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Abstract Understanding the intrinsic pathways that regulate hematopoietic stem cell (HSC) proliferation
and self-renewal responses to external signals offers a rational approach to developing improved
strategies for HSC expansion for therapeutic applications. Such studies are also likely to reveal
new targets for the treatment of human myeloid malignancies because perturbations of the
biological processes that control normal HSC self-renewal divisions are believed to drive the
propagation of many of these diseases. Here, we review recent findings that point to the impor-
tance of using stringent functional criteria to define HSCs as cells with longterm repopulating
activity and evidence that activation of the KITreceptor and many downstream effectors serve
as major regulators of changing HSC proliferative and self-renewal behavior during development.

Background

Hematopoietic stem cells (HSC) constitute a rare, self-
sustaining population that appears early in the development
of the embryo and is then responsible for mature blood cell
production throughout life. HSC numbers can be regulated
extrinsically by three mechanisms: (a) altered exposure to
factors that control their viability, (b) altered exposure to
factors that control their continuing stem cell functionality, and
(c) altered exposure to factors that control their proliferative
status. Exposure of HSCs to different concentrations of soluble
steel factor (SF, also known as stem cell factor, mast cell growth
factor, or KIT ligand) is one mechanism that can regulate HSC
self-renewal divisions in vitro (1, 2). SF is also an important
(but not exclusive) physiologic regulator of HSC activity in vivo
(3–6). Interestingly, during development, many properties of
HSCs change, one of which is a marked decrease in SF
sensitivity (6, 7). Here, we review current understanding of HSC
heterogeneity, how HSCs respond to SF, and the role of
candidate downstream effectors identified as important for
sustained HSC expansion in vitro and in vivo.

HSCs Represent a Heterogeneous Subset of
Multipotent Hematopoietic Cells

The first evidence of a common origin of different blood cell
types was provided by both morphologic (8) and cytogenetic
(9) studies of what are now recognized as clonal myeloprolif-
erative diseases. This concept was experimentally validated by

the discovery of a rare subset of cells in mice that generate
multilineage clones in the spleen of myeloablated recipients
and that are sustained throughout life (10). The finding that
these ‘‘colony-forming units spleen’’ are present in all hemato-
poietic tissues and exhibit some self-renewal activity when
serially transplanted led to their use as a tool for establishing
many basic principles expected of an HSC population. Later,
genetic tracking analyses formally showed the ability of single
hematopoietic cells from normal murine and human donors to
establish chimerism in the blood-forming system of trans-
planted recipients for periods of months to years (11–14). In
some of these latter studies, the ability of the original cell to
produce progeny with extensive multilineage regenerative
potential was also documented.
Together, these observations established the existence of

HSCs in mice and humans. At the same time, they revealed
wide variability in the cell outputs and longevity of individual
clones produced in similarly transplanted recipients. This
heterogeneous behavior brought into focus the uncertainty of
defining HSCs by the regenerative activity they display because
such retrospective approaches cannot discriminate behavioral
differences caused by variations in the types or sequence of
extrinsic cues received by the original cells versus their
preexisting intrinsic heterogeneity and/or the role of stochastic
events. These issues remain incompletely resolved, although
experiments with purified HSCs have recently helped to clarify
the situation.
These experiments have revealed the existence of a popula-

tion, quantifiable in suspensions of unknown purity as
longterm competitive repopulating units (15, 16) that,
when transplanted as single isolated cells into irradiated recipients,
consistently display both longterm lymphomyeloid-repopulat-
ing activity and extensive self-renewal activity (7, 17–21).
HSCs, thus defined, are phenotypically distinct from
multilineage hematopoietic cells with shorter-lived regenerative
properties including most colony-forming units spleen
(22). Tracking of the clonal progeny of multiple single HSCs
through two to three serial transplants has also revealed their
possession of specific lineage preferences that can be propagat-
ed over many self-renewal divisions in vivo. However, these
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differentiation programs can also change rapidly, both in vivo
(e.g., at 3 weeks after birth in mice) and under certain culture
conditions (7, 21, 23). These findings support a model
in which distinct, although possibly overlapping, molecular
mechanisms regulate lineage preferences and their mainte-
nance (self-renewal), with the option that lineage preferences
may be initiated before, rather than after, self-renewal potential
is lost.
The HSC compartment of fetal and young adult mice can

thus now be functionally defined as a restricted compartment
of distinct multipotent cells that universally display extensive
self-renewal activity when transplanted into irradiated recipi-
ents. However, these cells seem to be preprogrammed to
display particular patterns of differentiation. Unfortunately, the
combination of phenotypic markers used to obtain these cells
at very high purities cannot yet be assumed to measure, or even
detect, cells with the same properties in uncharacterized cell
suspensions. This is because many of the markers in question

show variable expression on HSCs according to the activation
status of the HSCs and may also be variably expressed on non-
HSCs (24–26). Future identification of molecular markers that
stably associate with self-renewing HSCs independent of their
cycling status or differentiation program should help to
elucidate the mechanism that allows for longterm maintenance
of HSC activity.

Role of SF in Regulating HSCs

SF is a transmembrane growth factor encoded by the Sl gene.
SF binds to and activates a type III transmembrane receptor
tyrosine kinase called KIT (also referred to as CD117; see Fig. 1).
KIT contains a split intracellular kinase domain and is encoded
by a transcriptional unit found at the W locus. Both SF and its
receptor can be expressed as different isoforms with different
activities and can be cleaved proteolytically to yield soluble
forms with similar binding affinity (27, 28).

Fig.1. Schematic representation of key signaling events activated in primitive hematopoietic cells exposed to SF (here shown as twomembrane-boundmolecules bound to a
dimerized receptor complex). Blue arrows, pathway-promoting activities; red stop lines, inhibiting activities.
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Even before the products encoded by the W and Sl loci were
known to represent a receptor-ligand pair, studies of the defects
caused by mutations at both loci had pointed to their
involvement in HSC regulation. For example, both fetal and
adult hematopoietic tissues from mice carrying mutations
within the kinase domain of Kit (e.g., see Fig. 1) show reduced
colony-forming units spleen/HSC activity (29). Mice with a
W41/W41 genotype are of particular interest because they
are viable and fertile (in contrast to those with more severe
W-mutations; ref. 30) but still have significantly reduced HSC
numbers (10- to 20-fold). As a result, sublethally irradiated
adult W41/W41 mice can be used as hosts to detect trans-
planted (wild-type) HSCs with the same sensitivity as lethally
irradiated wild-type hosts given a minimal radioprotective
transplant (31, 32). In contrast, Sl-mutant mice, which have
deletions in the SF genomic sequence (33), have a defect in the
microenvironmental niche that supports the regenerative
activity of colony-forming units spleen/HSCs (34).
HSCs from all stages of development express the same levels

of the KIT receptor on the cell surface regardless of their cycling
status or position in the cell cycle (3, 6, 35, 36). In vitro , the
ability of different concentrations of soluble SF to modulate
HSC self-renewal divisions directly has been shown using
highly purified starting populations and subsequent in vivo
readouts of retained or lost HSC activity (1, 2, 18). Moreover,
these effects on HSC self-renewal can be elicited even in the
absence of changes in HSC viability or cell cycle progression.
These experiments have further shown that the self-renewal
responses of fetal and adult murine HSCs to soluble SF in
serum-free suspension cultures are both steeply SF concentra-
tion–dependent above and below an optimum level, but their
specific sensitivities to SF are markedly different. Fetal HSCs are
6-fold more sensitive to SF than their adult counterparts with
maximum maintenance of fetal HSC activity in medium
containing 50 ng/mL of SF (only) compared with the
300 ng/mL of SF (+20 ng/mL IL-11) required to achieve a
similar result with adult HSCs (6). The different SF sensitivity
displayed by fetal and adult HSCs is likely due to differences in
how KIT-activated signals are transmitted to downstream
intracellular targets in these cells because both express similar
levels of KIT and, under their respective optimal conditions of
SF stimulation, they show no differences in apoptosis and
divide with the same cell cycle times (7). In vivo , fetal and adult
HSCs show marked differences in their cycling activity (35, 37)
and also in their self-renewal and differentiation patterns
posttransplant (7, 21). All of these properties change abruptly
between 3 and 4 weeks after birth in a fashion that seems to be
intrinsically determined and preprogrammed. Changes in
mechanisms that mediate SF signals may thus offer an attractive
explanation for why they display different biological properties
in vivo. Interestingly, indirect evidence exists for a similar switch
mechanism operating in humans (38) and nonhuman primates
(39), as inferred from the finding of an abrupt change in the
rate of decline of circulating granulocyte telomeres within the
first year after birth.

Candidate Intrinsic Targets of SFAction

Much is known from model cell systems about the pathways
that SF can activate, and many of these have been confirmed in
primitive HSC-like hematopoietic cell lines (36, 40). Figure 1

summarizes the downstream signaling pathways likely to
influence HSC self-renewal responses. SF binding induces
receptor homodimerization and autocrossphosphorylation of
tyrosine residues in the cytoplasmic domain, which then serve
as docking sites for various SH2 domain-containing signaling
intermediates (41). Activation of KIT also leads to the
recruitment and activation of adjacent kinases including JAK2
(42), TEC (43), and MATK (44); the tyrosine phosphatases
SHP-1 and SHP-2 (45); phospholipase C; and the p85 subunit
of phosphatidylinositol 3-kinase (41). The activated KIT
receptor complex is then recruited transiently to cell surface
lipid rafts where the p110 catalytic subunit of phosphatidyli-
nositol 3-kinase is located (46). This allows a functional
phosphatidylinositol 3-kinase holoenzyme to assemble leading
to the subsequent activation of cytosolic PDK1 and AKT/PKB.
This is accompanied by a reduction in PTEN levels (a negative
regulator of the phosphatidylinositol 3-kinase pathway) in the
rafts, thus, reinforcing the activation of the phosphatidylinosi-
tol 3-kinase pathway and multiple downstream events includ-
ing inactivation of the forkhead transcription factor O3A (47)
and activation of the mitogen-activated protein kinase pathway
(48). SF-mediated activation of JAK2 leads, in turn, to the
activation of STATs 1, 3, and 5, which then form dimers and
translocate to the nucleus to alter the transcription of specific
target genes (49–51). As summarized below, some of these
signaling elements and their ultimate transcriptional targets
seem to participate in the regulation of HSC amplification,
although, in many cases, it has not yet been possible to
discriminate between effects on HSC viability or mitogenesis
compared with independent effects on their self-renewal
control.
Signal transducers and activators of transcription 3 and 5A.

Activation of both signal transducers and activators of
transcription (STAT)3 and STAT5A positively regulate fetal
and adult HSC expansion in vivo , as shown by studies with a
dominant-negative version of STAT3 (52) and cells from
Stat5a -/- mice (53) or human CD34+ cells with RNAi-
suppressed STAT5 (54, 55). Conversely, transduction of
primitive hematopoietic cells with constitutively active forms
of STAT3 (56) or STAT5A (56, 57) enhanced HSC self-renewal
divisions under certain conditions and, in the case of STAT5A,
led to a myeloproliferative syndrome in vivo. However, levels
of STAT3 seem to be nonlimiting in HSCs because over-
expression of the native form does not alter HSC amplifica-
tion in vivo (52), and levels of STAT3 mRNA are found to be
significantly higher (f2-fold) in proliferating adult HSCs
than in their fetal counterparts (6).
LNK. LNK is one of many adapter molecules that bind to

KIT after SF activation. LNK acts as a negative regulator of HSC
self-renewal divisions both in vivo , as shown by an increased
production of HSCs in Lnk -/- mice (58, 59), and in vitro, as
shown by an increased frequency in symmetrical self-renewal
divisions executed by Lnk -/- (compared with wild-type) HSCs
stimulated with thrombopoietin and SF (60).
Cell cycle regulators [Cyclins D1, 2, and 3 and Cdkn1a/

p21Cip1 (p21), Cdkn2a/p16Ink4a (p16), and Cdkn2c/p18Ink4c
(p18)]. Expression of the D-type cyclins is induced by
mitogenic cytokines and their expression allows the formation
of complexes with partner cyclin-dependent kinases leading to
entry into S-phase (61). In mice, loss of all three D-type cyclins
severely impairs the expansion of HSCs in the fetal liver and

Molecular Pathways

www.aacrjournals.orgClin Cancer Res 2008;14(7) April 1, 2008 1928



posttransplant, although it is likely that this is due to an
inability of the cells to transmit a mitogenic signal rather than a
direct effect on the HSC self-renewal mechanism itself (62).
p21, p16, and p18 are three of several cyclin-dependent kinase
inhibitors with well-established roles in regulating progression
of cells through specific phases of the cell cycle (61). All three
have also been implicated as regulators of HSC self-renewal
either directly or indirectly. Cells from adult p21-/- mice have
markedly reduced numbers of colony-forming units spleen and
HSC activity (63). This seems to be caused by their failure to
respond to signals that normally induce HSC quiescence (64),
which occurs when mice reach the age of 4 weeks (35). In
contrast, p16 (65) and p18 (66) deficiencies each endow HSCs
with improved longterm repopulating and self-renewal activity,
and the latter can partially offset the negative consequence of
p21 deficiency in HSCs (67). Interestingly, p18 mRNA is
present at significantly lower (f10-fold) levels in fetal
compared with proliferating adult HSCs even after the cells
have been stimulated to proliferate by SF in vitro (6), a finding
consistent with a role of p18 in mediating the observed
differences between fetal and adult self-renewal activities
in vivo .
BMI1, PHC1 (RAE28), EZH2, and PCGF2 (MEL18). BMI1,

PHC1 (RAE28), EZH2, and PCGF2 (MEL18) are members of
the polycomb family of transcriptional regulators, all four of
which have been implicated in regulating HSC self-renewal
activity either positively [BMI1 (68, 69), RAE28 (70), and EZH2
(71)] or negatively (MEL18; ref. 72). MEL18 is of particular
interest here because it can inhibit the activity of cyclin D2 by
direct physical interaction in the nucleus (73). Interestingly,
both MEL18 and EZH2 transcripts are expressed at much higher
levels (f10-fold) in quiescent adult compared with prolifer-
ating fetal HSCs, whereas BMI1 transcript levels are similar in
both (7).
Forkhead transcription factor A. Forkhead transcription

factor A is a member of the forkhead box family of transcription
factors that have major roles in longevity and stress resistance
(74). Deletion of the Foxo3a gene allows HSCs to be generated
but inhibits both their ability to enter a quiescent state and their

survival. Interestingly, this is associated with an inhibition of p21
expression and an increase in the expressionof cyclinD2 (74, 75).

Therapeutic Implications

HSC-containing transplants from donors of all ages are the
basis of thousands of annually performed life-saving therapies
where they are used to re-establish normal blood formation in
patients given a myeloablative treatment to eradicate a defective
or malignant hematopoietic condition. Major improvements in
these therapeutic strategies and others requiring the transient
replacement of specific types of mature blood cells could be
envisaged if current barriers to the production of large numbers
of HSCs in vitro were overcome. In addition, accumulating
evidence indicates that most human myeloid malignancies
involve perturbations of pathways that regulate normal HSCs
(76). All of these issues highlight the need for a more precise
understanding of the intrinsic molecular anatomy of normal
HSCs and how this can be altered by interactions of HSCs with
fluctuating cues from their environment that signal changing
needs for blood cell production.

The recent, more stringent, biological characterization of
HSCs and the development of methods for their isolation in
close to pure form from the fetal liver and bone marrow of
young mice has made it possible to obtain more precise
descriptions of the molecular differences between these two
critical cell populations. The information thus acquired has
opened the door to more incisive analysis of the mechanisms
that regulate HSC self-renewal activity in vivo where SF
signaling has been shown to be an important cue for change
that is differently interpreted by fetal and adult HSCs. The
complexity of this process, its remarkable alteration soon after
birth, and the need to investigate the full relevance of these
findings for normal and leukemic human HSCs remain exciting
challenges for the future.
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