWR framework and should lessen the reliance on 

approximate confidence intervals in GWR for identification of insignificant local effects. 

In this paper, we first review the GWR and lasso methods and then introduce the lasso in 

the GWR framework. We then demonstrate the benefit of using the geographically 

weighted lasso (GWL) through a comparative analysis with GWR and GWRR of two 

existing crime datasets and simulated data. 

 

2 Methods 

 

Geographically Weighted Regression 

 

In the application of GWR, data are often mean measures of aggregate data at 

fixed points with associated spatial coordinates; for example, see the Georgia county 

example in Fotheringham et al (2002), although this need not be the case. The spatial 

coordinates of the data are used in calculation of distances that are input into a kernel 

function to determine weights for spatial dependence between observations. Typically, a 
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regression model is fitted at each point location in the dataset, called a model calibration 

location. Local regression models are related through sharing data, but the dependence 

between regression coefficients at different model calibration locations is not specified in 

the model. For each calibration location, 1, ,i n= K , the GWR model at location i  is 

 

( ) ( ) ( ) ( )y i i i i= +X β ε ,         (1) 

 

where ( )y i  is the dependent variable at location i , ( )iX  is the row vector of explanatory 

variables at location i , ( )iβ  is the column vector of regression coefficients at location i , 

and ( )iε  is the random error at location i . The vector of estimated regression coefficients 

at location i  is 

 

1ˆ ( ) [ ( ) ] ( ) ,T Ti i i−= ⋅ ⋅ ⋅ ⋅β X W X X W y        (2) 

 

where [ (1); (2); ; ( )]T T T Tn=X X X XK  is the design matrix of explanatory variables, 

which typically includes a column of 1's  for the intercept; 1( ) [ ( ), , ( )]ni diag w i w i=W K  is 

the diagonal weights matrix that is calculated for each calibration location i  and applies 

weights to observations 1, ,j n= K , with typically more weight applied to proximate or 

neighboring observations; y  is the 1n×  vector of dependent variables; and 

( )0 1
ˆ ˆ ˆ ˆ( ) , , ,

T

i i ipi β β β=β K  is the vector of 1p +  local regression coefficients at location i  

for p  explanatory variables and an intercept term.  
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The weights matrix, ( )iW , is calculated from a kernel function that places more 

emphasis on observations that are closer to the model calibration location i . There are 

numerous choices for the kernel function, including the Gaussian function, the bi-square 

nearest neighbor function, and the exponential function. The exponential kernel function 

is utilized in this paper. The weight from the exponential kernel function between any 

location j  and the model calibration location i  is calculated as 

 

( ) exp( / )j ijw i d φ= − ,          (3) 

 

where ijd  is the distance between the calibration location i  and location j , and φ  is the 

kernel bandwidth parameter.  

To fit the GWR model, the kernel bandwidth is first estimated, often in practice 

by leave-one-out cross-validation (CV) across all the calibration locations. Cross-

validation is an iterative process that finds the kernel bandwidth with the lowest 

associated prediction error of all the responses ( )y i . For each calibration location i , it 

removes the data for observation i  in the model calibration at location i  and predicts 

( )y i  using the other data points and the kernel weights associated with the current 

bandwidth. An alternative to CV in kernel bandwidth estimation is the Akaike 

Information Criterion (AIC), as discussed in Fotheringham et al (2002). CV and the AIC 

are tools used in model selection and more general information on the AIC and model 

selection are available elsewhere (Burnham and Anderson, 2004). It is currently unclear 

whether CV or AIC will generally return the same solution or one method should be 

favored in certain situations. The need for more research in this area is stressed by Farber 
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and Páez (2007). Next, the kernel weights are calculated at each calibration location 

using the estimated bandwidth in the kernel function. Then, the regression coefficients 

are estimated at each model calibration location, and, finally, the responses are estimated 

by the expression ˆˆ( ) ( ) ( )y i i i= Χ β . 

 

The Lasso 

 

Shrinkage methods such as ridge regression and the lasso introduce a constraint 

on the regression coefficients. The ridge regression coefficients minimize the sum of a 

penalty on the size of the squared coefficients and the residual sum of squares (see 

Wheeler, 2007 for details). The lasso takes the shrinkage of ridge regression a step further 

by potentially shrinking the regression coefficients of some variables to zero. The lasso 

specification is similar to ridge regression, but it has a 1L  coefficient penalty in place of 

the ridge 2L  penalty, where 1L  denotes a sum of absolute values and 2L  denotes a sum 

of squared values. The lasso is defined as 

 

2

0
1 1

1

ˆ arg min

subject to  

pn
R

i ik k
i k

p

k
k

y x

s

β β

β

= =

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

≤

∑ ∑

∑

β
β

.      (4) 

 

Tibshirani (1996) notes that the lasso constraint k
k

sβ ≤∑  is equivalent to adding the 

penalty term k
k

λ β∑  to the residual sum of squares, hence there is a direct 



 10

correspondence between the parameters s  and λ  that control the amount of shrinkage of 

the regression coefficients. The equivalent statement for the lasso coefficients is  

 

2

0
1 1 1

ˆ arg min
p pn

R
i ik k k

i k k
y xβ β λ β

= = =

⎧ ⎫⎛ ⎞⎪ ⎪= − − +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑ ∑ ∑
β

β .     (5) 

 

The absolute value constraint on the regression coefficients makes the problem nonlinear 

and a typical way to solve this type of problem is with quadratic programming.  

There are, however, ways to estimate the lasso coefficients outside of the 

mathematical programming framework. Tibshirani (1996) provides an algorithm that 

finds the lasso solutions by treating the problem as a least squares problem with 2 p  

inequality constraints, one for each possible sign of the kβ ’s, and applying the constraints 

sequentially. An even more attractive way to solve the lasso problem is proposed by 

Efron et al (2004a), who solve the lasso problem with a small modification to the least 

angle regression (LARS) algorithm, which is a variation of the classic forward selection 

algorithm in linear regression. The modification ensures that the sign of any non-zero 

estimated regression coefficient is the same as the sign of the correlation coefficient 

between the corresponding explanatory variable and the current residuals. Grandvalet 

(1998) shows that the lasso is equivalent to adaptive ridge regression and develops an EM 

algorithm to compute the lasso solution.  

 It is worthwhile to describe in more detail the LARS and lasso algorithms of 

Efron et al (2004a) because these methods have not been previously introduced in the 

geography literature at the time of this writing. The LARS algorithm is similar in spirit to 
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forward stepwise regression, which we now describe. The forward stepwise regression 

algorithm is:  

(1) Start with all coefficients kβ  equal to zero and set =r y , where r  is the residual 

vector and y  is the dependent variable vector. 

(2) Find the predictor kx  most correlated with the residuals r  and add it to the model. 

(3) Calculate the residuals ˆ= −r y y . 

(4) Continue steps 2-3 until all predictors are in the model. 

 

While the LARS algorithm is described in detail algebraically in Efron et al 

(2004a), Efron et al (2004b) restate the LARS algorithm as a purely statistical one with 

repeated fitting of the residuals, similar to the forward stepwise regression algorithm. The 

statistical statement of the LARS algorithm is: 

 

(1) Start with all coefficients kβ  equal to zero and set =r y . 

(2) Find the predictor kx  most correlated with the residuals r . 

(3) Increase the coefficient kβ  in the direction of the sign of its correlation with r , 

calculating the residuals ˆ= −r y y  at each increase, and continue until some other 

predictor mx  has as much correlation with the current residual vector r  as does 

predictor kx . 

(4) Update the residuals and increase ( , )k mβ β  in the joint least squares direction for the 

regression of r  on ( , )k mx x  until some other predictor jx  has as much correlation 

with the current residual r . 
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(5) Continue steps 2-4 until all predictors are in the model. Stop when corr( , ) 0jr x j= ∀ , 

which is the OLS solution. 

 

As with ridge regression, typically the response variable is centered and the 

explanatory variables are centered and scaled to have equal (unit) variance prior to 

starting the LARS algorithm. In other words, 
1

0
n

i
i

y
=

=∑ , 
1

0
n

ij
i

x
=

=∑ , and 2

1
1

n

ij
i

x
=

=∑  for 

1, ,j m= K . Efron et al (2004a) show that a small modification to the LARS algorithm 

yields the lasso solutions. In a lasso solution, the sign of any nonzero coefficient kβ  must 

agree with the sign of the current correlation of kx  and the residual. The LARS algorithm 

does not enforce this, but Efron and coauthors modify the algorithm to do so by removing 

kβ  from the lasso solution if it changes in sign from the sign of the correlation of kx  and 

the current residual. This modification means that in the lasso solution, the active set of 

variables in the solution does not necessarily monotonically increase as the routine 

progresses. Therefore, the LARS algorithm typically takes less iterations than does the 

lasso algorithm. The modified LARS algorithm produces the entire range of possible 

lasso solutions, from the initial solution with all coefficients equal to zero, to the final 

solution, which is also the OLS solution. 

In some of the lasso algorithms, such as the modified LARS algorithm and the 

algorithm Tibshirani describes, the shrinkage parameter s  (or t ) must be estimated 

before finding the lasso solutions. Hastie et al (2001) estimate the parameter  
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t
s

p

1k

ols
k∑

==
β̂

           (6) 

 

through ten-fold cross-validation, where t  is some positive scalar that reduces the 

ordinary least squares coefficient estimates. Tibshirani (1996) uses five-fold cross-

validation, generalized cross-validation, and a risk minimizer to estimate the parameter t , 

with the computational cost of the three methods decreasing in the same order. Efron et al 

(2004a) also recommend using cross-validation to estimate the lasso parameter. If t  is 

one or less, there is no shrinkage and the lasso solutions for the coefficients are the least 

squares solutions. One can also define the lasso shrinkage parameter as  

 

1

1

ˆ

ˆ

p

k
k
p

ols
k

k

s
β

β

=

=

=
∑

∑
,          (7) 

 

and s  ranges from 0 to 1, where 0 corresponds to the initial lasso solution with all 

regression coefficients shrunk to 0 and 1 corresponds to the final lasso solution, which is 

also the OLS solution. Then, s  can be viewed as the fraction of the OLS solution that is 

the lasso solution. This is the definition of the lasso shrinkage parameter that we will use 

in the subsequent work in this paper. 

 

Geographically Weighted Lasso 
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The lasso can be implemented in GWR relatively easily, and the result is here 

called the geographically weighted lasso (GWL). An efficient implementation of the 

GWL outlined here uses the lars function from the package of the same name written 

in the R language by Hastie and Efron (see the R Project web site: http://cran.r-

project.org/). The lars function implements the LARS and lasso methods, where the 

lasso is the default method, and details are described in Efron et al (2004a; 2004b). To 

make use of the lars function in the GWR framework, the x  and y  variables input to 

the function must be weighted by the kernel weights at each model calibration location. 

The lars function must be run at each model calibration location. This can be done in 

one of two ways: separate models with local scaling of the explanatory variables (GWL-

local) or one model with global scaling of the explanatory variables (GWL-global). The 

first way, local scaling, requires n  calls of the lars function, one for each location, and 

the weighted x  and y  are centered and the x  variables are scaled by the norm in the 

lars function. This effectively removes the intercept and equates the scales of the 

explanatory variables to avoid the problem of different scales. The local scaling version 

estimates the lasso parameter to control the amount of coefficient shrinkage at each 

calibration location, so there is a shrinkage parameter is  estimated at each location i . 

Since we are working here in the GWR framework, we will estimate the model shrinkage 

and kernel bandwidth parameters using leave-one-out cross-validation while minimizing 

the root mean square prediction error (RMSPE) of the response variable. Therefore, the 

n  is  parameters and the kernel bandwidth φ  must be estimated in GWL with CV before 

the final lasso coefficient solutions are estimated. We have chosen to estimate these 

parameters simultaneously, as the lasso solution will likely depend on the kernel 
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bandwidth. The algorithm to estimate the local scaling GWL parameters using cross-

validation is: 

 

• For each attempted bandwidth φ  in the binary search for the lowest RMSPE 

o Calculate the n n×  weights matrix W  using an n n×  inter-point distance 

matrix D  and φ . 

o For each location i  from 1, , nK  

 Set 1 2 ( ) sqrt(diag( ( )))i i=W W  and 1 2 ( ) 0iii =W , that is, set the ( , )i i  

element of the square root of the diagonal weights matrix to 0 to 

effectively remove observation i . 

 Set 1 2 ( )i=wX W X  and 1 2 ( )i=wy W y  using the square root of the 

kernel weights ( )iW  at location i . 

 Call lars( ,w wX y ), save the series of lasso solutions, find the lasso 

solution that minimizes the error for iy , and save this solution. 

• Stop when there is only a small change in the estimated φ . Save the estimated φ . 

 

In the previous algorithm, saving the lasso solution entails saving the estimated shrinkage 

fraction is  at each location, as well as an indicator vector b  of which variable 

coefficients are shrunken to zero. The algorithm uses a binary search to find the φ  that 

minimizes the RMSPE. The small change in φ  is set exogenously. The square root of the 

weights are used to weight the data because this is how the weights are applied to the data 

in the estimation of GWR regression coefficients in equation (2). 
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The algorithm to estimate the final local scaling GWL solutions after cross-

validation estimation of the shrinkage and kernel bandwidth parameters is: 

 

• Calculate the n n×  weights matrix W  using an n n×  inter-point distance matrix D  

and φ . 

• For each location i  from 1, , nK  

o Set 1 2 ( ) sqrt(diag( ( )))i i=W W . 

o Set 1 2 ( )i=wX W X  and 1 2 ( )i=wy W y  using the square root of the diagonal 

weights matrix ( )iW  at location i . 

o Call lars( ,w wX y ) and save the series of lasso solutions. 

o Select the lasso solution that matches the cross-validation solution according 

to the fraction is  and the indicator vector b . 

 

The second GWL method, global scaling, calls the lars function only one time, 

using specially structured input data matrices. This method fits all the local models at 

once, using global scaling of the x  variables. It also estimates only one lasso parameter 

to control the amount of coefficient shrinkage. The weighted design matrix for the global 

version is a ( ) ( )n n n p⋅ × ⋅  matrix and the weighted response vector is ( ) 1n n⋅ × . This 

results in a ( ) 1n p⋅ ×  vector of estimated regression coefficients. The weighted design 

matrix is such that the design matrix is repeated n  times, shifting p  columns in its 

starting position each time it is repeated. The kernel weights for the 1st location are 

applied to the first n  rows of the matrix, the weights for the 2nd location are applied to 
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the next n  rows of the matrix, and so forth. The weighted response vector has the 

response vector repeated n  times, with the weights for the 1st location applied to the first 

n  elements of the vector, and so on. The algorithm to estimate the global scaling GWL 

parameters using cross-validation is: 

 

• For each attempted bandwidth φ  in the binary search for the lowest RMSPE 

o Calculate the n n×  weights matrix W  using an n n×  inter-point distance 

matrix D  and φ . 

o Set diagonal of W  = 0. 

o Set 1 2 ( )G T= × ⋅wy W 1 y  using the square root of each element of the weights 

matrix W  and the column unity vector 1  of length n . The operator ×  

indicates element-by-element multiplication here. Set 1k =  and 1m = . 

o For each location i  from 1, , nK  

 Set ( 1)j k n n= ⋅ − −  and ( 1)l m p p= ⋅ − − . 

 Set 1 2 ( )i=wX W X  using the square root of the kernel weights ( )iW  

at location i . Set ( : , : )G j n k l p m⋅ ⋅ =w wX X . 

 Set 1k k= +  and 1m m= + . 

o Call lars( , vec( )G G
w wX y ) and save the series of lasso solutions, where the 

vec() operator turns a matrix into a vector by sequentially placing columns, 

starting with the first, into one row. 
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In the previous algorithm, saving the lasso solution entails saving the estimated overall 

shrinkage fraction s , as well as a vector b  that indicates which of the variable 

coefficients are shrunken to zero. The algorithm uses a binary search to find the φ  that 

minimizes the RMSPE. The small change in φ  is set exogenously. 

The algorithm to estimate the final global scaling GWL solutions after cross-

validation estimation of the shrinkage and kernel bandwidth parameters is: 

 

• Calculate the n n×  weights matrix W  using an n n×  inter-point distance matrix D  

and φ . 

• Set 1 2 ( )G T= × ⋅wy W 1 y  using the square root of each element of the weights matrix 

W  and the column unity vector 1  of length n . The operator ×  indicates element-by-

element multiplication here. Set 1k =  and 1m = . 

• For each location i  from 1, , nK  

o Set ( 1)j k n n= ⋅ − −  and ( 1)l m p p= ⋅ − − . 

o Set 1 2 ( )i=wX W X  using the square root of the kernel weights ( )iW  at 

location i . Set ( : , : )G j n k l p m⋅ ⋅ =w wX X . 

o Set 1k k= +  and 1m m= + . 

• Call lars( , vec( )G G
w wX y ) and save the series of lasso solutions, where vec() turns the 

matrix into a vector. 

• Select the lasso solution that matches the cross-validation solution according to the 

fraction s  and the indicator vector b . 
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In comparing the local and global scaling GWL algorithms, the global GWL 

algorithm requires more computational time due to the matrix inversion of a much larger 

matrix. The global GWR algorithm must invert a ( )n p n p⋅ × ⋅  matrix, while the local 

GWR algorithm must invert a ( )p p×  n  times, which is clearly faster. Considering that 

calculating the inverse of a general j j×  matrix takes between 2( )O j  and 3( )O j time 

(Banerjee et al. 2004), there can be quite a difference in the computation time for the two 

versions of GWR. In general, global GWL can take between two and three times more 

computation time than local GWL. In fact, global GWL may not be possible for large 

datasets, where large is defined relative to the computing environment, as the memory 

requirements of the method could exceed available computer system memory. In terms of 

expected model performance, the local GWL method should produce lower prediction 

error of the response variable than the global GWL method, as adding more shrinkage 

parameters generally increases model stability and hence lowers prediction error. The 

benefit of global GWL may be in lower estimation error of the regression coefficients, as 

the one shrinkage parameter may control excessive coefficient variation in GWR without 

stabilizing the model to the degree of local GWL. In summary, the local GWL should be 

faster than the global GWL and should have lower prediction error. The local and global 

versions of GWL will be compared empirically to each other and to GWR in the data 

example and simulation study in the next two sections. 

 

3 Houston and Columbus Crime Examples 
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 In this section, we demonstrate the use of the GWL methodology with two 

existing data sets dealing with crime in Houston, TX and Columbus, OH and compare the 

GWL results with those from both GWR and GWRR. Waller et al (2007) previously 

analyzed violent crime incidence related to alcohol sales and drug law violations in the 

Houston dataset using GWR and a Bayesian hierarchical model. The Columbus crime 

dataset has been analyzed in spatial analysis work (Anselin, 1988) and in GWR-related 

work (LeSage, 2004; Wheeler, 2007). Wheeler (2007) demonstrated with diagnostic tools 

the presence of collinearity in a GWR model for Columbus neighborhood crime rates 

using median income and housing values. We use the Columbus crime dataset here as an 

illustrative example to compare model performance and select it for its problem with 

collinearity in the GWR model. In analyzing the Columbus crime data, Wheeler (2007) 

used a nearest neighbor bi-square kernel function with cross-validation to estimate the 

GWR kernel bandwidth. In this work, we use an exponential kernel function with cross-

validation to demonstrate that the collinearity issue persists with a different kernel 

function. All subsequent GWR-related models presented here use this kernel function.  

 Wheeler (2007) introduced the collinearity diagnostics of variance-decomposition 

proportions, condition indexes, and variance inflation factors for GWR and applied them 

to the Columbus crime data to illustrate collinearity issues with the GWR model. The 

details for the diagnostics are available in that paper and are omitted here for brevity. 

Instead, we briefly summarize the results of applying the variance-decomposition 

diagnostic tool to the Columbus crime data. The GWR model is 

 

0 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )y i i i x i i x i iβ β β ε= + + + ,      (8) 
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where y  is residential and vehicle thefts combined per thousand people for 1980, 1x  is 

mean income, 2x  is mean housing value, and i  is the index for neighborhoods. Through 

cross-validation, the estimated GWR kernel bandwidth ˆ 1.26φ = . This estimated 

bandwidth is used in the variance-decomposition of the kernel weighted design matrix to 

assess the collinearity in the model. The variance-decomposition is done through singular 

value decomposition and it has an associated condition index, which is the ratio of the 

largest singular value to the smallest singular value. In diagnosing collinearity, the larger 

the condition index, the stronger is the collinearity among the columns of the GWR 

weighted design matrix. Belsley (1991) recommends a conservative value of 30 for a 

condition index that indicates collinearity, but suggests the threshold value could be as 

low as 10 when there are large variance proportions for the same component. The 

variance-decomposition proportion is the proportion of the variance of a regression 

coefficient that is affiliated with one component of its decomposition. In addition, the 

presence of two or more variance proportions greater than 0.5 in one component of the 

variance-decomposition indicates that collinearity exists between at least two regression 

terms, one of which may be the intercept. Of the 49 records in the data, 6 have a 

condition index above 30, 12 have a condition index above 20, and 45 have a condition 

index above 10 and have large shared variances for the same component. There are many 

observations with large variance proportions (> 0.5) from the same component, with the 

shared component being between a covariate and the intercept for some records and 

between the two covariates for other records. Of the 47 records with a large shared 

variance component, 23 are with the intercept and income, 4 are with the intercept and 
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housing value, and 20 are between income and housing value. Overall, the diagnostic 

values indicate local collinearity in the GWR model.  

 Due to the collinearity in the GWR model, it is beneficial to apply the GWL 

models to these data and compare their performance to the GWR and GWRR models in 

terms of prediction and estimation error of the response variable. The accuracy of the 

estimated and predicted responses is measured by calculating the root mean square error 

(RMSE) and root mean square prediction error, respectively. The RMSE is the square 

root of the mean of the squared deviations of the estimates from the true values and 

should be small for accurate estimators. The results of fitting all four models to the data 

provide the error values in Table 1. The lowest prediction error and estimation error 

among the four models are listed in bold font. In this case, the constrained versions of 

GWR do substantially better than GWR at predicting the dependent variable, and GWL-

local performs better than GWRR and GWL-global. The RMSPE for the GWL-local 

model is 32% lower than for GWR and 24% lower than for GWRR. For estimating the 

dependent variable, GWL-global performs best and substantially better than the other 

models. The RMSE for the GWL-global model is 17% lower than for the GWR model. 

Overall, GWL performs better than both GWR and GWRR. Figure 1 shows the estimated 

GWR coefficients and the GWL-local coefficients for income 1( )β  and housing value 

2( )β . The figure shows the nature of the shrinkage in the estimated GWL coefficients 

and how GWL enforces local model selection by shrinking some estimated coefficients to 

zero. In some neighborhoods, either the income or housing value has been effectively 

removed from the model. The estimated shrinkage parameter ˆ 0.75s =  for the GWL-
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global model and the mean estimated shrinkage parameter is ˆ 0.76s =  for the GWL-local 

model. 

 The Houston crime data consist of 439 census tracts in the City of Houston with 

attributes from year 2000. The number of violent crimes per person in each census tract is 

displayed in Figure 2. There are a few census tracts with a total number of violent crimes 

that exceeds the population size. For the Houston crime data, the GWR model notation is 

the same as in equation 8, but where y  is the number of violent crimes (murder, robbery, 

rape, and aggregated assault) per person, 1x  is the number of drug law violations per 

person, 2x  is the number of alcohol outlets per person, and i  is the index for census 

tracts. Since the distribution of the response variable is positively skewed, we use the 

natural logarithm of violent crimes in the model and also use the natural logarithm of 

both covariates to maintain linear relationships with violence rates. The GWR estimated 

kernel bandwidth ˆ 0.89φ =  found through cross-validation. To assess collinearity in the 

GWR model, we use the variance-decomposition diagnostic. The variance-decomposition 

proportions and condition indexes are listed in Table 2 for records with the largest 

condition indexes. These 10 records are labeled in the left plot of estimated GWR 

coefficients for the drug and alcohol covariates in Figure 3. These labeled records 

comprise many of the more extreme points in the plot. Observation 153 is clearly the 

most extreme of the points, as it has the largest value for the drug rate effect and the 

smallest value for the alcohol rate effect. In Table 2, this record has large variance 

proportions for the same component for all three regression terms. Of the 439 records in 

the dataset, 5 have a condition index above 30, 10 have a condition index above 20, and 

41 have a condition index above 10. There are 411 records in the data with large variance 
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proportions (> 0.5) from the same component, with the shared component being between 

a covariate and the intercept for some records and between the two covariates for other 

records. Overall, the variance-decomposition proportions and condition index values 

indicate the presence of local collinearity in the GWR model. 

 Given the presence of local collinearity in the GWR model for violent crime in 

Houston, we also fit the constrained versions of GWR and compare them to GWR in 

terms of model performance. The RMSE and RMSPE values for the response variable are 

listed in Table 3 for the GWR, GWRR, GWL-global, and GWL-local models. As with 

the Columbus crime data, the constrained versions of GWR improve on GWR in 

prediction of the response variable. The GWL-local model again produces the lowest 

RMSPE, 18% lower than the GWR model. In estimating violent crime, the GWL models 

improve upon the GWR model. The GWL-global model produces the lowest RMSE and 

its RMSE is 14% lower than in the GWR model. The estimated regression coefficients 

for the GWL-global model in the right plot in Figure 3 show that the GWL model has 

penalized some of the most extreme coefficients in the GWR model in the left side of 

Figure 3, particularly record 153. Figure 4 displays the estimated regression coefficients 

for the drug covariate from the GWL-local model plotted against the estimated 

coefficients from the GWR model. This figure shows the effective shrinkage of the 

GWL-local model, where the GWL-local model shrinks certain larger GWR coefficients, 

some to zero. The large estimated regression coefficient for record 153 is greatly reduced 

in the GWL-local model. The estimated shrinkage parameter ˆ 0.92s =  for the GWL-

global model and the mean estimated shrinkage parameter is ˆ 0.65s =  for the GWL-local 

model. The correlation in the estimated regression coefficients for the drug and alcohol 
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covariates is -0.41 with GWR, -0.39 with GWRR, -0.37 with GWL-global, and 0.03 with 

GWL-local. The results with the crime data examples consistently show that the 

constrained versions of GWR improve on the performance of GWR and that the GWL-

local model produces the lowest prediction error and the GWL-global model produces the 

lowest estimation error. 

  

4 Simulation Study 

 

In this section, we use a simulation study to evaluate and compare the accuracy of 

the predicted and estimated responses and the estimated regression coefficients from the 

GWR, GWRR, and GWL models. We assess the accuracy of the models both when there 

is no collinearity in the explanatory variables and when there is collinearity, expressed at 

various levels. The expectation is that the GWL model will improve on GWR for 

regression coefficient estimation when there is collinearity in the model. Another 

expectation is that the GWL model will improve on GWR for prediction and estimation 

of the response variable. While it has been conventional for researchers to apply a newly 

introduced method to an existing dataset as a demonstration of the utility of the method, 

we make use of simulated data here to learn about the performance of the method in a 

comparative setting. It is necessary to use simulation in order to set the “true” values of 

the regression coefficients, which are unknown with existing data, so that it is possible to 

measure the deviation from the truth of the estimates from competing models. The 

simulation study presented here is not intended to be exhaustive, but rather is an 
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appealing alternative to existing data for demonstrating the performance of the introduced 

method in a certain situation. 

The data-generating model in the simulation study has four explanatory variables, 

with the true coefficients used to generate the data set equal to nearly zero for one 

explanatory variable. The model to generate the data for this simulation study is 

 

* * * *
1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y i i x i i x i i x i i x i iβ β β β ε= + + + + ,    (9) 

 

where 2 3 4, , ,1x x x x  are the first four principal components from a random sample drawn 

from a multivariate normal distribution of dimension ten with a mean vector of zeros and 

an identity covariance matrix, the errors ε  are sampled independently from a normal 

distribution with mean 0 and variance of 2*τ , and i  denotes the location. The star 

notation denotes the true values of the parameters used to generate the data. Note that 

there is no true intercept in the model used to generate the data and we do not fit an 

intercept in the simulation study. The data points are equally spaced on a 14 14×  grid, for 

a total of 196 observations. The goal of the simulation study is to use the model in 

equation (9) to generate the data and see if the regression coefficient estimates match *β  

and if the estimated and predicted responses approximate y  for the GWR, GWRR, and 

GWL models. To produce comparable summary measures of deviance of the estimates 

and responses from the true values, we generate 100 realizations of the coefficient 

process, estimate the model parameters and responses for each data realization, measure 

the error in the estimates, and then produce average errors over the many realizations of 
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the data. Using 100 realizations of the data-generating process is advantageous compared 

to one dataset because it allows us to assess model performance over 100 datasets. 

Each realization of the true regression coefficients, *β , is sampled through the 

distribution  

 

1| , ( , )nN ×⎡ ⎤ = ⊗⎣ ⎦β β β ββ μ Σ 1 μ Σ ,       (10) 

 

where the vector 
0

( , , )
p

T
β βμ μ=βμ K  contains the means of the regression coefficients 

corresponding to each of the p  explanatory variables, and spatial dependence in the 

coefficients is specified through the covariance, βΣ . We assume a separable covariance 

matrix (Gelfand et al, 2003) for β  of the form 

 

( )γ= ⊗βΣ H T ,          (11) 

 

where ( )γH  is the nn×  correlation matrix that captures the spatial association between 

the n  locations, γ  is the spatial dependence parameter, T  is a positive-definite pp×  

matrix for the covariance of the regression coefficients at any spatial location, and ⊗  

denotes the Kronecker product operator, which is the multiplication of every element in 

( )γH  by T . In the specification of the variance in the distribution for β  (equation 11), 

the Kronecker product results in a np np×  positive definite covariance matrix, since 

( )γH  and T  are both positive definite. The elements of the correlation matrix ( )γH , 

( ) ( ; )jk j kH i iγ ρ γ= − , are calculated from the exponential function ( ; ) exp( / )d dρ γ γ= − . 
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 For this simulation study, the true values used to generate the data are 

* (1, 5, 5, 0)β =μ , 2*τ = 1, * 10γ = , and *T = diag(.1, .5, .5, .0000001), where diag() makes 

a diagonal matrix with the input numbers on the diagonal. The mean of 0 and the small 

variance for the fourth type of regression coefficient produce a variable effect that is 

effectively zero across the study area. More information regarding drawing samples from 

the coefficient distribution utilized here is available from Wheeler and Calder (2007). In 

general, as *γ  increases there are more consistent and clear patterns in the true regression 

coefficients. The range is the distance beyond which the spatial association becomes 

insignificant and is approximately *3γ  with the covariance function parameterization 

used here, so there is some dependence in the coefficients for each covariate throughout 

the study area. Figure 5 illustrates the pattern in the true coefficients for two covariates 

for one realization of the coefficient process, and shows that there is some smoothness 

and spatial variation in the true coefficients when * 10γ = . This pattern reflects a situation 

where there is spatial parametric nonstationarity, in other words, one in which GWR is 

intended to be applied. 

In this simulation study, we start with no substantial collinearity in the model and 

systematically increase it until the explanatory variables are nearly perfectly collinear. 

This is done by replacing one of the original explanatory variables with one created from 

a weighted linear combination of the original explanatory variables, where the weight 

determines the amount of correlation of the variables. The formula for the new weighted 

variable is 

 

2 1 2(1 )cx c x c x= ⋅ + − ⋅ ,         (12) 
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where 2
cx  replaces 2x  in the model in equation (9) and c  is a weight between 0 and 1. 

The simulation study is carried out with four levels of explanatory variable collinearity. 

The weights used in equation (12) to create the collinearity are (0.0, 0.5, 0.7, 0.9)c = , 

which coincide with explanatory variable correlation of (0.0, 0.74, 0.93, 0.99)r = . These 

levels of correlation correspond to no collinearity as a baseline, and then moderate, 

strong, and nearly perfect collinearity. In this study, the model parameters and responses 

are estimated for each realization for each of the following models: GWR, GWRR, 

GWL–global, and GWL–local. The kernel bandwidth is estimated for each data 

realization using cross-validation and is thus potentially different for each realization. To 

measure the accuracy of the estimated regression coefficients and estimated responses, 

the RMSPE and RMSE are calculated for the responses ŷ  and the RMSE is calculated 

for the coefficients β̂  for each data realization. The average RMSE for β̂  and ŷ  and the 

average RMSPE for ŷ  are then calculated from averaging the individual RMSE’s and 

RMSPE’s from the 100 realizations of the coefficients. 

The average RMSPE and RMSE for ŷ  and the average RMSE for β̂  for each 

model are listed in Table 4. The lowest value for each error measure for each level of 

variable correlation (column) is in bold font. The results in the table show that the GWL-

local model produces the lowest prediction error of the response. The GWL-local model 

prediction error is approximately 20% lower on average than the GWR error. This is not 

an unexpected result, as the GWL-local model adds the most local penalization 

parameters to the GWR model, which should lower the prediction error by stabilizing the 

model. The next best performer in terms of RMSPE of the response is the GWL-global 
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model. GWR has the highest average prediction error of the response at each level of 

collinearity. These results demonstrate that adding penalization terms for the regression 

coefficients in GWR results in lower prediction error of the response than with GWR.  

The RMSE results in the table show that the GWL-local model produces the 

lowest estimation error of the response at all levels of collinearity. The GWL-local 

estimation error is approximately 20% lower on average than the GWR error. Overall, the 

simulation study shows that the GWL models perform better than GWR in explaining the 

response variable. The better performance of the two versions of GWL relative to the 

GWR is not unexpected, given that the GWL methods can shrink the regression 

coefficients to zero to match the true values for one of the variables in an effort to 

estimate the response variable. Taken together, the results from Table 4 indicate that the 

GWL-local model is best for predicting and estimating the response variable in the 

presence of an insignificant explanatory variable.  

The RMSE results for β̂  in the table show that the GWL-global model produces 

the lowest average estimation error of the regression coefficients. The GWR model 

performs next best, except when there is nearly perfect collinearity and the GWRR model 

outperforms GWR considerably. An explanation for the leading performance of the 

GWL-global model is that it applies moderate shrinkage to the coefficients towards zero 

for the variable with true coefficients set to zero to effectively remove its effect from the 

model. It strikes a balance between the stronger shrinkage of GWL and the weaker 

shrinkage of GWRR. The RMSE results for β̂  suggest that an improvement in marginal 

inference on the regression coefficients in the presence of collinearity or insignificant 

explanatory variables is possible with the GWL-global model used in place of GWR. 
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An example of the difference in the estimated coefficients from GWR and GWL-

local is illustrated in Figure 6, which displays the estimated coefficients for 4β  from the 

GWR and GWL-local models for one realization of the coefficient process when there is 

no collinearity in the model. The true coefficients for this variable are all approximately 

zero, so a plot of them would be a constant white surface. Figure 6 shows that the GWL 

model estimates more of the coefficients near zero for this variable through coefficient 

shrinkage than does GWR. This results in lower prediction and estimation error of the 

response variable. 

Many times in traditional regression analyses, researchers only consider using 

penalization methods, such as the lasso and ridge regression, when there are many 

explanatory variables to include in the model. However, the results from this simulation 

study show that one can improve on GWR in terms of prediction and estimation of the 

response and estimation of the regression coefficients for even relatively small models. 

There may be situations, however, where it is beneficial to use GWR without 

penalization when prediction is not of primary interest, particularly for quick descriptive 

analyses of spatially varying relationships in data where collinearity is not present. 

However, we anticipate that the benefits of penalization in GWR for prediction will 

increase with an increasing number of potentially correlated explanatory variables. 

 

5 Conclusions 

 

There has been an increasing interest in spatially varying relationships between 

variables in recent years in the spatial analysis literature. Recent attempts at modeling 
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these relationships have resulted in numerous forms of geographically weighted 

regression, which has technical origins in locally weighted regression. While GWR offers 

the promise of an understanding of the spatially varying relationships between variables, 

local collinearity in the weighted explanatory variables used in GWR can produce 

unstable models and dependence in the local regression coefficients, which can interfere 

with conclusions about these relationships. While GWR has been applied to numerous 

real world datasets in the literature, there has been inadequate consideration of the 

accuracy of inferences derived from this model and an unclear distinction as to its use for 

prediction and estimation of the response variable versus its role in inference on the 

relationships between variables. The work in this paper uses real and simulated data to 

evaluate the accuracy of the response variable estimates and predictions provided from 

GWR and constrained versions of GWR, namely geographically weighted ridge 

regression and the newly introduced geographically weighted lasso models. It also 

evaluates the accuracy of regression coefficients from GWR, GWRR, and the GWL 

models using simulated data, while considering the presence of collinearity and an 

insignificant variable. 

The work presented here shows that it is possible to implement the lasso in the 

geographically weighted regression framework to perform regression coefficient 

shrinkage while simultaneously performing local model selection and reducing prediction 

and estimation error of the response variable. The data example and simulation study 

results show that the penalized versions of GWR can outperform GWR in terms of 

response variable prediction and estimation, both when there is no collinearity and where 

there are various levels of collinearity in the model. In both the real and simulated data, 
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the GWL-local model produces the lowest prediction error of the response variable 

among the methods considered. For the actual data, the GWL-global model produced the 

lowest response variable estimation error. Other related preliminary work (Wheeler, 

2006) suggests that the geographically weighted lasso may perform better at dependent 

variable estimation than a Bayesian spatially varying coefficient process (SVCP) model 

(Gelfand et al, 2003) that may be viewed as an alternative to GWR. Wheeler and Calder 

(2007) recently demonstrated that the SVCP model can offer more accurate coefficient 

inference and lower response variable estimation error than GWR, although at a greater 

computational cost. A theoretical comparison of the performance of GWR, all penalized 

versions of GWR, and the SVCP model is planned for future work. In summary, the 

penalized versions of GWR introduced in this paper extend the method of GWR to 

improve prediction and estimation of the response variable, which is in agreement with 

its statistical theoretical origins. 
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Tables 
 
 

Method RMSPE(y) RMSE(y)
GWR 11.074 2.640
GWRR 9.808 2.800
GWL - global 9.946 2.197
GWL - local 7.483 2.687
 
 
Table 1. RMSPE and RMSE of the response variable for the GWR, GWRR, GWL-
global, and GWL-local models using the Columbus crime data 
 
 

ID k p1 p2 p3 
1 27.60 0.996 0.995 0.136
2 87.66 0.992 0.992 0.001
5 21.29 0.995 0.993 0.188

27 24.25 0.997 0.690 0.947
33 35.45 0.865 0.949 0.045
67 29.49 0.994 0.982 0.371

114 40.58 0.739 0.988 0.283
116 39.45 0.579 0.996 0.922
153 38.38 0.737 0.999 0.609
158 21.94 0.955 0.942 0.006

 
 
Table 2. Record number, condition index (k), and variance-decomposition proportions (p1 
= intercept, p2 = drug, p3 = alcohol) for the Houston crime data 
 
 

Method RMSPE(y) RMSE(y)
GWR 0.720 0.342
GWRR 0.713 0.349
GWL - global 0.714 0.300
GWL - local 0.590 0.311
 
 
Table 3. RMSPE and RMSE of the response variable for the GWR, GWRR, GWL-
global, and GWL-local models using the Houston crime data 
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  Correlation 
  r = 0.00 r = 0.74 r = 0.93 r = 0.99

 Method RMSPE(y) 
GWR 1.187 1.154 1.158 1.174
GWRR 1.187 1.153 1.158 1.168
GWL - global 1.181 1.144 1.148 1.158
GWL - local 0.928 0.932 0.954 0.959

  RMSE(y) 
GWR 0.856 0.873 0.869 0.860
GWRR 0.856 0.873 0.871 0.877
GWL - global 0.849 0.862 0.858 0.821
GWL - local 0.662 0.675 0.669 0.700

  RMSE(B) 
GWR 0.503 0.553 0.689 1.586
GWRR 0.504 0.554 0.691 1.515
GWL - global 0.499 0.549 0.686 1.513
GWL - local 1.815 2.147 2.101 1.991
 
Table 4. RMSPE and RMSE of the response variable and RMSE of the regression 
coefficients for each model used in the simulation study at four levels of explanatory 
variable correlation 
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Figures 
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Figure 1. GWR estimated coefficients (left) and GWL-local estimated coefficients (right) 
for the income (B1) and housing value (B2) covariates in the Columbus crime data 
 
 
 



 42

 
Figure 2. Number of violent crimes per person in Houston in year 2000 
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Figure 3. GWR estimated coefficients (left) and GWL-global estimated coefficients 
(right) for the drug (Beta1) and alcohol (Beta2) covariates in the Houston crime data 
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Figure 4. GWR estimated coefficients (x-axis) and GWL-local estimated coefficients (y-
axis) for the drug (Beta1) covariate in the Houston crime data 
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Figure 5. Coefficient patterns for the first two *β  parameters for one realization of the 
coefficient process in the simulation study. The left plot is *

1β  and the right plot is *
2β . 
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Figure 6. Coefficient estimates for 4β  from GWR (left) and GWL-local (right) for one 
realization of the coefficient process in the simulation study 




