David Novotny

David Novotny
  • University of Oxford

About

62
Publications
4,237
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,507
Citations
Current institution
University of Oxford

Publications

Publications (62)
Preprint
Full-text available
We present the first large reconstruction model, Twinner, capable of recovering a scene's illumination as well as an object's geometry and material properties from only a few posed images. Twinner is based on the Large Reconstruction Model and innovates in three key ways: 1) We introduce a memory-efficient voxel-grid transformer whose memory scales...
Preprint
Full-text available
We introduce Uncommon Objects in 3D (uCO3D), a new object-centric dataset for 3D deep learning and 3D generative AI. uCO3D is the largest publicly-available collection of high-resolution videos of objects with 3D annotations that ensures full-360$^{\circ}$ coverage. uCO3D is significantly more diverse than MVImgNet and CO3Dv2, covering more than 1,...
Preprint
Text- or image-to-3D generators and 3D scanners can now produce 3D assets with high-quality shapes and textures. These assets typically consist of a single, fused representation, like an implicit neural field, a Gaussian mixture, or a mesh, without any useful structure. However, most applications and creative workflows require assets to be made of...
Preprint
We present Meta 3D AssetGen (AssetGen), a significant advancement in text-to-3D generation which produces faithful, high-quality meshes with texture and material control. Compared to works that bake shading in the 3D object's appearance, AssetGen outputs physically-based rendering (PBR) materials, supporting realistic relighting. AssetGen generates...
Preprint
We introduce Meta 3D Gen (3DGen), a new state-of-the-art, fast pipeline for text-to-3D asset generation. 3DGen offers 3D asset creation with high prompt fidelity and high-quality 3D shapes and textures in under a minute. It supports physically-based rendering (PBR), necessary for 3D asset relighting in real-world applications. Additionally, 3DGen s...
Preprint
Diffusion-based image generators can now produce high-quality and diverse samples, but their success has yet to fully translate to 3D generation: existing diffusion methods can either generate low-resolution but 3D consistent outputs, or detailed 2D views of 3D objects but with potential structural defects and lacking view consistency or realism. W...
Preprint
We introduce Replay, a collection of multi-view, multi-modal videos of humans interacting socially. Each scene is filmed in high production quality, from different viewpoints with several static cameras, as well as wearable action cameras, and recorded with a large array of microphones at different positions in the room. Overall, the dataset contai...
Preprint
Camera pose estimation is a long-standing computer vision problem that to date often relies on classical methods, such as handcrafted keypoint matching, RANSAC and bundle adjustment. In this paper, we propose to formulate the Structure from Motion (SfM) problem inside a probabilistic diffusion framework, modelling the conditional distribution of ca...
Preprint
Diffusion models have emerged as the best approach for generative modeling of 2D images. Part of their success is due to the possibility of training them on millions if not billions of images with a stable learning objective. However, extending these models to 3D remains difficult for two reasons. First, finding a large quantity of 3D training data...
Preprint
We present a method for fast 3D reconstruction and real-time rendering of dynamic humans from monocular videos with accompanying parametric body fits. Our method can reconstruct a dynamic human in less than 3h using a single GPU, compared to recent state-of-the-art alternatives that take up to 72h. These speedups are obtained by using a lightweight...
Preprint
Video provides us with the spatio-temporal consistency needed for visual learning. Recent approaches have utilized this signal to learn correspondence estimation from close-by frame pairs. However, by only relying on close-by frame pairs, those approaches miss out on the richer long-range consistency between distant overlapping frames. To address t...
Preprint
Full-text available
Obtaining photorealistic reconstructions of objects from sparse views is inherently ambiguous and can only be achieved by learning suitable reconstruction priors. Earlier works on sparse rigid object reconstruction successfully learned such priors from large datasets such as CO3D. In this paper, we extend this approach to dynamic objects. We use ca...
Preprint
Full-text available
This paper presents a framework that combines traditional keypoint-based camera pose optimization with an invertible neural rendering mechanism. Our proposed 3D scene representation, Nerfels, is locally dense yet globally sparse. As opposed to existing invertible neural rendering systems which overfit a model to the entire scene, we adopt a feature...
Preprint
Traditional approaches for learning 3D object categories have been predominantly trained and evaluated on synthetic datasets due to the unavailability of real 3D-annotated category-centric data. Our main goal is to facilitate advances in this field by collecting real-world data in a magnitude similar to the existing synthetic counterparts. The prin...
Preprint
We tackle the problem of monocular 3D reconstruction of articulated objects like humans and animals. We contribute DensePose 3D, a method that can learn such reconstructions in a weakly supervised fashion from 2D image annotations only. This is in stark contrast with previous deformable reconstruction methods that use parametric models such as SMPL...
Preprint
Full-text available
Implicit neural representation is a recent approach to learn shape collections as zero level-sets of neural networks, where each shape is represented by a latent code. So far, the focus has been shape reconstruction, while shape generalization was mostly left to generic encoder-decoder or auto-decoder regularization. In this paper we advocate defor...
Preprint
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes and produces in one go, i.e. in a single feed forward pass, a smooth interpolation and point-to-point correspondences between them. The interpolation, expressed as a deformation field, changes the pose of the source shape to resemble the target, but leaves th...
Preprint
Full-text available
We tackle the problem of learning the geometry of multiple categories of deformable objects jointly. Recent work has shown that it is possible to learn a unified dense pose predictor for several categories of related objects. However, training such models requires to initialize inter-category correspondences by hand. This is suboptimal and the resu...
Preprint
Our goal is to learn a deep network that, given a small number of images of an object of a given category, reconstructs it in 3D. While several recent works have obtained analogous results using synthetic data or assuming the availability of 2D primitives such as keypoints, we are interested in working with challenging real data and with no manual...
Preprint
Full-text available
In this work, we focus on the task of learning and representing dense correspondences in deformable object categories. While this problem has been considered before, solutions so far have been rather ad-hoc for specific object types (i.e., humans), often with significant manual work involved. However, scaling the geometry understanding to all objec...
Preprint
We consider the problem of simultaneously estimating a dense depth map and camera pose for a large set of images of an indoor scene. While classical SfM pipelines rely on a two-step approach where cameras are first estimated using a bundle adjustment in order to ground the ensuing multi-view stereo stage, both our poses and dense reconstructions ar...
Preprint
We consider the problem of obtaining dense 3D reconstructions of humans from single and partially occluded views. In such cases, the visual evidence is usually insufficient to identify a 3D reconstruction uniquely, so we aim at recovering several plausible reconstructions compatible with the input data. We suggest that ambiguities can be modelled m...
Preprint
We propose the Canonical 3D Deformer Map, a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects. Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings, combining their individual...
Preprint
Deep learning has significantly improved 2D image recognition. Extending into 3D may advance many new applications including autonomous vehicles, virtual and augmented reality, authoring 3D content, and even improving 2D recognition. However despite growing interest, 3D deep learning remains relatively underexplored. We believe that some of this di...
Article
Deep learning has significantly improved 2D image recognition. Extending into 3D may advance many new applications including autonomous vehicles, virtual and augmented reality, authoring 3D content, and even improving 2D recognition. However despite growing interest, 3D deep learning remains relatively underexplored. We believe that some of this di...
Preprint
We propose C3DPO, a method for extracting 3D models of deformable objects from 2D keypoint annotations in unconstrained images. We do so by learning a deep network that reconstructs a 3D object from a single view at a time, accounting for partial occlusions, and explicitly factoring the effects of viewpoint changes and object deformations. In order...
Article
In this article, we are interested in capturing the 3D geometry of object categories simply by looking around them. Our unsupervised method fundamentally departs from traditional approaches that require either CAD models or manual supervision. It only uses video sequences capturing a handful of instances of an object category to train a deep archit...
Chapter
Object detection and instance segmentation are dominated by region-based methods such as Mask RCNN. However, there is a growing interest in reducing these problems to pixel labeling tasks, as the latter could be more efficient, could be integrated seamlessly in image-to-image network architectures as used in many other tasks, and could be more accu...
Preprint
Object detection and instance segmentation are dominated by region-based methods such as Mask RCNN. However, there is a growing interest in reducing these problems to pixel labeling tasks, as the latter could be more efficient, could be integrated seamlessly in image-to-image network architectures as used in many other tasks, and could be more accu...
Conference Paper
Object detection and instance segmentation are dominated by region-based methods such as Mask RCNN. However, there is a growing interest in reducing these problems to pixel labeling tasks, as the latter could be more efficient, could be integrated seamlessly in image-to-image network architectures as used in many other tasks, and could be more accu...
Article
Full-text available
Self-supervision can dramatically cut back the amount of manually-labelled data required to train deep neural networks. While self-supervision has usually been considered for tasks such as image classification, in this paper we aim at extending it to geometry-oriented tasks such as semantic matching and part detection. We do so by building on sever...
Chapter
The recent success of deep learning methods is partially due to large quantities of annotated data for increasingly big variety of categories. However, indefinitely acquiring large amounts of annotations is not a sustainable process, and one can wonder if there exists a volume of annotations beyond which a task can be considered as solved or at lea...
Article
Full-text available
Traditional approaches for learning 3D object categories use either synthetic data or manual supervision. In this paper, we propose instead an unsupervised method that is cued by observing objects from a moving vantage point. Our system builds on two innovations: a Siamese viewpoint factorization network that robustly aligns different videos togeth...
Article
Full-text available
Despite significant progress of deep learning in recent years, state-of-the-art semantic matching methods still rely on legacy features such as SIFT or HoG. We argue that the strong invariance properties that are key to the success of recent deep architectures on the classification task make them unfit for dense correspondence tasks, unless a large...
Chapter
While recent research in image understanding has often focused on recognizing more types of objects, understanding more about the objects is just as important. Learning about object parts and their geometric relationships has been extensively studied before, yet learning large space of such concepts remains elusive due to the high cost of collectin...
Article
Full-text available
While recent research in image understanding has often focused on recognizing more types of objects, understanding more about the objects is just as important. Recognizing object parts and attributes has been extensively studied before, yet learning large space of such concepts remains elusive due to the high cost of providing detailed object annot...
Article
Full-text available
A novel efficient method for extraction of object proposals is introduced. Its "objectness" function exploits deep spatial pyramid features, a new fast-to-compute HoG-based edge statistic and the EdgeBoxes score. The efficiency is achieved by the use of spatial bins in combination with sparsity-inducing group normalized SVM. State-of-the-art recall...
Article
Full-text available
Fisher Vectors and related orderless visual statistics have demonstrated excellent performance in object detection, sometimes superior to established approaches such as the Deformable Part Models. However, it remains unclear how these models can capture complex appearance variations using visual codebooks of limited sizes and coarse geometric infor...

Network

Cited By