David J TannerGeorgia Institute of Technology | GT · School of Earth and Atmospheric Sciences
David J Tanner
Bachelor of Science Southern Poly 1987
About
211
Publications
20,181
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,675
Citations
Introduction
Skills and Expertise
Publications
Publications (211)
We conducted a 2-year study utilizing a network of fixed sites with sampling throughout an extended prescribed burning period to characterize the emissions and evolution of smoke from silvicultural prescribed burning at a military base in the southeastern USA. The measurement approach and an assessment of the instrument performance are described. S...
The Asian Summer Monsoon (ASM) has garnered attention in recent years for its impacts on the composition of the upper troposphere and lower stratosphere (UTLS) via deep convection. A recent observational effort into this mechanism, the Asian summer monsoon Chemical and CLimate Impact Project (ACCLIP), sampled the composition of the ASM UTLS over th...
We conducted a two-year study utilizing a network of fixed sites with sampling throughout an extended prescribed burning period to characterize the emissions and evolution of smoke from silvicultural prescribed burning in the southeastern US. The measurement approach and an assessment of instrument performance is described. Smoke sources are identi...
Extensive airborne measurements of non-methane organic gases (NMOGs), methane, nitrogen oxides, reduced nitrogen species, and aerosol emissions from US wild and prescribed fires were conducted during the 2019 NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality campaign (FIREX-AQ). Here, we report the atmospheric enhancement...
Extensive airborne measurements of non-methane organic gases (NMOGs), methane, nitrogen oxides, reduced nitrogen-species, and aerosol emissions from US wild and prescribed fires were conducted during the 2019 NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality campaign (FIREX-AQ). Here, we report the atmospheric enhancement...
The family of atmospheric oxides of nitrogen, NOy (e.g., nitrogen oxides (NOx) + nitric acid (HNO3) + nitrous acid (HONO) + peroxyacetyl nitrate (PAN) + particulate nitrate (pNO3-) + other), have an influential role in atmospheric chemistry, climate, and the environment. The nitrogen (δ15N) and oxygen (δ18O and Δ17O) stable isotopes of NOy are nove...
Emissions and secondary photochemical products from the Daesan petrochemical complex (DPCC), on the west coast of South Korea, were measured from the NASA DC-8 research aircraft during the Korea-United States Air Quality campaign in 2016. The chemical evolution of petrochemical emissions was examined utilizing near-source and downwind plume transec...
We present a comparison of fast-response instruments installed onboard the NASA DC-8 aircraft that measured nitrogen oxides (NO and NO2), nitrous acid (HONO), total reactive odd nitrogen (measured both as the total (NOy) and from the sum of individually measured species (ΣNOy)), and carbon monoxide (CO) in the troposphere during the 2019 Fire Influ...
Organic acids are among the many secondary components produced from organic compounds that can impact particulate matter composition and aerosol and cloud water acidity. The most abundant gas phase organic acid in the atmosphere is formic acid, which has been observed in concentrations in excess of 2.5 ppbV in rural areas. However, atmospheric mode...
Glyoxal (CHOCHO), the simplest dicarbonyl in the troposphere, is a potential precursor for secondary organic aerosol (SOA) and brown carbon (BrC) affecting air quality and climate. The airborne measurement of CHOCHO concentrations during the KORUS-AQ (KORea–US Air Quality study) campaign in 2016 enables detailed quantification of loss mechanisms pe...
We present a comparison of fast-response instruments installed onboard the NASA DC-8 aircraft that measured nitrogen oxides (NO and NO2), nitrous acid (HONO), total reactive odd nitrogen (measured both as the total (NOy) and from the sum of individually measured species (SNOy)) and carbon monoxide (CO) in the troposphere during the 2019 Fire Influe...
Significance
Understanding the sources of tropospheric ozone is important for effective air quality management and accurate radiative forcing attribution. Biomass burning emits large quantities of ozone precursors to the lower atmosphere. This source can drive regional-scale ozone production, but its impact on global tropospheric ozone is poorly co...
Wildfires are a substantial but poorly quantified source of tropospheric ozone (O₃). Here, to investigate the highly variable O₃ chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O₃ production can be predicted as a function of experimentally constrai...
An extensive set of primary and secondary pollutants was measured at a ground site in a remote location in the Yellow River Delta, China during the Ozone Photochemistry and Export from China Experiment (OPECE) from March to April 2018. The measurements include volatile organic compounds (VOCs), peroxyacyl nitrates (PANs), ozone (O3), particulate sp...
South Korea routinely experiences poor air quality with ozone and small particles exceeding air quality standards. To build a better understanding of this problem, in 2016, the KORea-United States cooperative Air Quality (KORUS-AQ) study collected surface and airborne measurements of many chemical species, including the reactive gases hydroxyl (OH)...
Glyoxal (CHOCHO), the simplest dicarbonyl in the troposphere, is an important precursor for secondary organic aerosol (SOA) and brown carbon (BrC) affecting air-quality and climate. The airborne measurement of CHOCHO concentrations during the KORUS-AQ (KORea-US Air Quality study) campaign in 2016 enables detailed quantification of loss mechanisms,...
While carboxylic acids are important components in both particle and gas phases in the atmosphere, their sources and partitioning are not fully understood. In this study, we present real-time measurements of both particle- and gas-phase concentrations for five of the most common and abundant low-molecular-weight carboxylic acids (LMWCA) in a rural...
Environmental Research embarked on the Korea-United States Air Quality (KORUS-AQ) study to address air quality issues over the Korean peninsula. Underestimation of volatile organic compound (VOC) emissions from various large facilities on South Korea's northwest coast may contribute to this problem, and this study focuses on quantifying top-down em...
The U.S. National Aeronautics and Space Administration in partnership with Korea’s National Institute of Environmental Research embarked on the Korea-United States Air Quality (KORUS-AQ) study to address air quality issues over the Korean peninsula. Underestimation of volatile organic compound (VOC) emissions from various large facilities on South...
A new ion source (IS) utilizing vacuum ultraviolet (VUV) light is developed and characterized for use with iodide–chemical ionization mass spectrometers (I--CIMS). The VUV-IS utilizes a compact krypton lamp that emits light at two wavelengths corresponding to energies of ∼10.030 and 10.641 eV. The VUV light photoionizes either methyl iodide (ioniza...
Most I--CIMSs (iodide chemical ionization mass spectrometers) for measurement of atmospheric trace gases utilize a radioactive ion source with an initial activity of 10 or 20 mCi of 210Po. In this work, we characterize a 210Po ion source with an initial activity of 1.5 mCi that can be easily constructed from commercially available components. The l...
Abstract. A new ion source (IS) utilizing vacuum ultraviolet (VUV) light is developed and characterized for use with iodide-chemical ionization mass spectrometers (I<sup>−</sup>-CIMS). The VUV-IS utilizes a compact krypton lamp that emits light in two wavelength bands corresponding to energies of ~10.0 and 10.6 eV. The VUV light photoionizes either...
The Seoul Metropolitan Area (SMA) has a population of 24 million and frequently experiences unhealthy levels of ozone (O3). In this work, measurements taken during the Korea-United States Air Quality Study (KORUS-AQ, 2016) are used to explore regional gradients in O3 and its chemical precursors, and an observationally-constrained 0-D photochemical...
Most I--CIMS (iodide-chemical ionization mass spectrometers) for measurement of atmospheric trace gases utilize a radioactive ion source with an initial activity of 10 or 20 mCi of 210Po. In this work, we characterize a 210Po ion source with an initial activity of 1.5 mCi that can be easily constructed from commercially available components. The lo...
Nitryl chloride (ClNO2) is a radical reservoir species that releases chlorine radicals upon photolysis. An integrated analysis of the impact of ClNO2 on regional photochemistry in the Seoul metropolitan area (SMA) during the Korea–United States Air Quality Study (KORUS-AQ) 2016 field campaign is presented. Comprehensive multiplatform observations w...
Plain Language Summary
The Earth's atmosphere and its ability to self‐regulate and cleanse itself is dependent on a complex interplay of trace chemical species, some of which are emitted from the biosphere, while others are from human activities or fires. One of these key species, acetaldehyde, was measured as part of the recent Atmospheric Tomogra...
Nitryl chloride (ClNO2) is a radical reservoir species that releases chlorine radicals upon photolysis. An integrated analysis of the impact of ClNO2 on regional photochemistry in the Seoul Metropolitan Area (SMA) during the Korean-United States-Air Quality (KORUS-AQ) 2016 field campaign is presented. Comprehensive multiplatform observations were c...
The sources and atmospheric chemistry of gas-phase organic acids are currently poorly understood, due in part to the limited range of measurement techniques available. In this work, we evaluated the use of SF6- as a sensitive and selective chemical ionization reagent ion for real-time measurements of gas-phase organic acids. Field measurements are...
The implementation of stringent emission regulations has resulted in the decline of anthropogenic pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx), and carbon monoxide (CO). In contrast, ammonia (NH3) emissions are largely unregulated, with emissions projected to increase in the future. We present real-time aerosol and gas measureme...
The evolution of organic aerosols (OAs) and their precursors in the boundary layer (BL) of the Colorado Front Range during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ, July–August 2014) was analyzed by in situ measurements and chemical transport modeling. Measurements indicated significant production of secondary OA (SOA), w...
We quantify the stratospheric injection of brominated very short‐lived substances (VSLS) based on aircraft observations acquired in winter 2014 above the Tropical Western Pacific during the CONvective TRansport of Active Species in the Tropics (CONTRAST) and the Airborne Tropical TRopopause EXperiment (ATTREX) campaigns. The overall contribution of...
The implementation of stringent emission regulations has resulted in the decline of anthropogenic pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx) and carbon monoxide (CO). In contrast, ammonia (NH3) emissions are largely unregulated, with emissions projected to increase in the future. We present real-time aerosol and gas measuremen...
The sources and atmospheric chemistry of gas-phase organic acids are currently poorly understood due in part to the limited range of measurement techniques available. In this work, we evaluated the use of SF6− as a sensitive and selective chemical ionization reagent ion for real-time measurements of gas-phase organic acids. Field measurements are m...
Evolution of organic aerosol (OA) and their precursors in the boundary layer of Colorado Front Range during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ, July–August 2014) was analyzed by in-situ measurements and chemical transport modeling. Measurements indicated significant production of secondary OA (SOA), with enhancement...
We report measurements of bromine monoxide (BrO) and use an observationally constrained chemical box model to infer total gas-phase inorganic bromine (Bry) over the tropical western Pacific Ocean (tWPO) during the CONTRAST field campaign (January–February 2014). The observed BrO and inferred Bry profiles peak in the marine boundary layer (MBL), sug...
Significance
We report here the first measurements of molecular iodine (I 2 ) in the Arctic atmosphere and iodide (I ⁻ ) in the Arctic snowpack. Although iodine chemistry is expected to have significant impacts on Arctic atmospheric ozone destruction and new particle production, sparse measurements of atmospheric iodine have limited our ability to...
Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC^4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This s...
Hydroperoxyl radical (HO2) is a key species to atmospheric chemistry. At warm temperatures, the hydroperoxyl radical (HO2) and NO2 come to a rapid steady state with pernitric acid (HO2NO2). This paper presents the derivation of HO2 from observations of HO2NO2 and NO2 in metropolitan Atlanta, US in winter 2014 and summer 2015. HO2 was observed to ha...
A chemical ionization mass spectrometer (CIMS) was used to measure BrO and HOBr + Br2 over the Tropical West Pacific Ocean within the altitude range of 1 to 15 km, during the CONvective TRansport of Active Species in the Tropics (CONTRAST) campaign in 2014. Isolated episodes of elevated BrO (up to 6.6 pptv) and/or HOBr + Br2 (up to 7.3 pptv) were o...
We present airborne measurements made during the
2014 Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ)
project to investigate the impacts of the Denver Cyclone on regional air
quality in the greater Denver area. Data on trace gases, non-refractory
submicron aerosol chemical constituents, and aerosol optical extinction (βext)
at λ =...
Summertime aerosol optical extinction (βext) was measured in
the Colorado Front Range and Denver metropolitan area as part of the Front
Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign
during July–August 2014. An Aerodyne cavity attenuated phase shift particle
light extinction monitor (CAPS-PMex) was deployed to measure
βext (at...
Hydroperoxy radicals (HO2) play an important part in tropospheric
photochemistry, yet photochemical models do not capture ambient HO2
mixing ratios consistently. This is likely due to a combination of
uncharacterized chemical pathways and measurement limitations. The indirect
nature of current HO2 measurements introduces challenges in accurately
me...
Gas-phase volatile organic compounds (VOCs) were measured at three vertical levels between 0.6 m and 5.4 m in the Arctic boundary layer in Barrow, Alaska for the Ocean-Atmosphere-Sea Ice-Snowpack (OASIS)-2009 field campaign during March - April 2009. C4-C8 nonmethane hydrocarbons (NMHCs) and oxygenated VOCs (OVOCs), including alcohols, aldehydes an...
We present airborne measurements made in the Colorado Front Range aboard the NSF C-130 aircraft during the 2014 Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) project. Data on trace gases, non-refractory sub-micron aerosol chemical constituents, and aerosol optical extinction (βext) at λ = 632 nm in the presence and absence of a s...
Emissions from 15 agricultural fires in the southeastern U.S. were measured from the NASA DC-8 research aircraft during the summer 2013 Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. This study reports a detailed set of emission factors (EFs) for 25 trace gases and 6 fine partic...
Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver Metropolitan Area as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ) campaign during July–August 2014. An Aerodyne Cavity Attenuated Phase Shift particle light extinction monitor (CAPS-PMex) was deployed to measure dry, βext...
Hydroperoxy radicals (HO2) play an important part in tropospheric photochemistry, yet photochemical models do not capture ambient HO2 mixing ratios consistently. This is likely due to a combination of uncharacterized chemical pathways and measurement limitations. The indirect nature of current HO2 measurements introduces challenges in accurately me...
Chlorine radicals can function as a strong atmospheric oxidant, particularly in polar regions, where levels of hydroxyl radicals are low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone, and the oxidation of mercury to more toxic forms. Here we present direct measurements of molecular chlorine levels...
Following the springtime polar sunrise, ozone concentrations in the lower troposphere episodically decline to near-zero levels. These ozone depletion events are initiated by an increase in reactive bromine levels in the atmosphere. Under these conditions, the oxidative capacity of the Arctic troposphere is altered, leading to the removal of numerou...
The OH radical is a central driver of tropospheric chemistry through its
role as an atmospheric oxidant. At high latitudes, the "classic" primary
OH source (via reaction of electronically excited O(1D) atoms with water
molecules) is enhanced by the influence of HOx precursors (HCHO, H2O2,
HONO) emitted from the snowpack. Further, snowpack-released...
There are few observations of speciated inorganic bromine in polar
regions against which to test current theory. Here we report the first
high temporal resolution measurements of Br2, BrCl and BrO in
coastal Antarctica, made at Halley during spring 2007 using a Chemical
Ionisation Mass Spectrometer (CIMS). We find indications for an artefact
in day...
The first airborne measurements of formic acid mixing ratios over the United Kingdom were measured on the FAAM BAe-146 research aircraft on 16 March 2010 with a chemical ionization mass spectrometer using I<sup>−</sup> reagent ions. The I<sup>−</sup> ionization scheme was able to measure formic acid mixing ratios at 1 Hz in the boundary layer.
In...
The chemical composition of the boundary layer in snow covered regions
is impacted by chemistry in the snowpack via uptake, processing, and
emission of atmospheric trace gases. We use the coupled one-dimensional
(1-D) snow chemistry and atmospheric boundary layer model MISTRA-SNOW to
study the impact of snowpack chemistry on the oxidation capacity...
Inorganic bromine plays a critical role in ozone and mercury depletions
events (ODEs and MDEs) in the Arctic marine boundary layer. Direct
observations of bromine species other than bromine oxide (BrO) during
ODEs are very limited. Here we report the first direct measurements of
hypobromous acid (HOBr) as well as observations of BrO and molecular
b...
There is much debate over the source of bromine radicals in the
atmosphere that drives polar boundary layer ozone depletion events
(ODEs), but there is strong evidence to suggest a source associated with
the sea ice zone. Here we report the first high temporal resolution
measurements of Br2, BrCl and BrO in coastal Antarctica, made
using a Chemical...
The chemical composition of the boundary layer in snow covered regions
is impacted by chemistry in the snowpack via uptake, processing, and
emission of atmospheric trace gases. We use the coupled one-dimensional
(1-D) snow chemistry and atmospheric boundary layer model MISTRA-SNOW to
study the impact of snowpack chemistry on the oxidation capacity...
A focus of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was examination of bromine photochemistry in the spring time high latitude troposphere based on aircraft and satellite measurements of bromine oxide (BrO) and related species. The NASA DC-8 aircraft utilized a chemical ionization mass...
Very high levels of molecular chlorine (Cl2) (up to ~400 pptv) and very
little bromine monochloride (BrCl) were observed at Barrow, AK during
the ocean-atmosphere- sea ice-snowpack (OASIS) campaign. Diurnal
profiles of Cl2 were observed with maximum levels in the early morning
and late afternoon and no significant concentrations at night. BrCl was...
The rate coefficient for the reaction HO2 + NO2 has been measured using a turbulent flow technique with high pressure chemical ionization mass spectrometry for the detection of reactants. The rate constant was measured between 75 and 700 Torr and at 298, 223 and 200 K. This work represents the first experimental evaluation of this rate coefficient...
An instrument to detect gaseous amines and ammonia is described, and representative data from an urban site and a laboratory setting are presented. The instrument, an Ambient pressure Proton transfer Mass Spectrometer (AmPMS), consists of a chemical ionization and drift region at atmospheric pressure coupled to a standard quadrupole mass spectromet...
A focus of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was examination of bromine photochemistry in the spring time, high latitude troposphere based on aircraft and satellite measurements of BrO and related species. The NASA DC-8 aircraft utilized a chemical ionization mass spectrometry (C...