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ABSTRACT

We present results from a user study of task performance on stream-
tube visualizations, such as those used in three-dimensional (3D)
vector and tensor �eld visualizations. This study used a tensor
�eld sampled from a full-brain diffusion tensor magnetic resonance
imaging (DTI) dataset. The independent variables include illumi-
nation model (global illumination and OpenGL-style local illumi-
nation), texture (with and without), motion (with and without), and
task. The three spatial analysis tasks are: (1) a depth-judgment task:
determining which of two marked tubes is closer to the user's view-
point, (2) a visual-tracing task: marking the endpoint of a tube,
and (3) a contact-judgment task: analyzing tube-sphere penetra-
tion. Our results indicate that global illumination did not improve
task completion time for the tasks we measured. Global illumina-
tion reduced the errors in participants' answers over local OpenGL-
style rendering for the visual-tracing task only when motion was
present. Motion contributed to spatial understanding for all tasks,
but at the cost of longer task completion time. A high-frequency
texture pattern led to longer task completion times and higher error
rates. These results can help in the design of lighting model, such as
�ow or diffusion-tensor �eld visualizations and identify situations
when the lighting is more ef�cient and accurate.

Index Terms: H.1.2 [Models and Principles]: User/Machine
Systems-Human information processing—; H.5.2 [Information In-
terfaces and Presentation]: User Interfaces-Theory and methods—

1 INTRODUCTION

Three-dimensional (3D) streamtubes are popular for visualizing
tensor and vector �elds to provide valuable information about the
underlying physical phenomenon [23]. However, dense stream-
tubes suffer from visual cluttering, which impedes identi�cation
of speci�c tracts of interest and slows user interaction. Accord-
ingly, efforts have been made to improve structure illumination and
rendering by adding specular re�ections [12] or increasing visual
realism [1]. While psychophysical studies have demonstrated that
such illumination methods can enhance shape and depth percep-
tion and generate visually appealing interre�ections (light re�ecting
diffusely from one surface onto another) and shadows in relatively
simple scene settings [18], their effects have not been studied ex-
tensively from real-world task contexts. Thus, this work studies
how illumination models can depict 3D scenes effectively for users
to accomplish their tasks. Exploring this question will help us de-
sign visualization methods that integrate only important cues in the
rendering algorithms, thus reducing computational cost while max-
imizing user performance.

We explore the effect of illumination models, motion, and texture
on a set of tube visualization tasks. We compare two illumination
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Figure 1: The four rendering styles studied, left to right: (a) OpenGL-
style rendering without texture (LI), (b) LI with texture (LI+T), (c)
global illumination rendering without texture (GI), and (d) global illu-
mination rendering with texture (GI+T). Our study included conditions
based on these four rendering styles shown both with and without
motion. The sphere can be a proxy for a tumor in one of the tasks.
The scene is also one of the small datasets used in the study.

models (Figure 1): global illumination (GI) and an OpenGL-based
local illumination model (LI). GI simulates the complex behaviors
of light around the model being viewed and can create realistic ren-
derings [1]. LI is a baseline method for comparison. Here we also
measure motion and texture, because these are believed to convey
information effectively [24] and have been used in many platforms,
such as ParaView for tube-based visualizations. By combining
these factors, results from our study can give a picture of how real-
world visualizations work under various display conditions. Our
experimental approach was not to compare the entire system but
to isolate those factors that would lead to better visualization task
performance.

Our experiment has three spatial analysis tasks: a depth-
judgment task, a visual-tracing task, and a contact-judgment task.
Each corresponds to tasks derived from dense tube visualizations.
For example, the depth-judgment tasks are often used in psy-
chophysical studies to measure depth perception given different vi-
sual cues; the visual-tracing tasks is analogous to an advection task
in dense �ow �eld [3]; the contact-judgment task can be used to
evaluate a tumor in diffusion tensor magnetic resonance imaging
(DTI) bundles. Independent variables include illumination model
(LI and GI), motion (with and without), texture (with and without),



and task type. Dependent variables include task completion time,
accuracy, and subjective responses. We hypothesize that GI, mo-
tion, and texture can reduce task completion time and error rates
because these factors support better depth and shape cues, thus aid-
ing data understanding.

Our work makes several key contributions. We offer results from
a comparative study on how illumination models, motion, and tex-
ture affect task completion time, error rates, and accuracy in 3D en-
vironments, excluding other factors such as interactivity. Our study
also contributes to an understanding of visual cues, which could in-
form other kinds of dense-tube rendering such as general 3D vector
�eld visualization and other tasks involving examining curves in 3D
space.

2 BACKGROUND AND RELATED WORK

2.1 Dense tube visualization

3D tensor and vector �eld visualizations often use tubes [23]. For
example, DTI visualizations have been widely used in research on
brain development, tumor detection, and multiple sclerosis, among
other areas. A common way to visualize DTI data is to reconstruct
many individual �bers from the tensor information using streamline
algorithms [27]. When applied to DTI, these streamlines or stream-
tubes or tensor glyphs are initiated at seed points to show �ber struc-
tures, sometimes called �ber bundles. However, the streamline vi-
sualization can easily become cluttered because of the complexity
of the brain's white matter, and because users often seed at many
positions to avoid missing important information. As a result, get-
ting insights into dense datasets can be dif�cult.

There are at least two ways to improve visualization of these
dense datasets: decluttering by clustering �ber bundles and con-
veying structures via perceptual principles. Clustering reduces the
enormous quantity of individual �bers to a number that can still
convey anatomical meaning and can be understood visually. By
improving structure, a visualization system often constructs an il-
lumination model to show shadows of the �bers, or allows users to
query their data interactively [28]. While Moberts et al. [14] com-
pare different clustering algorithms and Forsberg et al. [3] compare
vector �eld visualization methods, we study structure from the per-
spective of illumination approaches.

2.2 Illumination model and relevant cues

Several illumination techniques are common in �ow or tensor �eld
rendering. Among them, lighting has profound effects on spatial
understanding. For example, Zockler designed illuminated lines
to enhance depth [28] and Interrante designed transparent surfaces,
texture, and halo to convey shapes [5, 6]. Among illumination mod-
els, LI involves per-vertex lighting calculations and interpolation to
render each polygon. Ambient lighting effects are indicated by a
global color shift. The other common rendering technique is GI,
which simulates the behavior of light throughout the scene in or-
der to increase visual realism [8]. For example, a photon-mapping
algorithm can produce interre�ections and soft shadows [1]. Lin-
demann and Ropinski compared seven volume illumination tech-
niques on three depth and size perception tasks [11]. The results
indicated that the more advanced lighting approximations, the bet-
ter the task performance. Their scenes were static and the shapes
did not have as many occlusions as we would encounter in dense
tube visualizations.

Much evidence suggests that cues generated from GI by reveal-
ing spatial structure and orientation among surfaces, allow more
accurate shape discrimination. For example, Weigle and Banks
showed that GI was bene�cial in visualizing highly dense tubes
for detecting boundary shapes and reduced error rates in depth-
judgment tasks, especially when a perspective view was used [25].
Our study advances the previous work by using experimental set-
tings with more tasks requiring both local and global shape under-

standing. Also, the scenes were taken from DTI sub-volumes with
three-level visual complexities, which produce tubes with more cur-
vature than the tubes used in [25] and thus were more visually chal-
lenging.

2.2.1 Shadow and interre�ection

Two types of shadows, extrinsic and intrinsic [9], can be generated
via illumination models. Intrinsic shadows, also called shading, are
the shadows an object makes on itself (Figure 1). They have long
been used by artists and understood by psychologists to provide
information on the convex or concave shapes of objects and the di-
rection of illumination in a scene [9]. Such convex and concave
shapes are also much more recognizable by human observers [15].
Extrinsic shadows, on the other hand, are those cast on one object
by another, and provide particularly salient cues to relative position,
such as depth, distance, and orientations of objects [22]. For the
purposes of our study, LI and GI can both produce intrinsic shad-
ows on individual tubes, but only GI can produce extrinsic shadows
between tubes.

It is generally agreed that shadows increase reported task accu-
racy. For example, Thompson et al. analyzed how shadow and
interre�ection affect depth perception [22]. They found that both
interre�ections and shadows, whether �ne or crude approximations
and whether alone or in combination, “glue” objects to the sur-
faces they touch and hence improve perception of spatial structure.
However, Hubona et al. found that the effects of shadows were
task-dependent [4]. Shadows enhanced the accuracy but not the
speed for the object positioning tasks; But for the object resizing,
the shadows effects is neither sign�cant on the accuracy nor the
speed. Shadows are also subtle enough to distort the perception of
3D shapes [15].

Another difference between LI and GI is that GI implementa-
tions support interre�ection. The light that ultimately reaches the
eye and affects the image bounces more than once. In this way, sur-
faces not directly facing the light can be illuminated by other sur-
faces. Speci�cally to tensor �eld visualizations, Banks introduced
the idea of maximizing the re�ected light over the perimeter of an
in�nitesimally thin cylinder, treating diffuse and specular re�ection
separately. Hardware solutions to maximize re�ection illumination
modes have been applied to diffusion tensor imaging by Wenger
et al. [26]. Obert et al. addressed the aesthetic drawbacks of the
in�exibility of GI by creating a relighting tool for CG �lm mak-
ing [16]. While many studies have focused on algorithm design,
our goal here is to provide objective results of the impact of illu-
mination method on task performance. We asked aesthetic effects
in the post-questionnaire to collect some subjective comments on
rendering approaches.

2.2.2 Texture and motion

Texture is also an important factor in the understanding of tube
structures. It has been suggested that “lines that follow the form”
convey shape effectively [6]. We use results of Jianu et al. to con-
struct diamond textures that follow tube geometry [7], because that
pilot study showed that texture could convey orientations of vector
and tensor �elds.

Motion is known to be a powerful cue to improve spatial under-
standing. Sollenberger and Milgram [20] demonstrated the utility
of motion parallax in visualizing complex simulated blood vessel
structures in the brain. Ware and Franck [24] found that motion
produced by head-tracking had effects as powerful as stereo view-
ing on task completion times. We also wish to understand how the
effects of motion and illumination model are combined.

3 EXPERIMENTAL DESIGN

The primary purpose of this study was to explore the effects of illu-
mination model, motion, texture, and scene complexity on task per-



formance. Our hypothesis was that use of GI, texture, and motion
would improve task performance by reducing task completion time
and error rates and improving accuracy. We used a 2� 2� 2� 3� 3
within-participant design with the following independent variables:
illumination model (LI and GI), motion (presence and absence),
texture (presence and absence), scene complexity (small, medium,
and large), and task (depth-judgment, visual-tracing, and contact-
judgment). We did not include more factors (e.g., interactivity) in
this study to avoid lengthening the experiment and introducing fa-
tigue that might confound the results.

Each participant performed 48 tasks, 16 instances of each of the
three tasks. Task order was randomized for each participant. Task
completion time, accuracy (for the visual-tracing task only), error
rate, and participants' comments were recorded.

3.1 Visualization synthesis

3.1.1 Tubes and scene complexity

Our visualizations were generated by collecting the tubes contained
when intersecting a randomly placed, �xed-size box with the full
streamtube model generated from a whole brain dataset.

We selected a range of bounding volumes to make a set of scenes
possible. The bounding volume of the full model was 217.6 mm�
217.6 mm� 153 mm. The box edge lengths were 8.8 mm, 14.08
mm, and 24.64 mm, each containing 30-50, 100-150, and 300-560
tubes respectively.

Most algorithms seed tubes using distance measures, such as
that [27] used in our study. We did not control the number of bun-
dles in each sub-volume explicitly but took random samples based
on the three edge lengths. Our general observation was that the
larger the volume, the greater the number of bundles. By doing
this, we created three levels of scene complexity: small, medium,
and large.

3.1.2 Illumination model

We used two rendering algorithms for this study: LI and GI. For
LI we use Maya's hardware renderer to implement �xed-pipeline
OpenGL style rendering with per-vertex lighting and Gouraud
shading. For GI, we use Maya's Mental Ray plugin with three mil-
lion simulated photons per image. The resolution of an image was
1600� 1600, rendered in perspective. We carefully tuned the ren-
dering to ensure important cues are present in GI (e.g., interre�ec-
tion and projection) for depth judgment.

We used a traditional three-point lighting scheme plus several �ll
lights. Rim and key lights were placed in relation to a preset camera
with a 35 mm focal length. We carefully chose light placement and
intensity to generate images with contrast and lighting properties
appropriate for the study. For example, shadows must be achieved
by lighting the scene in a manner appropriate for the data. The light-
ing process is particularly dif�cult due to the numerous parameters
for all the renderer components, each of which has a visual impact
on the �nal image. Small changes in light placement and intensity
can yield very different images. Our purpose here was to produce
suf�ciently good images for the purpose of testing.

We chose to study LI and GI because GI can produce a realis-
tic scene [1] with most types of shadow present and LI was used
as a baseline method for comparison. Although numerous stud-
ies have suggested that shadows cast on the ground improve depth
judgment [4], the advantages of other types of shadows, such as
interre�ection in GI, were still unknown. Our goal was to study
rendering in general, but not good and speci�c lighting approaches,
such as local ray casting [17] or illuminated lines [28].

3.1.3 Motion

Motion was synthesized using a sequence of 23 images (110-degree
viewing angle), each image sequence accounting for� 5 degrees of
rotation in the local dataset coordinates about the vertical axis in the

image plane. We did not allow free-form interaction because GI's
high computational costs prohibited real-time viewpoint-based ren-
dering. The choice of the� 5 degrees was made after a pilot study
where participants reported that structure understanding was not
jeopardized by the discrete views. The frame rate permitted rela-
tively continuous motion between frames at a frame rate around 30
fps. The motion was automatic for the depth-judgment and contact-
judgment tasks. The visual-tracing tasks used the arrow keys to
traverse the frames.

3.2 Tasks and user interface

Three tasks were used in our study, all involving spatial understand-
ing of the underlying geometrical tube structures from the data. All
tasks were performed using a Dell 3007WFP monitor running at
a resolution of 2560� 1600 screen pixels. They are: (1) Depth-
judgment (Figure 2(a)), e.g., which tube is closer, the blue or the
green tube? (2) Visual-tracing (Figure 2(b)), e.g., where is the end-
point of the tube? and (3) Contact-judgment (Figure 2(c)), e.g.,
does the blue sphere intersect, touch, or have no contact with the
tubes?

Each task included two (for the visual-tracing task) or three (for
the depth-judgment and contact-judgment tasks) levels of scene
complexity. We did not include all three levels for the visual-tracing
task because this task had the longest task completion time in our
pilot study and could potentially introduce fatigue.

3.2.1 Depth-judgment task

Participants were shown a blue and a green tubes embedded in
a dataset (Figure 2(a)), and were asked to report which tube was
closer to their viewpoint. The tubes were selected at random with
the constraint that they did not occlude each other from any sam-
pled viewpoint. The distance between the two tubes was computed
by sampling on a �xed interval across the dataset rotation range.
We called this a global visualization task because making correct
judgments may require visual scanning of neighboring tubes. Only
datasets with a clear front and back when viewed in the 23 discrete
frames were chosen for this task.

3.2.2 Visual-tracing task

This task required participants to trace a randomly selected tube
with a blue sphere on one end and to mark the other endpoint (Fig-
ure 2(b)). The constraint for selection was that the two endpoints
must be visible from all possible viewpoints. Once the unknown
endpoint was found, the participant clicked on the projected point
on the image plane (screen). Thus task accuracy could be measured
as the distance between the true location and the marked location on
the image plane. This was the only task in which the user could ro-
tate the dataset interactively using the keyboard in the motion con-
dition. We did not use automated motion, because tracing a tube in
a dynamic scene could be dif�cult and impractical. We called this
a global visualization task because it also required visual scanning
of neighboring tubes, as in the depth-judgment task.

We chose this task because DTI requires the understanding of
bundles and �ow requires the understanding of the direction of
streams, for example an advection task in a �ow �eld. This task
is also popular in cognitive psychology to study human visual at-
tention behaviors, which could be relevant to 3D vector and tensor
�eld visualization.

3.2.3 Contact-judgment task

Participants were asked to judge whether and how the blue sphere
intersected the tubes based on the closest distance between the tu-
mor and the tubes. There are three possible answers: (1) no contact,
(2) tangent, and (3) full penetration (Figure 2(c)). Tangent means
that the sphere grazed the tube(s) but did not fully intersect; full in-
tersection means that the sphere intersected the tube(s). The sphere



(a) Depth-judgment task (b) Visual-tracing task (c) Contact-judgment task (d) User interface

Figure 2: The three tasks studied and the UI used. (a) Depth-judgement task: participants were asked to report which of the two tubes was closer
to their viewpoint. The answer here is green. The dataset rotates automatically when motion is present. (b) Visual-tracing task: participants
were asked to trace a tube and mark its endpoint. When motion was enabled, participants could rotate the dataset using the arrow keys on
the keyboard. (c) Contact-judgment task: participants were asked to judge the relationship between the blue sphere and its surrounding tubes.
There are three possible answers: no penetration, tangential penetration and full penetration. The answer here is (3), full penetration. (d)
User interface for cue choice. This display was shown after each task to ask about the cues used in answering the task questions. This is a
multiple-choice question.

was randomly placed in the dataset with equal distribution among
the three cases. We called this a local visualization task because
participants needed to examine only the tubes around the sphere.
GI is considered to show spatial relationship without rotation and
this task places GI in a real-world context.

3.2.4 Cue choices and user interface

An example user interface is shown in (Figure 2(d)). The task
dataset was displayed in the left window. After each task, partic-
ipants identi�ed the cues that were useful in performing that task,
shown on the right side of the screen. The purpose of this step was
to determine the perceived usefulness of cues and to �nd correla-
tions between perceived usefulness and task completion time. We
have included eight types of cues including motion, size, color, con-
text (surrounding �bers), texture, occlusion, shading, and shadow.
By context cue, we refer to the tube relationship with respect to
its location in the environment and neighbors. These relationships
should be appropriate and consistent with the vector �eld visual-
ization experience: tubes tend to be seen grouping to bundles, are
often exist among other bundles or tubes, do not intercept (in our
cases), and the bundles are usually in proximity to each other and
may have other properties in common. Participants were told what
these cues were during the training session to avoid any confusions
during the formal experiment.

3.3 Dependent variables

The dependent variables include task completion time and error
rate. The criteria to measure error or correctness were: for depth-
judgment and contact-judgment tasks in which the answer were bi-
nary choices and the correct answers were those that matched the
true spatial relationship. For the visual-tracing task, the correct
answers were measured by the distance between the marker the
participant made and the true target location on the image plane.
Distances within a threshold of 50 pixels in the screen coordinate
(which was about 1.5 tube width) were marked as correct answers.

3.4 Participants

Twenty-six volunteers (11 males and 15 females) participated in
this study. All were Brown University undergraduate and graduate
students. The participants' areas of study were biomedicine (5), bi-
ology (5), neuroscience (3), geology (3), engineering (3), applied
math(2), linguistics(2), history (2), and computer science (1). All
participants reported correct vision and color vision. Two had ex-
tensive experience with human anatomy. Running 26 participants

allowed us to collect data on all combinations of the conditions on
all participants.

3.5 Procedure

The experiment included three sections. First, participants an-
swered a questionnaire about previous exposure to medical imag-
ing, art, and graphics. They were then guided through a training
session on the task conditions, datasets, and user interface. They
were given a training document that listed all cues and tasks, were
told how to examine the visual cues, and were allowed to iterate
until they were comfortable performing the tasks. They were also
asked to remember the cues and were told that this document would
not be provided during the testing phase. The training datasets were
generated in the same fashion as the actual study but with different
data. Next was the testing phase. Participants conducted two se-
quences of tasks with a short break between them. Each sequence
was composed of 24 tasks from each of the three types (8-task
each), thus forming a total of 48 unique tasks. Participants were
asked to balance the ef�ciency and accuracy. The cue question was
answered after each task. Participants were told to �nish the tasks
as quickly and accurately as they could. Finally, participants' re-
sponses were collected in a post-questionnaire about the perceived
usefulness of the proposed rendering techniques, task dif�culty, and
the aesthetics of the rendering schemes. Participants were also in-
terviewed for additional comments.

4 RESULTS

4.1 Statistical method and summary statistics

We performed a within-subject GLM (general linear model) pro-
cedure on illumination models (LI and GI), texture (presence and
absence), motion (presence and absence), and task type (depth-
judgment, visual-tracing, and contact-judgment). We measuredF
andpvalues [10]. When there was a signi�cant main effect, we sep-
arated the levels to study the sources of the signi�cance. Posthoc
analysis of Tukey pairwise comparison among dependent variables
and Tukey's Studentized Range (HSD) test were also used, which
compared all possible pairs among the levels to measure. Those
without differences were put in the same group. For those aggre-
gated analysis (GI + motion), we used t-test to compare the mean
task completion time or error rate. All analyses were conducted
using SAS (statistical analysis software).

We analyzed each task separately because we were not con-
cerned with task differences and because the task completion time



Table 1: Summary of differences as measured by task completion
time and accuracy (or error rate) for the three tasks. Only statistically
signi�cant differences are listed. Notations are as follow s: illumina-
tion model is denoted as GI (for global illumination model) or LI (for
OpenGL-style illumination model); Motion is denoted as ”motion” (M)
when it is present; Texture was denoted as ”texture” (T), otherwise,
”no texture”. The notation A> B indicates that method A was signif-
icantly more ef�cient or effective at the task than method B f or the
metric label at the top of the column. All graphs and tables in this
paper use this same notation system.

Task Completion Time Accuracy
Depth-judgment LI> GI M> NM

NM> M
LI> GI+M

Visual-tracing NM> M M> NM
NT> T

Contact-judgment NM> M M> NM

Table 2: Summary of the F and p values for the main effects on error
rate. “*” indicates signi�cant main effect.

Task Illumination Motion Texture Complexity
Depth p = 0:9 p = 0:08 � p< 0.0001*
judgment F = 0:001 F = 3:0 � F = 30:9
Visual- p = 0:04� p = 0:03� p = 0:07 p< 0.0001*
tracing F = 4:3 F = 10:2 F = 3:34 F = 60:3
Contact p = 0:96 p = 0:07 p = 0:81 p< 0.0001*
judgment F = 0:01 F = 3:36 F = 0:05 F = 59:5

for different tasks was signi�cant (p = 0:0005, F(15;1184) =
12:07). We conducted outlier detection using histograms on de-
pendent measures. For those cases with skewed normal distribu-
tions, we removed outliers at the 99% percentile. We removed �ve
outliers (leaving 446 observations), �ve outliers (leaving 446 obser-
vations), and six outliers (leaving 445 observations) from the three
tasks accordingly. Texture was always present in the depth judg-
ment condition. due to missing data in the experimental design (we
had miscoded the case of no texture). As a result, no effect of tex-
ture can be measured. We compared the treatment within each main
effect, as shown in Table 1. We measured theF andp values from
the GLM procedures, shown in Tables 2 (on error rate) and 3 (on
task completion time).

4.2 Depth-judgment task

Figure 3(a) illustrates a comparison of task execution time. The re-
sults indicates that LI outperformed GI, no motion outperformed
motion, and small complexity outperformed large and medium
complexity. Participants' task completion time was also signi�-
cantly different. The HSD test for illumination model revealed that
LI and GI were in different groups. By separating the presence
and absence of the motion condition, we found the differences be-
tween LI and GI occurred when motion was presented (F = 4:63,
p < 0:0001) with GI having longer task completion time (25.9s vs.
22.1s). When the effects were combined to form the four conditions
(Figure 3(c)), LI and GI+M were the only pairs in different groups.

The main effects of motion and illumination model on error rate
are shown in Figure 3(b) and the summary statistics in Table 2. We
found no signi�cant difference in the main effects on error rate.
No signi�cant differences were found between LI, GI, LI+M, and
GI+M (Figure 3(d)). We observed that the higher the complexity,
the higher the error rate. The smallest box size led to a 14% error
rate compared to 24.8% and 52% for middle- and large-size boxes.

(a) Time vs. independent vari-
ables

(b) Error rate vs. independent
variables

(c) Time vs. rendering style (d) Error rate vs. rendering style

Figure 3: Depth-judgment task: Effect of illumination model, motion,
and scene complexity on task performance.

Table 3: Summary of the F and p values for the main effects on task
completion time. “*” indicates the signi�cant main effects .

Task Illumination Motion Texture Complexity
Depth p = 0:75 p< 0.0001* � p=0.002*
judgment F = 0:1 F = 18:5 � F = 6:2
Visual- p=0.13 p=0.003* p=0.005* p< 0.0001*
tracing F = 3:3 F = 8:8 F = 7:9 F = 90:1
Contact p = 0:5 p< 0.0001* p = 0:51 p = 0:34
judgment F = 0:5 F = 22:8 F = 0:4 F = 1:1

4.3 Visual-tracing task

The effects of illumination model, motion, texture, and scene com-
plexity on task performance are shown in Figure 4. TheF and
p values are shown in Table 3. Motion and texture, all had a
signi�cant impact on task performance. With-motion had longer
task-completion time than no-motion (mean=22.9s vs. 30.1s)
(Figure 4(a)). With-texture also led to longer task completion
time (mean=24.47s vs. 28.7s). The illumination model was not
signi�cant and LI showed slightly shorter task completion time
(mean=26.3s vs. 27.1s). The main effects on error rate are shownin
Figure 4(b) and theF andp values in Table 2. Illumination model,
motion, and scene complexity had a signi�cant impact on error rate.

We measured the combined effect of rendering, motion, and tex-
ture (Figures 4(b) and 4(d)). The HSD test on task completion time
suggested that GI+M+T was in a different group from LI, GI, LI+T,
and GI+T accordingly, when all observations were used. LI+M+T
and GI+M+T were in different groups from GI+T and LI+M when
correct-only observations were used. LI+T led to the shortest task
completion time, followed by GI+T (Figure 4(c)). All eight condi-
tions were in the same group for error rate, though LI+M led to the
lowest error rate (Figure 4(d)).

Accuracy was measured as the distance between the pointer and
the true target location on the image plane. Distances within a
threshold of 50 pixels in the screen coordinate (which was about
1.5 tube width) were marked as correct answers. We found scene
complexity was signi�cant (p < 0:0001). No other signi�cant main
effect (illumination model, motion, or texture) on accuracy was ob-
served.

Also, motion had a signi�cant impact on accuracy, leading to



(a) Time vs. independent vari-
ables

(b) Error rate vs. independent
variables

(c) Time vs. rendering style (d) Error rate vs. rendering style

(e) Accuracy vs. independent
variables

(f) Accuracy vs. rendering style

Figure 4: Visual-tracing task: effect of illumination model, motion,
texture, and scene complexity on task performance. (a) Motion, tex-
ture, and scene complexity had a signi�cant impact on time. ( b) Illu-
mination model, model and scene complexity had a signi�cant impact
on error rate. (c) Combined effect: GI+M+T was in different groups
from LI, GI, LI+T, and GI+T accordingly. (d) Combined effect: LI+M
led to the lowest error rate. (e) Only scene complexity was signi�cant.
(f) GI+M+T led to the most accurate answers.

higher accuracy when all observations were used (Figure 4(e)). The
full-cue condition led to the longest task-execution time and the
most accurate answers (Figure 4(f)).

4.4 Contact-judgment task

One signi�cant main effect was motion (p < 0:0001,F(1;384) =
47:22). Again, no motion led to shorter task completion times
(mean=15.0s vs. 23.8s) (Figure 5(a)) and lower error rates (Fig-
ure 5(b)). None of the main effects was signi�cant on error rate.

We also measured the combined effect of illumination model,
motion, and texture on task completion time (Figure 5(c)) and er-
ror rate (Figure 5(d)). The HSD test suggested that each of LI+M,
GI+M, LI+M+T, and GI+M+T was in different groups from LI, GI
and LI+T. The full-cue condition (GI+M+T) had the lowest error
rate, although task completion time was longer. LI+T had interme-
diate task completion time and intermediate error rate.

4.5 Subjective comments

Participants were asked in a post-questionnaire to rate the useful-
ness of the illumination model, aesthetics, and the dif�culty of the
tasks on a post questionnaire. A scale from 1 to 7 was used, with

(a) Time vs. independent vari-
ables

(b) Error rate vs. independent
variables

(c) Time vs. rendering style (d) Error rate vs. rendering style

Figure 5: Contact-judgment task: effect of illumination model, mo-
tion, texture, and scene complexity on task performance. (a) and
(b) Motion and scene complexity had a signi�cant impact on ta sk
completion time and error rate. (c) Combined effect: GI+M+T led to
relatively longer task completion time. (d) Combined effect: GI+M+T
led to the lowest error rate.

1 being the worst and 7 the best. The perceived usefulness (sub-
jective comments on the usefulness for the tasks studied in the ex-
periment) of the image increased with the realism of the rendering,
i.e., LI (3.27) < LI+T (3.78) < GI (4.29) < GI+T (5.27). The
scores for aesthetic beauty were the reverse of the texture cate-
gories: LI + T (3.57)< LI (3.62) < GI+T (4.19)< GI (4.88). Par-
ticipants rated the visual-tracing task the most dif�cult (score=5.11)
and the contact-judgment task the easiest (score=3.73). The dif�-
culty rating for the depth-judgment task was in the middle range
(score=4.77). Participants had a strong preference (5.52 on the 1-7
scale) for rotating the dataset (with motion) over using static frames
(without motion).

5 DISCUSSION

Our data do not agree with the expectations that GI, motion, and
texture would improve task completion time. Our data do support
that motion is a strong cue to reduce error rate and improve the
accuracy of visual-tracing. Interestingly, our results reveal that the
accumulated cues conditions led to longer task completion times
and often the lowest error rates.

5.1 Illumination model effects are task dependent

No effect of illumination model on task completion time was ob-
served. LI and GI differed only when motion was present for the
depth-judgment and visual-tracing tasks. We suspect that the in-
crease of task completion time by GI was caused by the need to
mentally process more visual cues. The signi�cant effect on error
rate was observed only for the visual-tracing task. The signi�cance
again occurred when motion was presented, possibly indicating that
using GI and motion together could led to better judgment. In gen-
eral, GI slightly reduced error rates compared to LI, but at the cost
of longer task completion time.

These results support only partially our hypothesis that GI would
improve task performance. Because of the small reduction in error
rate, increased response time trade-offs, and the rendering cost for



producing GI, it is problematic to assert that GI assisted visual-
ization for the tasks under study. We expected that GI would be
more important in the contact-judgment task because interre�ec-
tions could suggest orientations and distances between the sphere
and the tube [1]. However, this effect was not supported in our
study.

One possible explanation for the lack of signi�cant results on
the error rate is that the tubes were dense enough to cause inter-
object relationship ambiguity. It may have been dif�cult for partic-
ipants to �nd which tube cast which shadow and where, especially
when large numbers of tubes were presented. Our informal obser-
vation for images like Figure 1 suggests that the shadows cast on the
ground in the GI conditions might help recognize large-scale struc-
tures such as bundles. However, such shadows might not support
visualization at a �ne level examining individual tubes. Finally, the
GI effects depend on our parameter setup. For example, the ambient
light can be optimized. The contributions of shadows to real-world
scene understanding merit further study by altering parameters that
would vary scene contrast and ambient lighting.

Another explanation is that LI shading used in our experiment
produced salient depth effects that might be suf�ce to help partici-
pants perform tasks. Such an effect can be observed by comparing
the image quality in our rendering and the ones studied by Wei-
gle and Banks [25]. The image contrast in the visualizations pro-
duced using LI and GI was similar given GI no advantage. Finally,
the added scene complexity of streamtubes blurred the bene�t of
these cues, even though most participants reported using context
cues (57%, 67.8%, and 60.5% for the three task conditions).

5.2 Motion increases accuracy but lengthens time

Our hypothesis that motion would decrease error rate was supported
by our results at the cost of lengthened task completion time. We
believe the time cost of motion is mostly due to the motor actions
for changing views. The bene�ts of motion likely came at the cost
of cognitive workload for visually processing more imagery. Par-
ticipants had to understand the image from multiple views, and had
to track views that did not represent continuous motion due to the
� 5 degrees gap between neighboring images.

5.3 The importance of designing textures

The presence of texture caused higher error rates in the visual-
tracing tasks but not in the contact-judgment tasks. We attribute
this result to the difference between local and global tasks. Tex-
ture did not help the visual-tracing task because when the dataset
used had many tubes, the entire scene was reduced to a single mass
of diamond-textured shapes, that failed to convey the spatial struc-
ture. Participants had great dif�culty in detecting a tube's direction
when the context had similar frequency content, which causes spa-
tial masking. In addition, the diamond shapes may have been poor
at conveying orientation because they included more than one edge
orientation, making it hard for the human visual system to detect
continuity. A way to reduce this dif�culty is to make the geometry
long and thin, so as to distinguish the two textures by at least 30
degrees [2]. Another way would be to orient the texture to near-
horizontal or near-vertical lines [13] or make it follow the principal
curvature directions. Studying texture design and use might be an
interesting and challenging future direction.

Participants also reported confusion about spatial relationships
due to texture. Thus, textures must be carefully generated in highly
dense environments, and can also be task-dependent. For the depth-
judgment task, a useful texture could be one that presents the rela-
tive component depth. When textures were presented in the visual-
tracing and contact-judgment tasks, participants examined them in
greater detail. Texturing methods such as dots [19], as proposed for
vascular structure, are worth exploring within the context of differ-
ent rendering methods, as they have been proven to improve task

performance.
Shading was useful in conveying shape information. Since the

only shape present is the tube and its implicit path, participants
reported they used shading (32.5%, 43.4%, and 25% for depth-
judgment, visual-tracing and contact-judgment (Figure 5(d)). We
would expect shading and shadow to be used for the contact-
judgment task because both convey relational properties. We did
not observe this effect, probably because the large, round sphere
did not require detailed visual examination. Another explanation
may be that the scene complexity caused less clear inter-object re-
lationships.

5.4 Scene complexity impacts performance for global
tasks

Scene complexity was measured by the size of the bounding volume
in the visualization. Three levels were used. Interestingly, the scene
complexity had a signi�cant impact on both task completion time
and error rate in the depth-judgment and visual-tracing tasks, but
not in the contact-judgment task. An intuitive explanation is that
contact-judgment is a local task that requires only the viewing of
the information directly surrounding the sphere.

Besides scene complexity, our informal observations also sug-
gest that task complexity may have increased as a function of the
larger �eld of view introduced by the display hardware. For exam-
ple, the visual-tracing task is simple when no occlusion occurs and
when following the trace of the tube does not requires switching
context. In these conditions, eyeball movement suf�ces to accom-
plish the task. However, head movement may be required when the
display becomes larger and the tube crosses a large portion of the
screen. The effort of changing gaze could introduce a greater men-
tal and cognitive load and thus introduce time penalties. The error
rates were especially high for the visual-tracing task. However, the
large scene complexity had lower error rates than the medium sized
ones for the depth-judgment task. This is partially because the dis-
tances between the tubes were greater, thus making size cues more
salient in the large conditions.

5.5 Differences among tasks

The visual cues had a signi�cant impact on task performance and
error rate for global tasks. Our results suggested that special atten-
tion should be paid to supporting these kinds of tasks. An alterna-
tive design for the contact-judgment task is to explicitly control the
location of the spheres. This will allow us to produce non-biased re-
sults on what illumination cases work and why not. Another design
control would be to have a visualization that is suf�ciently dif�cult
(i.e., a clearly free-�oating sphere is trivially easy) and suf�ciently
constrained (i.e., the sphere is not hidden by all the tubes). We
found that task generation algorithms affording such results are dif-
�cult to implement effectively.

5.6 Lighting design

Lighting design is critical to user performance. An astute partici-
pant who identi�ed herself as a graphic designer said of the inter-
secting geometry rendered with GI, “usually, to show contact, you
put a dark area under the part that touches,” similar to the effects
presented in “visual glue” [22]. The shadow in question was proba-
bly too dim to be a useful cue because of an overuse of �ll lights and
ambient illumination calculated from GI, which is a by-product of
insuf�cient lighting design. An interesting future direction might
be to use the non-photorealistic rendering (NPR) approach to ex-
plicitly visualize the occlusion effects [19]. This method could
make the “dim” shadow to become clearer. Another interesting ap-
proach that might be worth comparison is to combine chromatic
shadows [21] which could enhance depth and surface perception.



6 CONCLUSION

We have presented the results of a user study comparing task com-
pletion time and error rates for streamtube rendering tasks using
illumination method, texture, and motion as the independent vari-
ables. The coding error was unfortunate, but does not reduce the
utility of the data that was coded correctly, particularly for the
visual-tracing and contact-judgment tasks. Nonetheless, our results
do not agree with Weigle and Banks's study [25], broadening the
basis for future work that explores this large design space. Specif-
ically, (1) numerous psychophysical studies support that idea that
GI can aid 3D visualization by providing shadow and interre�ec-
tion for recovering 3D information from 2D screen images. Our
study suggested that GI provided such bene�ts in a limited fash-
ion with visually complex visualizations. Considering the com-
putational cost of real-time rendering, GI could be detrimental in
real-world tasks compared to other stronger 3D cues such as mo-
tion. Thus, special care must be taken to identify whether tasks
require local or global visual scanning. This determination can aid
the design of visualization components, such as texture and illumi-
nation paradigms. (2) A practical design suggestion to balance task
completion time and accuracy is to make motion available at the be-
ginning of a trial, then turn it off when participants understand the
layout. Ignoring motion completely to shorten task completion time
may be counterproductive because the scene could appear �attened
and two-dimensional [5].

Our results suggest that, in general, the simpler stimuli (i.e.,
those with LI, no motion, and no texture) usually speed task exe-
cution, although they also lead to reduced accuracy in some cases.
Where more complex stimuli are not needed to increase accuracy,
they should be eschewed. In conclusion, we did not �nd the bene-
�ts of using the GI model compared to the LI model, perhaps due
to the high scene complexity from the real-world data and task set-
tings. From a real-world application standpoint, the results from
the experiment, most signi�cantly those with motion, imply that in-
teractivity can be a more effective means to design a visualization
environment, where motion can be explicitly controlled by the user.
There are also long-term possibility for studying the effects of shad-
ing cues to balance between LI and GI to �nd the optimal point to
increase accuracy while maintaining interactivity.
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