David Villarroel-Campos

David Villarroel-Campos
University College London | UCL · Sobell Department of Motor Neuroscience and Movement Disorders

About

12
Publications
3,362
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
346
Citations

Publications

Publications (12)
Article
Axonal transport maintains neuronal homeostasis by enabling the bidirectional trafficking of diverse organelles and cargoes. Disruptions in axonal transport have devastating consequences for individual neurons and their networks, and contribute to a plethora of neurological disorders. As many of these conditions involve both cell autonomous and non...
Article
Full-text available
Analysis of rodent muscles affords an opportunity to glean key insights into neuromuscular development and the detrimental impact of disease-causing genetic mutations. Muscles of the distal leg, for instance the gastrocnemius and tibialis anterior, are commonly used in such studies with mice and rats. However, thin and flat muscles, which can be di...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1038/s41556-021-00673-2.
Article
Full-text available
Signalling by target-derived neurotrophins is essential for the correct development of the nervous system and its maintenance throughout life. Several aspects concerning the lifecycle of neurotrophins and their receptors have been characterised over the years, including formation of signalling-competent ligand-receptor complexes, their endocytosis...
Article
Neurons are highly polarised cells that critically depend on long‐range, bidirectional transport between the cell body and synapse for their function. This continual and highly coordinated trafficking process, which takes place via the axon, has fascinated researchers since the early twentieth century. Ramon y Cajal first proposed the existence of...
Article
Full-text available
In the version of this Article originally published, the competing interests statement was missing. The authors declare no competing interests; this statement has now been added in all online versions of the Article.
Article
Full-text available
Neurons are highly complex and polarised cells that must overcome a series of logistic challenges to maintain homeostasis across their morphological domains. A very clear example is the propagation of neurotrophic signalling from distal axons, where target‐released neurotrophins bind to their receptors and initiate signalling, towards the cell body...
Article
Full-text available
Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a signalling network known as the unfolded protein response (UPR). Here, we identified filamin A as a major binding partner of the ER stress transducer IRE1α. Filamin A is an actin crosslinking factor involved in cytoskeleton remodelling. We show that IRE1α controls actin cytos...
Article
Full-text available
Unlabelled: Rab35 is a key protein for cargo loading in the recycling endosome. In neuronal immortalized cells, Rab35 promotes neurite differentiation. Here we describe that Rab35 favors axon elongation in rat primary neurons in an activity-dependent manner. In addition, we show that the p53-related protein kinase (PRPK) negatively regulates axona...
Article
Neurons are highly polarized cells that contain specialized subcellular domains involved in information transmission in the nervous system. Specifically, the somatodendritic compartment receives neuronal inputs while the axons convey information through the synapse. The establishment of asymmetric domains requires a specific delivery of components,...
Article
The functions of microtubule-associated protein 1B (MAP1B) have historically been linked to the development of the nervous system, based on its very early expression in neurons and glial cells. Moreover, mice in which MAP1B is genetically inactivated have been used extensively to show its role in axonal elongation, neuronal migration and axonal gui...
Article
Neuronal cells are characterized by the presence of two confined domains, which are different in their cellular properties, biochemical functions and molecular identity. The generation of asymmetric domains in neurons should logically require specialized membrane trafficking to both promote neurite outgrowth and differential distribution of compone...

Network

Cited By