David Rooney

David Rooney
  • Queen's University Belfast

About

289
Publications
137,929
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
20,804
Citations
Current institution
Queen's University Belfast

Publications

Publications (289)
Article
Enhanced catalytic activity of Ni on-Al2O3 and ZSM-5 on addition of ceria zirconia for the partial oxidation of methane, Applied Catalysis B, Environmental http://dx. Nickel supported on η-Al2O3 and ZSM-5(80) catalysts with and without the addition of ceria-zirconia, were prepared by co-precipitation and wet impregnation methods and used for the lo...
Article
Full-text available
Traditional building materials have some drawbacks in the construction industry, particularly in terms of greenhouse gas emissions and energy consumption. Biomaterials derived from renewable sources are a promising alternative, significantly reducing the greenhouse effect and enhancing energy efficiency. However, traditional materials still dominat...
Article
Full-text available
Building construction requires important amounts of freshwater, thus depleting the already stressed natural water resources. This issue could be addressed by using recycled water in construction and in building systems. However, integrating grey-water recycling systems is limited by complexity, costs, vulnerability to environmental fluctuations, an...
Article
Full-text available
Plastic and biomass waste pose a serious environmental risk; thus, herein, we mixed biomass waste with plastic bottle waste (PET) to produce char composite materials for producing a magnetic char composite for better separation when used in water treatment applications. This study also calculated the life cycle environmental impacts of the preparat...
Article
Full-text available
Anthocyanins are potential bioactive compounds with less bioavailability due to instability in physicochemical and physiological harsh environments. This study synthesized a “nanolipo-fibersomes (NLFS)” using Lipoid® S75 and Nutriose® FB 06 (dextrinization of wheat starch) through a self-assembly technique with probe sonication. We aimed to encapsu...
Article
Full-text available
The presence of pharmaceuticals in ecosystems is a major health issue, calling for advanced methods to clean wastewater before effluents reach rivers. Here, we review advanced adsorption methods to remove ibuprofen, with a focus on ibuprofen occurrence and toxicity, adsorbents, kinetics, and adsorption isotherms. Adsorbents include carbon- and sili...
Article
Full-text available
Palladium@mesoporous titania core@shell nanoparticles with uniform and narrow particle size distribution were synthesised using a four component ‘‘water in oil’’ microemulsion system. The prepared materials were well characterised using N2 adsorption–desorption measurements, temperature program oxidation, X-ray diffraction, ICP-OES, DRS UV-Vis, PL,...
Article
Full-text available
Traditional fertilizers are highly inefficient, with a major loss of nutrients and associated pollution. Alternatively, biochar loaded with phosphorous is a sustainable fertilizer that improves soil structure, stores carbon in soils, and provides plant nutrients in the long run, yet most biochars are not optimal because mechanisms ruling biochar pr...
Article
Full-text available
Food loss and waste is a major issue affecting food security, environmental pollution, producer profitability, consumer prices, and climate change. About 1.3 billion tons of food products are yearly lost globally, with China producing approximately 20 million tons of soybean dregs annually. Here, we review food and agricultural byproducts with emph...
Article
Full-text available
Biomass waste streams are a possible feedstock for a range of eco-friendly products and a crucial alternative energy source for achieving carbon neutrality; therefore, the efficient management of biomass waste has taken on a greater significance in recent years. Due to its well-comparable physic-chemical properties with fossil diesel, biodiesel is...
Article
Full-text available
The current energy crisis, depletion of fossil fuels, and global climate change have made it imperative to find alternative sources of energy that are both economically sustainable and environmentally friendly. Here we review various pathways for converting biomass into bioenergy and biochar and their applications in producing electricity, biodiese...
Article
Full-text available
This research aims to remove two phenothiazines, promazine (PRO) and promethazine (PMT), from their individual and binary mixtures using olive tree pruning biochar (BC-OTPR). The impact of individual and combinatory effects of operational variables was evaluated for the first time using central composite design (CCD). Simultaneous removal of both d...
Article
Full-text available
Climate change is a major threat already causing system damage to urban and natural systems, and inducing global economic losses of over $500 billion. These issues may be partly solved by artificial intelligence because artificial intelligence integrates internet resources to make prompt suggestions based on accurate climate change predictions. Her...
Article
Full-text available
Adopting waste-to-wealth strategies and circular economy models can help reduce biowaste and add value. For instance, poultry farming is an essential source of protein, and chicken manure can be converted into renewable energy through anaerobic digestion. However, there are a number of restrictions that prevent the utilization of chicken manure in...
Article
Full-text available
Access to drinkable water is becoming more and more challenging due to worldwide pollution and the cost of water treatments. Water and wastewater treatment by adsorption on solid materials is usually cheap and effective in removing contaminants, yet classical adsorbents are not sustainable because they are derived from fossil fuels, and they can in...
Article
Water pollution has become more severe due to improper discharge of pollutants in the natural water systems. Catalytic activation of peracetic acid (PAA) emerged as a promising treatment method to decontaminate organic pollutants. This review aims to elucidate the latest advances in the catalytic PAA activation covering a brief fundamental of the c...
Article
Hydrodynamic Cavitation (HC) offers an attractive platform for intensifying oxidative desulphurization of fuels. In the first part of this work, we present new results on oxidising single ring thiophene in a model fuel over the extended range of volume fraction of organic phase from 2.5 to 80 v/v %. We also present influence of type and scale of HC...
Article
Full-text available
New technologies, systems, societal organization and policies for energy saving are urgently needed in the context of accelerated climate change, the Ukraine conflict and the past coronavirus disease 2019 pandemic. For instance, concerns about market and policy responses that could lead to new lock-ins, such as investing in liquefied natural gas in...
Article
Full-text available
The global shift from a fossil fuel-based to an electrical-based society is commonly viewed as an ecological improvement. However, the electrical power industry is a major source of carbon dioxide emissions, and incorporating renewable energy can still negatively impact the environment. Despite rising research in renewable energy, the impact of ren...
Article
Full-text available
The progression of urban industrialization releases large quantities of heavy metals into water, resulting in the severe heavy metal contamination of the aquatic environment. Traditional methods for removing heavy metals from wastewater generally have varying removal efficiencies, whereas algae adsorption technology is a cost-effective and sustaina...
Article
Full-text available
The energy crisis and environmental pollution have recently fostered research on efficient methods such as environmental catalysis to produce biofuel and to clean water. Environmental catalysis refers to green catalysts used to breakdown pollutants or produce chemicals without generating undesirable by-products. For example, catalysts derived from...
Article
Full-text available
The construction industry is a major user of non-renewable energy and contributor to emission of greenhouse gases, thus requiring to achieve net-zero carbon emissions by 2050. Indeed, construction activities account for 36% of global energy consumption and 39% of global carbon dioxide emissions. Reducing carbon emissions requires adapted government...
Article
Full-text available
The global amount of solid waste has dramatically increased as a result of rapid population growth, accelerated urbanization, agricultural demand, and industrial development. The world's population is expected to reach 8.5 billion by 2030, while solid waste production will reach 2.59 billion tons. This will deteriorate the already strained environm...
Article
Full-text available
Energy and transport poverty have been postulated as conditions linked by overlapping causal factors such as structural economic inequality or housing stock and affecting overlapping demographics such as family size or income. The strength of the overlap of these conditions and their causal mechanisms has not been assessed across Ireland prior to t...
Article
Full-text available
Herein, non-supported pure and mixed cobalt and iron oxide catalysts were synthesized from nitrate precursors using a simple, environmentally friendly preparation method in which water was the sole solvent. The prepared catalysts were then used to decompose methane into hydrogen and carbon (graphene nanosheets and carbon nanotubes). The fresh and s...
Article
Full-text available
Energy derived from fossil fuels contributes significantly to global climate change, accounting for more than 75% of global greenhouse gas emissions and approximately 90% of all carbon dioxide emissions. Alternative energy from renewable sources must be utilized to decarbonize the energy sector. However, the adverse effects of climate change, such...
Article
Full-text available
The utilization of Mg-O-F prepared from Mg(OH)2 mixed with different wt % of F in the form of (NH4F·HF), calcined at 400 and 500 °C, for efficient capture of CO2 is studied herein in a dynamic mode. Two different temperatures were applied using a slow rate of 20 mL·min-1 (100%) of CO2 passing through each sample for only 1 h. Using the thermogravim...
Article
Full-text available
It is critical to develop carbon removal projects that are both effective and financially viable. Herein, we investigated the carbon removal potential of an industrial biochar system in Spain. This study is the first to assess the techno-economic-environmental impact of large-scale olive tree pruning residue pyrolysis for atmospheric carbon removal...
Article
Paper has shaped society for centuries and is considered one of humanity's most important inventions. However, pulp and paper products can be damaging to social and natural systems along their lifecycle of material extraction, processing, transportation, and waste handling. The pulp and paper industry is among the top five most energy-intensive ind...
Article
Full-text available
Metal-organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal-organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal-organ...
Article
Full-text available
Global industrialization and excessive dependence on nonrenewable energy sources have led to an increase in solid waste and climate change, calling for strategies to implement a circular economy in all sectors to reduce carbon emissions by 45% by 2030, and to achieve carbon neutrality by 2050. Here we review circular economy strategies with focus o...
Article
Full-text available
Hydrogen peroxide (H2O2) is an important chemical as it is an environmentally friendly oxidant for organic synthesis and environmental remediation as well as a promising candidate for the liquid fuel. Photocatalytic generation of H2O2 is sustainable, and many efforts have been put into the development of new catalysts to gain high H2O2 yields. In t...
Article
Full-text available
Climate change and the unsustainability of fossil fuels are calling for cleaner energies such as methanol as a fuel. Methanol is one of the simplest molecules for energy storage and is utilized to generate a wide range of products. Since methanol can be produced from biomass, numerous countries could produce and utilize biomethanol. Here, we review...
Article
Full-text available
Utilising cavitation for enhancing oxidative desulphurization has been investigated for nearly two decades with recent investigations shifting focus from low-capacity acoustic cavitation (AC) to scalable hydrodynamic cavitation (HC). This work focuses on developing a viable means for removing thiophene’s from fuels. In the first phase of this work,...
Article
Full-text available
Solid wastes from domestic, industrial and agricultural sectors cause acute economic and environmental problems. These issues can be partly solved by anaerobic digestion of wastes, yet this process is incomplete and generates abundant byproducts as digestate. Therefore, cultivating mixotrophic algae on anaerobic digestate appears as a promising sol...
Article
Full-text available
Efforts such as the Glasgow United Nations Climate Change Conference of the Parties 26, the Paris Agreement (Paris agreement, United Nations, Paris, 2015) and the United Nations Sustainable Development Goals are supporting the drive to protect the planet from global warming by ensuring sustainable development. The oil and gas industry, as key contr...
Article
Full-text available
The rising occurrence of emerging contaminants in sludges both inhibits the anaerobic digestion of sludges and induces health issues when sludges are recycled in agriculture, calling for methods to remove contaminants. Here we review emerging pollutants in wastewater treatment plants, before and after anaerobic digestion. We present their inhibitor...
Article
Full-text available
The need to mitigate climate change and improve energy security has led to an increasing interest in the utilisation of renewable gas to decarbonise natural gas use. Northern Ireland serves as an interesting case study to evaluate how biomethane from manure and silage material can displace natural gas. This is because of high agricultural intensity...
Article
Full-text available
The Ukraine conflict has put critical pressure on gas supplies and increased the price of fertilisers. As a consequence, biogas has gained remarkable attention as a local source of both gas for energy and biofertiliser for agriculture. Moreover, climate change-related damage incentivises all sectors to decarbonise and integrate sustainable practice...
Article
Full-text available
The world is experiencing an energy crisis and environmental issues due to the depletion of fossil fuels and the continuous increase in carbon dioxide concentrations. Microalgal biofuels are produced using sunlight, water, and simple salt minerals. Their high growth rate, photosynthesis, and carbon dioxide sequestration capacity make them one of...
Article
Full-text available
The rapid urbanization and industrialization is causing worldwide water pollution, calling for advanced cleaning methods. For instance, pollutant adsorption on magnetic oxides is efcient and very practical due to the easy separation from solutions by an magnetic feld. Here we review the synthesis and performance of magnetic oxides such as iron oxid...
Article
Full-text available
In the context of climate change and the circular economy, biochar has recently found many applications in various sectors as a versatile and recycled material. Here, we review application of biochar-based for carbon sink, covering agronomy, animal farming, anaerobic digestion, composting, environmental remediation, construction, and energy storage...
Article
Full-text available
Herein we demonstrate the preparation and characterization of nanocrystalline ZnO, either pure or promoted with 1–10 wt.% K2O. All catalysts calcined at 400°C were in the nano‐crystallite scale as confirmed by X‐ray powder diffraction analysis in the 22.9–28.0 nm range. According to the CO2‐temperature‐programmed desorption study using thermogravim...
Article
Full-text available
The increasing global industrialization and over-exploitation of fossil fuels has induced the release of greenhouse gases, leading to an increase in global temperature and causing environmental issues. There is therefore an urgent necessity to reach net-zero carbon emissions. Only 4.5% of countries have achieved carbon neutrality, and most countrie...
Article
Ceramics are considered one of the greatest and earliest most useful successes of humankind. However, ceramics can be highly damaging to natural and social systems during their lifecycle, from material extraction to waste handling. For example, each year in the EU, the manufacture of ceramics (e.g., refractories, wall and floor tiles and bricks and...
Article
As the offshore energy landscape transitions to renewable energy useful decommissioned or abandoned oil and gas infrastructure can be repurposed in the context of the circular economy. Oil and gas platforms, for example, offer opportunity for hydrogen (H2) production by desalination and electrolysis of sea water using offshore wind power. However,...
Article
Phthalates are widely used plasticizers, but have endocrine-disrupting effects, which cause harm to both humans and the wider environment. Photocatalytic technologies have been shown to be promising methods for removal of a range of environmental pollutants in water. In this paper the photocatalytic oxidation of Diisobutyl phthalate (DiBP) using tw...
Article
Full-text available
Measuring the Lewis‐acidic surface sites in catalysis is problematic when the material‘s surface area is very low (SBET ≤1 m2 ⋅ g−1). For the first time, a quantitative assessment of total acidic surface sites of very small surface area catalysts (MoO3 as pure and mixed with 5–30 % CdO (wt/wt), as well as CdO for comparison) was performed using a s...
Article
Full-text available
Herein, the aim was to develop an in-depth understanding of the kinetic behaviour of olive tree pruning residue (OTPR), an abundant agricultural waste, during pyrolysis. Thermal analysis at 1, 2, 4, 6 and 10 °C.min⁻¹ was performed using TGA-thermogravimetric analysis, with the results subsequently used to determine the OTPR's kinetic thermal breakd...
Article
Prunus Armeniaca seed (PAS) oil was utilised as a waste biomass feedstock for biodiesel production via a novel catalytic system (SrO–La2O3) based on different stoichiometric ratios. The catalysts have been characterised and followed by a parametric analysis to optimise catalyst results. The catalyst with a stoichiometric ratio of Sr: La-8 (Sr–La–C)...
Article
Full-text available
Herein, we designed a cost-effective preparation method of nanocomposite γ-Al2O3 derived from Al-waste. The produced material has a feather-like morphology, and its adsorption of some chlorinated volatile organic compounds (Cl-VOC's) such as benzyl chloride, chloroform and carbon tetrachloride (C7H7Cl, CHCl3 and CCl4) was investigated due to their...
Article
Full-text available
Integrated carbon capture and utilization (ICCU) presents an ideal solution to address anthropogenic carbon dioxide (CO2) emissions from industry and energy sectors, facilitating CO2 capture and subsequent utilization through conversion into high-value chemicals, as opposed to current release into the atmosphere. Herein, we report the synergistic c...
Article
Full-text available
Hydrogen production through methane dry reforming holds the promise of lowering greenhouse gases, that is CO2 and CH4, concentrations. Herein, Ca‐, Cr‐, Ga‐ and Gd‐promoted lanthana‐zirconia–supported Ni catalysts are investigated and characterized by X‐ray diffraction, Raman, infrared and UV‐vis spectroscopy, CH4‐temperature programmed surface rea...
Article
Full-text available
Magnetic spinel ferrite nanoparticles (SFNPs) attract high scientific attention from researchers due to their broad area for biomedicine applications, comprising cancer magnetic hyperthermia and targeted drug delivery. Uniquely, its excellent performance, namely, tuning size and surface morphology, excellent magnetism, extraordinary magnetically he...
Article
Full-text available
Magnetic spinel ferrite nanoparticles (SF NPs) attract high scientific attention from researchers due to their broad area for biomedicine applications, comprising cancer magnetic hyperthermia and targeted drug delivery. Uniquely, its excellent performance, namely, tuning size and surface morphology, excellent magnetism, extraordinary magnetically h...
Article
Full-text available
The increasing significance of biomass in attaining ultimate sustainability in a multitude of vectors demands a deeper understanding of its underlying components. The pyrolytic breakdown of cellulose, a major biomass component, has been a subject of intense research since the 1950s, and despite significant research carried out and published thus fa...
Article
Glass is a material inextricably linked with human civilization. It is also the product of an energy intensive industry. About 75%–85% of the total energy requirements to produce glass occur when the raw materials are heated in a furnace to more than 1500 °C. During this process, large volumes of emissions arise. The container and flat glass indust...
Article
Full-text available
Sesbania sesban, a promising short rotation woody crop, was first evaluated in order to assess its physicochemical attributes as a feedstock material in biochar manufacturing. Additionally, thermogravimetric analysis (TGA), performed at 0.5, 1, 4 and 8°C.min⁻¹, was utilized to conduct thermal analysis, with the results being used to analyze the fee...
Article
Full-text available
The rapid urbanization and industrialization is causing worldwide water pollution, calling for advanced cleaning methods. For instance, pollutant adsorption on magnetic oxides is efficient and very practical due to the easy separation from solutions by an magnetic field. Here we review the synthesis and performance of magnetic oxides such as iron o...
Article
Full-text available
Dihydrogen (H 2 ), commonly named ‘hydrogen’, is increasingly recognised as a clean and reliable energy vector for decarbonisation and defossilisation by various sectors. The global hydrogen demand is projected to increase from 70 million tonnes in 2019 to 120 million tonnes by 2024. Hydrogen development should also meet the seventh goal of ‘afford...
Article
Rising demand for energy resources alongside climate emergency concerns has attracted the urgent attention of researchers towards the preparation and utilization of biofuels. This review will investigate the different generations of biofuels and more particularly, the developmental and production processes for creating liquid biofuels. Initially, t...
Article
Full-text available
As the global cumulative installation of solar photovoltaic (PV) devices grows every year, a proportionate number of waste PV modules arises because of their limited lifespan. It is estimated that by 2050, there will be approximately 60–78 million tonnes of PV waste (Farrell, C.; Osman, A. I.; Zhang, X. et al. Sci Rep.2019, 9, 5267). These modules...
Article
Full-text available
Herein, we investigated and analysed the performance and characteristics of a compression ignition engine on methanol/diesel blends and the impact of engine loads on tailpipe emissions and engine performance. Four combinations of blended methanol were tested and compared with pure diesel. Engine characteristics, such as: brake thermal efficiency, b...
Article
Full-text available
Herein, cotton stalk biomass was initially characterized to understand its physicochemical properties as a raw material for biochar production. Furthermore, thermal analysis was conducted using thermogravimetric analysis (TGA), and the results were further utilized to evaluate the cotton stalk's kinetic behavior under thermal decomposition in an in...
Article
Full-text available
The global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofu...
Article
Full-text available
From farm to fork, food and beverage consumption can have significant negative impacts on energy consumption, water consumption, climate change, and other environmental subsystems. This paper presents a comprehensive, critical and systematic review of more than 350,000 sources of evidence, and a short list of 701 studies, on the topic of greenhouse...
Article
Full-text available
This review investigates the state of the art in metrics used in energy (or fuel) and transport poverty with a view to assessing how these overlapping concepts may be unified in their measurement. Our review contributes to ongoing debates over decarbonisation, a politically sensitive and crucial aspect of the energy transition, and one that could e...
Article
Herein, we utilised Loquat seed oil as a waste resource to produce biodiesel over a novel bifunctional catalyst system based on CaO loaded on a ceria oxide support. The catalysts were characterised using XRD, SEM-EDX, SBET STEM, and TPD analyses, followed by parametric analysis to optimise the catalyst performance. The XPS analysis showed a strong...
Article
Full-text available
In the context of climate change, there is an urgent need for rapid and efficient methods to capture and sequester carbon from the atmosphere. For instance, production, use and storage of biochar are highly carbon negative, resulting in an estimated sequestration of 0.3–2 Gt CO 2 year ⁻¹ by 2050. Yet, biochar production requires more knowledge on f...
Article
The utilisation of waste biomass in biodiesel production as a sustainable energy source can lead to the incorporation of circular bioeconomy principles in the current economic systems. Herein, we synthesised a magnetically recyclable solid acid catalyst for the esterification of waste date seed oil. The catalysts possessed superparamagnetic behavio...
Article
Herein Handal oil extraction from waste biomass is investigated for biodiesel production via esterification and transesterification processes. Furthermore, the physicochemical characteristics of Handal biodiesel (density, kinematic viscosity, specific gravity, pour point, flash point, and cloud point) was performed along with testing the fuel quali...
Article
Full-text available
Human activities have led to a massive increase in CO2 emissions as a primary greenhouse gas that is contributing to climate change with higher than 1∘C global warming than that of the pre-industrial level. We evaluate the three major technologies that are utilised for carbon capture: pre-combustion, post-combustion and oxyfuel combustion. We revie...
Article
Herein waste biomass (blackberry pomace) was physicochemically characterized along with its thermochemical products. This is coupled with the evaluation of the kinetic triplet (activation energy, pre-exponential constant, and the rate of reaction) and thermal predictions for the combustion process for the first time via the AKTS thermokinetics pack...
Article
The distance between catalytic sites (Ni) and sorbents (CaO) on the performance of integrated CO 2 capture and utilization (ICCU) process is crucial important because the sorbents demonstrate a dramatic volume increase during carbonation reaction (1 st stage of ICCU) and sequentially cover the catalytic sites and retard the CO 2 conversion (2 nd st...
Article
Full-text available
Background: Recycling the ever-increasing plastic waste has become an urgent global concern. One of the most convenient methods for plastic recycling is pyrolysis, owing to its environmentally friendly nature and its intrinsic properties. Understanding the pyrolysis process and the degradation mechanism is crucial for scale-up and reactor design. T...
Article
Full-text available
Supercapacitors are increasingly used for energy conversion and storage systems in sustainable nanotechnologies. Graphite is a conventional electrode utilized in Li-ion-based batteries, yet its specific capacitance of 372 mA h g−1 is not adequate for supercapacitor applications. Interest in supercapacitors is due to their high-energy capacity, stor...
Article
Full-text available
The global exponential increase in annual photovoltaic (PV) installations and the resultant levels of PV waste is an increasing concern. It is estimated by 2050 there will be between 60 and 78 million tonnes of PV waste in circulation. This review will investigate and establish the most efficient routes to recycle end-of-life modules. It will consi...
Article
Full-text available
Climate change is defined as the shift in climate patterns mainly caused by greenhouse gas emissions from natural systems and human activities. So far, anthropogenic activities have caused about 1.0 °C of global warming above the pre-industrial level and this is likely to reach 1.5 °C between 2030 and 2052 if the current emission rates persist. In...
Preprint
Full-text available
Background: Recycling the ever-increasing plastic waste has become an urgent global concern. One of the most convenient methods for plastic recycling is pyrolysis, owing to its environmentally friendly nature and its intrinsic properties. Understanding the pyrolysis process and the degradation mechanism is crucial for scale-up and reactor design. T...
Preprint
Full-text available
Background: Recycling the ever-increasing plastic waste has become an urgent global concern. One of the most convenient methods for plastic recycling is pyrolysis, owing to its environmentally friendly nature and its intrinsic properties. Understanding the pyrolysis process and the degradation mechanism is crucial for scale-up and reactor design. T...
Article
The multifunctional potential of a catalyst previously synthesised for thermal processes is explored by investigating its activity for photocatalytic production of H2 from glycerol, a by-product from the manufacture of bio-diesel. The studied catalyst contains TiO2 doped with Al2O3 that was derived from aluminum foil waste. This catalyst showed hig...
Article
Full-text available
Herein, value-added materials such as activated carbon and carbon nanotubes were synthesized from low-value Miscanthus × giganteus lignocellulosic biomass. A significant drawback of using Miscanthus in an energy application is the melting during the combustion due to its high alkali silicate content. An application of an alternative approach was pr...
Article
Full-text available
Herein, activated carbon (AC) and carbon nanotubes (CNTs) were synthesised from potato peel waste (PPW). Different ACs were synthesised via two activation steps: firstly, with phosphoric acid (designated PP) and then using potassium hydroxide (designated PK). The AC produced after the two activation steps showed a surface area as high as 833 m² g⁻¹...
Article
Full-text available
BACKGROUND Brewer's Spent Grain (BSG), a form of lignocellulosic biomass more commonly known as barley waste was used to synthesize activated carbon (AC) and carbon nanotubes (CNTs). The produced materials were used in water remediation application. RESULTS A novel approach involving two activation steps; first, with phosphoric acid (designated BA...
Article
Adsorption to date is the most effective and utilized technology globally to remove several pollutants in wastewater. In this approach, many adsorbents have been synthesized, tested and used for the elimination and separation of the contaminants such as radionuclides, heavy metals, dyes and pharmaceutical compounds both at lab and industrial scale....
Article
Full-text available
There is a growing interest in the utilisation of biomass for a range of applications. Coupled with this is the appeal of improving the circular economy and as such, there is a focus on reusing, recycling and upcycling of many materials, including biomass. This has been driven by society in terms of demand for more sustainable energy and products,...

Network

Cited By