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Preface

The primary objective of this book series is to provide readers with practical

guidance on the application of pharmacokinetics as a drug development

science. Our goal has been, and continues to be, to provide the link between

the theoretical and the applied. We ask every author to write their chapter

with this question in the back of their mind: “If you were training someone

new to industry, what about this topic should they know?” In the first two

volumes, topics were chosen specifically for their relative “stability” and

they represented the core what we do as a profession. Though the approaches

and technologies may have advanced, the practical considerations for topics

like bioavailability study designs, analysis procedures for absorption data or

dose-proportionality, or the role of pharmacokinetics in early development

have remained relatively consistent over time. Some of the topics, however,

have changed and some become more prominent over time. With this

volume, we begin to address the more “adaptable” issues facing pharmaco-

kineticists and pharmacologists supporting new compound development.

The topics chosen for this volume were selected because they are some of

the current development or technological issues facing drug development

project teams. They regard the practical considerations for the assessment of

selected special development populations. For example, they include char-

acterization of drug disposition in pregnant subjects, for measuring arrhyth-

mic potential, for analysis of tumor growth modeling, and for disease

progression modeling. Practical considerations for metabolite safety testing,

transporter assessments, Phase 0 testing, and development and execution of

drug interaction programs reflect current regulatory topics meant to address

enhancement of both safety assessment and early decision-making during

new candidate selection. Important technologies like whole body autoradio-

graphy, digital imaging and dried blood spot sample collection methods are

introduced, as both have begun to take a more visible role in pharmacokinetic

departments throughout the industry.

We are very pleased to extend the goals of the series to this newest

volume. We remain committed to the aim of publishing material to fill the

gap between the academic sciences and the practical application of that

knowledge in drug development. Our grateful thanks goes out to the authors

who contributed their time (and more importantly) their opinions, thoughts,

authorship, and most of all, patience to this project. Without their hard work,

expertise, and keen knowledge of the subjects presented, it would not be

possible to have reached our shared goal.
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We would like to dedicate this book to the editors and authors’ families –

whose love for us and understanding for our obsession make it possible for us

to happily wander through the maze of our scientific dreams.

Research Triangle Park, NC Peter L. Bonate

East Hanover, NJ Danny R. Howard
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Modeling Tumor Growth in Oncology 1
Peter L. Bonate

Abstract

In cancer drug development, measurement of tumor growth is necessary

for preclinical assessment of anticancer activity and clinical assessment of

efficacy. This chapter reviews mathematical models of preclinical and

clinical tumor growth. Issues and models with regards to mouse xenograft

data will be highlighted.

1.1 Introduction

Cancer is one of the leading causes of death

worldwide. It is expected that in 2010, 1.5 MM

new cases of cancer will be diagnosed in the USA

and more than a half-million people will die from

their illness (1,500 persons each day), with pros-

tate, breast, lung, and colon having the greatest

incidence (American Cancer Society 2010). Vast

amounts of money, time, and effort are spent

every year to develop new drugs to treat cancer.

Unfortunately, the approval rating for new cancer

drugs is dismal; around 5% of drugs that enter the

clinic will be approved for use by doctors and

patients (Kola and Landis 2004). Certainly, one

way companies can improve their success rates

for achieving new drugs is to better leverage

their preclinical and clinical data and reduce

attrition via application of mathematical models

of disease. Prospective modeling of tumor growth

is an example of how pharmaceutical companies

are working to reach this goal.

As part of the drug development process for

cancer drugs, particularly with regards to solid

tumors, measurement of tumor burden and size,

both before and after therapy, is common at

different points in the development process to

assess the effectiveness of a drug. Preclinically,

mice are injected with tumor fragments that are

allowed to grow and are then administered the

new chemical entity (NCE) to determine whether

the NCE can retard or shrink tumor growth.

Tumor size or volume are later assessed in

humans to determine whether the NCE is effec-

tive and can prolong survival. Recent attention

has focused on modeling tumor growth to better

understand the exposure–response relationship

for NCEs. This chapter will review tumor growth

kinetics in both preclinical and clinical models

used to characterize the growth of tumors over

time. Tumor growth models are also described

by Mould in the chapter on Modeling the

Progression of Disease elsewhere in this book.

P.L. Bonate

Clinical Pharmacology, Modeling, and Simulation,

GlaxoSmithKline, 5 Moore Drive, 17.2259, Research

Triangle Park, Durham, NC 27709, USA

e-mail: Peter.l.bonate@gsk.com

P.L. Bonate and D.R. Howard (eds.), Pharmacokinetics in Drug Development,
DOI 10.1007/978-1-4419-7937-7_1, # American Association of Pharmaceutical Scientists 2011
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1.2 Xenograft Models

The preclinical models for measuring antitumor

activity are relatively straightforward. As part of

the drug discovery process, researchers will sub-

cutaneously implant human tumor fragments into

the flank of nude or severe combined immuno-

deficient (SCID) mice and allow the tumors to

grow. Once the tumors have reached a predefined

size (usually 100–300 mm3), the mice are rando-

mized to different treatment groups: these usu-

ally include a placebo, some dose of the NCE,

and a positive control of a drug already known

to have an antitumor effect at the given dose. The

doses are given and tumor size is measured over

a period of time defined by the protocol, usually

weeks. The effect of the NCE relative to the

placebo and active control is determined. Effec-

tive cancer agents are assumed to be those that

will reduce or shrink tumors. Such models are

referred to as xenograft models and are meant as

a model for human tumor growth.Most every drug

approved in cancer was first tested in a xenograft

model to determine its anticancer activity.

There are often two types of measurements

reported in these studies, tumor volume and

tumor weight, both of which are derived from the

same set of measurements. Because the volume or

weight of the tumors cannot be actually measured,

their length (the longest axis) and width (in mm) is

measured using calipers and then weight or vol-

ume is estimated using one of several formulas

based on these values. Assuming the tumor is a

prolate ellipsoid (which has a shape like a mono-

lithic dome or an egg cut along its shortest axis

at the middle, see http://www.monolithic.com/

stories/shapes-prolate-ellipsoid-vertical for exam-

ple, accessed July 2010), tumor volume (in mm3)

is estimated as 0.5 � length � width2. If it is

assumed that the tumor has unit volume, then

tumor weight (in mg) is equal to tumor volume

assuming a density of 1 mg/mm3 for tumor tissue.

For nonspherical tumors other equations are used

to estimate the volume. The reader is referred to

Clarke (1997) and Rygaard and Spang-Thomsen

(1997) for details. Plots of tumor weight or volume

over time are often used to show the effect of the

drugs on the tumors.

Figure 1.1 presents an example of a xenograft

study for ABT-263, a small molecule inhibitor of

Bcl-2, which has shown activity in cell-cultured

tumors. ABT-263 showed activity in a variety

of tumors under a once-daily dosing schedule

(Shoemaker et al. 2008). Figure 1.1 shows that

ABT-263 has similar or better activity than etopo-

side, cyclophosphamide, and carboplatin in SCLC

H146 xenografts and had activity in paclitaxel-

resistant H146 xenografts. AVT-263 also did not

exhibit resistance with multiple cycles of therapy.

ABT-263 is now currently in Phase 1/2a under a

daily dosing schedule (14 days on/7 days off or

continuous dosing) in patients with SCLC and

non-hematologic malignancies.

Although xenografts are relatively easy to per-

form, there are problems (Kelland 2004). First,

these are human tumors grown in mice and so

the mice must be immunocompromised for the

tumors to grow in order to prevent a severe trans-

plant reaction from occurring in the host animal.

Second, since these tumors are implanted in the

flank, they do not mimic tumors of other origins,

e.g., a lung cancer tumor grown in the flank of

mice may not be representative of a lung cancer

tumor in the lung. Recent interest has focused on

so-called orthotopic models, wherein tumors of

particular origin are grown at the origin of interest

(Garber 2010), and in transgenic mice, which

are thought to more faithfully mimic the human

cancer process (Sharpless and DePinho 2006).

There are problems and criticisms associated

with these models as well, the foremost being

that there is no proof that these models perform

any better at predicting human activity than con-

ventional approaches. There is also the question of

the relevance of the xenograft models with tar-

geted therapeutics. Last, xenograft models never

metastasize.

Xenografts have been criticized for their low

predictive value. A retrospective analysis done

by the National Cancer Institute showed that only

15 of 33 compounds that were in Phase 2 of drug

development had activity in more than one-third

of the xenograft models tested (p ¼ 0.04).

Also, activity in a particular tumor line did not

generally predict human activity in that cancer,

e.g., activity in breast cancer xenograft models

2 P.L. Bonate



Fig. 1.1 Example of a xenograft study. (a) Efficacy of

ABT-263 in the H146 SCLC xenograft model relative to

several standard cytotoxic agents. Shown is data compiled

from seven independent experiments. In each trial, tumors

were size matched to 240–300 mm3 (day 0) and therapy

was initiated the following day. Open circles, cisplatin
given at 3 mg/kg, IP, thrice every 4 days; closed triangles,
etoposide given at 25 mg/kg, IP, q4d � 3; open squares,
carboplatin given at 50 mg/kg, IP, q4d � 4; open dia-
monds, cyclophosphamide given at 100 mg/kg, IP,

q4d � 3; closed circles, vincristine given at 0.5 mg/kg,

IV, q7d � 4; open triangles, paclitaxel given at 30 mg/kg,

IP, q4d � 3; closed squares, ABT-263 given at 100 mg/

kg, po, 21 doses daily (black bar); closed diamonds, cis-
platin vehicle. For simplicity, only one vehicle group has

been plotted. However, all statistics and analyses of effi-

cacy were conducted by comparing to the vehicle control

specific for each agent. All cytotoxic agents were given at

or near their maximum tolerated doses. All drugs exhib-

ited a statistically significant inhibition of tumor growth

throughout the study except for cyclophosphamide, which

was significant only on days 4, 8, and 16 postdose initia-

tion (p < 0.05, Wilcoxon rank sum test). (b) Treatment

with ABT-263 causes regression of large, established

H146 xenograft tumors. Tumors were allowed to reach

an average tumor volume of �1,000 mm3 before initia-

tion of therapy. Closed squares, ABT-263 was given

at 100 mg/kg, po, 17 doses daily (black bar); closed

triangles, docetaxel given at 30 mg/kg, IV, q7d � 2;

open squares, vehicle. ABT-263 treatment resulted in

92% TGI at the end of therapy with all tumors showing

at least an 80% reduction in tumor volume relative to

starting size (n ¼ 10 mice per group). (c) Analysis of

paclitaxel-resistant variant of H146. Parental H146 tumors

were initially treated with four doses of paclitaxel at

30 mg/kg/day. Tumors that relapsed after treatment were

propagated into new hosts and expanded into new lines.

The H146 variant line (H146-V) shown here was signifi-

cantly more resistant to paclitaxel treatment of 30 mg/kg/

day compared with the parental line. Closed diamonds,
ABT-263 given at 100 mg/kg, po, 21 doses daily; open
squares, paclitaxel given at 30 mg/kg, IP, q4d � 3; closed
squares, paclitaxel vehicle. Immunohistochemical analy-

sis of parental H146 and H146-V tumors showed that the

variant line expresses significantly higher levels of Pgp-1

(inset; magnification, �100). ABT-263 given at 100 mg/

kg/day still showed significant efficacy in the H146-V line

(p < 0.01, Wilcoxon rank sum test). (d) Efficacy of ABT-

263 in the H146 xenograft model after multiple cycles of

therapy. Tumors were randomized into groups of equal

tumor volume (�200 mm3) on day 0 with group A receiv-

ing ABT-263 at 100 mg/kg/day, po, from day 0 to day 4

and group B receiving vehicle. Additional 5-day cycles of

treatment with ABT-263 at 100 mg/kg/day were adminis-

tered as follows: group A, days 36–40, 63–67, 87–91,

119–123, 140–145, and 161–165; group B, days 87–91,

1 Modeling Tumor Growth in Oncology 3



did not predict activity in breast cancer in

humans, the exception being non-small cell

lung cancer which had a 45% predictive rate

(Johnson et al. 2001). What is interesting about

this argument about the predictive value of xeno-

grafts is the perceived need for a high prediction

rate. In toxicology, the overall concordance rate

between toxicity in man and similar toxicity

in animals is only 70%, with 30% of human

toxicities not predicted at all by animal studies

(Greaves et al. 2004), and yet few would suggest

we should not do toxicology studies prior to

first time in man. Although xenograft are not

completely predictive of activity, they are much

better at weeding out failures, as drugs that fail to

show efficacy in xenograft models very likely

will not be active clinically.

It has been argued that the predictive value of

xenograft models can be significantly improved

when the doses administered to mice produce

exposures similar to the exposures seen in the

clinic (Kerbel 2003; Inaba et al. 1988) since often

the doses given to mice are four- to fivefold

higher than the maximum tolerated dose (MTD)

seen in humans (Maruo et al. 1990; Inaba et al.

1989; Tashiro et al. 1989). The difficulty with

this approach is that prior to first time in man,

the MTD in humans is not known so the doses

studied in mice are often the MTD in mice. Later,

after the MTD has been established in man, the

dose in mice can be adjusted to produce pharma-

cokinetically equivalent exposures. Further test-

ing of this hypothesis needs to be performed.

1.3 Preclinical Models for Tumor
Growth

Modeling of tumor growth kinetics began in the

1960s with Anna Kane Laird (1964) who showed

that unperturbed tumor growth in a test tube

followed Gompertzian kinetics, which look

similar to the profiles produced by the sigmoid

Emax model familiar to most pharmacokineti-

cists. The proposed equation for cell growth was

YðtÞ ¼ Yð0Þ exp A

a
1� expð�atÞð Þ

� �
(1.1)

where, Y(t) is tumor size at time t, Y(0) is the

baseline tumor size, and A and a are constants.

For small values of at or when a ¼ 0, tumor

growth becomes exponential. Since Laird’s initial

report, Gompertzian growth has been shown for a

variety of tumors in different unperturbed situa-

tions both in vitro and in vivo. The first paper to

show that a Gompertz equation best described

tumor growth in animals was by Simpson-Herren

and Lloyd (1976) in a C3H mouse mammary

tumor and L1210 ascites tumor (often used as a

model for leukemia). The first paper to show that a

Gompertz equation applies to human tumor

growth was Sullivan and Salmon (1972).

It was a series of papers by Norton and Simon

(1976a,b) that really called attention to the use of

the Gompertz equation in describing tumor

growth (Norton 1988). Based on their studies,

they predicted that for chemotherapy, one could

increase cell kill by delivering treatments at

higher doses (increased dose intensity) through

minimization of tumor regrowth between cycles.

This hypothesis, referred to as the Norton–Simon

hypothesis, was confirmed in clinical trials

(Citron et al. 2003). Norton et al. (2005) later

showed how a Gompertz equation could be

modified to account for perturbation in the

presence of an active treatment and how to

optimize chemotherapeutic dose regimens under

Gompertzian growth. In the unperturbed state,

tumor volume could be modeled by

dY

dt
¼ aYðtÞ � a� LnðYðtÞÞ � YðtÞ (1.2)

Fig. 1.1 (continued) 119–123, and 140–144. Group B

was also treated with vehicle on days 36–40 and 63–67.

Black boxes, dosing periods for group A; white boxes,
dosing periods for group B. ABT-263 treatment resulted

in significant tumor regression, even after six previous

cycles of therapy. Regression of large (>2,000 mm3)

tumors was also seen after multiple therapy cycles. Rep-

rinted with permission from Shoemaker et al. (2008).

Copyright American Association of Cancer Research,

2008
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but in the presence of drug effect the equation is

modified to

dY

dt
¼ aYðtÞ � a� LnðYðtÞÞ � YðtÞ � ð1� DEÞ

(1.3)

where, DE is a drug effect function whose

domain is on the interval (0, 1). When the

model was applied to capecitabine, the point of

maximal drug effect was approximately 7 days

of treatment. The model predicts that dosing

after 7 days diminishes anticancer benefit but

increases the risk of toxicity. Preclinical studies

in xenograft models confirmed that a 7 day-on/

7 day-off regimen achieved a maximum tolerated

dose 1.5 times higher than the conventional

schedule (Traina et al. 2006). Based on these

preclinical results, a clinical trial was started

testing the safety of a 7 day-on/7 day-off

schedule for capecitabine and was found to be

safe and well tolerated (Traina et al. 2008). A

Phase 2 study to determine the efficacy under this

dosing schedule is on-going.

Miklavcic et al. (1995) modeled the effects

of bleomycin and electrotherapy in xenografts.

Four different models were tested: exponential,

Gompertz, Bertalanffy, and logisitic. Untreated

mice were modeled as

dY

dt
¼ lY Exponential

dY

dt
¼ Y a� bLn

Y

Y0

� �� �
Gompertz

dY

dt
¼ aY2=3 � bY Bertalanffy

dY

dt
¼ aY � bY2 Logistic

(1.4)

with initial conditions Y(0) ¼ Y0. Based on

goodness of fit measures, the Gompertz model

was chosen as best. Mice treated with bleomycin

were modeled as

dY

dt
¼ Y a� bLn

Y

Y0

� �
� gCt

� �
(1.5)

where g was a measure of drug effect and Ct was

the predicted tissue concentration based on a

three-compartment model.

Jackson et al. (2010) used a Gompertz model

to describe the tumor growth rate for A2780 mice

xenografts and the interaction between a targeted

therapeutic and cytotoxic chemotherapeutic

agent. Since only concentration data were avail-

able for the targeted therapeutic, a kinetic–

dynamic model was used to model the temporal

relationship with the cytotoxic agent. The authors

also included a biomarker model linking the

pharmacokinetic model for the targeted therapeu-

tic and its effect on tumor growth. The model

was able to discriminate between the effects of

the two agents and showed that the two agents

had an additive effect on tumor growth inhibition.

Although there has been some debate as to

whether Gompertz or logistic growth rates have

a biological basis (Xu 1987), their original use

was purely empirical. Marusic (1995) showed

that Gompertz, logistic, and Bertalanffy models

are in fact special cases of the generalized two

parameter model

dY

dt
¼ aYa � bYb: (1.6)

For example, in a logistic equation a ¼ 1 and

b ¼ 2. Other types of empirical models to

explain tumor growth include the nonlinear

mixed effects model proposed by Liang and

Sha (2004) wherein tumor growth was modeled

using a biexponential equation

YiðtijÞ ¼ expðpi1 � di1tijÞ � expðpi2 � di2tijÞ þ eij
(1.7)

where, the subscript i refers to the ith subject

at the jth timepoint. While useful to explain a

particular set of data, such empirical models are

difficult to extrapolate beyond the conditions

originally studied. Gompertzian models also

suffer from the fact that the plateau is difficult

to estimate because the mice are often killed

for ethical reasons when tumor sizes exceed
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a certain size (usually >1,000 mm3), which

often occurs prior to the plateau occurring.

More recent models attempt to account for

treatment effects through the use of mechanistic

or semi-mechanistic models. Yamazaki et al.

(2008) used a modified indirect response model

where tumor growth was described by

dY

dt
¼Kin 1� YðtÞ

TG50 þYðtÞ
� �

� 1� Emax �Cn

ECn
50þCn

� �
YðtÞ�KoutYðtÞ

(1.8)

where, the additional Y(t) on Kin-side of the

equation allows for tumor growth and the

term 1� YðtÞ
TG50 þ YðtÞ

� �
allows tumor growth

to plateau. Using this model, the authors pre-

dicted the tumor growth profiles for GTL16 gas-

tric carcinoma and U87MG glioblastoma

xenografts following treatment at five different

dose levels with PF-02341066, a cMET tyrosine

kinase inhibitor. Interestingly, although they

modeled cMET phosphorylation levels in

tumors, they did not test whether cMET phos-

phorylation could be a driver of (1.8) instead of

plasma concentrations. Also, such a model

implies that the drug inhibits tumor growth with

no effect on cell death. It may be that in such a

case, the model needs to be modified to

dY

dt
¼ Kin 1� Emax � Cn

ECn
50 þ Cn

� �
YðtÞ

� Kout 1þ Emaxdeath � Cn

ECn
50;death þ Cn

 !
YðtÞ (1.9)

where a term is added to the Kout-side of the

equation to account for cell death.

A model that has seen rapid acceptance within

the pharmacometrics community is the Simeoni

tumor growth model. Using paclitaxel and 5-flur-

ouracil (5-FU) as probes, Simeoni et al. (2004a)

reported on a semi-mechanistic model of tumor

growth. In the unperturbed state, tumor growth is

expected to occur exponentially, at least initially,

followed by a linear growth phase that eventually

plateaus. Such tumor growth can be modeled using

a Gompertz or logistic model. In their data, a

plateau phase was never achieved and to account

for this detail, a model was developed to explain

the exponential and linear growth components.

The authors used a change point differential equa-

tion to account for the two different phases. In

terms of differential equations, tumor size Y was

modeled as

dY

dt
¼ l0YðtÞ; YðtÞ � Yt

dY

dt
¼ l1; YðtÞ> Yt

Yð0Þ ¼ Y0

(1.10)

where l0 and l1 are the parameters characteriz-

ing the exponential and linear rate of growth, and

Yt is the tumor size at which growth changes

from exponential to linear. Yt can be expressed

as a function of l0 and l1 where l0Yt ¼ l1. The
parameters l0 and l1 are considered an indication
of the aggressiveness of the tumor. The change

point model in (1.10) can be simplified to

dY

dt
¼ l0YðtÞ

1þ l0
l1

YðtÞ
� �C

" #1=C ; Yð0Þ ¼ Y0 (1.11)

For large values of C, (1.11) is a good repre-

sentation of (1.10) and for this reason C is fixed

to 20. When Y(t) < Yt, the system behaves expo-

nentially because the term (l0/l1)Y(t)
C is negli-

gible. On the other hand, when Y(t) > Yt, the
term of 1 in the denominator becomes negligible

and the system switches to linear growth.

In the perturbed state when animals are

treated with cancer drugs, the model needs to

account for the cells that are killed by the drug.

To do this, the proliferating cells are modeled

as a set of damaged cells and dead cells in a

transit compartment manner (top of Fig. 1.2).

This represents the semi-mechanistic part of the

model. Three transit compartments are used to

account for the damaged cells, representing the
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three degrees of damage. Mathematically, the

differential equations for the model become

dY1
dt

¼ l0Y1ðtÞ

1þ l0
l1

Y1ðtÞ
� �C

" #1=C � K2CðtÞY1ðtÞ

dY2
dt

¼ K2CðtÞY1ðtÞ � K1Y2ðtÞ
dY3
dt

¼ K1Y2ðtÞ � K1Y3ðtÞ
dY4
dt

¼ K1Y3ðtÞ � K1Y4ðtÞ
wðtÞ ¼ Y1ðtÞ þ Y2ðtÞ þ Y3ðtÞ þ Y4ðtÞ

Y1ð0Þ ¼ wð0Þ; Y2ð0Þ ¼ Y3ð0Þ ¼ Y4ð0Þ ¼ 0

CðtÞ ¼ 0; t � t0

(1.12)

where K2 is a parameter that represents the effi-

cacy of the drug at killing the tumor, K1 is the

rate of death of the drug, w(t) is the total tumor

weight and C(t) is the drug concentration at

time t, and t0 is the start of drug administration.

The number of transit compartments between

cell proliferation and cell death is empirical and

can in fact be changed depending on the tumor

type. The top of Fig. 1.3 shows a theoretical

tumor growth curve assuming a single intrave-

nous bolus of drug on day 9. Depending of the

value of K2, the drug can transiently retard

growth or completely shrink the tumor.

A number of secondary parameters can be

defined from the primary model parameters.

The average time to cell death is equal to n/K1.

A Time Efficacy Index (TEI), which can be inter-

preted as the time interval required to achieve a

predefined tumor weight animals during linear

growth, can be defined as

TEI ¼ K2 � AUC

l0
(1.13)

where, AUC is the total area under the curve

following a single dose administration. If ani-

mals are exposed to a constant drug concentra-

tion Css, the threshold concentration for tumor

eradication (CTE) can be estimated as l0/K2 such

Y2

Damaged Cells

K1 K1K1 Cell

Death

Y1
Proliferating

Cells
Feedback

K2 C(t)

Pharmacokinetic Model

f(Cp)

Y

g(Y)

X4

X4X3X2X1

Cell
Death

Y3 Y4

t t t t

Fig. 1.2 Schematic of the semi-mechanistic tumor growth model proposed by Simeoni et al. (2004a) (top) and the cell
transit model proposed by Lobo and Balthasar (2010) (bottom)
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Fig. 1.3 Top plot shows the theoretical effect of K2 on

simulated tumor growth curves: the simulations were per-

formed assuming a single intravenous bolus given on day

9; l0 ¼ 0.0154/day; l1 ¼ 0.0211 g/day; w(0) ¼ 0.0162 g;

K1 ¼ 0.0265/day. l0, first-order rate constant of tumor

growth; l0, zero-order rate constant of tumor growth; w
(0), tumor weight at the inoculation time; K1, first-order

rate constant of transit; K2, measure of drug potency.

Bottom two plots show the observed and model-fitted

tumor growth curves obtained in two different experiments

in nude mice given intravenously either the vehicle or

paclitaxel [experiment 1 (exp 1), 30 mg/kg every 4 days

for 3 days from day 8; experiment 2 (exp 2), 30 mg/kg

every 4 days for 3 days from day 13]. Middle plot shows

the fitting of the pharmacokinetic data of paclitaxel given

as repeated intravenous bolus doses at 30mg/kg dose level;

Conc., concentration. Reprinted with permission from

Simeoni et al. (2004a). Copyright American Association

of Cancer Research, 2004
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that if Css < CTE then the tumor will grow to the

asymptotic weight of l1/(K2 � Css). If Css >

CTE, then the tumor size will decrease. In exam-

ining the product of CTE and human total

systemic clearance, a linear relationship on a

log–log scale was noted for ten different drugs

and further when K2 was plotted against the

maximum tolerated dose, a linear log–log rela-

tionship was again seen (Rochetti et al. 2007).

Using this model, Simeoni et al. modeled

a variety of tumor growth curves for paclitaxel,

5-FU, and a NCE. The bottom of Fig. 1.3 shows

the observed and predicted growth curves for

two different experiments in mice bearing

A2780 tumors following paclitaxel administra-

tion. From this initial report, a number of further

examinations of the usefulness of the model have

been reported by the authors (Magni et al. 2006;

Rocchetti et al. 2005; Simeoni et al. 2004b;

Poggesi et al. 2004), and by others outside the

group (Goteti et al. 2010).

It should be pointed out, however, that the

Simeoni model is not without its flaws. First,

unlike the Gompertz model, the Simeoni model

has no plateau and continues linear growth to

infinity. In reality, tumors have a self-limiting

size and when the animal does not die before

that limit is reached, a plateau is evident in

tumor size and/or weight. The Simeoni model

cannot account for a plateau. Second, although

the model is touted as a semi-mechanistic model,

the actual growth function is empirical based

on observation. Also, the model is new to phar-

macologists who perform the xenograft studies.

Gompertzian growth has 40 years of experience

behind it; pharmacologists are comfortable with

it. The Simeoni model is new and untested and

the comfort level is not the same when it is used.

Despite these, however, the model still has its

advantages and good modeling practice would

be to compare a variety of models (Simeoni,

Gompertz, logistic, etc.) before choosing an

appropriate form.

Since these initial reports, the basic Simeoni

model has been expanded to other situations.

Stuyckens et al. (2007) extend the basic model

by allowing for drug resistance to occur either

through an empirical resistance function or

through a semi-mechanistic approach and further

show how the model can be expanded in a kine-

tic–dynamic model through which concentration

measurements are not necessary.

Koch et al. (2009) modified the Simeoni

model to allow a smooth transition between

exponential and linear growth by changing

dY1/dt in (1.12) to

dY1
dt

¼ 2l0l1Y1ðtÞ2
l1þ2l0Y1ðtÞð ÞwðtÞ�K2CðtÞY1ðtÞ (1.14)

All other equations remain the same. In the

studies is reported by Simeoni, none the drugs

examined were given in combination. Koch et al.

extend their model to account for combination

therapy when two drugs are getting together.

They replace K2 in (1.14) with a term they refer

to as the “total influence” function and change

the first two differential equations in the model to

dY1
dt

¼ 2l0l1Y1ðtÞ2
l1 þ 2l0Y1ðtÞð ÞwðtÞ
� Ka

2CaðtÞ þ Kb
2CbðtÞF

� �
Y1ðtÞ

dY2
dt

¼ Ka
2CaðtÞ þ Kb

2CbðtÞ
� �

Y1ðtÞ � K1Y2ðtÞ
(1.15)

where,Ka
2 and K

b
2 are the K2 values for Drug A and

Drug B and F is a synergy term such that F > 1

implies synergy, F ¼ 1 implies additive, and

F < 1 implies antagonism. It should be noted that

unless many different dose combinations of Drug

A and Drug B are given, F may be unestimable.

Bueno et al. (2008) reported a model

which characterized the pharmacokinetics of

LY2157299, a novel Type I receptor TGF-b kinase
antagonist, and tumor growth kinetics in Calu6 and

MX1 tumor types. The pharmacokinetic model

consisted of a two compartment model with first-

order absorption and first-order elimination. Since

tumor size did not plateau, the tumor model used

was the Simeoni growth model where the change

in tumor size (dY/dt) was characterized by

dY

dt
¼ l0ð1� INH2ÞYðtÞ

1þ l0
l1

YðtÞ
� �c

" #1=c : (1.16)
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INH2 was a zero to one time-delayed, normal-

ized inhibition effect related to the degree of

phosphorylated Smad, proteins that modulate the

activity of TGF-b agonists (Fig. 1.4). The authors

then used simulation to understand the relationship

of tumor growth inhibition and tumor growth delay

with steady-state concentrations of LY2157299

and different dosing schedule.

A competing model to the Simeoni model is

the proposed transit model approach by Lobo

and Balthasar (2010), which they developed to

account for the delay in tumor growth inhibition

versus methotrexate plasma concentrations. The

transit model they proposed is shown in the

bottom of Fig. 1.2. Mathematically, the model

proposed was

dY

dt
¼ gðYÞ � K4YðtÞ; Yð0Þ ¼ wð0Þ

dX1

dt
¼ t

KmaxCp

IC50 þ Cp

� X1ðtÞ
� �

dX2

dt
¼ t X1 � X2ð Þ

dX3

dt
¼ t X2 � X3ð Þ

dX4

dt
¼ t X3 � X4ð Þ

X1ð0Þ ¼ X2ð0Þ ¼ X3ð0Þ ¼ X4ð0Þ ¼ 0

(1.17)

where Y is the tumor size, t is the transit rate

constant (similar to K1 in the Simeoni model),

and g(.) is a tumor growth function. Sample

growth functions include a exponential growth

Peripheral
(V2)

Depot

Q

CL

Ka

Central
(V1)

pSmad(t)
Ksyn Kout

IC50, Imax, n

INH0 INH2INH1
Ktrd Ktrd Ktrd

Kgrowth,exp
Kgrowth,linear

Mean Signal Propogation Time

Tumor

pSmad(0)-pSmad(t)
pSmad(t)

g

Fig. 1.4 Schematic model for the tumor growth kinetics

following treatment with LY2157299 as presented by

Bueno et al. (2008). Gray circles denote biomarkers.

Best lines denote negative influence functions, e.g.,

plasma concentrations of LY2157299 inhibit phosphory-

lation of pSmad
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gð:Þ ¼ KgYðtÞ; (1.18)

exponential growth that plateaus

gð:Þ ¼ KgYðtÞ 1� YðtÞ
Ymax

� �
; (1.19)

or even a Simeoni type function

gð:Þ ¼ 1þ l0
l1

YðtÞ
� �C

" #1=C
: (1.20)

Lobo and Balthasar compared the transit

model to two established models for chemother-

apeutic effects, a phase-specific and phase-

nonspecific model. The transit model was found

to provide a superior goodness of fit compared

to the established models. Yang et al. (2010)

simulated data from the Simeoni model (which

they call the cell distribution model) and the

transit model (which they call the signal distribu-

tion model) and compared the simulated data

using the alternative model. Their analysis

revealed that the signal distribution model was

more flexible in fitting data derived from the

cell distribution model than vice versa. They con-

cluded that although the models appear similar,

they are in fact mechanistically distinct, are not

interchangeable, and that the cell transit model is

more robust, particularly when data are sparse.

Jumbe et al. (2010) recently reported a mod-

ified transit compartment model wherein tumor

cells were divided into two groups, those that

were insensitive to the drug and grow a constant

rate and those that were sensitive to the drug

and eventually die. The sensitive cells were

modeled as a progressive process of cell damage

whereby the cells stop replicating and then

eventually die. The total volume of the tumor

was the sum of the insensitive cells and sensitive

cells at the progressive stages of death. Using this

model, the authors were able to characterize the

effects of trastuzumab-DM1, an antibody–drug

conjugate under development for the treatment

of breast cancer, in two different mice xenograft

models of HER2-positive breast cancer speci-

fically designed to be trastuzumab resistant.

The effect of trastuzumab was shown to be

cell-cycle-phase nonspecific in its mechanism

of action.

A new model has recently been reported to

model the antitumor effect of antiangiogenic

agents. Ribba et al. (2010) used four ordinary

differential equations to describe the temporal

changes of non-hypoxic (P), hypoxic (Q), and

necrotic (N) tissue within a tumor. A latent

variable K, which they call the carrying capacity,

accounts for the process of angiogenesis. Using

sunitinib as a probe, the authors modeled the tumor

growth kinetics of HT29 lung and HCT116 colon

xenografts in mice using a kinetic–dynamic model

to account for temporal changes in sunitinib con-

centrations. It is too early at this point to determine

the value of the model in drug development but its

mechanistic nature holds promise.

1.4 Measuring Tumor Size
in Cancer Patients

There are many different ways to measure tumor

size, the most common being radiologic mea-

surement. Usually, the cross product measure-

ment of the two longest perpendicular diameters

seen on a cross-sectional image, like an X-ray,

ultrasound, CT, or MRI scan, is taken as the size

of the tumor. With new imaging techniques,

actual tumor volume can now be assessed, but

this is not often done (yet). For X-ray measure-

ment, diameter may be measured manually with

a caliper, but for imaging and digital X-rays,

computerized measurements can be made. The

difficulty with measuring perpendicular dia-

meters is when the legion of interest is not well

defined or is asymmetrical. For this reason, mea-

surment of tumor size in many pivotal trials is

done by a standardized review, sometimes using

just a single reviewer, to reduce intersubject

variability and increase reproducibility.

Being able to accurately measure tumor size is

important for many reasons. A patient’s initial

tumor size is used to stage the patient for many

types of cancers. For example, breast cancer

patients having a tumor size of 2–5 cm are clas-

sified as T-2. Tumors>5 cm are classified as T-3.
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How a patient is treated depends upon their

staging. Once a patient initiates therapy, treat-

ment is dependent on how the tumor shrinks in

response to a therapy. A tumor may show initial

shrinkage with a drug but then may start to grow

again, a process known as disease progression,

at which point the physician may change the

course of treatment. Without an accurate tumor

size measurement physicians are treating blind.

Tumor size is also an important indicator for

survival. For example, patients with lung tumors

<2 cm in size have a higher survival rate than

patients with larger sized tumors.

In most cases, multiple lesions are measured

and the sum of these lesions is returned as a

composite measure of tumor burden; this is

often called the sum of longest diameters. Nearly

30 years ago, the World Health Organization

(WHO) (Miller et al. 1981) reported on guide-

lines to standardized tumor measurements across

studies. Under the WHO criteria, patients can

be defined into one of five response types: “com-

plete response” (CR), “partial response” (PR),

“stable disease” (SD), “progressive disease”

(PD), or “not evaluable.”

While a huge step forward there were still

problems with the WHO guidelines, like lack

of specification of the number of lesions to be

reviewed, definitions for what constitutes pro-

gressive disease, and how to handle new imaging

modalities. In 2000, several research groups

updated the WHO guidelines and created the

Response Evaluation Criteria in Solid Tumors

(RECIST) guidelines (Therasse et al. 2000).

The core of RECIST is standardized tumor size

measurement. In 2009, RECIST Version 1.1 was

released as a means to further improve consis-

tency and standardization across clinical trials

(Eisenhauer et al. 2009). RECIST 1.1 has a few

changes to version 1. These include reducing the

number of measured lesions to be assessed from

a maximum of ten to five, reducing the number

of measured lesions from a maximum of five to

two in a particular organ, new guidelines for

assessment of measuring the lymph nodes, guide-

lines on defining disease progression, and new

guidelines on imaging (interestingly, in the first

version of RECIST no radiologists were included

in developing the guidelines). Table 1.1 presents

definitions for the response criteria under

RECIST 1.1.

The overall response rate (ORR) for a trial is

the proportion of patients that achieve a specified

reduction in tumor size for a predefined period

of time (at least 4 weeks) that includes both CR

and PR (McKee et al. 2010). Stable disease is not

included in ORR, but is included in the Disease

Control Rate, which is the proportion of patients

achieving a PR, CR, or SD. Response duration

is defined as the time from initial response to

the time of documented disease progression. In

considering a drug’s ORR, the FDA considers

magnitude, percent of CRs, and duration of

response.

Table 1.1 Summary of response criteria under RECIST 1.1

Response Definition

Complete response Complete disappearance of all lesions lasting at least 4 weeks; lymph nodes

must be non-pathological in size

Partial response A 30% decrease in sum of longest diameters lasting at least 4 weeks taking

as a reference the baseline tumor size

Stable disease Neither partial response or progressive disease criteria met taking as a

reference the smallest sum of diameters as the reference

Progressive disease 20% increase in tumor size using the smallest sum of diameters as the

reference (which may be the baseline) with no complete response, partial

response, or stable disease documented before increased disease and a

minimum increase of at least 5 mm or appearance of new lesions

Not evaluable When no measurement is available or incomplete measurements are done
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Tumor measurements are often made every

few weeks, usually 4–8 weeks, depending on

the cancer type. From these, the best overall

response is determined (which in itself is compli-

cated, see Eisenhauer et al. (2009) Tables 1–3 for

details) and then based on when, and if, progres-

sion occurs, time to progression (TTP) is deter-

mined, which is formally defined as the time

from randomization to documented, objective

disease progression (McKee et al. 2010). TTP is

related to progression-free survival (PFS), which

is defined as the time from randomization to

disease progression or death. Should a patient

die during study, TTP is censored. TTP can be

used as a primary endpoint in a clinical trial in

which the majority of patients who die on the

study are not expected to be to the cancer itself,

although PFS is preferred since it is expected to

better correlate with overall survival, the gold

standard of primary endpoints in oncology.

While standardized criteria certainly have

their advantages, there are still unresolved issues

with regards to standardization. Examples

include when there are more than five lesions,

radiologists do not consistently choose the same

five lesions to assess. Reproducibility is still

an issue, with interobserver and intraobserver

variabilities of 15% and 6% for measurements

of tumor size in three dimensions using CT

(Schwartz et al. 2000). And, there are some ques-

tions as to whether RECIST applies to pediatric

oncology (McHugh and Kao 2003).

1.5 Clinical Models for Tumor
Growth

There have been few published models that have

examined the relationship between exposure and

tumor growth over time in humans. The goals of

these studies have been to relate short-term

changes in tumor size to long-term changes in

outcome or to confirm the presence of a concen-

tration-effect relationship. Both of these goals

have utility. The success rate in Phase 3 oncology

studies is not as large as one would think, about

50%. Being able to leverage the information

from Phase 2 may increase the probability of

success in Phase 3. Being able to establish a

concentration-tumor size relationship may be

useful as supporting data in a registration dossier

with only a single well-controlled study.

Tham et al. (2008) presented a model for tumor

growth in non-small cell lung cancer (NSCLC)

patients using a kinetic–dynamic model. Under

this empirical model, an effect compartment was

used to transduce dose into an “effect concentra-

tion” which was then used as an input into an

indirect response type-model. Using this model,

the authors were able to predict tumor size follow-

ing treatment with gemcitabine.

Wang et al. (2009) modeled four randomized

clinical trials for NSCLC. Tumor size Y was

modeled using a mixed exponential decay and

linear growth function

YðtÞ ¼ Yð0Þ expð�StÞ þ kt (1.21)

where, Y(0) is the baseline tumor size, S is the

exponential tumor rate shrinkage constant, and

k is the linear growth rate constant. The exponen-

tial portion of the model explains the rate of

tumor shrinkage, while the linear growth func-

tion explains the rate of tumor growth after

tumors have ceased shrinking. Random effects

were added to the model by allowing the base-

line, S, and k to be log normally distributed. An

exponential error model was used to account

for unexplained residual variability. Figure 1.5

presents a goodness of fit plots for six represen-

tative patients. The model appears to capture the

general tendencies of the observed data.

Simply modeling tumor size was not the goal

of the Wang et al. paper. The goal was to incor-

porate changes in tumor size as a predictor of

survival and to determine whether short-term

changes in tumor size could be used to predict

long-term overall survival. The authors found

that overall survival could be modeled using a

parametric lognormal survival model in which

the mean survival time was a function of ECOG

(Eastern Cooperative Oncology Group) perfor-

mance status, baseline tumor size, and percent
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change from baseline 8 weeks after initiating

therapy. Wang et al. did not link the tumor size

model to a particular pharmacokinetic model

because the studies used to develop the model

were different drugs. But future analyses could

link a pharmacokinetic model with a tumor

model. Similarly, for NCEs being developed for

NSCLC, a model could be developed explaining

change in tumor size as a function of that drug’s

pharmacokinetics, which could then be linked to

the Wang et al. survival model to predict overall

survival based on short-term efficacy studies,

thus leveraging information.

Claret et al. (2009) developed a kinetic–

pharmacodynamic model linking capecitabine

exposure to tumor growth inhibition in patients

with colorectal cancer. Using data from Phase II

and Phase III data, the authors modeled tumor

size Y at time t using the equation

dY

dt
¼ Kgrowth � YðtÞ � Kdeath � Dose

� expð�ltÞ � YðtÞ (1.22)

where, Kgrowth is the tumor growth rate, Kdeath is

the tumor death rate, Dose is the daily dose

administered, and exp(�lt) is the progression

rate at time t, where l is the estimated progres-

sion appearance factor. Because no pharmaco-

kinetic data were available, dose was used as the

exposure measure affecting tumor death.

Between-subject variability was accounted for

by allowing Kgrowth, Kdeath, and l to be treated as
log normally distributed random effects. Similar

to the Wang et al. paper, the authors then devel-

oped a survival model linking percent change in

tumor size 7 weeks after treatment to overall

survival but with a twist. The twist was that

they did not have a survival data with capecita-

bine, but they did have survival data with 5-FU

so they developed their survival model using the

5-FU data and then piggybacked the models

together (Fig. 1.6). Hence, one part of their

model was drug-specific while the other part

of their model was disease-specific. Using sim-

ulation, the authors validated their model using

an independent Phase 3 study. Based on these

Fig. 1.5 The time course of NSCLC tumor size change

for representative individual patients. The symbols repre-
sent the observed tumor sizes, the solid line represents

the mean tumor size for the overall population, and

the broken line represents the individual predicted tumor

size. Figure reprinted from Wang et al. (2009). Reprinted

by permission from Nature Publishing Group [Clinical

Pharmacology and Therapeutics, 2004]
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results the authors have developed a framework

for predicting the Phase 3 survival based on

Phase 2 data which might be useful when decid-

ing whether to pursue further development of

the compound.

Houk et al. (2009) expanded on the Claret et al.

model and reported on the tumor growth kinetics

in patients with metastatic renal cell cancer

(mRCC) and gastrointestinal stromal tumors

(GIST) following treatment with sunitinib.1

Tumor growth kinetics (dY/dt), as measured by

the sum of longest diameters, for each tumor type

was described by

dY

dt
¼ Kgrowth � YðtÞ � Kdeath � CðtÞ

� expð�ltÞ � YðtÞ (1.23)

where, C(t) is the plasma concentration of suniti-

nib. This time, exposure was modeled as a func-

tion of drug concentration. Their models showed a

different rate of growth and death for mRCC and

GIST. Patients with mRCC had a Kgrowth twofold

higher than patients with GIST and threefold

higher Kdeath. The rate of progression was 1.5-

times faster in mRCC than in GIST. Simulations

showed that 38% more of mRCC patients and

23% more of GIST patients would show a partial

response (at the least a 30% decrease from

baseline in tumor size) when sunitinib was admi-

nistered 50 mg once-daily compared to 25 mg

once-daily. Combining this efficacy model with

a variety of different adverse event models, the

authors generated a composite efficacy – adverse

event profile for sunitinib. It should be noted that

one difficulty with this model is the estimation

of Kgrowth. Since most patients, once they start to

show signs of disease progression, are taken off

the study drug, an estimate of Kgrowth is often

unavailable or imprecisely estimated.
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Fig. 1.6 Schematic of the

kinetic–dynamic-survival

model of Claret et al.

(2009). Gray boxes are
model outputs

1Houk et al. discussed this model in another chapter in this

book.
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1.6 Modeling Response in Humans

Under RECIST criteria, patients are assigned a

best overall response. It is often of interest to

model best overall tumor response as a function

of exposure. The usual method is to treat the

responses as an ordinal variable such that CR >

PR > SD > PD and then use ordinal logistic

regression to model response as a function of

exposure. An example of this approach is the

exposure–response analysis reported for suniti-

nib in mRCC patients as reported by Houk et al.

(2009) in which there was a significant relation-

ship between sunitinib exposure and the proba-

bility of either a CR or PR (p < 0.0001). In GIST

patients a trend toward significance was observed

but did not reach statistical significance. In both

cases there was a trend towards decreasing tumor

size with increasing sunitinib exposure.

There are pros and cons to this approach. The

pros are that the results have direct interpretation

and is relevant, e.g., increasing exposure in-

creases the probability of a complete response.

The con is that RECIST collapses a dynamic

measure (tumor growth) into a single endpoint,

which always results in loss of information and

decreased statistical power at detecting covariate

effects. Further research is needed in the link

between dynamic models of tumor growth and

logistic regression of best overall response.

1.7 Mathematical Models
of Cancer

A handful of reports have been published on theo-

retical models of cancer growth and progression,

some of which were reviewed in Sanga et al.

(2006). Araujo and McElwain (2004) present a

history of these type of mathematical models.

These models do not use the traditional ordinary

differential equation framework familiar to most

pharmacokineticists and instead use partial differ-

ential equations, which take into account both time

and space. For example, Sinek et al. (2009) rep-

orted on the effect of doxorubicin and cisplatin using

a partial differential multicompartment model of

concentrations in the extracellular, cytosolic, and

nuclear compartments. From this they were able

to predict DNA-bound drug concentrations, drug

concentrations at various cell depths, cell inhibi-

tion, and cell survival. Sanga et al. argue that “the

multifaceted nature of cancer requires sophisti-
cated, nonlinear mathematical models to capture

more realistic growth dynamics and morpholo-

gies”. Although none of these models have yet to

show utility in drug development, with the rise of

systems biology it is only a matter of time before

these nonlinear time- and space-models of cellular

dynamics link with pharmacokinetic–pharmaco-

dynamic models to lead to an integrative holistic

model of drug response and effect.

Conclusions

The difficulties and challenges associated

with understanding the dynamics of cancer

may benefit from mathematical modeling.

Indeed, the role of mathematical modeling in

drug development is becoming more main-

stream and accepted. In the March 2010

issue of Forbes magazine, there was a cover

item that said “Can Math Cure Cancer?” and

inside was a story called “The Mathematics of

Cancer”. The main focus of the article was on

Larry Norton, of the Norton–Simon hypothesis,

and how he thinks that “adding more mathe-

matics to the crude science of cancer therapy
will help”. Forbes is not a scientific magazine,

it is not even oriented towards professional

economists. The target audience for Forbes is

the everyday investor and yet here is a story

discussing the role of modeling in drug devel-

opment and how it could help cure cancer.

Modeling tumor growth may prove to

be an advantageous tool in cancer drug devel-

opment since modeling allows for greater

understanding of mechanisms and allow for

predictions outside the domain of the studies

used to develop the model. And yet, there are

still many limitations to the models we use.

The linear ordinary differential equations used

to characterize tumor growth are a gross sim-

plification and have only a small face validity

in their use. True tumor growth is nonlinear
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and stochastic and requires much more com-

plex models involving partial differential

equations. Still, modeling provides a means

to understand data from a variety of complex

sources and across many different data types.

Early leveraging of preclinical information

(even if the model is a simplification of the

true underlying data generating process)

and later application of modeling in drug

development will allow companies make

better decisions, hopefully earlier. The use

of mathematical modeling in oncology is

relatively new and is ripe for research with

a need for new innovative modeling methods,

techniques, and applications.
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Drug–Drug Interactions: Designing
Development Programs and
Appropriate Product Labeling

2

J. Matthew Hutzler, Jack Cook, and Joseph C. Fleishaker

Abstract

Drug–drug interactions can represent a major public health issue. Drug

metabolism science has evolved to the point where interactions with

cytochrome P-450 isozymes can be predicted and potentially avoided or

managed, but much work remains to allow accurate prediction of non-P-450

mediated interactions. Based on preclinical data, rational clinical plans

can be developed to study potential drug–drug interactions in humans and

develop labeling that allows optimal usage of new drugs.

2.1 Introduction

Adverse drug reactions are a major public health

concern. It has been estimated that approximately

5% of hospital admissions are related to adverse

drug reactions (Kongkaew et al. 2008), although

other estimates have placed this value between 3%

and 28% (McDonnell and Jacobs 2002). Hospital

admissions for adverse drug reactions are highest

in elderly subjects who are taking multiple medi-

cations (Kongkaew et al. 2008), suggesting drug–

drug interactions (DDIs) may contribute to this

observation. Indeed, in the elderly, 4.8% of hospi-

tal admissions were due to DDIs (Becker et al.

2007). These data suggest DDIs contribute to

hospital admissions and health care costs.

On an individual basis, DDIs can have cata-

strophic and life-threatening consequences. Sev-

eral high profile drugs have been removed

from the market due to DDIs. The antihistamine

terfenadine caused QT prolongation, torsades

de pointes, and sudden cardiac death in patients

who were also receiving CYP3A4 inhibitors.

Astemizole and cisapride were removed from

the market for similar reasons (Smith and

Schmid 2006). The calcium channel blocker

mibefradil caused significant DDI’s with a

number of agents and was removed from the

market (Krayenb€uhl et al. 1999). Most notable

were rhabdomyolysis when combined with sim-

vastatin or lovastatin and nephrotoxicity in com-

bination with cyclosporine or tacrolimus. In all

of these cases, changes in the product labeling

were ineffective in avoiding DDIs in clinical use

and thus precluded the continued safe prescribing

of these agents.

Given the potential societal and individual

impact of drug interactions, assessment of drug

interaction potential has been an important aspect
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of drug development for decades. Initially- deci-

sions on which drug interactions were studied

were based on the likelihood two drugs would

be co-administered in the targeted patient popu-

lation. This philosophy resulted in a large num-

ber of drug interaction studies conducted to

support marketing and medical practice, many

of which were redundant and may not have

been truly necessary or scientifically informative.

With increased understanding of the mechanisms

of drug transport, metabolism, and elimination,

in vitro data have been increasingly used to

assess potential risk for drug interaction. The

Food and Drug Administration’s 2006 draft guid-

ance (Drug Interaction Studies – Study Design,

Data Analysis, and Implications for Dosing and

Labeling) helped codify this concept and laid out

strategies for how in vitro data can be used to

screen for potential metabolic interactions and on

how to use in vitro data to decide which clinical

interaction studies should be run.

2.2 Why Use Preclinical Data
to Guide Clinical Drug
Development

Using in vitro methods to guide a drug interac-

tion program for a new chemical entity (NCE)

has a number of advantages. First, in vitro studies

can be used to identify drug combinations that

may result in large changes in exposure, either

for one drug or for both. The observation of

a substantial in vitro interaction can be a strong

signal indicating an in vivo investigation is

warranted. In addition, in vitro data allows the

results of in vivo studies to be readily generalized

based on the mechanism of interaction. An

example of this is evident in the labeling for

ZYFLO CR® tablets, which contain zileuton as

the active ingredient. A number of drug interac-

tion studies were performed (theophylline, war-

farin, propranolol, prednisone, ethinyl estradiol,

digoxin, phenytoin, sulfasalazine, and naproxen),

with clinically significant interactions noted

for theophylline, propranolol, and warfarin. The

increase in theophylline and propranolol AUC

was approximately twofold, while the increase

in R-warfarin AUC was about 22%. Subsequent

in vitro work has shown zileuton is an inhibitor

of CYP1A2, with minimal effects on other CYP

isozymes (Lu et al. 2003). These in vitro data

could have been generalized to predict interac-

tions with other CYP1A2 substrates, rather than

having discussions in the labeling concerning

drugs in the same therapeutic class.

Additional benefits can be gained by limiting

the conduct of in vivo drug interaction studies to

those where interactions are likely to occur. The

decreased cost of drug development is accompa-

nied by a reduction in the generation of data that

does not provide additional information beyond

that obtained in vitro. In the zileuton example,

the in vitro data showing lack of effect on CYP

isozymes other than CYP1A2 could have been

used to avoid conducting drug interaction studies

with drugs that are substrates of other isozymes,

most notably CYP3A4 and CYP2C9 (terfena-

dine, prednisone, ethinyl estradiol, phenytoin,

and naproxen).

A recent evaluation of the use of in vitro data on

p-glycoprotein inhibition to predict drug interac-

tions with digoxin illustrates this point on a

broader basis (Fenner et al. 2009). Clinical drug

interaction studies with digoxin were routinely

conducted in drug development programs, both

before and after the mainmechanism for this inter-

actionwas elucidated (p-glycoprotein inhibition in

the gut and kidney). The primary reason for the

routine conduct of this study was digoxin’s narrow

therapeutic window and the potentially serious

consequences of digoxin toxicity. As described

by Fenner et al. 93% of 123 digoxin DDI studies

examined showed changes in digoxin area under

the curve <25%. Thus in the vast majority of

studies, the magnitude of change was less than

the upper limit typically used for bioequivalence

trials and therefore the interaction is not consid-

ered clinically relevant. Fenner et al. argue that

appropriate in vitro studies of p-glycoprotein inhi-

bition by new drugs, with appropriate cutoff cri-

teria, will substantially lower the number of times

DDIs with digoxin would need to be studied clini-

cally. They also argue, for NCEs that are p-glyco-

protein substrates and have reasonable therapeutic

ranges, drug interactions with p-glycoprotein
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would rarely, if ever, require substantial dose

adjustment and that these interactions may not

require detailed in vivo investigation. Hence, the

use of in vitro models makes sense scientifically

and financially.

2.3 Preclinical Assessment of DDI
Potential in Drug Development

In order to reduce the risks associated with clini-

cal DDIs, and meet the mutual goal of providing

safe and effective medicines to the public, health

authorities and pharmaceutical companies have

focused on the development of in vitro strategies

for characterizing metabolism early in the drug

discovery process. Evaluation of inhibition and

induction of cytochrome P450 enzymes by NCEs

is now common practice for clinical candidate

selection. With the ready availability of recom-

binant DNA expressed P450 isozymes, com-

mercially available human hepatocytes and

microsomes, known substrates and inhibitors for

P450 isozymes, and rapid liquid chromatography/

mass spectrometry (LC-MS) techniques, early

assessment enables an understanding of the struc-

tural features leading to inhibition (e.g. structure-

activity relationships, SAR). This section of the

chapter will focus on themost recent in vitrometh-

ods for assessing DDIs, as it pertains to cyto-

chrome P450 inhibition, induction of cytochrome

P450, and transporterDDI (e.g. p-glycoprotein). In

addition, methods for predicting clinical DDI

using in vitro data, as well as the future direction

of screening strategies for assessing clinical DDI

risk, will be discussed.

2.4 Inhibition of Cytochrome P450
and Other Drug-Metabolizing
Enzymes

In humans, the biotransformation of xenobiotics

is most often catalyzed by the cytochrome P450

family of drug-metabolizing enzymes. It is well

understood that the P450 isozymes 3A4, 2D6,

2C9, 2C19, and 1A2 contribute to some degree

to the metabolism of >90% of marketed drugs

(Fig. 2.1, Wienkers and Heath 2005; Guengerich

2008). Consequently, most labs supporting pre-

clinical pharmacokinetics and metabolism in

drug discovery (so-called ADME groups) screen

synthesized test compounds against these

enzymes in high throughput inhibition assays.

The format of these assays has evolved substan-

tially over the years, as the balance between

Fig. 2.1 Contributions of enzymes to the metabolism of

top 200 prescribed drugs. The results are from a study of

Pfizer drugs (Williams et al. 2004). (a) Fraction of meta-

bolic clearance catalyzed by various human drug-meta-

bolizing enzymes. UGT uridine glucuronosyltransferase,

FMO flavin-containing monoxygenase, NAT N-acetyl-
transferase, and MAO monoamine oxidase. (b) Fractions

of P450 oxidations on drugs catalyzed by individual P450

enzymes. Reprinted with permission from review in

Chemical Research in Toxicology (Guengerich 2008)
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generation of robust predictive data and high

throughput to support rapid cycle times for dis-

covery chemistry has been a continuous chal-

lenge. Traditional academic methods for testing

inhibition of cytochrome P450 enzymes using

HPLC with UV or fluorescence detection were

simply unable to accommodate the high-through-

put screening (HTS) requirements of drug dis-

covery to evaluate hundreds or even thousands of

drug molecules on a weekly basis. Instead, assay

technologies that enable improved throughput at

a low cost have been developed over the years,

including the use of nonselective fluorogenic

P450 probe substrates (resorufins, coumarins,

quinolines, etc.) and 96 or 384 plate-reading tech-

niques (Crespi and Stresser 2000; Miller et al.

2000). Despite the clear advantage of ultra-high

throughput, the fluorogenic probe approach is

fraught with issues such as the potential for test

compounds to interfere with or quench the fluo-

rescence signal (unpublished observations), and

the fact that fluorogenic probes are not “drug-

like,” in that they are not used in DDI trials,

making it more challenging to extrapolate this

type of in vitro data to the clinical setting. In

addition, studies comparing the use of fluorogenic

probes with traditional LC/MS methods have

found poor correlations, especially for CYP3A4

(Cohen et al. 2003, Fig. 2.2; Bell et al. 2008),

raising concerns about the predictability of these

methods. Despite the aforementioned issues with

using fluorogenic probes, some pharmaceutical/

biotechnology companies are still willing to

accept this risk in an early screening environment

to take advantage of throughput capabilities.

Alternatively, another approach, developed to

circumvent the potential for interference with

fluorescence signal while maintaining high

throughput, is the use of luminogenic cytochrome

P450 inhibition assays (Cali et al. 2006).

With substantial advances in bioanalytical

technology in recent years, ADME groups within

the pharmaceutical industry have moved toward

the use of clinically relevant and selective probe

substrates of the P450 enzymes, according to

guidelines generated by the FDA (Table 2.1),

using LC-MS. Assay incubations are typically

conducted in human liver microsomes (HLMs)

pooled from at least 50 donors. This HLM

system better represents of the intact liver com-

pared to recombinantly expressed P450 enzymes

(e.g. Supersomes® from BD-Biosciences or

Fig. 2.2 Comparison of IC50s generated using recombi-

nant CYPs with fluorescent probe (dibenzylfluorescein,

DBF) to HLM with LC/MS detection with traditional

probe substrate (midazolam). Dotted lines define the

IC50 limits used for DDI risk binning (<1 mM, high risk;

1–10 mM, moderate risk; >10 mM, low risk). Shaded
areas represent concordance in binning between the two

assays approaches. Reprinted with permission from Jour-
nal of Biomolecular Screening (Bell et al. 2008)
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Baculosomes® from Invitrogen), which are coex-

pressed with the electron-shuttling co-proteins

oxidoreductase and cytochrome b5 at nonphysio-

logical ratios. To meet the demands of higher

throughput in a drug discovery environment, a

critical development has been ultraperformance

liquid chromatography/tandem mass spectrome-

try (UPLC-MS-MS), where the use of sub-2 mm
porous particle LC coupled to high flow rates

results in sufficient resolution for fast separation

methods (Fig. 2.3, Plumb et al. 2008). In addition,

the bioanalysis and/or the incubation itself may

be conducted in a cocktail assay format (Testino

and Patonay 2003; Kim et al. 2005; Dixit et al.

2007), and early “tier 1” ADME screening assays

may be performed at one or two concentrations

of test compound, with data reported as percent

(%) inhibition. Algorithms for estimating an IC50

based on a single-point inhibition assessment

have also been employed as a screening approach

to P450 inhibition (Gao et al. 2002).

One concern with conducting P450 inhibition

assays with a “cocktail” of substrates, is “cross-

talk” or nonselective interactions of the probe

substrates with other P450 enzymes, potentially

compromising the fidelity of the data. To address

this concern, multiple studies have been con-

ducted recently comparing IC50 values generated

from both singlet and cocktail assays (Zientek

et al. 2008; Youdim et al. 2008). In methods

reported by Youdim et al. a 384-well cocktail

assay evaluating inhibition of CYP1A2 (tacrine),

2C9 (diclofenac), 2C19 (S-mephenytoin), 2D6

(dextromethorphan), and 3A4 (midazolam) was

developed with an LC/MS method run time on

the order of 1 min. Interestingly, comparison of

IC50 values (geometric mean) generated with this

miniaturized cocktail method closely resembled

those generated in the individual P450 inhibition

assays tested, with a slight upward bias in the

cocktail results. In further studies by Zientek

et al. the enzyme kinetics (Km,app and Vmax) of

the selective probe substrate reactions were com-

pared and while it was found there was minimal

shift in Km,app values between singlet and cock-

tail formats, the velocities measured in the cock-

tail probe substrate format were consistently

lower than those measured in the single substrate

format (Fig. 2.4, Zientek et al. 2008). Causes

for this observation are unclear at this time, but

the authors speculate it may be the result of

P450 isoform competition for oxidoreductase,

as reported by Cawley et al. (1995). Despite

these velocity differences, the accuracy of the

IC50 values compared to those generated in the

singlet assay format did not appear to impact

decisions made based on their results. One stra-

tegy that seems to be the result of some of the

difficulties just described is the elimination of

CYP2C19 from early screening. Despite being a

selective probe for CYP2C19, (S)-mephenytoin is

the most problematic probe substrate within the

Table 2.1 Substrates and positive controls for assessing DDI in vitro

Enzyme Activity Positive control inhibitor

(recommended concentration)

Positive control time-

dependent inactivator (TDI)

CYP1A2* Phenacetin O-deethylase Furafylline (10 mM) Furafylline

CYP2B6 Bupropion hydroxylase PPP (2-phenyl-2-(1-piperidinyl)

propane)

PPP (2-phenyl-

2-(1-piperidinyl)propane)

CYP2C8* Amodiaquine N-deethylase Montelukast (0.1 mM) thioTEPA

CYP2C9 Diclofenac 40-hydroxylase
(S)-warfarin 7-hydroxylase

Sulfaphenazole (10 mM) Tienilic acid

CYP2C19 (S)-Mephenytoin 40-hydroxylase (þ)N-Benzylnirvanol (10 mM) Ticlopidine

CYP2D6* Dextromethorphan

O-demethylase

Quinidine (1.0 mM) Paroxetine

CYP2E1 Chlorzoxazone 6-hydroxylase Diethyldithiocarbamate (10 mM) Diethyldithiocarbamate

CYP3A4 Midazolam 10-hydroxylase Ketoconazole (1.0 mM) Verapamil, erythromycin,

TAOTestosterone 6b-hydroxylase
Felodipine dehydrogenase
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cocktail of substrates, as it is metabolized slowly,

and the metabolite monitored (4-hydroxy-

mephenytoin) does not ionize well by mass

spectrometry, resulting in an insensitive assay.

Identification of a more optimal selective probe

substrate for CYP2C19 would be of great benefit.

Nonetheless, from these reports, it is clear that

cocktail inhibition assays are sufficiently reliable

for identifying potent inhibitors of P450 in early

stage drug discovery, which is ultimately the

intent of ADME screening. However, at this

time, with some of the uncertainties about the

cause of the minor differences between cocktail

and singlet IC50 inhibition assays, it is not recom-

mended to use cocktail IC50 data for labeling

purposes until additional work is performed to

validate the accuracy and use of in vitro cocktail

assays beyond screening. Validated singlet IC50

assays are recommended for drug labeling, in

which the assay conditions have been optimized

Fig. 2.3 LC/MS/MS analysis of six analytes commonly

used in cytochrome P450 inhibition screens in a cocktail

format. Use of UPLC/MS/MS methods with a 2.1 �
50 mm ACQUITY BEH C18 1.7 mm column enables

ultra-high throughput (0.5 min/sample), while maintain-

ing analyte resolution. Reprinted with permission from

Rapid Communications in Mass Spectrometry (Plumb

et al. 2008)
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for low protein concentrations to minimize non-

specific protein binding (where unbound drug

concentration approximates total drug in the incu-

bation) and incubation times are set to maintain

linear Michaelis-Menten steady-state kinetics

(<10% consumption of substrate) (Walsky and

Obach 2004). It is much more challenging to

optimize cocktail assays to maintain these critical

conditions, with the selective probe substrates

demonstrating such drastic differences in meta-

bolic rates. In addition, multiple probe substrates

for complex P450 enzymes such as CYP3A4

(midazolam, testosterone, and felodipine), where

inhibition has been demonstrated to be substrate-

dependent in some cases (Wang et al. 2000),

must be used for a comprehensive assessment of

inhibition of this important drug-metabolizing

enzyme.

In addition to screening for inhibition of the

major P450 enzymes, Walsky et al. (2005, 2006)

have concluded that CYP2C8 and CYP2B6 may

also be of potential risk of being inhibited by new

Fig. 2.4 Direct comparison of velocity (pmol/min/mg)

versus substrate (mM) enzyme kinetic plots for five tradi-

tional P450 probe substrates (tacrine, CYP1A2; dex-

tromethorphan, CYP2D6; (S)-mephenytoin, CYP2C19;

diclofenac, CYP2C9; and midazolam, CYP3A4) in a cock-

tail incubation (filled square) and singlet substrate/P450

incubations (filled triangle). Rates are generally lower

when incubations are conducted in the cocktail format.

Reprinted with permission from Journal of Pharmaco-
logical and Toxicological Methods (Zientek et al. 2008)
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NCEs. Screening efforts discovered a hit rate

against CYP2C8 (>50% inhibition at 30 mM) of

~23% when testing >200 compounds in one

discovery program. In particular, montelukast,

a leukotriene receptor antagonist used in the

treatment of asthma, was found to be an espe-

cially potent inhibitor of CYP2C8 (IC50 ¼ 0.02

mM). In similar efforts, 30 compounds were

found to inhibit CYP2B6 by greater than 50%

at 30 mM, most notably clopidogrel and ticlopi-

dine, with an IC50 of 0.02 and 0.15 mM, respec-

tively (Walsky et al. 2006). While CYP2C8 does

not metabolize a large percentage of drugs on the

market, testing for inhibition of this enzyme may

become of higher importance, especially for dis-

covery programs working in a chemical space

outside the Lipinski Rule of 5 guideline for

molecular weight (>500 amu), as the size of the

CYP2C8 active site rivals that of CYP3A4

(Schoch et al. 2004), metabolizing large mole-

cules such as the chemotherapeutic agent

TAXOL® (Rahman et al. 1994). These findings

suggest compounds should be tested for inhibi-

tion of CYP2C8 and CYP2B6 at some time prior

to dosing patients who may be taking medica-

tions metabolized by these enzymes.

An intense area of research within the phar-

maceutical industry in recent years is time-

dependent inhibition (TDI) of cytochrome P450

enzymes, where an increase in the extent of

inhibition is observed following pre-incubation

with the test inhibitor. This phenomenon may be

the result of generation of inhibitory metabolites

generated in situ, or mechanism-based inactiva-

tion (MBI), where the metabolism of a substrate

to a reactive electrophilic species (e.g. bioactiva-

tion) leads to either covalent modification of a

nucleophilic amino acid residue in the P450

active site or to the heme moiety itself (Ortiz de

Montellano 2005). MBI was originally described

by Silverman and George (1988) and there are

many mechanistic studies that must be performed

for a compound to qualify as a MBI. An alterna-

tive mechanism of inactivation is formation of

what is termed a metabolite-inhibitory complex

(MIC), where an intermediate species such as

nitroso or carbene noncovalently complexed

with the heme iron, also referred to as a pseudoir-

reversible mechanism because of the tight nature

of this complex (Ortiz de Montellano 2005).

Whether or not MIC formation is the operable

mechanism of TDI can easily be determined

by monitoring an increase in absorbance

448–455 nm on a spectrophotometer (Jones et al.

1999; Hutzler et al. 2006). For example, Fig. 2.5

demonstrates a typical MI complex formed

when troleandomycin (TAO) is incubated with

recombinant CYP3A4 Supersomes®, with a pro-

nounced time-dependent increase in absorbance

at ~455 nm. Regardless of mechanism, the end

Fig. 2.5 Formation of metabolite-inhibitory complex

(MIC) with troleandomycin, a known time-dependent

inhibitor of CYP3A4, when incubated with 0.1 pmol/mL
of CYP3A4 Supersomes®. There is a clear time-dependent

increase in absorbance at 455 nm, indicative of MIC

formation, in this case due to nitroso intermediate com-

plexing with heme iron. Spectra were collected using a

Hitachi U3300 dual-beam spectrophotometer
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result from a pharmacokinetic perspective is

likely similar: potential increase in exposure of

a co-administered substrate of the impacted met-

abolic pathway. Failure to consider this mecha-

nism may lead to drastic underestimation of the

magnitude of a clinical DDI.

The mechanism of inactivation may also

be relevant as it pertains to drug toxicity. It

is known, for example, that inactivation of

CYP2C9 by tienilic acid results in covalent mod-

ification of the 2C9 apoprotein (Lopez-Garcia

et al. 1994), which is proposed to result in an

immunogenic response, providing a strong link

to observed hepatotoxicity (Lecoeur et al. 1994).

There are numerous reviews on the subject of

clinical drugs that behave as mechanism-based

inactivators of CYP3A4 (Zhou et al. 2004;

Hollenberg et al. 2008), as well as comprehen-

sive reviews that summarize the functional groups

typically susceptible to bioactivation (Fontana

et al. 2005; Kalgutkar et al. 2007). In addition

to reviews in the literature, many pharmaceutical

companies have also developed their own data-

base of “structural alerts,” summarizing functional

groups that may undergo metabolic activation.

These alerts can be used by drug metabolism

scientists and medicinal chemists as a guide for

avoiding or engineering out the risk of TDI of

P450 when designing small molecules for thera-

peutic targets.

The in vitro assay design for assessing the

kinetics of TDI is quite complex. Briefly, a pri-

mary incubation, containing the enzyme system

of choice (typically recombinantly expressed

P450s or human liver microsomes), test inac-

tivator at various concentrations, and NADPH

(or NADPH regeneration system) is initiated,

and aliquots from this incubation are subse-

quently taken at various times (typically up to

30 min) and diluted into a secondary incubation

containing a probe substrate at a concentration

�4-fold Km to measure residual enzyme activity.

It is imperative that if HLMs are used as the

enzyme source in the primary assay, a low pro-

tein concentration (mg/ml) be used to minimize

nonspecific binding of the test inactivator, which

may lead to false negative results for highly

bound drugs (unpublished observations). From

these kinetic studies, the ability to use in vitro

time-dependent inhibition (TDI) data to predict

the magnitude of a clinical DDI requires the

estimation of kinetic parameters kinact (the maxi-

mal rate of inactivation) and KI (the concentra-

tion of inactivator resulting in half the maximal

rate of inactivation), described in the following

equation:

kobs ¼ kinact � ½I�=KI þ ½I�:

As a result of this complex assay design, the

pharmaceutical industry has sought alternative

screening approaches to enable higher through-

put assessment of TDI earlier in the drug dis-

covery process, such as abbreviated inactivation

studies with one or two concentrations of test

compound and a single pre-incubation time to

assess percent loss in activity over a fixed period

of time relative to a solvent control (Watanabe

et al. 2007). Interpreting data from TDI screening

studies is often challenging, but the general con-

sensus is if a NCE causes more than 20–25%

loss of activity following a 30 min pre-incubation,

then follow-up studies to characterize the kinetics

of inactivation may be warranted (Grimm et al.

2009). In addition, IC50-shift studies, where probe

substrate is added after a pre-incubation with mul-

tiple concentrations of test compound, may be

conducted to assess the risk for TDI. While the

debate about the predictive ability of IC50-shift

data is on-going, reports have shown a good rela-

tionship between shifted IC50 (measured after pre-

incubation) and the kinact/KI ratio (Obach et al.

2007; Berry and Zhao 2008; Grim et al. 2009),

which suggests IC50-shift assays may be useful

not only for identifying potential TDI, but also

for estimating the kinetics of inactivation.

As previously mentioned, accurate estimation

of the kinetics of inactivation (kinact and KI) is

critical to predicting the magnitude of any poten-

tial clinical DDI. As demonstrated by Ghanbari

et al. (2006), following an exhaustive effort to

assemble and compare incubation conditions

from literature reports of mechanism-based inac-

tivators, the in vitro assay design and subsequent

data analysis varies considerably between labs.

In particular, protein concentration in the
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primary assay, dilution factor into the secondary

activity assay, pre-incubation times, correction

for decreased enzyme activity in the absence of

inhibitor, and probe substrate concentration rela-

tive to Km in the secondary activity assay, all

critical to the accurate estimation of kinact and
KI, were identified as being variable. An addi-

tional report also focused on assay design for

TDI (Van et al. 2006), and should be referred to

when questioning the impact on estimation of

inactivation kinetics for the purpose of predicting

clinical DDIs (discussed in Sect. 2.4). An impor-

tant point worth mentioning is that on occasion,

biphasic inactivation plots may be observed, as

was shown by Hutzler et al. with PH-302, an

inactivator of CYP3A4 (Hutzler et al. 2006,

Fig. 2.6). When biphasicity is observed, it is the

initial linear kinetic phase that should be consid-

ered and modeled, similar to metabolic stability

data from substrate depletion studies for estimat-

ing intrinsic clearance (Clint), so that one is not

at risk for underpredicting the magnitude of

a DDI. Thus, it is critical to include sufficiently

early time points (<5 min) when conducting

in vitro TDI studies to enable characterization

of the initial inactivation kinetic phase. Addi-

tional studies that may be conducted in order to

understand the mechanism of time-dependent

inhibition include the following (but are not

required from a regulatory perspective), which

were discussed in a recent article describing

results of an industry-wide PhRMA survey on

assessment of time-dependent inhibition of drug

metabolizing enzymes (Grimm et al. 2009):

1. Estimation of partition ratio (a measure of

biochemical efficiency);

2. Dialysis or microsome washing to establish

reversibility;

3. Ferricyanide treatment or spectral studies to

diagnose metabolite inhibitory complex (MIC)

formation; and

4. Protection of inactivation by addition of com-

peting substrate/inhibitor, reduced glutathione

(GSH), and reactive oxygen scavengers such

as catalase and superoxide dismutase.

When a compound has advanced to the point

of clinical candidate nomination, yet still carries

with it the apparent risk of P450 TDI, it is critical

to consider all of the clearance pathways of

the time-dependent inhibitor, particularly meta-

bolic. Raloxifene serves as a classic example of

how this may be critical to a comprehensive risk

assessment of time-dependent inactivation of

P450. In vitro systems where metabolism is

essentially forced to proceed via P450 (e.g.

recombinant P450 or human liver microsomes),

represent the most sensitive system for evaluat-

ing TDI, especially in recombinant systems such

as CYP3A4 Supersomes®, where the catalytic

activity is known to be markedly higher than

Fig. 2.6 Demonstration of biphasic time-dependent

inhibition (TDI) data. (a) Log % remaining activity

versus pre-incubation time (0–10 min), illustrating

time-dependent inhibition (TDI) of CYP3A4 by PH-

302 (0–20 mM). (b) Data from both the initial and

terminal phases were subsequently subjected to a

Kitz–Wilson analysis and shown to produce distinct

inactivation kinetic parameters (initial phase kinact
¼ 0.08 min�1, KI ¼ 1.2 mM, terminal phase kinact
¼ 0.06 min�1, KI ¼ 23.8 mM). Reprinted with permis-

sion from Chemical Research in Toxicology (Hutzler

et al. 2006)
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human liver microsomes. Raloxifene is reported

to cause time-dependent inhibition of CYP3A4,

and is also bioactivated to reactive metabolite

species in vitro (Chen et al. 2002; Pearson et al.

2007), yet remains a relatively safe drug. Raloxi-

fene is predominantly cleared by glucuronidation

in the gut (Dalvie et al. 2008), and this metabolic

clearance is proposed to protect the liver from

high exposure to raloxifene. While this may

serve as an extreme case, it points to the impor-

tance of careful consideration of the complete

distributional properties of any drug that shows

time-dependent inhibition in early screens. In an

effort to account for the complete metabolic path-

ways of compounds that appear to be time-depen-

dent inhibitors of CYP3A4, inactivation assays in

hepatocytes have been conducted and reported

(Zhao et al. 2005; McGinnity et al. 2006; Zhao

2008).

2.5 Reaction Phenotyping
and Victim DDIs

Reaction phenotyping is the experimental proce-

dure by which one attempts to identify which

human enzymes contribute to the metabolism of

a NCE, including estimation of relative contribu-

tions (e.g. fraction metabolized, fm) of enzymes

to the overall metabolic clearance (Williams

et al. 2003). A thorough understanding of the

metabolic pathways of a drug molecule is critical

to the prediction of pharmacokinetic DDIs,

where inhibition of a metabolic pathway by a

co-administered inhibitor (called the perpetrator)

results in increased exposure of the victim drug

(e.g. “victim” drug–drug interaction). Two drugs

withdrawn from the market due to DDIs and

subsequent unacceptable safety profiles are ter-

fenadine and cerivastatin. Reaction phenotyping

information is also useful for the prediction of

interindividual variability in drug exposure in the

clinic, especially relevant when polymorphic

enzymes such as CYP2C9, 2C19, 2D6, and

3A5 contribute significantly to overall clearance,

shown to impact the clinical exposure of drugs

such as celecoxib (Tang et al. 2001), sertraline

(Wang et al. 2001), and metoprolol (Ismail and

Teh 2006) in poor metabolizers. CYP2B6 has

also been recently described as the most poly-

morphic P450 in humans (Zanger et al. 2007),

and metabolizes many relevant therapeutics such

as efavirenz, nevirapine, and bupropion. Other

non-P450 drug metabolizing enzymes shown to

be polymorphically expressed include UGT1A1

and N-acetyl transferase 2 (NAT2) (Tomalik-

Scharte et al. 2008), however, the science behind

non-CYP DDIs generally lags behind the

P450 enzymes. As a result of the aforementioned

examples, there is a clear need to understand the

potential variability in efficacy and toxicity of all

new drugs, and thus, it is a requirement from

global regulatory agencies that the metabolic

pathways of an NCE be characterized prior to

submission of any new drug application (NDA).

As indicated in a recent review by Zhang et al.

(2007), it is the fraction of total clearance (CL) by

metabolism (fm) and contribution of each individ-

ual CYP to total CYP-mediated metabolism (fm,

CYP) that determines the magnitude of a drug

interaction, whether it is by chemical inhibition

or compromised metabolism due to polymorphic

expression of the drug-metabolizing enzyme.

Cltotal ¼ CLhepatic þ CLrenal þ CLnonhepatic

Typically, the likelihood of a victim DDI is

reduced when an NCE is cleared <60% by any

one metabolic pathway, especially a polymorphi-

cally expressed drug metabolizing enzyme. As

shown in Fig. 2.7, the magnitude of DDI (AUCI/

AUC) increases substantially as the fraction

metabolized (fm,CYP) exceeds 0.6.

“Definitive” reaction phenotyping can only be

performed with a radiolabeled human ADME

study, which often is not performed until late in

drug development after a drug candidate has

demonstrated some measure of safety and effec-

tiveness in patients (e.g. after “proof-of-concept”).

As a result, reaction phenotyping studies to sup-

port early clinical plans must be done using non-

labeled (e.g. cold) test drug, and often without

the advantage of having authentic metabolite

standards. A traditional approach in discovery

would include substrate depletion methods in

the in vitro system of choice (e.g. human liver
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microsomes with 1 mM test compound), where

selective chemical inhibitors or antibodies of the

individual P450s would be coincubated to deter-

mine the effect on the in vitro intrinsic clear-

ance (Clint). Table 2.1 includes recommended

P450 inhibitors to use in reaction phenotyping

studies, as well as recommended concentrations

to optimize selectivity. Complete inhibition by

chemical inhibitors while maintaining selectivity

has proven to be challenging, which complicates

interpretation of reaction phenotyping data. Rock

et al. (2008) report that typically, maximal inhi-

bition of CYP3A activity with a chemical inhi-

bitor such as ketoconazole is only ~80%. They

showed inhibition >99% could be achieved by

including both CYP3A chemical inhibitor and

antibody, leading to improved accuracy in esti-

mating fraction metabolized. Along those same

lines, the use of 1-aminobenzotriazole (1-ABT)

as a nonselective P450 inhibitor in phenotyping

studies to decipher P450 from non-P450

mediated metabolism has recently been called

into question. Linder et al. (2009) demonstrated

that while 1-ABT does inhibit all P450 enzymes,

it is only somewhat selective and is especially

weak against CYP2C9.

In order to effectively use the substrate deple-

tion approach, there should be sufficient deple-

tion of substrate to measure a difference in Clint
in the presence of an inhibitor. Often, drug mole-

cules are slowly metabolized in HLMs (half-life

> 60 min), and thus, alternative methods must be

employed, such as the use of recombinant P450

enzymes (rCYPs) with the appropriate scaling

factors included for predicting fm,CYP. For exam-

ple, use of an intersystem extrapolation factor

(ISEF), which accounts for differences in enzy-

matic activity between the recombinant system

and human liver microsomes, as well as the liver

abundance of the CYP in question, has been

recommended (Proctor et al. 2004).

Monitoring for metabolite formation may also

be a valuable approach, as this is often easier to

observe than depletion of substrate. Figure 2.8

demonstrates how use of rCYPs and metabolite

formation in a single experiment for slow-turn-

over compounds may be complementary, as

formation of metabolites M1 and M2 were both

inhibited by coincubation with 1 mM ketocona-

zole, and were also shown to be formed with

rCYP3A4. If predictions of fm,CYP using data

from chemical and/or antibody inhibitors and

rCYPs leads to conflicting results, then a third

approach such as correlation analysis is recom-

mended. A more detailed description of reac-

tion phenotyping methods has been provided

by Wienkers and Stevens (2003).

2.6 Induction of Cytochrome P450
and DDIs

Induction of cytochrome P450 enzymes is also

of concern for new molecular entities in drug

development, as inducers of P450 enzymes are

known to increase drug elimination and cause

decreased exposure, resulting in the potential

for altered pharmacodynamic profile, and even-

tual therapeutic failures. For example, acute

transplant rejection with cyclosporine and failure

of oral contraceptives when co-administered with

Fig. 2.7 Simulated effect of fraction metabolized (fm) on
the change in AUC ratio (AUC of victim drug in presence

of co-administered inhibitor/AUC minus inhibitor). The

AUC ratio begins to drastically increase with increase in

fm of victim drug, especially when the [I]/Ki ratio exceeds

2 (e.g. when in vivo inhibitor concentration > Ki). Rep-

rinted with permission from Drug Metabolism and Dispo-
sition (Rock et al. 2008)
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rifampicin has been reported (Hebert et al. 1992;

LeBel et al. 1998). In addition, the potential for

toxicity due to increase in reactive metabolite

formation exists when induction of an enzyme

involved in a bioactivation metabolic pathway

occurs (e.g. acetaminophen and hepatotoxicity).

Notable inducers of cytochrome P450 include

rifampin, phenobarbital, phenytoin, ritonavir,

carbamezepine, and St. John’s Wort, an herbal

treatment for mild to moderate depression (Luo

et al. 2004). During the past decade, substantial

advances have been made in the technology for

investigating induction of cytochrome P450

enzymes. Thus, a broader understanding of the

mechanisms regulating expression of drug meta-

bolizing enzymes (and transporters) is now in

place. It is now widely accepted that induction

of CYP3A4 expression is initiated by binding

and transactivation of the nuclear receptor

human pregnane X receptor (hPXR) (Lehmann

et al. 1998; Bertilsson et al. 1998). In addition,

CYP3A7, CYP2B6, CYP2C8, CYP2C9,

UGT1A1, MDR1 (p-glycoprotein), BSEP, and

MRP2 appear to be inducible by the transactiva-

tion of hPXR (Sinz et al. 2006; Olinga et al.

2008). Constitutive androstane receptor (CAR),

glucocorticoid receptor (GR), and aryl hydrocar-

bon receptor (AhR) have all been shown to play a

role in the induction of CYP enzymes (Lin 2006).

Due to the prevailing role of CYP3A4 in

elimination of drug molecules, there is increased

potential for clinically significant DDIs when

expression of this DME is modulated. Thus, the

drug industry has devoted much attention to

implementation of in vitro assays to evaluate

the potential for NCEs to induce CYP3A4,

despite the fact that the number of drugs causing

metabolic induction in patients appears to be

Fig. 2.8 Chromatogram illustrating the value of metabo-

lite formation approach when conducting in vitro reaction

phenotyping studies with low-turnover drug molecules,

which precludes the use of traditional approaches such as

coincubation with specific chemical/antibody inhibitors

(unpublished internal data). This figure demonstrates

formation of M1 and M2 metabolites in both HLMs and

recombinant CYP3A4 Supersomes®, and also inhibition

of metabolite formation in HLMs by coincubation with

ketoconazole, a known potent inhibitor of CYP3A4
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small (Smith 2000). The gold standard approach

for investigating induction potential is the use of

primary cultures of human hepatocytes (Lin

2006), while cryopreserved hepatocytes have

also been shown to produce similar induction

response (Roymans et al. 2005). However, the

difficulty in acquiring quality hepatocytes on a

routine basis is extremely challenging. To

address this, binding and reporter gene assays,

which are amenable to higher throughput, have

been developed for use in early drug discovery

(Jones et al. 2002; El-Sankary et al. 2001).

Despite rapid throughput, the disadvantage of

the PXR binding assay is that it cannot distin-

guish between agonists and antagonists, while

reporter gene assays only test one mechanism

of induction. Nonetheless, comparison of activa-

tion of human PXR in a reporter gene assay to

induction observed in human hepatocytes

resulted in a reasonable correlation (Luo et al.

2002). In a separate study, activation of PXR was

shown to be indicative of induction signal in the

clinic (Cui et al. 2008), suggesting reporter gene

assays may be suitable in an early drug discovery

screening paradigm. Lastly, Sinz et al. conducted

an extensive study with 170 xenobiotics in a

hPXR transactivation assay, and were able to

take a hit rate of 54% and conclude only 5%

the compounds tested were likely to induce

CYP3A4 clinically after consideration of thera-

peutic Cmax, distribution, route of administration,

dosing regimen, liver exposure, and potential to

inhibit CYP3A4 (Sinz et al. 2006), pointing to

the risk of overinterpreting results from reporter

gene assays.

With the known complexities of screening

for induction using reporter gene assays, and

the poor availability of primary human hepato-

cytes, the search for an intermediate, yet rele-

vant in vitro model for P450 induction is on-

going. In 2004, the use of an immortalized

human hepatocyte cell line (Fa2N-4) was intro-

duced (Mills et al. 2004) with the advantage of

easier culturing and higher throughput poten-

tial relative to primary human hepatoctyes.

Ripp et al. (2006) went on to test 24 com-

pounds (18 positive, and 6 negative for induc-

tion based on previous data from human

hepatocytes) in the Fa2N-4 cells and found

all 18 positive controls caused a >2-fold max-

imal induction, while the six negative controls

caused <1.5-fold induction, suggesting these

immortalized cells could be used reliably to

assess risk of induction. However, reports

since have clearly shown limitations to the

Fa2N-4 cells, namely low expression of CAR,

a mechanism of both CYP3A4 and CYP2B6

induction, as well as hepatic uptake transpor-

ters (e.g. OATP1B1), concluding Fa2N-4 cells

cannot replace primary human hepatocytes as

an in vitro model system for induction (Hari-

parsad et al. 2008; Kenny et al. 2008). Most

recently, HepaRG cells have been shown to

respond to PXR, CAR, and AhR activators,

resulting in induction of CYPs 1A1, 1A2,

2B6, 2C8, 2C9, 2C19, and 3A4 (Kanebratt

and Andersson 2008). The apparent success

of HepaRG cells in the prediction of induction

potential was further supported by a recent

study where many of the aforementioned meth-

ods for assessing induction were compared

(McGinnity et al. 2009). Similar to CYP3A4

time-dependent inhibition, a recent PhRMA

survey of current practices for assessment of

induction was published (Chu et al. 2009).

From this collection of information from 14

PhRMA member companies, some recommen-

dations were made as to how to conduct

in vitro and in vivo studies evaluating induction.

Worth noting, recommendations for assessment

of induction included use of fresh or plateable

cryopreserved hepatocytes, treatment with NCE

for 2–3 days, measurement of catalytic activity,

and at least three donor hepatocytes. For more

information and guidance on this subject, see

Chu et al. (2009).

Obviously, advantages and disadvantages of

each in vitro induction assay (see Table 2.2) need

to be weighed against the needs of the particular

company. As we continue to explore new chemi-

cal space in the drug industry, it would be pru-

dent to assess the risk of enzyme induction in an

in vitro system containing the full complement of

nuclear receptors, DMEs and transporters prior to

clinical development, in order to gain a compre-

hensive view of induction risk and enable
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identification of novel origins of clinically rele-

vant induction DDIs.

2.7 Predicting and Simulating
Clinical DDIs

2.7.1 Perpetrator DDI (Competitive
and Time-Dependent Inhibition)

The early, reliable prediction of DDIs using

in vitro and in silico methodologies are important

in drug discovery and development for candidate

design and prediction of the human in vivo situa-

tion. Understanding the mechanisms of potential

DDIs is critical to the successful advancement of

drug candidates, as patient safety and labeling

restrictions from a commercial standpoint are of

the utmost importance in the pharmaceutical

industry. The science of using in vitro inhibition

data (e.g. Ki or IC50) to predict clinical DDI

risk has advanced considerably in recent years,

and thus has become more widely accepted,

particularly by regulatory agencies such as the

FDA, who have issued a regulatory guidance

on in vitro drug interaction studies (www.fda.

Table 2.2 Advantages and disadvantages of current in vitro assays used to evaluate induction of drug metabolizing

enzymes/transporters

In vitro assay Advantages Disadvantages Reported

to be

predictive

of clinical

response?

References

Binding assays High throughput Does not differentiate

between agonists and

antagonists (e.g. potential

for false positive)

No Jones et al. (2002)

Low cost

Reporter gene

assay (hPXR,

AhR, etc.)

Medium-to-high throughput;

SAR

Unable to assess other

induction mechanisms

Yes El-Sankary et al.

(2001), Luo et al.

(2002), Cui et al.

(2008)

Primary human

hepatocytes

Gold standard for evaluation

of induction; full complement

of DMEs, nuclear receptors,

and transporters

Routine access to high

quality cells a challenge;

low throughput; variability

between donors; cost

Yes Chu et al. (2009)

Cryopreserved

human

hepatocytes

Availability Cost; variable response No Roymans et al.

(2005)

Human liver

slices

Full complement of DMEs,

nuclear receptors, and

transporters

Availability No Olinga et al.

(2008)

HepG2 cells Robust induction response to

CYP1A inducers

mRNA levels of most

CYPs lower than primary

hepatocytes; unresponsive

to some CYP3A4 inducers

No Harmsen et al.

(2008)

Immortalized

hepatocytes

(Fa2N-4)

Ease of culture and handling;

good response to CYP3A4

and 1A2 inducers; apparently

able to relate data to clinic

Utility limited by very low

expression of CAR and

several other drug

transporters

Yes Ripp et al. (2006),

Hariparsad et al.

(2008), Kenny

et al. (2008)

HepaRG cells Functionally resemble

primary cultured human

hepatocytes

Expression of enzymes and

nuclear receptors, and

response to enzyme

inducers varies depending

on media and culture

conditions; cost

Yes Aninat et al.

(2006), Kanebratt

and Andersson

(2008),

McGinnity et al.

(2009)
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gov/cder/guidance/6695dft.htm). The underly-

ing mechanisms of DDIs are typically either

competitive inhibition of drug clearance, time-

dependent inhibition (TDI) or inactivation of

drug clearance, and induction, which may result

in increased drug clearance and loss of efficacy.

Since the cytochrome P450 family of drug-meta-

bolizing enzymes remain the most important

enzymes that are involved in the clearance of

drug molecules, they will be the focus of this

discussion, although the concepts may be appli-

cable to any enzyme involved in drug clearance.

The initial step in conducting a DDI predic-

tion is the generation of the in vitro inhibition

parameter Ki or IC50. Typically, IC50 data is

generated early in the discovery continuum due

to the ease of conducting this assay, relative to

generating a Ki in vitro. An approach often uti-

lized is conversion of the IC50 to an estimated Ki

using the Cheng-Prusoff equation (Equation 1 in

Table 2.3), assuming a competitive inhibition

mechanism (Cheng and Prusoff 1973). This

in vitro derived inhibition constant is then used

along with the projected in vivo inhibitor con-

centration ([I]in vivo) in basic equations such as

Equation 2. The general relationship of [I]in vivo

to Ki is shown in Fig. 2.9, and while useful for

initial assessment of clinical DDI risk, more

sophisticated methodologies with additional

input parameters may be used such as the Row-

land-Matin equation (Equation 3). Equation 3

incorporates the fraction of the probe substrate

(e.g. victim drug) metabolized by CYP (fm(cyp)),

a key factor to the magnitude of any clinical

drug–drug interaction.

A topic of much discussion and debate is what

concentration to use for [I]in vivo, or the in vivo

inhibitor concentration (e.g. total systemic Cmax,

free systemic Cmax, Caverage, hepatic portal inlet,

etc.). While it is impossible to measure the actual

concentration that the enzyme is exposed to

within the liver, the best estimates that exist are

either the systemic drug level, which is directly

measurable, or the hepatic portal inlet, which

makes sense conceptually given that for an oral

drug absorbed via the portal vein, the liver will

be exposed to higher drug concentrations than

the systemic circulation. Additional uncertainly

is brought into the discussion as the question of

the role of protein binding is on-going (e.g. the

“free-drug” hypothesis). The most extensive

work to understand and compare the differences

associated with using systemic vs. estimated

hepatic portal inlet concentrations (and free vs.

total) has been reported by Obach et al. (2006).

The conclusion from this work was that for com-

petitive (e.g. reversible) inhibitors, the use of

estimated free-portal-vein Cmax for [I]in vivo

yielded the best predictions of clinical DDI.

Equation 4, originally proposed by Kanamitsu

et al. (2000), may be used to estimate the free-

portal-vein Cmax for a given dose. Interestingly,

work by the same group (Obach et al. 2007;

Obach 2009) evaluating mechanism-based inac-

tivation (e.g. time-dependent inhibition) found

that the use of free systemic Cmax for [I]in vivo

yielded the most accurate overall DDI predic-

tions. The reasons why different surrogate values

for [I]in vivo appear to work best for competitive

and time-dependent inhibition are not clear.

Regarding mechanism-based inactivators, it is

important to characterize this phenomenon so as

to not underpredict the magnitude of the clinical

interaction. Accurate estimates of inactivation

kinetic parameters kinact and KI (discussed earlier

in this chapter) are key to predicting the clinical

DDI. Equation 5, a variation of the Rowland-

Matin equation (Equation 4), is reported to

yield accurate predictions of clinical DDI (May-

hew et al. 2000; Obach et al. 2007; Foti and

Wahlstrom 2008). Yet another important param-

eter of uncertainty is the kdeg, the normal first-

order degradation rate of the affected enzyme.

This uncertainty is due to the fact that no accu-

rate method for determining kdeg in humans

exists. The impact of using different kdeg values
has been reviewed by Yang et al. (2008).

An additional component to accurate DDI

predictions is the contribution of the gut to the

overall first-pass clearance of drug, particularly

for CYP3A4 substrates. For some substrates, the

contribution of the gut to first-pass clearance is

significant (Galetin et al. 2006, 2007, 2008),

despite the fact that there is ~100-fold less
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Table 2.3 Summary of equations that may be used for prediction of clinical drug–drug interaction risk using in vitro

data

Name Equation Descriptors References

Equation 1

(Cheng-

Prusoff)

Ki ¼ IC50

1þ ½S�
Km

Ki ¼ Inhibition constant Cheng and

Prusoff

(1973)
IC50 ¼ Concentration at which 50%

inhibition is observed in vitro

Km ¼ Michaelis–Menten constant and

the concentration of probe substrate [S]
used in in vitro IC50 experiment (e.g.

[S] ¼ Km)

Equation 2
1þ ½I�in vivo

Ki

Ki ¼ Inhibition constant Wienkers and

Heath (2005)[I]in vivo ¼ Concentration of inhibitor

in vivo

Equation 3

(Rowland-

Matin)

AUCi

AUC
¼ 1

fmðcypÞ
1þ ½I�in vivo

Ki

þ ð1� fmðcypÞÞ
AUCi ¼ Exposure of victim drug

when co-administered with inhibitor

Rowland and

Martin (1973)

AUC ¼ Exposure of victim drug when

given without inhibitor

fm(cyp) ¼ Fraction of substrate

metabolized by CYP

[I]in vivo ¼ Concentration of inhibitor

in vivo

Ki ¼ Inhibition constant

Equation 4 ½I�u;portal ¼ fu �
�
Cmax þ Ka � Fa � Dose

Qh

�
fu ¼ Fraction unbound Kanamitsu

et al. (2000),

Obach et al.

(2006)

Cmax ¼ Maximal systemic

concentration

Ka ¼ Absorption rate constant

Fa ¼ Fraction of dose absorbed

Qh ¼ Hepatic blood flow (21 ml/min/

kg)

Equation 5 AUCi

AUC
¼ 1

fmðcypÞ
1þ kinact �½I�in vivo

KI �kdeg
þ ð1� fmðcypÞÞ

AUCi ¼ Exposure of victim drug

when co-administered with inhibitor

Obach et al.

(2007)

AUC ¼ Exposure of victim drug when

given without inhibitor

fm(cyp) ¼ Fraction of substrate

metabolized by CYP

[I]in vivo ¼ Concentration of inhibitor

in vivo

kinact ¼ Maximal rate of inactivation

determined from in vitro study (units

are min�1)

KI ¼ Concentration of inactivator that

yield one-half the maximal rate of

inactivation (mM)

kdeg ¼ Normal rate of enzyme

degradation (for CYP3A4, a value of

0.00032 min�1 is typically used)

Equation 6 F0
g

Fg

¼ 1

Fgþð1�FgÞ �
 

1

1þ� kinact �½I�gut
kdeg�ðKIþ½I�gutÞ

�
! F0

g ¼ The fraction of the drug that

remains intact following oral dose

Wang et al.

(2004),

Obach et al.

(2007)
kinact ¼ Maximal rate of inactivation

determined from in vitro study (units

are min�1)

KI ¼ Concentration of inactivator that

yield one-half the maximal rate of

inactivation (mM)

(continued)
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CYP3A4 in the gut relative to the liver (Shen

et al. 1997). For consideration of the gut in

DDI, Equation 6 was proposed by Wang et al.

(2004). Within this equation, the component

[I]gut is equally important, and may be estimated

using Equation 7.

2.7.2 DDI Predictions for Induction

Prediction of DDIs due to induction of cyto-

chrome P450 enzymes is equally important, yet

has proven difficult, primarily due to multitude

of in vitro models of induction, and extrapolation

Table 2.3 (continued)

Name Equation Descriptors References

kdeg ¼ Normal rate of enzyme

degradation (for CYP3A4, a value of

0.00048 min�1 is typically used)

[I]gut ¼ Concentration of drug in the

intestine

Equation 7 ½I�gut ¼
ka � Fa � Dose

Qg

ka ¼ Absorption rate constant Obach (2009)

Fa ¼ Fraction of dose absorbed

Qg ¼ Villous blood flow (3.5 ml/min/

kg)

Equation 8
RIS ¼ Cu � Emax

Cu þ EC50

Cu ¼ Unbound efficacious

concentration

Ripp et al.

(2006), Fahmi

et al. (2008)Emax ¼ Maximal observed induction

in vitro

EC50 ¼ concentration of drug that

yield 50% induction in vitro

Fig. 2.9 The relationship between the in vivo inhibitor

concentration ([I]in vivo) to the in vitro inhibition constant

(Ki) as it relates to fold-increase in AUC of a victim drug.

As the [I]/Ki ratio increases, the fold-increase in AUC

increases. Reprinted with permission from Nature
Reviews (Wienkers and Heath 2005)
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of in vitro induction data to the clinic. Lately,

however, several reports have been published

which have shown progress in predicting DDI

resulting from induction. A novel technique for

predicting the magnitude of clinical interaction

due to induction of CYP3A was developed using

the Fa2N-4 immortalized human hepatocyte line

(Ripp et al. 2006). This approach is based on

combining in vitro induction parameters (EC50

and Emax) with the efficacious free plasma con-

centrations to calculate a relative induction score

(RIS) (Equation 8), which was then correlated to

the magnitude of clinical DDI for midazolam or

ethinyl estradiol, with r2 values of 0.92 and 0.93,
respectively (Ripp et al. 2006). This RIS method

has since been assessed using human cryopre-

served hepatocytes with comparable success, as

shown in Fig. 2.10 (Fahmi et al. 2008).

2.7.3 SimCYP

SimCYP# (SimCYP# Limited, Sheffield, UK)

is a computer simulation program developed for

the prediction of metabolic DDIs that applies fun-

damental scaling concepts (Houston 1994) for

the prediction of in vivo clearance from in vitro

metabolism data (Rostami-Hodjegan and Tucker

2007; Jamei et al. 2009). The SimCYP model

requires a number of inputs including molecular

weight and physicochemical properties of themol-

ecule (LogP, pKa and acid/base/neutral character

together withmeasured fu(plasma) and blood:plasma

ratio), as well as predicted clearance pathways

and pharmacokinetic properties in humans, if

available. SimCYP uses a physiologically based

pharmacokinetic model that enables modeling

of the dynamic nature of in vivo inhibitor and

substrate concentrations, as well as the interindi-

vidual variability among the population.

The effects of perpetrator DDIs are predicted

using the relationship between the inhibitor con-

centration in vivo and the Ki determined in vitro.

From the IC50 values generated in the relevant

in vitro system, Ki values are determined assum-

ing competitive inhibition (e.g. Cheng-Prusoff

Equation), unless a Ki value has been estimated

experimentally. The values determined for

the appropriate CYPs are used together with an

estimate of its in vivo clearance and absorption

characteristics. SimCYP# incorporates the pop-

ulation variability in each parameter (e.g. CYP

abundance) by applying a Monte Carlo approach.

Using appropriate clinical probes (Table 2.4), the

potential for NCE compounds to be involved in a

DDI are then predicted. Physiological variability

is calculated automatically using databases

within SimCYP#, while pharmacokinetic varia-

bility can be incorporated by the user in the form

of a coefficient of variation. Clinical trials of

Fig. 2.10 Relationship between the calculated Relative

Induction Score (RIS) and clinical observations with

co-administered midazolam and ethinyl estradiol with

numerous known CYP3A inducers using human cryopre-

served hepatocytes. Observed correlations were

r2 ¼ 0.96 and 0.82, respectively. Reprinted with permis-

sion from DrugMetabolism and Disposition (Fahmi et al.

2008)
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various sizes can be simulated to determine the

effects of trial size on variability.

For victim drugs (substrates), CLint values for

the individual CYP enzymes are used as inputs

for DDI prediction using numbers from HLM

incubations or from recombinant human CYPs

with appropriate Intersystem Extrapolation Fac-

tors (ISEF) correction (Proctor et al. 2004). These

data can also be entered using Vmax and Km infor-

mation for the individual CYPs if these are avail-

able, allowing saturation of metabolic clearance

to be simulated. Since data for clearance and

inhibition (inhibition constants for reversible

(Ki) or time dependent (KI, kinact) inhibitors or

induction (Ind50, Indmax, Ind slope) are also

incorporated in the model, cumulative effects

may be modeled simultaneously for complex

drugs like ritonavir. Activities for enzymes cata-

lyzing non-CYP mediated metabolism are also

inputs in the SimCYP# model so that fm(CYP)

(the fraction of metabolism mediated by a partic-

ular CYP), is calculated appropriately. In addi-

tion, undefined HLM CLint (e.g. for FMO

mediated metabolism) and other enzymes can be

used and incorporated as a component of

the overall clearance using appropriate scaling

factors. In this way, all known pathways of

metabolic clearance can be incorporated in a

SimCYP# model.

2.8 Transporters and DDIs

While alteration of drug metabolizing enzymes is

most often the cause of DDIs, there is increasing

evidence this may not entirely explain the phar-

macokinetic variability observed with some drug

molecules (Zhang et al. 2008). For example, the

mechanism of the digoxin–quinidine interaction

(Hager et al. 1979) was not truly understood until

relatively recently (Fromm et al. 1999). Thus, as

the science behind drug transporters continues

to evolve, their role in absorption, distribution,

and elimination of drugs is becoming one of the

topics of highest interest in the ADME discipline.

Figure 2.11 demonstrates the numerous uptake

and efflux transporters expressed in the hepato-

cyte, which can complicate the distribution of

drug molecules. The FDA has issued a guidance

(September 2006) that includes a decision tree to

determine if clinical in vivo interaction studies

are warranted based on in vitro data. P-glycoprotein

(P-gp) is able to transport a diverse range of

compound structures, similar to CYP3A4, and

is thus the most studied and understood efflux

transporter. The expression of P-gp in the body is

high in tissues such as the gut, blood–brain bar-

rier and in organs of drug clearance such as the

liver and kidney, making it of significance in the

distribution and elimination of drugs.

Interestingly, a recent publication has sug-

gested DDIs solely related to P-gp are generally

not clinically relevant, as changes in pharmaco-

kinetics were modest, with only moderate

changes in drug exposure (Fenner et al. 2009).

For example, valspodar (PSC 833) is one of the

most potent inhibitors of P-gp known (IC50 ¼
0.02 mM) (Kawahara et al. 2000), yet in a clinical

DDI study, only a 76–211% increase in digoxin

AUC was observed (Kovarik et al. 1999), typi-

cally considered insignificant. However, if

digoxin or any P-gp substrate with a narrow

therapeutic index (TI) is the potential victim

drug, then a even a 25% change in drug exposure

Table 2.4 Recommended clinically used probes and inhibitors for perpetrator and victim SimCYP® simulation studies

CYP Perpetrator studies (clinical probe studied) Victim studies (clinical inhibitor studied)

1A2 Theophylline Fluvoxamine

2C9 S-warfarin Fluconazole

2C19 Omeprazole Omeprazole

2D6 Desipramine Paroxetine

Dextromethorphan

3A4 Midazolam Ketoconazole (potent)

Erythromycin (moderate)
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due to inhibition of P-gp may lead to unwanted

toxicities (e.g. digitalis for digoxin). As digoxin

is a commonly prescribed heart medication, in

vitro assessment of the potential for a drug inter-

action specifically with digoxin is warranted for

compounds progressing toward first-in-patient

(FIP) or proof-of-concept (POC) in clinical

development.

In vitro evaluation of whether an NCE is

a substrate or inhibitor of P-gp is relatively

straightforward, yet there are numerous assay

formats that may be utilized. It is recommended

in the FDA guidance document to use bidirec-

tional transport studies with either Caco-2 cells or

recombinant epithelial cell lines (MDCK_MDR1

or LLC-PK1_MDR1). In general, if the efflux

ratio (B ! A)/(A ! B) is �2 and addition of a

specific P-gp inhibitor decreases this efflux ratio

then the NCE is categorized as a potential P-gp

substrate. Use of a specific P-gp inhibitor is espe-

cially critical when Caco-2 cells are used, since it

is known other efflux transporters (e.g. BCRP

and MRP2) are expressed in this human cell

line (Taipalensuu et al. 2001). Follow-up studies

may then need to be performed to evaluate the

actual risk for a drug–drug interaction. A simple

decision tree adopted from Zhang et al. (2008) is

shown in Fig. 2.12. For early evaluation of an

NCE as a potential inhibitor of P-gp, the calcein-

AM assay, where inhibition of the P-gp-mediated

efflux of the fluorescent substrate (calcein) is

determined, has been useful in the discovery

setting (Tiberghien and Loor 1996; Feng et al.

2008). This assay should be used on an “as

needed” basis since, as previously mentioned,

most P-gp-mediated DDIs are not significant.

The gold-standard assay for assessing P-gp inhi-

bition includes the use of MDCK_MDR1 cells

and 3H-digoxin, and should be a conducted

where that results would be available prior to

the first study where digoxin may be as a possible

concomitant medication. To aid in use of in vitro

derived inhibition data with transporters, a deci-

sion tree for evaluation of NCEs as potential

Fig. 2.11 Schematic showing the numerous uptake

and efflux transporters that contribute to the distribution

of drug molecules within the hepatocyte. Currently,

P-gp (MDR1) is the most studied and understood efflux

transporter with respect to DDIs. However, the science

of transporters is rapidly evolving, evidenced by the

recent reports of DDI with statin drugs, reportedly due

to inhibition of uptake transporter OATP1B1
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inhibitors of P-gp has also been proposed by the

FDA in a recent report (Zhang et al. 2008), and is

shown in Fig. 2.13.

While P-gp clearly remains the most studied

transporter, several reports of transporter-

mediated DDI with transporters other than P-gp

have been published (Simonson et al. 2004; Trei-

ber et al. 2007; Seithel et al. 2007). Regarding

uptake transporters, OATP1B1 is of most interest

at this time due to the observed DDIs with HMG-

CoA-reductase inhibitors (e.g. statin drugs). For

an extensive review of OATP and OCT-mediated

DDIs, the reader is referred to a recent review on

this subject (Kindla et al. 2009). Despite these

clinical observations, at this point there has been

no consensus established for in vitro methods,

probe substrates or tool inhibitors to use for trans-

porters such as OATP1B1, BCRP, OATs and

OCTs, although an international working group

consisting of members from academia, industry,

and the FDA has been formed to establish some

guidelines in this area. It is likely that the knowl-

edge and understanding of transporter-mediated

DDI will progress significantly in the next few

years.

Lastly, it is worth mentioning, even though

not considered DDIs, inhibition of efflux trans-

porters multidrug resistance protein 2 (MRP2)

and bile salt export pump (BSEP) have been

shown to lead to certain toxicities. Specifically,

inhibition of MRP2 can lead to hyperbilirubine-

mia, while evidence exists that inhibition of

BSEP leads to increases in bile salts, and

subsequent cholestasis and hepatotoxicity, as

observed with nefazodone (Kostrubsky et al.

2006), and more recently with CP-724,714

(Feng et al. 2009). As a result, drug discovery

DMPK and toxicology programs have begun to

test compounds for their potential to inhibit these

hepatobiliary transporters.

Fig. 2.12 Decision tree for use as a guide in determining

if an NCE is a substrate for P-glycoprotein (P-gp). Net

flux ratio is calculated as FB�A/FA�B. A net flux ratio of

�2 is considered to be a positive signal for P-gp substrate

interaction. Use of a P-gp inhibitor is also recommended

in diagnosing P-gp substrate, and reduction of net flux

>50% or to unity is further evidence for P-gp interactions.

Additional data may be needed to decipher the clinical

relevance of in vitro data, including the potential contri-

bution from other efflux transporters (e.g. BCRP and

MRP2)
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2.9 The Future of DDI
Investigations

2.9.1 Polymorphic Metabolism
and DDI

Several of the human cytochrome P450 enzymes

(e.g. CYP2B6, 2C9, 2C19, 2D6, and 3A5)

are known to be polymorphically expressed to

different degrees in the human population. The

primary impact of these polymorphisms includes

reduced oral clearance for certain medications,

and subsequent increase in exposure, resulting

in potential for pharmacokinetic variability and

increased incidence of adverse events. A relevant

question clinically is whether individuals with

polymorphic expression are more or less suscep-

tible to a clinical DDI when an inhibitor is co-

administered. Understanding this relationship is

clearly important as dose adjustments in indivi-

duals with particular genotypes (e.g. poor meta-

bolizer or PM) may be different from a normal

“extensive” metabolizer (EM). It has been

reported that individuals possessing polymorph-

isms resulting in expression of inactive protein

(e.g. CYP2C19 and 2D6) are less susceptible to

DDI (Hamelin et al. 2000; Lessard et al. 2001;

Uno et al. 2006). In vitro experiments evaluating

this effect are not possible due to the lack of

enzymatic activity. However, for polymorphi-

cally expressed P450 enzymes or allelic variants

(e.g. CYP2C9*2 and *3) that still possess some

activity, the same question of susceptibility to

DDI is applicable. Kumar et al. (2006) reported

that inhibition of CYP2C9 was genotype-depen-

dent, which triggered a clinical study using flur-

biprofen to show that individuals homozygous

for the *3 allele of CYP2C9 did not have a

significant decrease in oral clearance when

co-administered with fluconazole (Kumar et al.

2008). This finding is reasonable, as the baseline

pharmacokinetics in the *3/*3 individuals were

different, suggesting that fraction metabolized by

CYP2C9, which contributes to the magnitude of

the interaction, is clearly different in PM com-

pared to EM individuals. This finding warrants

further investigation, and argues in vitro assays

Fig. 2.13 Decision tree for use as a guide in determining

if an NCE is an inhibitor of P-glycoprotein (P-gp), and

whether a clinical DDI study with digoxin needs to be

conducted. Net flux ratio is calculated as FB�A/FA�B. [I]1

represents mean steady-state Cmax values for total drug

following administration at the highest proposed clinical

dose; [I]2 ¼ dose of inhibitor (mol)/250 ml
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evaluating inhibition of CYP2C9 allelic variant

enzymes should be considered for clinical candi-

dates with a risk of CYP2C9-mediated DDI.

2.9.2 The Role of CYP3A5

While CYP3A4 has been estimated to play a

significant role in the metabolism of >50% of

all drugs on the market (Guengerich 2002), the

contribution of CYP3A5 to the overall meta-

bolism of NCE’s has received increased attention

due to its polymorphic expression (3A5*3, *6,

*7). Interestingly, only ~15% of Caucasians

express high levels of CYP3A5, compared to

75% of African-Americans (Xie et al. 2004).

Despite 84% amino acid sequence similarity

between CYP3A4 and 3A5, several drugs,

including midazolam and lidocaine have been

reported to be more efficiently metabolized

by CYP3A5 compared to 3A4 (Wrighton and

Stevens 1992), which suggests CYP3A5 may

play a significant role in the overall clearance of

some drugs. However, this assessment is compli-

cated by conflicting reports comparing CYP3A4

to 3A5 activity. Some of the differences can be

attributed to the different expression systems

used, where some enzyme preps were coex-

pressed with coenzymes (e.g. P450 oxidore-

ductase and cytochrome b5), and others only

supplemented with these coenzymes (Huang

et al. 2004). Nonetheless, several examples of

pharmacokinetic variability in the clinic for

CYP3A5 substrates have been reported. Most

notably, reduced oral clearance of tacrolimus

was reported in subjects homozygous for the

CYP3A5*3 genotype compared to those with

3A5*1 genotype (Hesselink et al. 2003, 2008).

Other drugs reported to have substantial clinical

pharmacokinetic variability thought to be attrib-

uted to CYP3A5 genotype, include cyclosporine

(Anglicheau et al. 2007), vincristine, where

exposure varied up to 19-fold (Van den Berg

et al. 1982), and the PDE5 inhibitor vardenafil,

with 14-fold variability observed across sub-

jects given a 20 mg dose (Klotz et al. 2001;

Rajagopalan et al. 2003; Ku et al. 2008). Not

only has the potential impact of CYP3A5 ex-

pression on pharmacokinetic variability been

of concern, it has also been observed that

CYP3A5 may in fact produce a distinct meta-

bolite profile compared to 3A4, as observed with

quetiapine (Bakken et al. 2009). This may have

ramifications not only for pharmacological, but

also the toxicological profile of impacted drugs.

Currently, estimating the contribution of

CYP3A5 in overall metabolism is challenging,

as there are no completely specific inhibitors or

substrates used as in vitro tools to differentiate

3A5 from 3A4 activity. A reasonable approach

has been a direct comparison of CYP3A4 and

3A5 in vitro intrinsic activity using recombi-

nantly expressed enzymes with the same ratio

of reductase and cytochrome b5 (e.g. Super-

somes®). However, scaling of this in vitro intrin-

sic clearance is challenging, as abundances of

CYP3A5 in liver are variable. There are now

genotyped human liver microsomes available

where both CYP3A4 and 3A5 expression levels

are known (www.bdbiosciences.com), which

may be useful in comparing intrinsic metabolic

capacity in vitro in CYP3A5 expressers vs. non-

expressers. This approach was taken by Huang

et al. with numerous substrates of CYP3A4 and

3A5 (Huang et al. 2004). Another approach with

potential for estimating of the contribution of

CYP3A5 to overall metabolism of NCEs may

be use of raloxifene, which has been reported to

be a selectivemechanism-based inhibitor (MBI) of

CYP3A4 (Pearson et al. 2007), even though it is a

competitive inhibitor of both CYP3A4 and 3A5.

2.9.3 Non-P450 Enzymes and DDI

While the cytochrome P450 family of drug-

metabolizing enzymes are the clear origin of

most clinically relevant DDIs, other enzymes

such as UDP-glucuronosyltransferases (UGT),

sulfotransferases (ST), monoamine oxidases

(MAO-A and MAO-B), aldehyde oxidase (AO),

and flavin monooxygenase (FMO) are of interest

from a DDI perspective due to their potential

role in metabolic clearance. Of these non-P450

enzymes, the UGTs have received the most

attention of late, due in part to a report in 2004
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by Williams et al. who demonstrated that glucur-

onidation is a clearance mechanism for 1 in 10 of

the top 200 prescribed drugs in 2002 (Williams

et al. 2004). While a primary conclusion from

this report was that inhibition of UGT enzymes

rarely lead to any clinically significant DDI

(AUC Ratio >2), recent advances in the under-

standing of UGT enzymes and in vitro character-

ization of activity have triggered a re-evaluation

of this subject. For example, it has generally been

thought UGT enzymes are low-affinity (e.g.

high Km) enzymes. However, recently it has

been shown that addition of albumin to HLM

and recombinant UGT incubations significantly

reduces the Km for AZT glucuronidation by

UGT2B7 (Rowland et al. 2007), a result of albu-

min sequestering inhibitory fatty acids liberated

during microsomal incubations. This realization

may lead to more attention being paid to UGT-

mediated metabolism, particularly to UGT1A1

since this represents the predominant clearance

pathway for bilirubin, and polymorphic expres-

sion leads to hyperbilirubinemia, a condition

known as Gilbert’s Syndrome (Burchell et al.

2000). The other non-P450 drug metabolizing

enzymes are currently less understood as it relates

to DDIs, probably because they rarely contribute

100% to the clearance of drug molecules. This

may change in the future as NCEs continue to be

profiled, especially as chemistry and drug meta-

bolism scientists work to reduce P450-mediated

metabolism in optimization efforts.

2.10 Design and Execution of a
Clinical Assessment of DDI
Potential in a Drug
Development Program

The major determinant of drug interaction stud-

ies is no longer the list of approved drugs most

likely to be co-administered, rather than determi-

nation is based on likely mechanisms for a drug

interaction. Thus, the first step in determining

which drug interactions studies should be

performed in a clinical program is to utilize

in vitro and preclinical data to judge the likely

risk of interactions. Typical interactions to be

considered are those where one drug might alter

the pharmacokinetics of another, such as inhi-

biting clearance. Additional consideration must

also be given to pharmacodynamic interactions,

which can alter the drug’s pharmacology, as has

been observed with the sedative effects of com-

pounds with inhibitory central nervous system

activity.

For pharmacokinetic interactions, equal

consideration should be given to circumstances

where a drug is an object, or victim, of the inter-

action and where the drug is the perpetrator

(precipitant, inhibitor, or inducer). When the

drug is the victim, the projected metabolic path-

ways are potential sites of interactions and the

more predominate a pathway, the higher the

risk of a clinically relevant interaction. Thus for

drugs predominately cleared by a single path-

way, there will almost always be interactions of

clinical relevance. Conversely, if a molecule is

cleared by multiple mechanisms, then the risk

of a clinically relevant interaction is lower.

Additionally clinically relevant interactions due

to transporters have been observed. For instance

inhibitors of liver uptake transporters resulted in

2 to 25-fold increases in systemic statin concen-

trations (Neuvonen et al. 2006).

Other distribution phenomena are generally

less important. For example, alterations in plasma

protein binding typically do not necessitate a dose

adjustment, as they do not affect the clearance of

free drug, the presumed active form. Thus, while

plasma total drug concentrations may be altered,

free drug concentrations will return to the same

steady-state levels as observed prior to adminis-

tration of the perpetrator. The exceptions to the

above generalization are except in two instances.

The first is when a drug has the attributes of

a high extraction ratio, a narrow therapeutic

index, and is parentally given (e.g. lidocaine).

The second case is for a drug that has a narrow

therapeutic index, is orally administered and has

a very rapid pharmacokinetic–pharmacodynamic

equilibration time. In these rare cases, DDIs

causing protein binding changes can have clinical

consequences (Benet and Hoener 2002).

Studies typically involve sensitive probe sub-

strates or potent specific inhibitors to elicit the
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maximum magnitude of an interaction. Thus if

no interaction is observed, one can be reasonably

assured there will not be a relevant interaction

with the investigational drug and other drugs

acting through the same pathway. Further, if

there is an interaction, other interactions with

the investigation drug involving the same path-

way will be of a similar or lesser magnitude.

Thus, if an enzyme or transporter is identified

as potentially important, a single probe substrate

and/or inhibitor study is conducted and the

results extrapolated. Less potent inhibitors may

be considered for study, however, where an inter-

action has been shown and the results require

contraindication or dose adjustment. In these

cases, the resulting smaller magnitude of the

interaction could result in different dosing

recommendations based on inhibitor potency. A

list of probe substrates and inhibitors can be

found in the FDA draft drug interaction guidance

(Drug Interaction Studies – Study Design, Data

Analysis, and Implications for Dosing and Label-

ing. September 11, 2006, http://www.fda.gov/

downloads/Drugs/Guidance

ComplianceRegulatoryInformation/Guidances/

ucm072101.pdf).

2.10.1 Metabolism Based Drug
Interactions

The FDA has published guidance on drug inter-

action strategies for cytochrome P450 (CYP)

based interaction studies (previously cited). The

guidance suggests interactions with CYP1A2,

2C8, 2C9, 2C19, 2D6, and 3A be considered.

Clinical studies should be performed when the

drug is a substrate of an isozyme and when the

isozyme is a major elimination pathway or it is

unclear as to if it is a major elimination pathway.

The guidance does not provide explicitly state to

what constitutes a major pathway. However, the

guidance does show that human in vivo data

indicate CYP enzymes contribute more than

25% of a drug’s overall clearance, investigations

to identify responsible CYP isozymes should be

conducted. A theoretical maximal change in sys-

temic drug concentrations can be estimated as:

% Increaseinsystemicexposure

¼ 100%

ð1�factionof overallclearanceduetopathway)

�100%

Thus if a particular isozyme is responsible

for 25% of a drugs clearance, maximal inhibition

of the pathway would cause a 33% increase in

systemic drug concentrations.

The same CYP isozymes are to be evaluated

when considering a drug’s potential to be an

inhibitor or inducer. Only those instances where

preclinical data suggest a drug is an inhibitor or

inducer of that isozyme need to be considered

for clinical study. To evaluate the potential for

reversible inhibition, the likelihood of an interac-

tion is determined by the [I]/Ki ratio where [I]

represents the mean steady-state Cmax value fol-

lowing administration of the highest proposed

clinical dose. As the ratio increases, the like-

lihood of an interaction increases. An estimated

[I]/Ki ratio of greater than 0.1 is considered posi-

tive and the guidance recommends a clinical

study. Further, it is suggested that the most sen-

sitive isozymes (i.e. where the drug has the low-

est inhibitor 50 or induction 50 concentration)

should be studied first. If no clinical interaction

is observed for these most sensitive pathways,

other less sensitive pathways do not need to be

studied in clinical studies. For mechanism-based

inhibition, the guidance recommends clinical

evaluation if any time dependent inhibition is

detected. Finally for induction potential, no guid-

ance is given as to what the threshold for clinical

evaluations is, however the guidance does note

that if induction studies with a compound con-

firm that it is not an inducer of CYP3A4 then it

can be concluded the drug is not an inducer of

CYP2C8, CYP2C9, or CYP2C19.

Strategies for non-CYP metabolic pathways

are less well established. However, a similar

philosophy of using a sensitive probe substrate

or potent inhibitor can be applied.

46 J. Matthew Hutzler et al.



2.10.2 Transporter Based Drug
Interactions

Strategies for transporter based interaction studies

are less well defined as transporters are less well

understood. The FDA does offer a guidance for P-

glycoprotein based drug interactions (cited above).

A drug is considered a substrate if the net flux ratio

is greater than 2, where net flux ratio is the ratio of

basal-apical permeability to apical-basal perme-

ability in preclinical models. Evaluation in clinical

studies is recommended for substrates where pre-

clinicalmodels show inhibition of transport by 1 or

more known P-glycoprotein inhibitors. To assess

the potential for P-glycoprotein inhibition, the

[I]/IC50 value is considered, where IC50 is the con-

centration causing half the maximal drug related

inhibition. The guidance suggests [I]/IC50 values

greater than 0.1 warrant clinical investigations.

Recent work by Cook et al. (submitted) suggest

this threshold may result in an unacceptable false-

negative rate (i.e. indication a lack of potential to

inhibit P-glycoprotein when clinically relevant

interaction does occur) and suggest cut-off values

for [I]/IC50 < 0.1 and [I2]/IC50 < 5 (I2 is the dose/

250 ml) were identified to minimize the error rate

which resulted in a reduction of false negatives to

9%. Finally for induction potential, the guidance

notes a lack of predictable preclinical models but

does state if a drug is not an inducer of CYP3A4,

then it can be concluded the drug does not induce

P-glycoprotein.

Specific criteria for transporters other than

P-glycoprotein have not been established. How-

ever, Wu and Benet (2005) have utilized the Bio-

pharmaceutics Classification System to assess the

potential importance of transporters. For Class 1

compounds (highly soluble, highly permeable),

transporters are expected to have minimal impact

on drug disposition and thus drug interactions are

not expected. For Class 2 compounds (low solubi-

lity, highly permeable), efflux transporter effects

will predominate. For Class 3 compounds (highly

soluble, low permeability), absorptive transporter

effects will predominate. For Class 4 compounds

(low solubility, low permeability) absorptive or

efflux transporters could be important.

Once transporters important to a drugs disposi-

tion have been identified, a preclinical assessment

as to their importance can be estimated using

a model proposed by Shirasaka et al. (2008):

Vapp ¼ Vpassive � Vtransporter

¼ Ppassive � S � C� Vmax � C
Km þ C

where V is the flux and app, passive and trans-

porter subscripts denote whether the flux is

apparent, passive or due to the transporter respec-

tively; S is the surface area of the membrane,

P is the permeability, Vmax and Km are the

maximum velocity and concentration producing

half-maximal velocity, and C is the concentration

at the membrane. The sign in front of the trans-

porter term depends on whether the transporter

is an absorptive transporter (þ) or efflux trans-

porter (�) with respect to the driving concentra-

tion, C. Vpassive can be determined in preclinical

experiments through the use of inhibitor. The

difference between the apparent flux without

and with an inhibitor will yield the flux due to

the transporter. If passive permeability predomi-

nates (Vpassive � Vtranspoter) then drug interac-

tions are not expected. Similarly the impact of

a drug’s inhibition potential may be considered

using the following model (Tamai 2009):

Papp ¼ Ppassive � Pmax;transporter

ð1þ ½I�=KiÞ

where, Pmax is the maximum change in perme-

ability of the substrate due to the transporter,

[I] is the concentration of the inhibitor and

Ki is the inhibitory constant. Again if passive

permeability predominates, no clinically relevant

interaction is expected.

2.10.3 Pharmacodynamically Based
Drug Interactions

In general there are only two typical cases where

pharmacodynamic interactions are considered.

The first is for drugs with activity in the central
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nervous system. Generally if a drug is centrally

acting and sedation a frequent side-effect, evalu-

ation of co-administration of other CNS active

agents is warranted using a pharmacodynamic

endpoint. The other typical case is drug interac-

tion studies involving warfarin. S-Warfarin in

a substrate probe for CYP 2C9 based inter-

action studies. Because of the relatively low

therapeutic window, warfarin pharmacodyna-

mics are often evaluated using prothrombin time

and the international normalized ratio (INR).

There are certain instances where drugs are co-

administered because they have beneficial addi-

tive or synergistic pharmacodynamic effects.

These are not considered further in this chapter

as the interaction is typically evaluated in clinical

efficacy trials.

2.10.4 Other Interaction Studies

There may be instances where it is beneficial to

conduct clinical drug interaction studies even

though there is no basis for an interaction. One

instance may be to facilitate recruitment into

Phase II or III trials. There are some instances

where a background therapy may be given while

patients are given the investigational drug. In

some instances the drug given as background

therapy may have a narrow therapeutic index.

Another example might be interactions with oral

contraceptives (OCs). Patients in clinical trials

may be required to use barrier forms of contra-

ception while enrolled and for a period thereafter.

Showing the absence of an interaction with OCs

may allow this restriction to be lifted. In these

cases, these studies are conducted to show the

absence of a clinical significant interaction, and

thus assure investigators that the compounds can

be given concomitantly. A second reason for con-

ducting a drug interaction when there is no basis

for an interaction is to demonstrate a competitive

treatment advantage. Both patient and pre-

scriber benefit from knowledge that a new med-

icine does not carry the same drug interaction

liabilities as other available treatments. For

example clinical evaluations for pregabalin

were undertaken to show a lack of interaction

with a number of antiepileptic drugs (carbamaz-

epine, valproic acid, lamotrigine, phenytoin,

phenobarbital, and topiramate), when most of

other antiepileptic drugs have clinically relevant

drug interactions. Thus, pregabalin could be

added to a patient’s regimen for seizure control

without fear of altering the pharmacokinetics,

and potentially the efficacy and safety of the

therapy.

2.10.5 Determination of When to Do
Drug Interaction Studies

Once it is determined what clinical drug interac-

tion studies need to be done in a drug develop-

ment program, the timing of these studies should

be determined. Considering only one in nine

compounds entering human drug development

are eventually marketed and clinical safety (of

which drug interactions contribute some frac-

tion) accounts for approximately 12% of the

failures, it would seem drug interactions are not

typically go/no-go studies once a drug deve-

lopment program starts with clinical studies.

(Presumably preclinical assessments have caused

the attrition of most compounds with major

drug interaction liabilities). Consequently it is

economically prudent not to spend too many

resources early in clinical development to assess

drug interactions. It is therefore recommended

that prior to initial studies in patients, two types

of drug interaction studies are performed. The

first are those where definitive “go/no-go” deve-

lopment decisions can be made based on the

interaction: where there is an unacceptably

high risk of a major drug interaction that would

preclude further development. If the interaction

study does not need to be conducted (e.g. the

efficacy trial can be run without the need for

concomitant medication), the level of risk of

a relevant interaction [P(DDI)] and cost of the

drug interaction study (DDI$) should be con-

sidered against the risk of lack of efficacy

[P(LOE)] and the cost of the initial efficacy trial

(EFF$). The drug interaction study should be

done first if:
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ð1� PðDDIÞÞ � PðLOEÞ � Eff$þ DDI$

< ð1� PðLOEÞÞ � PðDDIÞ � DDI$þ Eff$

And the estimates of probability can be based

on historical rates or efficacy trials and past per-

formance of preclinical models used to estimate

the magnitude of clinical interactions.

The second type of drug interaction study that

should be conducted are those where concomi-

tant medications need to be given in the initial

efficacy trials, and the pharmacokinetics or phar-

macodynamics involve pathways identified as

likely to be affected by or likely to alter the

pharmacokinetics of the investigational drug.

For example, if the investigational drug is

predominately metabolized by CYP 3A4 and

a typical concomitant medication is likely to be

a CYP 3A4 inhibitor, a drug interaction study

investigating the effect of CYP 3A4 inhibition

of the investigational drug is likely needed prior

to the study so that dosing recommendations can

be made. After the initial efficacy trial, it may be

necessary to perform similar enabling studies

(those necessary to allow dosing recommenda-

tions for other possible concomitant medications

as well as those required by investigators to

facilitate recruitment) prior to larger clinical

trials in order to expand enrollment criteria to

encompass a more diverse patient population.

During Phase II and III, sparse pharmaco-

kinetic sampling is now routinely included to

evaluate exposure and/or effect relationships in

the population pharmacokinetics of patients.

These same data can be used to evaluate the influ-

ence of concomitant medications on the pharma-

cokinetics of the investigational drug. Commonly,

these data are used to confirm the lack of an

interaction when preclinical data suggest that no

interaction is expected or to confirm the clinical

importance of an interaction previously observed

in healthy volunteers. Regulatory agencies have

label statements describing the findings (Duan

2007). They are typically not used to confirm

the lack of an interaction when preclinical

data suggest an interaction is likely, for safety

reasons. These analyses may also be useful in

detecting unsuspected DDIs. Before such ana-

lyses are conducted, simulations are recom-

mended to optimize study design elements (e.g.

sample collection) and to assess the study’s abil-

ity to characterize an interaction if one were to

occur.

Frequently, drug interaction studies are

conducted near the end of the development plan

to provide labeling information. Many of these

studies are conducted to confirm a lack of inter-

action with commonly co-administered medi-

cations in the target treatment population. For

instance the FDA guidance on drug interactions

(previously sited) suggests conducting at least

one drug interaction study with a concomitant

inducing or inhibiting drug. The concomitant

drug is chosen based on its interaction with the

CYP isozyme most sensitive to the investiga-

tional drug (e.g. the one for which the investiga-

tional drug has the lowest Ki). If the clinical study

results in no important interaction, no further

studies involving CYP isozymes are warranted.

If an interaction does occur, another drug inter-

action study should be considered with the probe

substrate selected based on the next most sensi-

tive CYP isozyme.

2.11 Labeling Considerations

As previously mentioned, the results of drug inter-

action studies with probe substrates or potent inhi-

bitors are generally extrapolated to other drugs

where the interaction would occur through the

same pathway. For example if a clinical study

indicated no interaction, the drug interaction sec-

tion of the label might look like the following

example suggested by the FDA draft guidance on

In Vivo Drug Metabolism/Drug Interaction Stud-

ies – Study Design, Data Analysis, and Recom-

mendations for Dosing and Labeling 11/24/1999.

(http://www.fda.gov/downloads/Drugs/Guidance

ComplianceRegulatoryInformation/Guidances/

ucm072119.pdf last accessed 7/14/2009.):

Data from a drug–drug interaction study

involving (drug) and (probe drug) in ______
patients/healthy individuals indicate that the PK

disposition of (probe drug) is not altered when

the drugs are co-administered. This indicates
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that (drug) does not inhibit CYP3A4 and will not
alter the metabolism of drugs metabolized by this

enzyme.
Similarly, if a significant interaction did occur,

the following is an example of a possible portion

of the drug interaction section of the label.

The effect of (drug) on the pharmacokinetics

of (probe drug) has been studied in ______

patients/healthy subjects. The Cmax, AUC, half-
life and clearances of (probe drug) increased/

decreased by ____% (90% Confidence Interval:

____ to ____%) in the presence of (drug). This
indicates that (drug) can inhibit the metabolism

of drugs metabolized by CYP3A4 and can

increase blood concentrations of such drugs.
(See PRECAUTIONS, WARNINGS, DOSAGE

AND ADMINISTRATION, or CONTRAINDICA-

TIONS sections.)
Declaration of a clinically relevant effect or

lack thereof is based on a statistical comparison

of pharmacokinetic (or pharmacodynamic) para-

meters, typically Cmax and AUC for metabolic

based interactions. Proof of a lack of interaction

is based on the 90% confidence interval limits for

the ratio of pharmacokinetic parameter values

(substrate þ inhibitor as numerator, substrate

only as denominator) and whether or not the

90% confidence intervals lies between no effect

boundaries. Two approaches can be used to set

no effect boundaries. The first is to use boundary

limits that are used for bioequivalence: 80% and

125%. This is the most conservative approach in

that lack of interaction is accepted without ques-

tion. A second approach is to consider exposure-

response relationships for both safety and effi-

cacy and to set boundary limits where changes in

exposure will not lead to clinical consequences.

Thus a large therapeutic window and/or a shallow

exposure-efficacy relationship can lead to no

effect boundaries that are wider than the 80%

and 125% limits used in the first approach.

Choice of the approach, the expected magnitude

of the interaction and the variability of the sub-

strate can all be used to size the clinical study.

In cases where a clinically relevant interaction

is expected, the size of the study should be based

on the expected magnitude of the interaction, the

variability of the substrate and the precision

required to provide appropriate dosing recom-

mendations. For example, if a very large inter-

action is expected that is likely to result in

a contraindication, few subjects are typically

needed than for a study that might result in

a dosage adjustment or declaration of no inter-

action. In general the study design should reflect

the expected labeling by either demonstrating

that there is no clinically relevant interaction

(e.g. powered to rule out a interaction) or result-

ing in recommendation for dosage adjustment or

contraindication (e.g. sized to yield a sufficiently

precise estimate of effect).

Conclusions

DDIs can represent a major public health

issue. The science has evolved to the point

where the risk interactions occurring at vari-

ous cytochrome-P450 isozymes in humans can

be reliably predicted from in vitro data. The

science in the area of drug interactions with

other enzymes will continue to evolve, hope-

fully to the point where the likelihood of clini-

cally significant interactions may be more

accurately predicted. Clinical drug develop-

ment scientists and regulators will use these

data to assure that themost critical information

on drug interactions are obtained in the clinic

and to provide appropriate information to

physicians and patients to guide the safe and

effective use of new and existing medications.
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Modeling the Progression of Disease 3
Diane R. Mould

Abstract

Clinical pharmacology is the science of understanding drugs as applied to

their use in the treatment of disease. It is underpinned by the basic science

of pharmacology, focusing on the application of pharmacological princi-

ples and methods in clinical practice. One of the primary objectives in any

drug development process if to determine if a new drug treatment provides

therapeutic benefit to patients, and if so, what is the best dose to use for an

individual patient. Disease progression modeling can be a useful tool to

investigate the effects of new drugs on disease and can provide insight into

the activity of the drug on disease progression. Models can be developed

to incorporate the effects of changing disease status over time, the effects

of placebo or concomitant therapy and can therefore increase the amount

of information obtained from a clinical trial. Furthermore, these models

can be used to explore alternative dose regimens and provide information

on dose adjustments.

3.1 Introduction

In 1995, Sheiner and Rubin pointed out that eva-

luations for significance levels of clinical trial

outcomes and their associated estimates were

generally conducted using the intention-to-treat

principle. In that paper, the authors noted that

the intention-to-treat estimator estimates “use-

effectiveness”,which is the causal effect on outcome

after prescribing the drug, regardless of whether

the patient takes the drug or not, rather than the

medically more relevant “method-effectiveness”,

which represents the causal effect on outcome

after actually taking the drug. Several arguments

have been made against using an as-treated or

“method-effectiveness” approach. Lee et al.

(1991) argued that using an as-treated approach

would potentially disturb the prognostic balance

brought about by randomization, reduce the sam-

ple size, and undermine the validity of statistical

test procedures.

While many statistical methods can provide an

unbiased comparison of treatment effects when

all missing observations are ignorable, in many

cases missing data are not ignorable (Little and

Rubin 2000). Consequently, the use of as-treated
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evaluation methods have gained in popularity

because they provide a conceptual framework

for dealing with the problems posed by deviations

from the planned protocol, particularly those aris-

ing from noncompliance and drop-out (Sheiner

2000; Sheiner and Rubin 1995). Drop-out in par-

ticular has been an issue that is difficult to deal

with during the evaluation of clinical trial data.

For example, the last observation carried forward

(LOCF) is a commonly employed strategy that

imputes a missing observation at the end of the

study for an individual that has dropped out as the

last observed value for that subject, i.e. the

patient’s last observed value is used for all

subsequent missing values. However, most dis-

eases and the associated biomarkers that evolve

over time follow a smooth trajectory, so that the

last observed biomarker response is usually a

biased estimate of the true last value. If the

response being evaluated were a measurement

for a progressive chronic disease, then applica-

tion of LOCF would imply that once a patient

drops out, the disease status stays fixed at the

last observed value despite the fact that

the biomarker would ordinarily be expected to

change in accordance with the natural history of

the disease. Other methods such as incomplete-

data methods based on models that assume ran-

dom dropout, have serious drawbacks as well

(Little and Yau 1996). Imputing the missing

data using a model that describes the expected

trajectory of the disease should therefore provide

a less biased estimate of missing data (Diggle and

Kenward 1994; Little and Rubin 1987).

In a clinical trial, the available information is

dependent on the ratio of signal to noise in the

data. Information is the total variation in the

data, the signal is the variation due to identifi-

able causes such as differences in dose or other

treatment, and noise is the unexplained varia-

tion. Jonsson and Sheiner (2002) and others

(Sheiner and Rubin 1995; Little and Rubin

2000) have suggested that greater statistical

power for the determination of drug effect can

be achieved through model-based evaluations

rather than through traditional evaluations

because models increase the amount of informa-

tion by providing a basis for explaining the

variation in the data, thereby improving the

signal to noise ratio. Furthermore, with repeated

measures assessment, random error on clinical

observations can be appropriately accounted for

in the model. Ultimately, if controlling or mod-

ifying the trajectory of the disease over time is

the goal of treatment, then an endpoint defined

on the observed disease trajectory with and

without treatment may yield a more powerful

test than one based on observing a less informa-

tive binary outcome, such as response rate.

However, the ability to develop a model that

appropriately describes the disease trajectory

involves an understanding of the underlying

pharmacology of both the disease and the drug

effect, and sometimes an understanding of the

physiology and biochemistry of the system.

Clinical pharmacology is the science of

understanding drugs as applied to their use in

the treatment of disease. It is underpinned by

the basic science of pharmacology, focusing

on the application of pharmacological principles

and methods in clinical practice. The science of

clinical pharmacology covers a broad range of

topics, from the discovery of new target mole-

cules to the understanding and quantifying the

effects of drug usage in patient populations.

However, in the context of drug development,

clinical pharmacology can also be perceived as

a model itself – specifically, the combination of

disease progression and drug action (Holford and

Sheiner 1981; Holford et al. 2006):

Clinical pharmacology

¼ disease progressþ drug action:
(3.1)

In this equation, “disease progress” refers to the

evolution or trajectory of a disease over time. Spe-

cifically, this implies that a function or model,

either empirical or mechanistic, can be used to

describe the time course of a biomarker or clinical

outcome reflecting the status of a disease, which is

a reflection of the state of the disease at any given

point in time. In an untreated state, disease status

may improve or worsen over time, or may exhibit

periodic behavior, improving and worsening over

time. Therefore, amodel of disease progress,which

is a special class of pharmacodynamic model, is a
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mathematical function or expression that describes

the expected trajectory of a disease, asmeasured by

specific biomarkers, over time.

The term “drug action” involves the pharmaco-

kinetic and pharmacodynamic processes involved

in producing a beneficial effect on the disease. The

drug effect is assumed to influence the disease

status either by providing transient improvement

(e.g. symptomatic drug action) or by altering the

trajectory of the disease (e.g. disease modifying

drug action). Pharmacokinetic and pharmacody-

namic characteristics determine the drug exposure,

action and its subsequent effect on the progression

of the disease. In the equation above, drug action

would also include the effect of placebo on disease

progression. Placebo effects, as will be discussed

later in this chapter, can constitute a substantial

component of disease trajectory in a clinical trial.

Because of demographic and other patient

factors, together with patient compliance with

scheduled treatment, not all patients will exhibit

the same response to a selected dose of a test

drug. Furthermore, not all patients will progress

in their disease at the same rate. In addition, dose

adjustments due to adverse events, compliance

and drop-out will increase the overall noise in the

data collected.

During the drug development process, it is not

feasible to investigate all potential treatment

modalities. However, evaluation of the pharmaco-

kinetic and pharmacodynamic behavior of the

drug in various patient populations can be used

to develop a response surface (Fig. 3.1), which

can be used to estimate the expected response in

a subset of patients at a given dose given their

covariate factors.

The response surface, as described by Sheiner

(1997) as a part of the learning and confirming

process in drug development, is a function of the

models for drug action and disease progression

the shape of which is influenced by patient fac-

tors, such as demographics, and disease that may

make a patient more or less sensitive to drug

effect or may result in higher or lower drug

exposure. Used in this context, disease progres-

sion models can be valuable to facilitate the

visualization of underlying disease changes

both for the reference treatment and the treat-

ment being evaluated.

An additional benefit of developing disease

progression models is that such models provide a

basis for learning from prior clinical experience

and summarizing the knowledge in a quantitative

fashion. Employing disease progression models to

Fig. 3.1 Response surface

for a drug. The shaded area

represents the response

surface. The dot is the

expected response of a

patient given his covariates

and present dose regimen.

Altering the dose in the

direction of the arrow
would result in an

anticipated improvement in

benefit
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design clinical trials and overall drug development

strategies can help streamline investigation and

strengthen “Go/No-Go” decisions. As models of

disease progression are largely independent of

therapeutic intervention, this knowledge can be

retained, used for other therapeutics, and refined

over time. Furthermore, the United States FDA

supports and also develops models of disease pro-

gression as a means to evaluate drug effects

(Gobburu and Lesko 2009).

3.2 Overview of Basic Disease
Progression Models

Evaluating disease progression through model-

based evaluations was first proposed by Holford

and Sheiner (1981). In this paper, the authors

proposed a new interpretation of an old model:

EðtÞ ¼ E0 þ EmaxCpðtÞ
EC50 þ CpðtÞ : (3.2)

In this equation, E(t) is the measure of disease

status at some time t. E0 represents the disease

status at baseline. Emax and EC50 are the largest

effect that can be achieved by the drug and the

drug concentration that achieves half maximal

response, respectively. Cp(t) is the drug concen-

tration at the time t.
This function represents a “zero progression”

model for disease status where, over the course

of evaluation, the observed untreated disease sta-

tus does not change except through therapeutic

drug intervention. In this sense, the zero progres-

sion model is analogous to the LOCF approach,

in that when drug is discontinued, the disease

status will remain fixed.

However as noted previously, disease status

generally does not remain stable, but instead

follows a smoothly changing trajectory. In order

to account for the change in status over time, the

“zero progression” model was expanded to allow

for disease status to change over time using a

linear function:

SðtÞ ¼ S0 þ at: (3.3)

In this equation, S(t) is the disease status at

time t, S0 represents the baseline disease status

and a represents the rate of change of the status

over time. The effect of drug on disease progres-

sion generally is not instantaneous. Therefore,

the use of a lag time or an “effect compartment”

(Holford and Sheiner 1982) is commonly

employed to allow for a delay between the initia-

tion of treatment and observable response.

Drug effect can provide symptomatic benefit

resulting in a transient improvement in the dis-

ease status during treatment, but which rapidly

reverses to the untreated status after treatment is

discontinued. In this type of model, the drug

effect is added (or subtracted) from the overall

disease status.

SðtÞ ¼ S0 þ EsymptomðCeAÞ þ at: (3.4)

In this equation, Esymptom(CeA) represents

a drug effect that provides symptomatic ben-

efit, shifting the status S(t) above its untreated

trajectory.

Conversely, the effect of treatment can be

described as altering the progression of disease.

For a protective or disease modifying drug, the

disease status would not return to the pretreat-

ment course when therapy is discontinued, but

would be expected to result in a permanent

improvement. In this case, the drug effect is

applied directly to the disease progression

parameter a.

SðtÞ ¼ S0 þ ðEprogressionðtÞ þ aÞÞt: (3.5)

In this equation Eprogression(t) is the effect of

treatment on the disease progress. Again, if a

long delay between initiation of treatment and

onset of effect is observed, an effect compart-

ment can be implemented.

The time course of both symptomatic and

disease modifying activity are presented in

Fig. 3.2. In this figure, the light black dashed

lines are the drug concentration over time, the
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heavy solid black line is the natural (untreated)

progression of the disease and the wide light gray

solid line is the disease trajectory in the presence

of drug. There are numerous other functions that

have been developed in addition to the simple

linear function and there are several good

Fig. 3.2 Symptomatic and disease modifying drug effect

on the progression of disease. The dashed lines are

drug concentration. Heavy solid line is the natural time

course of untreated drug. The light line is the progression

following symptomatic treatment (panel A) or disease

modifying treatment (panel B). Note that the cessation

of treatment in panel A results in the patient disease

rapidly returns to pretreatment status; this is not the case

in panel B
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publications that review various structural dis-

ease progression models and associated parame-

terizations for describing the effect of treatment

on disease progression (Holford and Sheiner

1981; Mould 2007).

3.3 Examples of Disease
Progression Models

In the following sections, several examples of

disease progression models for different thera-

peutic areas will be discussed. These examples

represent a sampling of published work. A wide

variety of structural models have been used to

describe both disease progression and drug

response. Each model must be tailored to the

specific disease and treatment being studied. In

developing models of disease progression, the

analyst should realize that one of the most

important aspects of the disease progression

model is the characterization of the relation-

ships between the biomarker(s) being collected

and the clinical outcome of that therapeutic

intervention. Thus, whenever possible, these

models should replicate physiological aspects

of the disease being modeled. However, in

many diseases the mechanistic basis of disease

is not well understood, necessitating the use of

empirical models.

3.3.1 Models for CNS Diseases

3.3.1.1 Clinical Depression
Designing clinical trials to evaluate treatment

for major depression is challenging in part

because of the pronounced placebo response

that may be significantly affected by the trial

design [http://www.wired.com/medtech/drugs/

magazine/17-09/ff_placebo_effect?currentPage

¼all]. In fact, more than half of all recent clini-

cal trials of commonly used antidepressant

s failed to show statistical superiority for the

drug over placebo, primarily due to placebo

response (Khan and Schwartz 2005; Dworkin

et al. 2005). Khan et al. evaluated the result

s from 52 randomized, double-blind, placebo-

controlled clinical trials obtained from the FDA

in an attempt to correlate placebo response as t

he percentage mean change from baseline in the

Hamilton depression rating scale (HAMD) wit

h trial outcome (Khan et al. 2003). In trials wit

h a large mean placebo response (e.g. a greater t

han 30% mean change from baseline), only 21%

of these trials found active treatment superior

over placebo. However, in trials with a low

placebo response, a greater proportion of the t

rials (74%) showed superiority of the active t

reatment. Review of existing controlled trials

demonstrates a wide variety in study methodo-

logy. Factors such as small sample sizes, inclu-

sion/exclusion criteria, study design, the study

location, methods of patient recruitment, and

choice of outcome measures all influence the

ability of a study to detect differences between

an antidepressant and placebo (Emslie et al.

2005). The magnitude of placebo response is

variable and has an important impact on the

power of antidepressant trials to detect the

effect of active treatment, but that care should

be taken in the evaluation of placebo effect

(Kienle and Kiene 1997).

Ernst and Resch (1995) differentiated between

a true placebo effect and a perceived placebo

effect. The authors indicated that a perceived pla-

cebo effect is a function of several factors includ-

ing the natural time course of the disease, a natural

tendency for individuals to regress to the mean

state, and unidentified parallel interventions. This

distinction between true and perceived placebo

effects is consistent with the approach taken with

disease progression modeling, which attempts to

describe the natural time course of the disease as

well as the effect of placebo (Holford and Sheiner

1981). For example, Holford and Peace (1992a, b)

used a placebo function to describe the transient

improvement observed in patients with Alzhei-

mer’s disease (AD) after randomization to pla-

cebo in clinical trials.

The primary measure to assess a drug’s anti-

depressive effect clinically is the HAMD, which

is multiple choice questionnaire administered by
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a health professional, usually a nurse (Hedlung

and Vieweg 1979). Although the original test,

developed in 1960 on patients in an asylum, had

17 questions, there are currently different ver-

sions of the test available with the most common

version having 21 items that assess mood, insom-

nia, suicide, somatic symptoms, etc. With the 21

item version, scores can range from 0 to 66 with

increasing score indicating increasing disease

severity.

Several models used to describe the time

course of depression have been reported in the

literature, most of which all use HAMD scores as

the dependent variable. Schematic diagrams of

these models are provided in Fig. 3.3. All these

models assume that HAMD scores can be ade-

quately modeled as a continuous random variable

having a normal or log-normal distribution,

despite the variable actually being a bounded

one. The impact of this distributional assumption

has yet to be examined. The physiological basis

for depression is not well understood and all

functions are largely empirical in application.

The first such model used to describe the time

course of depression was the inverse Bateman

function (Holford et al. 2002). The equation for

the inverse Bateman function, which describes a

smooth decrease of HAMD scores over time, is

given below:

HAMD ¼ S0 � Drec

Krec

Krec � Kons

� �

�ðeð�KonstÞ � eð�KrectÞÞ
þ eadditive: (3.6)

In this equation, S0 is the baseline HAMD

score. Krec is the apparent rate constant of spon-

taneous recovery from depression. Kons is the

apparent rate constant of spontaneous worsening

of depression. eadditive is the residual error. Drec is

a scaling function for the maximum decrease

from baseline.

The second type of model that has been pro-

posed for describing the time course of depres-

sion is an indirect effect type model after the

work proposed by Dayneka et al. (1993). There

have been several modifications of the indirect

effect model used to describe depression data.

Gruwez et al. (2005) proposed a modified version

in which antidepressants exert their effect by

increasing the transduction set-point or by

increasing the rate of feedback mechanisms. A

second variant of the indirect effect model used

to describe the time course of clinical depression

was the Kinetic-PD (KPD) model (Jacqmin et al.

2001; Pillai et al. 2004) which uses a dose based

forcing function (e.g. a virtual dose driving rate)

Fig. 3.3 Schematic

diagrams for structural

models evaluated for

depression. Three

commonly used depression

models are provided above
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instead of measured concentrations to affect a

change in the observed HAMD score. The

model was successfully applied to placebo data

from clinical trials of major depression (Cosson

and Gomeni 2005). The equation for the indirect

effect model is given below:

dHAMD

dt
¼ ðKin � KoutHAMDð1

þ Slope CplaceboÞÞ þ eadditive: (3.7)

In this equation, Kin is the rate of spontaneous

worsening of depression and Kout is the rate of

spontaneous improvement. Prior to the initiation

of treatment this function assumes that there is no

change in HAMD and that the baseline HAMD

score is equal to Kin/Kout. Consequently, this func-

tion requires an external function to cause a

decrease in HAMD score, which can be accom-

plished by assuming that the placebo effect is

described by a “placebo concentration–time

model” or by use of a more standard KPD type

function. The effect of “placebo concentration”

(Cplacebo) in the equation above was described

using a linear function applied as a stimulatory

effect on Kout using a scale factor (Slope) to adjust

for different degrees of individual response.

Shang et al. (2006, 2009) evaluated the

inverse Bateman and the indirect effect models,

and also tested a two-transit-compartment model

(Friberg et al. 2000) for the ability to describe the

time course of placebo response in depression.

The equations for a two-transit-compartment

model are presented below:

dPrec

dt
¼ KS0 1� Slope Cplacebo

� �� KPrec

dT1

dt
¼ KPrec � KT1

dT2

dt
¼ KT1� KT2

dHAMD

dt
¼ KT2� K HAMD

HAMD ¼ HAMDðtÞ þ eadditive
(3.8)

In these equations, S0 is the baseline HAMD

score, Prec is the amount in a precursor pool com-

partment, T1 and T2 are transit compartments and

HAMD is the observation compartment. Rate con-

stants of transfer between compartments (K) are

assumed to be equal and reflect the rate of sponta-

neous improvement. The value forK is determined

based on the mean transit time (MTT) between

compartments where K ¼ MTT/3.

The results obtained from an evaluation of

data pooled from four clinical trials of major

depression using the inverse Bateman function

were presented in 2005 (Holford et al. 2002) and

the associated parameter values for that evalua-

tion are presented in Table 3.1. A visual predic-

tive check for one of the four studies is shown in

Fig. 3.4. Notably, the half life of recovery (THR)

is approximately 60 days and the half life of

onset (THO) is approximately 280 days, although

the duration of the studies included in the data-

base appear to have been no longer than approxi-

mately 84 days (12 weeks), suggesting that the

inverse Bateman function is not well informed

when used to describe placebo response to

depression. Shang et al. (2009) found the indirect

effect and transit-type models preformed ade-

quately to describe depression, providing param-

eter estimates that were reasonable and robust.

Further complicating the interpretation of data

obtained from studies of clinical depression is the

fact that the time course of depression in humans

is known to be cyclical with episodes of depres-

sion and typically spontaneous remission (see

Fig. 3.5). Despite the definition of a specific

cyclical syndrome, seasonal affective disorder

(Magnusson 2000), there is almost no quantita-

tive description of the pattern of depression

within an episode and from episode to episode

in patients with clinical depression. The largest

Table 3.1 Reported (Holford et al. 2002) parameter

values for placebo model using inverse Bateman function

Parameter (units) Population value

S0 (HAMD) 24

Tlag
a (days) 4.7

Drec (HAMD) 20.6

THR (days) 60

THO (days) 280

aTlag was included in the model to account for the run in

interval prior to administration of placebo or active drug

which was approximately 7 days
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collections of data in depressed individuals arise

in the setting of clinical trials of antidepressants,

but these trials are typically short (approximately

6–8 weeks) and span less than half of a typical

episode of depression. Consequently, the cyclical

trends in HAMD scores over time can be difficult

to quantify in most studies, and therefore, con-

tribute to the random noise seen in the measured

outcome (e.g. usually change from baseline

HAMD score). However, addition of these

Fig. 3.4 Simulated 95% prediction intervals and obser-

ved HAMD versus time – derived from Holford et al.

(2002). Observed HAMD scores over time overlaid on a

prediction interval. The central solid line is the median

simulated value, the upper and lower lines are the upper

and lower 95% prediction intervals

Fig. 3.5 Theoretic

cyclical pattern of

Hamilton depression scores

(HAMD) over time. The

time course of depression is

generally cyclical with

periodic worsening and

improvement
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cyclical functions can reduce the unexplained

variability in the data, making the effect of drug

easier to evaluate.

HAMD(tÞ ¼ DiseaseProgress(tÞ

þ SADamp cos
2p
12

ðMonth� PhaseÞ
� �

:
(3.9)

In this equation, DiseaseProgress(t) is the

function used to describe the general disease tra-

jectory (e.g. a transit function or indirect response

model), SADamp and Phase define the amplitude

of the seasonal change in HAMD and the time of

the peak worsening of HAMD, respectively.

“Month” is the month the observation was

made. “Phase” is the interval of time to complete

a cycle. For studies of sufficient duration, the

application of a linked cosine function can be

useful to characterize the underlying periodicity

of the disease. A periodic function can also be

valuable for other diseases that exhibit cyclical

behavior such as psoriasis and osteoporosis.

3.3.1.2 Alzheimer’s Disease
AD is the most commonly occurring disease

within the group of disorders known as “demen-

tias” with a rising global prevalence. AD is an

irreversible, progressive neurodegenerative dis-

order, characterized by gradual cognitive deficits

associated with abnormal behavior, and person-

ality changes, which ultimately leads to demen-

tia. The pattern of cell loss and mental function in

normal aging is different from the pattern

observed patients with AD (Yew et al. 1999).

The histopathological hallmarks of AD are neuro-

fibrillary tangles and amyloid plaques.

Currently, there is no cure for AD, nor can its

progression be reversed. However, there are sev-

eral agents approved for the symptomatic treat-

ment of AD including cholinesterase inhibitors

(e.g. donezepil, rivastigmine, galantamine) and

memantine. Cholinesterase inhibitors are used in

mild to moderate AD to prevent the breakdown

of acetylcholine, which is believed to be impor-

tant for memory and thinking. As AD progresses,

however, the brain produces less acetylcholine

and cholinesterase inhibitors therefore eventually

lose their effectiveness. Memantine is prescribed

to treat moderate to severe AD and is an

N-methyl D-aspartate (NMDA) antagonist that

works by regulating glutamate, which when pro-

duced in excessive amounts may lead to brain

cell death. Recently, attention has been given to

prevention of formation of neurofibrillary tangles

and amyloid plaques since they are found in the

cerebral cortex of AD patients and are thought

to be responsible for the neuronal loss seen in

the brain. It is believed that strategies for pre-

venting and/or altering amyloid fibril formation

represent therapeutic values (Schenk et al. 1995;

Kisilevsky 1996). A number of other treatments,

including vitamin E (which has become less fre-

quently used (Dysken et al. 2009), estrogen

(Henderson 2009) and antiinflammatory drugs

(Szekely et al. 2008) have shown some pro-

mising early results, but are not yet proven for

routine use. There is increasing evidence that

diet and cholesterol may play a role in the devel-

opment of the plaques (Solomon and Kivipelto

2009). Controlled clinical trials of statins are

assessing whether the rate of decline in AD can

be modified or slowed by these medications.

Disease progression for AD is based on several

measurements, including the mini mental state

examination (MMSE), dementia rating scale

(DRS), clinical dementia rating (CDR), and the

Alzheimer’s disease assessment scale – cognitive

(ADAS-Cog).Magnetic resonance imaging (MRI)

and positron emission tomography (PET) are also

used to evaluate structural and functional alterna-

tions in the brain. These assessments have differ-

ent scales and most provide a summary measure

of a variety of cognitive, emotional, and physical

performance attributes. A listing of some of the

more commonly used assessment scales is pre-

sented in Table 3.2. The majority of scales start at

low values and the scores increase as impairment

increases.

Comparison of disease progression and drug

activity across studies that have employed dif-

ferent metrics of disease progression is therefore

difficult. Chan and Holford (2001) evaluated

the natural progression of AD across several

66 D.R. Mould



common assessments. Despite obtaining the

absolute values of disease status at different

time points and expressing the changes as a

percentage of the baseline value, this compari-

son showed a fairly wide range of progression

rates. At 5 years, percent change from baseline

ranged from approximately 100 to 400% across

all studies and scores compiled. When evalu-

ated separately, the rate of progression of AD is

generally slow. Imbimbo et al. (1999) reported

an annual worsening of 10.2 points on the

ADAS-Cog scale. Birks (2006) compared the

effects of donezepil, galantamine, and rivastig-

mine in people with mild, moderate, or severe

AD. Based on the results of 13 randomized,

double blind, placebo controlled trials over

treatment for periods of 6 months and 1 year,

these treatments produced improvements in

cognitive function, on average �2.7 points

(95% confidence interval �3.0 to �2.3), in the

midrange of the 70 point ADAS-Cog scale. The

small improvement may be partly due to study

assessment differences, or it may be due to the

limited duration of treatment.

In general, study durations for trials evaluat-

ing AD are 2 years or less; thus, the pattern of

drug modification of natural disease progression

is applicable only for a relatively short period of

time. Therefore, while AD progression over the

entire course of the disease is asymptotic because

most scales of disease status have a limiting

value, most disease progression models used for

AD are linear. However, the use of a linear model

for progression may overestimate the rate of dis-

ease progression if the progression is asymptotic.

In 1992, Holford and Peace (Holford and

Peace 1992a, b) utilized a linear model of disease

progression to describe the change in AD over

time. The model also incorporated a function to

describe a transient improvement for patients

randomized to placebo, and a third function to

describe the effect of drug. The overall function

to assess the status at any time t is given in the

equation below.

SðtÞ ¼ S0 þ atþ PD(CeplaceboÞ þ PD(CeactiveÞ:
(3.10)

In this equation, S(t) is the assessment at time

(t), S0 is the baseline observation, a is the rate of

progression, PD(Ce) is the effect of either drug or

placebo, where Ce is a concentration in an effect

compartment to allow for a lag between the

initiation of treatment and onset of measurable

Table 3.2 Overview of commonly utilized scales for assessment of Alzheimer’s disease status

Measurement scale Abbreviation Component evaluated Range

Alzheimer’s disease assessment scale ADAS Total 0–120

Noncognitive 0–50

ADAS-Cog Cognitive 0–70

Blessed dementia scale BDS Total 0–27

ADL 0–16

Cognitive 0–17

Blessed information memory concentration BIMC – 0–33

Behavior rating scale for dementia BRSD Total 0–164

Clinical dementia rating (in six categories) CDR – 0–3

Clinician’s interview-based impression of change CIBIC – 1–7

Sum of boxes (global CDR) CDR-SB – 0–18

Dementia rating scalea DRS – 0–144

Extended scale for dementia ESD – 0–250

Global deterioration scale GDS – 0–7

Mini mental state examinationa MMSE – 0–30

Progressive deterioration scale PDS – 0–100

Severe impairment batterya SIB – 0–100

aLower scores are associated with greater impairment
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improvement. This function is presented in

Fig. 3.6 below.

In general, model-based results have shown

consistent estimates of disease progression and

have identified modest symptomatic benefit of

treatment. Gobburu et al. (2001) utilized a simi-

lar model to describe the effects of rivastigmine

on AD progression. This evaluation described

computerized neuropsychological test battery

(CNTB) scores, although the authors were not

able to correlate drug exposure to improvement

in CNTB. Ito et al. (2010) conducted a system-

atic review of published data from 1990 to 2008

of all available cholinesterase inhibitor studies as

well as clinical studies that evaluated the rate of

deterioration in AD patients. The authors devel-

oped a linear model describing the longitudinal

response in the AD based on change from base-

line ADAS-Cog in patients with mild to moder-

ately severe AD. An Emax type model was

developed to describe the symptomatic benefit

of active treatment. Brooks et al. (1993) pro-

posed a triphasic linear model to describe the

time course of AD. This model incorporates a

lag time or a latent phase before the start of the

period of constant rate of deterioration, followed

by a resistance phase where there is no further

worsening of disease status. While the triphasic

model has more flexibility than the simple linear

model, over the limited duration of a clinical trial

there appears to be little difference in model

performance.

3.3.2 Models for Hematopoiesis

Hematopoiesis is the process of forming andmain-

taining stable populations of blood cells in the

body.When this process is disturbed either through

disease or chemically mediation (e.g. through

administration of chemotherapy), the first cell

population to be affected is usually neutrophils

(which have a life span in the blood of only 6–8 h)

followed by platelets (with a 10-day life span).

Anemia develops more slowly, over a much lon-

ger span of time (since the red blood cells have a

120-day lifespan).

All blood cells develop from pluripotent stem

cells found in the bone marrow. These stem cells

are able to proliferate as well as differentiate into

the different types of blood cells, and are able to

renew themselves. The pluripotent stem cell

is the progenitor of two multipotential stem cell

lines: the myeloid and the lymphoid lines. Mye-

loid stem cells are precursors of granulocytes,

Fig. 3.6 Progression of Alzheimer’s disease – Taken

from Holford and Peace (1992a, b). The observed score

for Alzheimer’s disease (heavy solid line) is a sum of

several functions including the natural progression, a

placebo effect, and a drug effect
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monocyte, red blood cells, and platelets. Lym-

phoid stem cells are precursor of lymphocytes.

The production of blood cells is largely controlled

by feedback. When the demand for production of

cells of a particular type of cells increases or the

levels of the cells fall in blood, cytokines are

released that stimulate stem cells to differentiate

and mature into blood cells. The cytokines are

specific for each cell type. A schematic pathway

for the hematopoietic process is provided in

Fig. 3.7. As can be seen, there are several cyto-

kines that can stimulate the differentiation and

maturation of various cell populations.

3.3.2.1 White Blood Cells and
Neutropenia

Although it is somewhat less common than ane-

mia or thrombocytopenia, neutropenia can

develop if neutrophils are depleted faster than

the bone marrow can produce new ones. This

can occur with some types of acute bacterial

infections, allergic disorders, and drug treatments,

particularly chemotherapeutic regimens. In addi-

tion, certain autoimmune diseases can induce the

formation of antibodies that target neutrophils,

resulting in neutropenia. In addition, an enlarged

spleen may result in neutropenia because the

enlarged spleen traps and destroys neutrophils

more efficiently than a small spleen.

Neutropenia can also develop if the production

of neutrophils in the bone marrow is reduced, as

can occur in with cancer, viral infections such as

influenza, bacterial infections such as tubercu-

losis, myelofibrosis, or deficiencies of vitamin B12

or folate. Radiation therapy that involves areas of

the bone involved in white cell production may

also result in neutropenia. Many drugs, including

phenytoin, chloramphenicol, sulfa drugs, and chemo

therapeutic agents, as well as certain toxins (e.g.

benzene and insecticides) can also impair the

bone marrow’s ability to produce neutrophils.

Because one of the primary causes of neutro-

penia is administration of chemotherapeutic

agents, and neutropenia is one of the more com-

mon dose-limiting toxicities associated with

the administration of chemotherapeutic agents

(e.g. paclitaxel; Rowinsky et al. 1993), more

attention has been paid to developing models to

Fig. 3.7 Hematopoietic maturation. Hematopoiesis

involves a complex process that is controlled by precursor

cell availability and cytokines. All cells arise from a

pluriponent stem cell, then differentiate during the matu-

ration process as shown above is determined by cell

specific cytokines
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describe the time course of neutropenia follow-

ing chemotherapy than to describing neutropenia

arising from other conditions. Empirical models

such as the Emax model have been used to relate

summary measures of drug exposure to the nadir

white cell count (Egorin et al. 1986; Hantel et al.

1990; Erlichman et al. 1991). Attempts to corre-

late the degree of neutropenia with steady-state

paclitaxel concentrations have been tried but

were generally unsuccessful (Rowinsky et al.

1999). The degree of neutropenia has also been

associated with the length of time that drug con-

centrations exceed a critical threshold concentra-

tion (Eisenhower et al. 1994; Gianni et al. 1995).

Consequently, the pharmacokinetic/pharmaco-

dynamic relationship between paclitaxel expo-

sure and neutropenia has often been described

using a threshold model (Gianni et al. 1995;

Henningsson et al. 2001, 2003). Karlsson et al.

(1998) proposed a more elaborate model relating

drug exposure, time above a threshold concentra-

tion, between the concentration–time profile of

free paclitaxel and the decrease in white blood

cell or neutrophil count.

Another frequently used approach is to link

the grade of neutropenia with a summary mea-

sure of exposure using logistic regression (Mould

et al. 2002). This approach is commonly taken

when there are insufficient data (e.g. neutrophil

counts over time) to describe the data using a

continuous function or when there is not enough

time to do a more fully developed semimecha-

nistic model. Both logistic and empirical models

are often used to describe the data obtained from

a particular dose regimen; they are easy to

develop and implement. However, logistic mod-

els have limited utility to extrapolate to other

doses or dose regimens. In order to better charac-

terize the relationship between drug exposure

and neutropenia, more mechanistic models are

preferable as these models are also capable of

providing better predictions of untested doses

and schedules.

One of the issues associated with developing a

mechanistic model for neutropenia was the long

lag between drug exposure and response. For

paclitaxel, the onset of neutropenia occurs 8–10

days following treatment and recovery is not

complete until day 15–21. Various indirect effect

type models were tested to account for this lag

between drug administration and effect (Minami

et al. 1998). However, the model currently in

vogue is a transit-type semiphysiological model

developed by Friberg et al. (2000), which

appears to work well across a variety of antineo-

plastic agents (Friberg et al. 2002). A schematic

for this model is presented in Fig. 3.8.

Granulocyte colony-stimulating factor (G-CSF)

is produced by monocytes, fibroblasts, and endo-

thelial cells and is a physiologic regulator of

neutrophil production and function and is used

in the treatment of neutropenia. G-CSF is an

endogenous cytokine that regulates the produc-

tion of neutrophils by stimulating neutrophil pro-

genitor proliferation (Zsebo et al. 1986; Welte

et al. 1987) and differentiation (Duhrsen et al.

1988). G-CSF is cleared by glomerular filtration

and also undergoes clearance through binding to

receptors on the surface pluripotent stem cells as

well as on neutrophils (Kotto-Kome et al. 2004).

Binding to the pluripotent cells affects the

differentiation of the stem cells with eventual

Fig. 3.8 Schematic of

white blood cell transit

model. A schematic for

white blood cell maturation

is provided above. This

model has a precursor

compartment, three transit

compartments, and a

compartment for observed

cell counts. The model has

a feedback loop that will

regulate cell counts to

mimic the hemostasis
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maturation to neutrophils. Binding to neutrophils

plays a critical role in hemostasis, increasing

clearance of G-CSF from both endogenous and

exogenous sources when cell counts are high as a

means of controlling neutrophil count by a feed-

back mechanism (Terashi et al. 1999), or reduc-

ing clearance when neutrophil counts are low.

This feedback mechanism is reflected in the

model for neutropenia proposed by Friberg

et al. (2000). Because G-CSF works to increase

circulating neutrophils, receptor-mediated clear-

ance of G-CSF increases the course of treatment

based on individual response (Kuwabara et al.

1996). Terashi et al. (1999) have also shown

that G-CSF receptor density increases on neutro-

phils in the presence of G-CSF, further increas-

ing its clearance. Consequently, there is a strong

pharmacokinetic– pharmacodynamic interaction

with this agent and therefore, a physiological

limitation to the pharmacodynamic activity of

G-CSF. There are other feedback mechanisms,

including interactions between other cytokines.

For example, inhibition of binding of G-CSF by

human neutrophils has been observed in the pres-

ence of excess unlabeled human granulocyte-mac-

rophage colony-stimulating factor (GM-CSF),

suggesting competition or down modulation by

GM-CSF of the G-CSF receptor. Finally, there is

also a potential mechanism referred to as “line-

age steal” (Papaldo et al. (2006) where adminis-

tration of one cytokine (e.g. GCSF) can

transiently reduce the pool of pluripotent stem

cells available for maturation into other cell lines

resulting in mild anemia or thrombocytopenia.

This has been reported in patients (Papaldo et al.

2006) although as seen below, cancer itself as

well as chemotherapy can result in anemia,

making this process difficult to evaluate.

3.3.2.2 Red Blood Cells and Anemia
In the early 1950s, investigators reported that red

blood cells exist for a fixed duration of time

(Mollison 1952–1953) or lifespan. Most esti-

mates for the lifespan of a red blood cell in

healthy patients are approximately 120 days.

The effect of diseases such as leukemia (Berlin

et al. 1951) and renal impairment (Chaplin and

Mollison 1953) were subsequently found to

shorten red cell lifespan, resulting in anemia.

For patients with renal impairment, properties

of the uremic environment such as inflammation,

increased oxidative stress and uremic toxins may

result in premature changes in red cell membrane

and cytoskeleton. Exposure of antigenic sites and

breakdown of the phosphatidylserine asymmetry

may therefore increase red blood cell phagocytosis

(Kruse et al. 2008).

As with renal failure, cancer-related anemia

can be caused by a number of factors. It can

occur as a direct effect of the tumor, it may be

due to products of the cancer cells, or it may

develop as a result of the cancer treatment itself.

A listing of some of the causes for anemia arising

as a direct effect of the neoplasm is presented

in Table 3.3. Other causes of anemia in malig-

nancy include known substances or proteins

produced by the cancer. Excessive amyloid

deposition and antibody formation are primary

compounds produced by neoplasm that can

cause anemia. The deposits of amyloid in mye-

lomas and amyloidosis can be extensive enough

to replace the bone marrow. The development

of antibodies in chronic lymphocytic leukemia,

lymphoma, and sometimes solid tumor malig-

nancies can lead to immune hemolytic anemias.

Table 3.3 Tumor based causes of cancer-related anemia

Clinical cause of

anemia

Types of cancer

Exogenous blood loss

(acute or chronic)

Gastrointestinal malignancies

Head and neck cancer

Genitourinary cancers

Cervical and vaginal cancers

Intratumor bleeding Sarcomas

Bulky melanomas

Hepatoma

Ovarian cancer

Adrenocortical tumors

Anemia due to

erthrophagocytosis

Histiocytic medullary

reticulosis

Histiocytic lymphomas

Other histiocyctic neoplasms

Bone marrow

replacement

Leukemias

Lymphomas

Myelomas

Carcinomas (breast, prostate)
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Furthermore, development of microangiopathic

hemolytic anemia, which is seen in some solid

tumor malignancies, may result from procoagu-

lants released from cancers. While the hemoglo-

bin trajectory in patients with cancer is usually

confounded by concomitant treatment with che-

motherapy or radiotherapy, at least one report has

been published illustrating the hemoglobin

time course in patients with cancer not receiving

chemotherapy or radiotherapy (Smith et al.

2003).

Regardless of the cause of the anemia,

individual response to treatment depends on

both red blood cell lifespan and red blood cell

production rate. Consequently, PK/PD models

for hematological processes involving red blood

cell formation generally assume that red blood

cells are produced by a zero- or first-order pro-

cess, survive for a specific cell lifespan, and then

are lost to circulation. Furthermore, models pre-

dicting erythropoietin-induced changes in red

blood cells or hemoglobin are generally depen-

dent on estimates of both red blood cell produc-

tion rate and lifespan.

Several structural models have been proposed

for describing red blood cell or hemoglobin pro-

duction. An early approach using a modified

indirect pharmacodynamic model assumed that

cells were produced at a constant rate, survived

for a specific duration, and were then lost to

circulation. The rate of cell loss was set equal

to the production rate but the loss was delayed by

the cell lifespan (Krzyzanski et al. 1999). This

model was successfully applied to describe the

change in red blood cells after administration of

erythropoietin in cynomolgus monkeys (Ramak-

rishnan et al. 2003); however the model required

the use of delay differential equations (DDEs) in

order to track the cell population lifespan,

making it difficult to implement. An updated

model was developed that included a precursor

pool, and the DDEs were modified using a

numerical method of steps to facilitate analysis

(Perez-Ruixo et al. 2005). The model was further

altered by inclusion of a transit type model used

to describe neutropenia (Friberg et al. 2000,

2002) with a precursor pool (Agoram et al.

2006) which considerably simplified the numeri-

cal methodology required to solve the differen-

tial equations (DEs) and removed the need for

DDEs entirely. A somewhat further simplified

model has been proposed (Holford and Sheiner

1982; Mould 2007) that does not include a pre-

cursor pool and utilizes endogenous levels of

EPO to establish the baseline Hb level.

A schematic of this later, simplified model is

presented in Fig. 3.9. The equations for the

model are presented afterwards. One of the nota-

ble differences in this model from that published

by Friberg et al. is that the red blood cell count or

Fig. 3.9 Schematic of red blood cell transit model.

A schematic for red blood cell maturation is provided

above. This model has a precursor compartment that is

dependent on endogenous erythropoietin, five transit

compartments, and a compartment for observed cell

counts. In order to mimic lifespan, cell count is the sum

of all compartments. Unlike white cells there is no feed-

back loop
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hemoglobin level is taken as the sum of the total

amounts in each of the transit compartments. This

is done to allow the model to behave more like a

lifespan model. In addition this model has neither

the feedback that was included in the transit model

for white cells, nor the loss from the first compart-

ment. The lack of feedback is because red cell

production is not regulated based on present cell

counts, but rather by oxygen levels.

One of the shortcomings of the model is that

it does not include the influence of iron levels.

Clinical experience suggests that correcting iron

deficiency can reduce the need for erythropoietin

by enhancing its effectiveness. Low iron levels

can also result the loss of response over time

(Rizzo et al. 2002). Consequently, models of

anemia should include cotherapy with iron sup-

plements as well as transfusions administered to

account for changes in the trajectory of disease.

KHB ¼ 1

MRT

KHBn ¼ KHB5

RHBO ¼ EmaxCendogenous

ðEC50þ CendogenousÞ
HB0 ¼ RHB0

KHB

Total ¼ Cexogenous þ Cendogenous

DRHB ¼ Emax Total

ðEC50þ TotalÞ
DADT(1Þ ¼ DRHB� KHBnAð1Þ
DADTð2Þ ¼ KHBnðAð1Þ � Að2ÞÞ
DADTð3Þ ¼ KHBnðAð2Þ � Að3ÞÞ
DADTð4Þ ¼ KHBnðAð3Þ � Að4ÞÞ
DADTð5Þ ¼ KHBnðAð4Þ � Að5ÞÞ
Hb ¼ Að1Þ þ Að2Þ þ Að3Þ þ Að4Þ þ Að5Þ

(3.11)

3.3.3 Models Describing Growth

There are many therapeutic areas that utilize

disease progression models of growth, including

bacterial infection, viral infection, and cancer.

Several examples of models for growth are

presented in the following sections. More discus-

sion on odeling tumor growth can be found in

Chap. 1.

3.3.3.1 Cancer and Tumor Growth
The way in which cancer can cause death varies

depending on the type of cancer and the parts of

the body affected. The metastatic patterns for

tumors are variable, as are tumor growth rates.

However, as a rule, the cause of death is due to

the mass effect of the tumor, which occurs when

cancer spreads to a part of the body that carries

out an essential function. For example, if a tumor

is growing in part of the digestive tract, it can

prevent the digestion and absorption of food, or it

can block the digestive tract so that food cannot

pass through the intestines. When such blockages

occur, then nutrients from the food can’t be

absorbed and poor nutrition and issues ensuring

from body wasting arising from the mass effect

of the tumor will contribute to death. In other

cases, organ failure, necrosis, and infection can

eventually lead to death.

The effect of anticancer drugs on solid tumors

is usually categorized based on the criteria out-

lined in the Response Evaluation Criteria in Solid

Tumors (RECIST) Group (Eisenhauer et al.

2009). This method classifies the response of

the tumor to a particular therapeutic intervention

into one of four categories: complete response

(CR), partial response (PR), stable disease (SD)

and progressive disease (PD). The advantage of

the RECIST criteria is that it offers a uniform

response criterion that standardizes the measure-

ment and interpretation of tumor responses

across clinical trials, allowing cross-comparison

between various treatment modalities. Other

metrics of tumor response to treatment involve

evaluation of survival at some key endpoint

(Mould et al. 2006), disease free survival, or

time to disease progression.

However, the use of categorical response inher-

ently reduces the amount of information being

evaluated. Using other related markers such as

cancer antigens (e.g. CEA or CA15-3) have not

been helpful, as these markers are not closely

related to tumormass although they are recognized

as prognostic factors at time of diagnosis.

Consequently, the evaluation of tumor size as a
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continuous scale assessment has been proposed

as being potentially more useful for relating

tumor response to individual levels of drug expo-

sure. Because assessments of tumor growth usu-

ally require sophisticated imaging techniques for

accurate measurements, and the fact that patients

often havemultiple metastatic sites of disease, the

use of continuous tumor measurements has not

yet gained widespread application as an end point

for drug effect modeling in clinical trials. Devel-

opment of a model to account for metastasis is

particularly important in this setting. The ability

to determine the initiation time of metastatic

growth would be a valuable tool to determine

the likelihood of a patient having metastatic

recurrence. As should be expected, the predicted

initiation time for metastases depends on the dis-

ease progression model. Therefore, if a model

predicts an early initiation time for metastatic

growth relative to the time of diagnosis, then

treatment strategy would be different than if the

metastasis were unlikely to have been initiated. In

the former case, chemotherapy would be a pri-

mary treatment option and in the latter, surgery

and radiation would likely be preferred.

Breast cancer is one of the most common

solid tumors in women. Mortality rates for breast

cancer across the entire population within the

United States have remained largely unchanged

since 1970 (Bailar and Gornik 1997). Despite the

fact that most breast cancer patients are treated

with cytotoxic chemotherapy at the reported

optimal schedule, a significant percentage of

patients relapse and die. The Oxford Overview

(Early Breast Cancer Trialists’ Collaborative

Group) reported the recurrence-free and survival

rates at 10 years for women receiving multiagent

chemotherapy as 44 and 51%, respectively.

Developing a better understanding of the nat-

ural history of breast cancer through the use of

disease progression models may suggest more

effective treatments and has been investigated

over the past 25 years. A variety of models

have been proposed to describe the natural his-

tory of breast cancer. In the sixties, Laird used

the Gompertz function to describe the growth of

solid tumors (Laird 1964). More recent work on

breast cancer tumor growth includes models

developed by Speer et al. (1984), Koscielny

et al. (1985), Norton and Simon (1977, 1986),

and Spratt et al. (1993).

The Gompertz model (Gompertz 1825) has

been the basis of many models of solid tumor

growth. The Gompertz model is a modification of

exponential growth, with the addition of a

decreasing growth rate over time that causes the

cancer to asymptotically approach a limiting

size, referred to as its carrying capacity. This

limited growth is attributed to several factors,

including hypoxia and the lack of nutrients. The

use of this model stems from data obtained in

several in vivo studies in which the Gompertz

function described the growth dynamics of the

tumor (Norton et al. 1976). However, Speer,

among others, found evidence that cancer cells

can enter a dormant phase, and that the original

Gompertz equation could not account for this

observed dormant phase. Thus, the Gompertz

function has been modified to account for cells

to existing in multiple phases. In the equation

below, the Gompertz function was modified to

allow for a resistant (dormant) subpopulation of

cells and a sensitive or growing population.

dRs

dt
¼ KRSRr þ bRsðbmax � RsÞ

�
"
KSR þ 1þ Emax Cp

EC50þ Cp

� �
KSO�Rs

dRr

dt
¼ KSRRs � KRSRr

(3.12)

In this equation, Rr is the resistant population

and Rs is the sensitive population. KRS is the

rate constant of transfer from resting to sensi-

tive and KSR is the rate constant of transfer from

sensitive to resting. bmax is the maximum carry-

ing capacity, and b is the growth rate. Emax and

EC50 represent the maximum activity of the

drug and the concentration at half maximal

effect, respectively. Cp is the concentration of

the drug. As has been seen with other models of

disease progression, concentration can be replaced

by an effect compartment concentration to allow

for the delay between drug administration and
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observed change in tumor growth patterns. This

function provides the growth patterns seen in

Fig. 3.10.

However, the Gompertz function presented

does not account for metastatic disease which is

a shortcoming.

Norton and Simon (1986) assumed that all

tumor growth, regression, and regrowth followed

Gompertzian kinetics. Their model describes the

initial response to chemotherapy as cell death or

depopulation. Based on the Gompertz model, as

the tumor regresses, its growth fraction increases.

If following treatment the asymptotic limit

(where kill rate and repopulation are equal)

exceeds one cell, a cure cannot occur. Conse-

quently, the only way to cure the disease is to

eradicate every metastatic cell. This evaluation

supported the administration of adjuvant chemo-

therapy to patients with early stage breast cancer

following tumor resection.

However, other issues must be considered in

any disease progression model for cancer.

Firstly, tumor cells often exhibit resistance

through expression of multidrug resistance trans-

porters (MDR). In addition, the resistance of

cancer cells to chemotherapeutic agents may be

a consequence of clonal selection, where the

surviving subpopulation following treatment is

resistant to that agent or class of agents. The

Goldie–Coldman model (Goldie and Coldman

(1979) attempted to incorporate the theory of

the evolution of clonal drug resistance into a

disease progression model. Their model incorpo-

rates a fixed nonzero probability that any new

daughter cell will be a resistant mutant at each cell

division of an unmutated tumor cell. At diagnosis

(e.g. a tumor of approximately 109 cells), this

model estimates that drug-resistant cells are pres-

ent. Also, with an increasing tumor cell popula-

tion, the probability that a double mutant is

created is also increased.

Although breast cancer models have been

used for many years, models for other tumors

have not been evaluated to the same extent.

For example, several models for nonsmall cell

lung cancer, which may be an easier disease to

describe as the primary tumor is often the cause

of death, have recently been reported. Tham et al.

(2008) also employed a disease progression

model for nonsmall cell lung cancer based on

the Gompertz function. This model also used an

effect or link compartment to allow for the delay

between treatment and reduction in tumor size.

A schematic of this model is presented in

Fig. 3.11. The evaluation was driven only by

effects of the antineoplastic agent on a primary

Fig. 3.10 Gompertz

growth patterns for varying

treatment regimens. Cell

counts following

administration of different

doses of cytotoxic drug.

With this model, it can be

seen that even with a very

high dose, cell count

appears to drop to 0 but will

regrow. This model then

can mimic relapse

following chemotherapy
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tumor target and thus did not include models for

metastatic sites and tumor cell resistance. There-

fore the model was able to capture the overall

change in tumor size following chemotherapy.

However, the authors were not able to correlate

individual drug exposure with tumor regression,

possibly due to the small size of the study eval-

uated. Wang et al. (2009) also developed a model

for nonsmall cell lung cancer. This later work

utilized pooled data from several studies and a

mixed exponential decay and linear growth

model for tumor size as shown below. In this

equation, TSi is the individual tumor size at

some time t, BASE is the individual primary

tumor size measured at baseline, SRi is the

shrinkage rate, and PRi is the growth rate under

a specific treatment course.

TSiðtÞ ¼ BASEi e
�SRi t þ PRit: (3.13)

What was particularly important in this work

is that the authors were able to link the tumor size

to overall survival. The combined model identi-

fied other prognostic factors for survival, includ-

ing East Coast Oncology Group (ECOG) status,

baseline tumor size, and tumor size at week 8 fol-

lowing treatment. This model may be useful to

make comparisons of various chemotherapeutic

regimens and may provide insight to patient

response.

3.3.3.2 Viral Growth
Acquired immune deficiency syndrome (AIDS)

is a severe immunological disorder that is caused

by the human immunodeficiency retrovirus

(HIV). AIDS arises as a defect in cell-mediated

immune response that is manifested by increased

susceptibility to opportunistic infections and to

certain rare cancers, especially Kaposi’s sar-

coma. The Center for Disease Control (CDC)

estimated that at the end of 2006, approximately

1,106,400 persons in the United States were liv-

ing with HIV infection, with 21% undiagnosed

(Garnett and Holford, Abstract Measurement

2006 Meeting) and that approximately 56,300

people were newly infected with HIV (Hall

et al. 2008). CD4þ lymphocytes are the cells

primarily infected by HIV. During treatment

with antiviral agents, the number of CD4þ lym-

phocytes generally increases as the viral load

decreases. It is the loss of CD4þ lymphocytes

that results in the immunosuppression.

HIV viral detection was initially elusive. In

the early 1990s HIV detection methods were not

well established, with high assay variability

(Sloand et al. 1991). Consequently, CD4þ cell

count was generally used as a predictor of mag-

nitude of response to treatment. Sale et al. (1993)

conducted a post-hoc analysis of data obtained

from 1,423 asymptomatic HIV-positive patients

with CD4þ cell counts less than 500 mm3.

Patients were dosed at 500 or 1,500 mg/day

Fig. 3.11 Schematic of Gompertz model – derived from

Tham et al. (2008). A schematic for tumor growth dynam-

ics is presented above. Here, a link or effect compartment

is used to allow for a delay between the administration of

drug and a change in tumor size. The effect site concen-

tration (Ce) is used to drive the Emax model that decreases

tumor cells
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zidovudine, or placebo. The main outcome mea-

sure was change in the CD4þ cell counts over

time. The authors reported that early initiation of

treatment with zidovudine resulted in a larger

increment in the CD4þ cell count. In addition,

the increment in CD4þ cell count is very long

lived. The model suggested that zidovudine does

not change the underlying course of HIV infec-

tion but simply delays the time course of CD4þ
cell loss. However, drug exposure was not found

to be a predictor of response to treatment in the

dose range studied. Similarly, Stein and Drusano

(1997), using a model somewhat more elaborate

than Sale et al. investigated the relationships

between changes in CD4þ counts over 24

weeks during treatment with indinavir at dosages

of at least 2.4 g/day. Baseline CD4þ counts were

linked to the time-weighted average CD4þ cell

count through a nonlinear effect model. The loss

of CD4þ cells after the initiation of indinavir

therapy was estimated simultaneously by fitting

a series of differential equations to the data using

a linked lymph node-blood (two-compartment)

system in which there was a constant rate of

generation, first-order transfer rate constants

between compartments, and first-order rate con-

stants of CD4þ cell loss in the absence or pres-

ence of indinavir. The results of this evaluation

suggested that the CD4þ cell count at the start of

therapy is correlated to both the decrease in the

destruction rate of CD4 cells and the degree of

change in the CD4 lymphocytes on therapy. The

work also indicated that a low initial CD4þ cell

count is associated with high CD4þ cell turnover

and a reduced ability of the immune system

to increase absolute CD4þ cell levels after

viral suppression, which is consistent with a

decreased regenerative capacity with progression

of disease.

However, viral infections have complex

growth patterns (Bonhoeffer et al. 1997), and

while the CD4þ cells are the target, models for

viral load are an important component of the

disease. Funk et al. (2001) developed a model

that described the dynamics of CD4þ cells and

viral load after initiation of antiretroviral therapy.

The authors also distinguished between actively,

latently, persistently, and defectively infected

cells The model simultaneously described HIV-

1 RNA, peripheral blood mononuclear cell

(PBMC)-gag RNA, proviral DNA, and CD4þ
cell counts. A schematic of this model is pre-

sented in Fig. 3.12. With this model, the authors

were able to estimate the replicative capacity

of the virus. The authors reported that HIV

can maintain an ongoing infection only in

actively infected cells. In latently and persis-

tently infected cells the viral reproductive rate

is considerably smaller, indicating that these

compartments contribute little to the total basic

Fig. 3.12 Schematic of

viral growth model. A more

complex model schematic

for viral growth accounts

for actively infected cells

and latent cells because the

response to treatment will

be different. There is also

the possibility that latent

cells can convert to active

cells
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reproductive rate and cannot maintain an ongo-

ing infection in the absence of actively infected

cells.

Rosario et al. (2005) developed a model that

built upon the earlier work published by Funk.

The authors integrated models for pharmaco-

kinetics, pharmacodynamics, and viral growth

(disease progression) to predict the effect of a

new antiviral agent maraviroc on viral load.

After the model was developed, a range of oral

doses for maraviroc with potential activity was

simulated to help guide the early clinical trials of

this agent.

The development of resistance in HIV strains

to current antiviral therapy is an important com-

ponent of therapeutic outcome (Kuritzkes 2007).

Resistance is thought to be partly attributable to

poor compliance (Kilby et al. 2000) and to sub-

optimal therapy. In both situations, viral clones

have an opportunity for regrowth and have pos-

sibly undergone selection for resistance to treat-

ment. Labbé and Verotta (2006) developed a

model characterizing variability in the long-

term response to HIV treatment. The model was

used to quantify the effect of physiological vari-

ables, adherence to treatment or previous expo-

sure to treatment, on the dynamics of HIV-1

RNA. The authors reported that patients with

previous exposure to treatment show faster

death rates for HIV-1, and that higher adherence

to treatment was associated with lower reproduc-

tive ratio. The importance of compliance in viral

dynamics was further confirmed in a model

developed by Radisavljevic-Gajic (2009) who

demonstrated viral regrowth attributed to poor

compliance.

As was mentioned earlier, suboptimal treat-

ment can also contribute to poor clinical outcome

of HIV therapy. Ioannidis et al. (2000) modeled

the regrowth of HIV in patients who were not

receiving optimal antiviral therapy. The rates of

viral load increase were shown to be similar to

those reported in patients whose therapy has been

interrupted. Variability among viral rebound in

suboptimally dosed patients with HIV may

depend on viral fitness, target cell availability

and extent of immune reconstitution.

Developing models to account for resistant

subpopulations is not straightforward. RNA

viruses are often described as molecular quasis-

pecies due to their genetic diversity, which is a

direct consequence of high mutation rates.

According to this theory, RNA virus populations

cannot be understood in terms of individual viral

clones, as they are clouds of interconnected

mutants. Cuevas et al. (2005) developed a viral

growth model to examine the fitness of individ-

ual clones, which seems to be determined mainly

by the ability to complete infection cycles more

quickly. According to the authors, viral clone

fitness was systematically higher for initial

clones than for their derived populations. In addi-

tion to environmental changes, such as initiation

of cellular defense mechanisms following infec-

tion, the differences in fitness are attributable to

high RNA virus mutation rates.

Models of viral growth and dynamics need to

incorporate a wide variety of submodels, includ-

ing compliance, development of resistant sub-

populations, active and latent infections, and

target cell growth. As a consequence of the

variability in viral subpopulations, compliance,

and individual response to therapy, Wu et al.

(2005) reported that it may be necessary to

individualize the HIV treatment regimen in

order to optimize response.

3.3.4 Osteoporosis

Measurement of bone mineral density (BMD) is

used to diagnose osteoporosis, and fracture risk

generally increases when BMD decreases. Mon-

itoring changes in BMD over time can be used to

estimate an individual’s rate of bone loss, and

therefore can be used to confirm response to

treatment. However, the precision of BMD

for determining a change in fracture risk is com-

promised by two factors: (1) there are errors

of accuracy inherent in the testing methods

which increase the variance of the assessment.

These errors, taken together with the normal

variation of BMD in the population mean over

seasonal changes, necessitate the collection of
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observations over a prolonged period of time in

order to accurately assess changes; (2) BMD is

not the only physiological factor that contributes

to bone strength and fracture risk. Other factors

such as race and concomitant disease can affect

bone strength and fracture risk. The lack of pre-

dictive precision of BMD for change in fracture

risk means that the usefulness of BMD as a

surrogate marker of fracture risk reduction in

clinical trials is somewhat limited and can be

difficult to estimate.

In 1994, Pors Nielsen et al. reported that con-

tinuous treatment with hormone replacement

therapy resulted in a pronounced rise in lumbar

spine bone density. They also reported the rate

spontaneous decline in lumbar spine bone den-

sity in untreated patients averaged 1.86% per

year. However, they also noted that there was a

significant bone loss from the lumbar spine dur-

ing the last year of active treatment, suggesting

that following initiation of hormone replacement

therapy, lumbar spine bone density rises to a

certain level and subsequently declines. These

data were evaluated using a disease progression

model, with the decay of BMD over time in

untreated patients being described using a linear

disease progression model with a slope equal to

the annual rate of bone mineral loss (Fig. 3.13,

lower panel). The placebo adjusted change from

baseline in BMD seen in patients receiving treat-

ment was described using a disease modify-

ing model (model 1) and a symptomatic model

(model 2). The fit of these two disease progres-

sion models is presented in the upper panel of

Fig. 3.13. The results of their evaluation sug-

gested a symptomatic benefit rather than a dis-

ease modifying benefit of treatment.

As mentioned earlier, BMD measurements

exhibit seasonal changes over time. Figure 3.14

shows a regular pattern in the BMD observa-

tions that can be described using a linked cosine

model to capture the periodicity in the data.

Utilizing a linear disease progression model

with a linked cosine function to account for

seasonal changes and a disease modifying effect

of drug produces the disease progression curves

shown in Fig. 3.15.

WaveðtÞ¼Amp cos
2p
12

ðMonth�PhaseÞ
� �

Slope¼ að1�DrugEffectÞ
BMD(tÞ¼ S0þWave(tÞþSlopeMonthþ eadditive

(3.14)

In the above equations, Amp is the amplitude

of the cosine function, Month is the month the

observation was taken, Phase is the phase of the

wave, a is the slope of untreated BMD decay, S0
is the baseline BMD value, and DrugEffect is the

scaled effect of drug either via concentration or

other summary measure of exposure such as dose

or AUC.

Changes in BMD can also be described using

an indirect effect type function, where the change

in BMD is described using a differential equation

as shown below and the schematic is presented in

Fig. 3.16.

WaveðtÞ¼Amp cos
2p
12

ðMonth�PhaseÞ
� �

Rformation ¼Rformation0 expð�ktÞ
dBMT

dt
¼Wave(tÞþRformation�Rloss

BMD(tÞ¼ S0þDrugEffectþ
ðt
0

dBMT

dt
þ eadditive

(3.15)

The linked cosine model is the same as has

been implemented previously. In this model,

Rformation is the rate of calcium deposition in the

bone, which decreases over time. The rate of

change of BMD (dBMT/dt) is dependent on the

cosine and the balance of formation and loss

rates. The overall bone density at any time t is

the baseline density plus a drug effect and the

integral of the overall BMD. This model was

applied by Holford et al. (2001) to describe the

effect of pamidronate on bone density.

The Women’s Health Initiative estrogen–

progestin trial in 2003 was the first randomized

clinical trial demonstrating that combination

postmenopausal hormone therapy reduces the

risk of fracture at the hip, vertebrae, and

wrist (Cauley et al. 2003). Garnett and Holford
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(Garnett and Holford, Abstract Measurement

2006 Meeting) attempted to develop a model

correlating drug treatment, change in BMD, and

fracture risk. However, they were not able to

correlate BMD with fracture probability, finding

that the important predictors of fracture risk were

baseline BMD and treatment status, but not the

change in BMD from untreated disease. In a

separate assessment of data obtained in another

study (No Authors listed. J Bone Miner Res.

Fig. 3.13 Percent change from baseline of lumbar spine

bonemineral density over time – derived fromPors Nielsen

et al. (1994). Placebo adjusted change from baseline in

bone mineral density was described using a disease mod-

ifying model (model 1) and a symptomatic model (model 2).

The upper panel represents active treatment and the lower

panel is the change in density for placebo
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2002) after adjusting for age, the risk of incident

vertebral fracture was found to increase by a

factor of 1.4 (95% CI, 1.2–1.8) per decrease of

0.1 g/cm2 in BMD at the spine. Similarly, Johnell

et al. (2005) found that for the prediction of any

osteoporotic fracture (and any fracture), there

Fig. 3.15 Simulated bone mineral density over time in

treated and untreated states. Simulated time course of

bone mineral density for treated and untreated patients

over time can provide valuable insights into the magni-

tude of change expected following treatment with an

investigational agent

Fig. 3.14 Decay of untreated lumbar spine bone mineral

density over time showing periodicity. Bone mineral den-

sity changes with season, increasing during the summer

months and decreasing in the winter. The observed bone

density measurements oscillate in addition to decreasing

over time in an untreated subject. Failing to account for

this periodicity can increase the residual unexplained

variability in a model
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was a higher gradient of risk the lower the BMD.

Other authors (Mackey et al. 2007; Henry et al.

2006) have also reported that vertebral BMD and

hip BMD were both associated with risk of non-

spine fracture. Models correlating exposure,

changes in BMD and associated risk of fracture

are still an area for exploration.

3.4 Study Designs for Evaluating
Disease Progression and Drug
Effects

The high failure rate of new drug development

programs has been well documented (Mould et al.

2009) as less than 10% of the compounds that enter

clinical trials are approved for use. Further, a high

percentage of drugs that do not discontinue from

drug development and are filed with the Food and

DrugAdministration (FDA) formarketing approval

are not approved (Fig. 3.17). The reasons for

failure are varied, but are often related to insuffi-

cient activity or undesirable adverse events.

In addition, with increasing pressure to reduce

the cost of health care, improving clinical trial

design and removing drug candidates that are

unlikely to be successful at an early stage of

development has become essential. These chal-

lenges in the “critical path” of drug development

are discussed in a 2004 publication by the US

FDA (Zsebo et al. 1986). Disease–drug-trial

models are recommended as tools that can be

used to streamline and improve drug develop-

ment and decision making in the FDA critical

path document. Several groups have recom-

mended model-based drug development (Zhang

et al. 2006; Lalonde et al. 2007) with the goal of

providing explicit, reproducible, and predictive

models for optimizing drug development plans

and facilitating critical decision making.

There are numerous examples of simulated

study designs based on disease progression

models. One early example was proposed by

Holford and Peace (1992a, b) to improve the

ability to assess drug effect for Tacrine in AD.

The proposed design was an enrichment design,

with patients receiving random doses of drug for

fixed intervals of time. Lockwood et al. (2006)

used the same linear AD disease progression

model to investigate eight trial designs, includ-

ing Latin square, incomplete block, and parallel

group, as well as two composite designs that

included both crossover and parallel group

arms. The authors concluded that the use of

simulation resulted in the decision to use a

4 � 4 Latin square rather than the originally

proposed 12-week parallel group trial, resulting

in savings of approximately US$4M in direct

costs and a firm decision 8–12 months earlier

than anticipated. Mould et al. (2007) reported

that D-optimization, which minimizes the pro-

jected variance–covariance of a model, could be

used as a tool to explore study designs once a

disease progression model was established. The

use of D-optimization provided candidate study

designs and response assessment times more

Fig. 3.16 Schematic

diagram of indirect effect

model for osteoporosis.

Bone density is a function

of calcium deposition and

loss and can be described

using a standard indirect

effect type model as shown

here. Drug effect or disease

can then affect either the

deposition or removal in

this system
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easily than formal clinical trial simulation, and

the resulting study designs did not impact the

power to detect drug effect using traditional

approaches.

One of the more interesting aspects of disease

progression modeling has been the concept of the

ability to detect disease modifying effects for a

candidate drug. One of the early study designs

proposed to distinguish drug activity was a wash-

out design. Chan et al. (2007) reported on a study

(ELLDOPA) that was designed to detect a diffe-

rence between placebo and levodopa treated

arms in the total unified Parkinson’s disease

rating scale (UPDRS) taken at baseline and fol-

lowing 2 weeks levodopa washout after 40 weeks

of treatment. The total UPDRS response was

simulated with different assumptions on levo-

dopa effect (e.g. symptomatic effect both with

and without disease modifying activity) and

washout speed of symptomatic effect for levo-

dopa based on a model that had been developed

from earlier longitudinal data (DATATOP). The

results of this study did not support the concept

that levodopa may hasten the disease progres-

sion, but rather, it appears to slow down the rate

of the disease progression. The clinical study

failed to demonstrate any evidence of levodopa

worsening early stage disease progression.

Lastly, the data suggested that a 2-week washout

period was insufficient to eliminate the symp-

tomatic benefits of levodopa.

However, there have been concerns expressed

about the appropriateness of using washout

studies to evaluate drug effects (Hung and

Schwarzschild (2007). Furthermore, as seen

with the findings from the ELLDOPA trial,

washout periods for drug effect can be pro-

tracted. Two simulated scenarios of a fast onset

and washout and a slow onset and washout for

drug effect are shown in Fig. 3.18, panel A and

panel B, respectively. In panel A, when drug

onset and washout are fast, the disease modifying

and symptomatic effects can be clearly distin-

guished. However, as can be seen in panel B,

when drug effect has a slow onset and slow

washout, the disease modifying and symptomatic

behaviors are less distinct. Therefore, the distinc-

tion between a disease modifying drug activity

and symptomatic activity must be based on clini-

cal use and observed activity.

Fig. 3.17 New molecular entity approval by the FDA by fiscal year – taken from Powell (2005). A frequency histogram

of approvals for new molecules from 1993 to 2004. The number of approvals has fallen over the past several years
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A randomized delay or staggered start study

design was proposed as one means of assessing

drug effect. This design was tested to separate

symptomatic from disease modifying effects

of rasagiline (TEMPO) (Parkinson Study Group

2004). Comparison of the change in total UPDRS

Fig. 3.18 Effects of washout on determining drug activ-

ity. In these figures, the effect of washout can be seen. For

panel A, patient status rapidly returns to follow the natural

time course clearly suggesting the drug has only symp-

tomatic effect because the drug effect wears off quickly.

In panel B the status never returns to the natural time

course, suggesting that the drug has an effect on disease

progression. However, this is due to the slow washout of

the drug which was simulated to exert only symptomatic

benefit
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Score from baseline to 12 months showed lower

values in the group that received rasagiline

immediately compared with the delayed start

group, suggesting a disease modifying effect.

However, evaluation of the time course of drug

effect did not rule out a slow onset symptomatic

effect. These findings, and other published

opinions (Clarke 2004), cast doubt on the utility

of a staggered start study design. Ploeger and

Holford (2009) conducted a simulation based

evaluation comparing washout and staggered

start study designs. The authors reported that

for the simulation model used, including a

washout period in which the patients are

followed up after cessation of treatment substan-

tially increases the power to distinguish different

treatment effect types (washout: 80%; delayed

start: 60%).

Clearly, study design issues must be consid-

ered for every drug and disease being evaluated.

Practical considerations as well as ethical

issues need to be taken into account. However,

modeling, simulation, and other tools such as

D-optimization can be important in designing

an informative trial that provides robust

information on drug activity.

3.5 Summary

Both the power to detect drug effect and predic-

tive power can be achieved by the application

of disease progression modeling. Certainly their

application provides a more rational basis for

dealing with missing data than imputation meth-

ods such as LOCF. Combined with pharmaco-

kinetic and pharmacodynamic models, models

of disease progression can provide insights into

understanding the time course and management

of degenerative disease. While empirical mod-

els can help improve the power to detect drug

effect, physiologically based models can pro-

vide a platform for exploration of alternative

and combination therapies prior to clinical

trial, and such efforts should be routinely

included in the “learn and confirm” process of

drug development.

Currently, there are numerous diseases for

which these models have been developed and

applied. Many chronic degenerative diseases

such as AD, Parkinson’s disease, and acute

phases of schizophrenia have been characterized.

However, there are still many therapeutic areas

that have seen limited model based evaluations.

One of the issues associated with development of

such models is that the progression of many dis-

eases is very slow, necessitating collection of

data over long periods of time. Furthermore, it

is unusual to have long-term observational data

from untreated patients as most receive treatment

for their disease. The effect of the standard treat-

ment on the symptoms and disease progression

need to be accounted for in any evaluation.

Finally, owing to the variability in the individual

patient progression and their response to treat-

ment, data from large numbers of subjects is

usually required to develop such models. The

efforts of regulatory authorities such as the US

FDA in developing and publishing models of

disease progression based on data collected

across a wide variety of studies should prove to

be a useful resource.

The development of models for disease pro-

gression is not a new practice. However, the

routine development and use of disease progres-

sion models in drug development is relatively

new. The advantage of such models is that,

once developed and qualified, they can be used

to improve future study designs for new agents to

allow better detection of drug effect. Many

failures seen in late phase trials are attributed

to the lack of differentiation from placebo

(i.e. the trials fail to demonstrate the effective-

ness of the new treatment over the comparator).

While there are many literature reports of the use

of pharmacokinetic/pharmacodynamic modeling

and simulation to improve decision making

and dose selection, incorporation of disease pro-

gression models should allow more efficient

planning and more informative study design

during the early phases of drug development.

Methods such as D-optimization can be utilized

once the appropriate models are established to

reduce the number of observations required to

assess treatment effectiveness.
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The use of disease progression models in the

drug development process is likely to continue to

expand as more models are developed and the

benefits of such assessments become more widely

recognized. Furthermore, as the understanding

of various aspects of diseases improves, these

models will require adjustment and improvement

to reflect increased understanding of the mecha-

nistic basis of disease.
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Holford NHG, Bååthe S, Karlsson MO. Auckland bones

and summer sun. PAGE 10 (2001) Abstr 231 [http://

www.page-meeting.org/?abstract¼231]

Holford N, Li J, Benincosa L, Birath M. Population dis-

ease progress models for the time course of HAM-D

score in depressed patients receiving placebo in anti-

depressant clinical trials. PAGE 11 (2002) Abstr 311

[http://www.page-meeting.org/?abstract¼311]

Holford NHG, Mould DR, Peck CC. Disease progression

models. In Principles of Clinical Pharmacology, 2nd
Edition. Editor: A Atkinson. Academic Press, New

York, NY (2006)

http://www.wired.com/medtech/drugs/magazine/17-09/ff

_placebo_effect?currentPage¼all

Hung AY, Schwarzschild MA. Clinical trials for neu-

roprotection in Parkinson’s disease: overcoming

angst and futility? Curr Opin Neurol 20(4):

477–483 (2007)

Imbimbo BP, Verdelli G, Martelli P, Marchesini D.

Two year treatment of Alzheimer’s disease with

eptastigmine. The Eptastigmine Study Group.

Dement Geriatr Cogn Disord 10(2):139–47 (1999)

Ioannidis JP, Havlir DV, Tebas P, Hirsch MS, Collier AC,

Richman DD. Dynamics of HIV-1 viral load rebound

among patients with previous suppression of viral

replication. AIDS 14(11):1481–8 (2000)

Ito K, Ahadieh S, Corrigan B, French J, Fullerton T,

Tensfeldt T; Alzheimer’s Disease Working Group.

Disease progression meta-analysis model in Alzhei-

mer’s disease. Alzheimers Dement 6(1):39–53 (2010)

Jacqmin P, Gieschke R, Jordan P, Steimer J-L, Goggin T,

Pillai G, Snoeck E, Girard P. Modeling drug induced

changes in biomarkers without using drug concen-

trations: Introducing the K-PD model. PAGE 10

3 Modeling the Progression of Disease 87



(2001) Abstr 232 [http://www.page-meeting.org/?

abstract¼232]

Johnell O, Kanis JA, Oden A, Johansson H, De Laet C,

Delmas P, Eisman JA, Fujiwara S, Kroger H, Mell-

strom D, Meunier PJ, Melton LJ III, O’Neill T, Pols H,

Reeve J, Silman A, Tenenhouse A. Predictive value of

BMD for hip and other fractures. J Bone Miner Res 20

(7):1185–94 (2005)

Jonsson EN, Sheiner LB. More efficient clinical trials

through use of scientific model-based statistical tests.

Clin Pharmacol Ther 72(6):603–14 (2002)

Karlsson MO, Molnar V, Bergh J, Freijs A, Larsson R. A

general model for time-dissociated pharmacokinetic–

pharmacodynamic relationship exemplified by pacli-

taxel myelosuppression. Clin Pharmacol Ther 63:

11–25 (1998)

Khan A, Schwartz K. Study designs and outcomes in

antidepressant clinical trials. Essent Psychopharmacol

6(4):221–6 (2005)

Khan A, Detke M, Khan SRF, Mallinckrodt C. Placebo

response and antidepressant clinical trial outcome.

J Nerv Ment Dis 191(4):211–8 (2003)

Kienle GS, Kiene H. The powerful placebo effect: fact or

fiction? J Clin Epidemiol 50:1311–8 (1997)

Kilby JM, Goepfert PA, Miller AP, Gnann JW Jr,

Sillers M, Saag MS, Bucy RP. Recurrence of the

acute HIV syndrome after interruption of antiretro-

viral therapy in a patient with chronic HIV infec-

tion: A case report. Ann Intern Med 133(6):435–8

(2000)

Kisilevsky R. Anti-amyloid drugs: Potential in the treat-

ment of diseases associated with aging. Drugs Aging

8:75–83 (1996)

Koscielny S, Tubiana M, Valleron AJ. A simulation

model of the natural history of human breast cancer.

Br J Cancer 52:515–24 (1985)

Kotto-Kome AC, Fox SE, Lu W, Yang BB, Christensen

RD, Calhoun DA. Evidence that the granulocyte

colony-stimulating factor (G-CSF) receptor plays

a role in the pharmacokinetics of G-CSF and

PegG-CSF using a G-CSF-R KO model. Pharmacol

Res 50(1):55–8 (2004)

Kruse A, Uehlinger DE, Gotch F, Kotanko P, Levin NW.

Red blood cell lifespan, erythropoiesis and hemoglo-

bin control. Contrib Nephrol 161:247–54 (2008)

Krzyzanski W, Ramakrishnan R, Jusko WJ. Basic phar-

macodynamic models for agents that alter production

of natural cells. J Pharmacokinet Biopharm 27

(5):467–89 (1999)

Kuritzkes DR. HIV resistance: frequency, testing,

mechanisms. International AIDS Society – USA 15

(5):150–4 (2007)

Kuwabara T, Kobayashi S, Sugiyama Y. Pharmacokinet-

ics and pharmacodynamics of a recombinant human

granulocyte colony-stimulating factor. Drug Metab

Rev 28(4):625–58 (1996)
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The Use of Dried Blood Spots for
Concentration Assessment in
Pharmacokinetic Evaluations

4

Tapan K. Majumdar and Danny R. Howard

Abstract

This chapter reviews the technology and application of Dried Blood Spot

(DBS) sampling techniques. In part due to its relative simplicity, DBS has

begun to receive increased use in the pharmaceutical industry, particularly

where blood or plasma sample volumes are small, are difficult to collect,

store, process, or transport. This chapter presents methods and techniques,

highlights applications, and discusses benefits and drawbacks associated

with its use in pharmacokinetics.

4.1 Introduction

Sensitive, specific, and robust assessment of drug

and metabolite concentrations have become an

essential part of characterization of nearly every

new molecular entity intended for medical treat-

ment. In both nonclincal and clinical safety stud-

ies, biological fluids such as blood, plasma, or

serum are analyzed to determine the concentra-

tions of target compounds and their metabolites.

Relative exposure assessment through toxicoki-

netic (TK) and pharmacokinetic (PK) evaluation

permits comparison across species and sub-

sequent characterization of safety thresholds.

Comparison of exposure or concentration to

response permits the selection of optimal doses

and regimens where the medical benefit is max-

imized against the risk of adverse events. The

evaluations for drug interactions, dose adjust-

ments for special treatment populations, coadmi-

nistration with food, formulation comparability,

and bioequivalence rely heavily on PK observa-

tions determined from measured drug concentra-

tions.

Traditionally, blood has been the primary

biological sampling matrix, with the plasma or

serum fraction serving as the most common bio-

fluid for in vivo concentration assessment. Blood

is sampled because, unlike other matrices (e.g.,

urine, saliva, cerebral spinal fluid) it is relatively

convenient to obtain in a variety of species, usu-

ally allows for frequent measurement at prespe-

cified time points, and is available in volumes

needed for most modern analytical methods.

There are drawbacks however to traditional

blood collection methods. In small animals,

such as mice, serial sampling is often not possible

and therefore PK assessments are highly variable

composite profiles. It is frequently not possible,
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or desirable, to collected repeated venipuncture

or the required blood volumes from some special

patient populations, such as the elderly or

very young. Special processing is necessary to

ensure stability – refrigerated centrifugation,

addition of antioxidants or stabilizing agents,

and freezing at temperatures below �20�C are

commonly required for each sample obtained.

Not all clinical sites, particularly those of devel-

oping countries are equipped to handle these

requirements. If the sample cannot be analyzed

at the collection site, shipping procedures must

be designed to ensure sample integrity and pro-

tection of shipping personnel from contamina-

tion or infection should damage to the sample

tube occur.

A nontraditional sample collection technique

based on DBS has been employed since early

1960s (Guthrie and Susi 1963; Fujimoto et al.

1989; Howe and Handelsman 1997; Peng et al.

2000; Filippi et al. 2009). DBS is a micro-volume

sampling technique where �100 mL of whole

blood is collected as a spot on a cellulose matrix

known as the DBS card. Traditional sampling

techniques typically require at almost 0.5 mL of

blood. Two or more blood spots are collected per

sample on each card. The cards are dried and

shipped to a bioanalytical or clinical lab for the

determination of analytes in the dry blood spot. A

portion of the DBS on the card may be removed

with a hole-punch of specified size (usually 3 mm

or more in diameter), or may be sampled directly

from the card using specialized equipment. If a

punch is taken, the target analytes are extracted

from this disc and the liquid extract is used

directly for bioanalysis using liquid chromatog-

raphy with variety of detectors, including mass

spectrometry.

The DBS method does not generally require

difficult or special sample preparation or

handling techniques, and each sample requires

only a fraction of the blood volume of traditional

methods. With the availability of the very low

level quantification and high throughput capabil-

ities of tandem mass spectrometry (MS/MS), this

technique has recently begun to receive attention

from drug development laboratories (Liang et al.

2009; Spooner et al. 2009; Barfield et al. 2008;

Mauriala et al. 2005; Beaudette and Bateman

2004; De Haan et al. 2004) for use in pharmaceu-

tical drug development programs. This novel

sampling method is less invasive, requires mini-

mal training, and reduces processing time at the

collection site and may permit shipment and

storage at ambient temperatures. Because it is a

micro-volume sampling technique, it can be

used in serial bleeding of small animals such as

rat or mouse where sparse sampling technique

(Nedelman et al. 1995) is typically used due to

limitations in sample volume for TK sampling.

Accuracy of the data in the micro-volume sam-

pling technique is comparable to traditional

methodologies.

The less invasive nature of DBS and use of

micro-volume blood samples have made it a very

useful sampling method for neonatal and juvenile

subjects. Collection of blood samples for diagno-

sis of inborn error of metabolism has been rou-

tinely performed since 1960s (Guthrie and Susi

1963; Hill et al. 1967) through DBS. According

to a report published by the Center for Disease

Control and Prevention, as of 2001, public health

laboratories screened more than 95% of all

newborns in the United States for inborn meta-

bolic disorders (Mei et al. 2001) using the DBS

technique. Over last 47 years the DBS sampling

technique has been used for both the qualitative

and quantitative screening of wide varieties of

diagnostic compounds and biomarkers (De Jesus

et al. 2009; Chalcraft and Britz-McKibbin 2009;

Al-Dirbashi et al. 2008; de Wilde et al. 2008;

Searles et al. 2008; Oglesbee et al. 2008; Wang

et al. 2005; Bowron et al. 2005; Febriani et al.

2004; Constantinou et al. 2004; O’Broin and

Gunter 1999; Chace et al. 1993; Spence et al.

1993).

Pathogens from blood or plasma samples col-

lected for the diagnosis of infectious diseases

may contaminate surroundings by spill or from

broken containers. The DBS samples, on the

other hand, are safe from such inconveniences.

Due to this advantage, DBS has been extensively

used for collecting blood samples from epidemi-

ological studies involving HIV, malaria, and

other infectious diseases globally (Versteeg and

Mens 2009; Lofgren et al. 2009; Tani et al. 2008;
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Ngo-Giang-Huong et al. 2008; Creek et al. 2008;

Burhenne et al. 2008; Steegen et al. 2007; Bram-

billa et al. 2003; Barbi et al. 2001). DBS also

have been widely used for therapeutic drug mon-

itoring (TDM) in hospitals and clinical labora-

tories (Edelbroek et al. 2009; Wilhelm et al.

2009a, b; van der Heijden et al. 2009; Cheung

et al. 2008; Hoogtanders et al. 2007; AbuRuz

et al. 2006).

A wide variety of both small and large molec-

ular compounds have been detected and quanti-

fied using whole blood collected as DBS. These

include: amino acids, vitamins, antibiotics,

enzymes, nucleic acids, hormones, thyroglobu-

lin, trace elements, specific antibodies, antigens,

and genotyping (Damen et al. 2009; ter Heine

et al. 2009a; ter Heine et al. 2009b; Eyles et al.

2009; Fingerhut 2009a; Lofgren et al. 2009;

Liang et al. 2009; Otero-Santos et al. 2009;

Tani et al. 2008; Janzen et al. 2008; Garcia et al.

2008; Al-Dirbashi et al. 2008; Alfazil and Ander-

son 2008; Higashi et al. 2008; Ngo-Giang-Huong

et al. 2008; Creek et al. 2008; Barfield et al. 2008;

Steegen et al. 2007; Koal et al. 2005; Deng et al.

2005; Brambilla et al. 2003; Green et al. 2002;

Adam et al. 2000; Parker et al. 1995; Chace et al.

1993; Spence et al. 1993; Worthman and Stal-

lings 1994; Lemonnier et al. 1991; McGarrity

et al. 1984; Mizuta et al. 1982).

This chapter aims to review on the use of the

DBS sampling technique, and to highlight the

wide array of applications of this novel sampling

technique including discussion for quantitative

method validation applicable for pharmaceutical

development.

4.2 Components and Methods

4.2.1 DBS Card Types

Neonatal screening facilities and epidemiologi-

cal centers around the world accept DBS as a

reliable sampling method comparable to tradi-

tional methods using capillary pipettes, test

tubes, centrifuges, and freezers for collection

and preservation of plasma and blood samples.

The DBS sampling technique requires a suitable

paper matrix, a needle, capillary pipettes, drying

racks, a bag with desiccant for storage of paper

matrices in dry condition and a punching tool for

use in the bioanalytical lab. The details of the

procedure have been documented by the National

Committee on Clinical Laboratory Standard

(NCCLS) and Newborn Screening Quality

Assurance Program (NSQAP) at the Centers for

Disease Control and Prevention (CDC) in several

publications (Hannon et al. 2003; Mei et al.

2001).

The DBS cards are composed of a cellulose

matrix (filter paper) of specific pore size and thick-

ness. Dr. Robert Guthrie in his seminal 1963 pub-

lication described the use of a piece of thick, very

absorbent filter papermade fromhigh purity cotton

(Schleicher and Schuell #903, later known as

Whatman 903) to measure phenylalanine for

the diagnosis of phenylketonuria in newborns

(Guthrie and Susi 1963). Whatman 903 paper

provides an accurate and reproducible absorption

of blood specimens in line with National Commit-

tee on Clinical Laboratory Standards (NSQAP)

that has been approved and registered by the

FDA as a Class II IVD Medical Device. The

NSQAP has developed an isotopic method to

assess the paper’s uniformity and absorption

characteristics of the DBS matrices (Edelbroek

et al. 2009).

The traditional filter paper manufacturer

Whatman is now a subsidiary of General Electric

Healthcare Division (http://www.whatman.com).

They manufacture and supply several types of

DBS cards both uncoated and coated with pro-

prietary reagents. Four common types of DBS

cards used for biological sampling are FTA

DMPK-A (coated and known as FTA card),

FTA DMPK-B (coated and know as FTA elute

card), FTA DMPK-C (not coated and known as

31ETF), and 903 (uncoated and similar to

DMPK-C card but less controlled in terms of

quality specifications). Two additional types of

uncoated cards (226 and 227) are manufactured

by Ahlstrom (http://www.ahlstrom.com). The

FTA DMPK-A and FTA DMPK-B cards were

designed for nucleic acid analysis and according

to the manufacturer, both cards are chemically

treated with proprietary reagents that, upon contact,
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lyse cells, denature proteins, inactivate enzymes

and pathogens, and prevent the growth of bacte-

ria. Basically, these coated cards were prepared

to lyse both cellular and nuclear membranes to

expose nucleic acids with good stability for stor-

age and analysis. Each of these cards has four

circles (diameter 1 cm) imprinted for sampling

area and encased in a paper frame shown in

Fig. 4.1. The use of the coated cards has been

reported in recent publications for the exposure

assessment of drugs and metabolites in both clin-

ical and toxicological studies (Filippi et al. 2009;

Liang et al. 2009; Spooner et al. 2009; Barfield

et al. 2008; Mauriala et al. 2005; Beaudette and

Bateman 2004). Many compounds have been

shown to be stable on the coated cards for at

least 2 months at room temperature (Beaudette

and Bateman 2004).

4.2.2 Specimen Collection
on DBS Cards

For quantitative bioassay used in PK studies, a

whole blood sample is collected from a toe or

finger-prick. The puncture site is cleansed with

70% isopropanol and dried prior to puncture.

Whole blood is then collected in capillary pip-

ettes coated with EDTA as anticoagulant. Alter-

natively, blood can be collected by venipuncture

or from indwelling catheters into EDTA tubes.

The total volume of blood needed depends on the

sensitivity requirement of the bioassay and the

detection method. For example, the current tan-

dem mass spectrometric instruments have very

high sensitivity and require very low sample

volume for the analysis of most compounds.

Typically, a 50 mL aliquot of blood per time

point is sufficient to obtain three spots of 15 mL
each in three of the imprinted circles on each

DBS card (appropriately labeled) using a capil-

lary pipette (Spooner et al. 2009; Liang et al.

2009; Barfield et al. 2008). The pipette tip is

held just above the card and a drop is allowed

to form and soak into the surface of the card. The

pipette tip is not allowed touch the surface of the

card as this may damage the paper leading to

issues with sample homogeneity. Samples from

small animals such as rat and mouse can be

collected via the tail vain (Mauriala et al. 2005;

Beaudette and Bateman 2004). Sampling for

neonatal screening, therapeutic drug monitoring

or other diagnostic purposes, whole blood is

obtained via a toe- or finger-pricks (Edelbroek

et al. 2009; Hannon et al. 2003; Mei et al. 2001).

4.2.3 Drying of DBS Cards

After sample collection, the DBS cards are dried

for typically 2 h on a card rack at room tempera-

ture (Spooner et al. 2009; Barfield et al. 2008).

Fig. 4.1 A DBS card with

different volumes on the

imprinted circles
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The drying time depends on the card type and the

sample volume. In our laboratory, we studied pre-

cise drying time and found that FTA DMPK-A

and FTA DMPK-B cards are completely dry

after 20 min of storage on the bench at room

temperature (23�C) for a blood spot volume of

20 mL. As mentioned above, these two cards are

coated with ingredients that prevent bacterial

growth. The uncoated cards may be subject to

bacterial growth if the card is not completely dry,

and this may impact determination of the analyte

concentrations in the sample (Mei et al. 2001).

4.2.4 Stability of Target Analytes,
Packaging, and Shipping

Many compounds were found to be more stable

on DBS matrix compared to blood or plasma

matrices (Edelbroek et al. 2009). Stability on

the DBS card depends on the chemistry of the

compounds. Because the blood spots must be

dried on the surface of the cards, volatile or air

sensitive compounds cannot be reliably collected

on DBS cards. Light sensitive compounds need

special handling whether they are on DBS cards

or not. Typically, the dry cards are stored in zip-

closure bags containing a desiccant package.

Compounds in DBS matrix have been success-

fully stored under this condition for up to

2 months (Beaudette and Bateman 2004). How-

ever, for long-term storage, the bags are stored at

�20�C (Fingerhut et al. 2009b; Mei et al. 2001).

One of the conveniences of using DBS card is

that the samples can be shipped at ambient tem-

peratures without the possibility of exposure to

blood pathogens. Ambient temperatures are dif-

ficult to maintain during shipping and the tem-

perature may rise up to 60�C for a long period

during shipping. Therefore, to ensure stability of

the compounds, the effect of temperature on the

stability of the compounds on the DBS cards

should either be tested during method validation,

or the temperature should be controlled during

shipment. DBS cards containing unstable com-

pounds and compounds without stability infor-

mation should be shipped in dry ice to ensure

stability.

4.3 Bioassay Using the DBS Card
Matrix

4.3.1 Introduction

Depending on the type of application, the DBS

matrix may be subjected to qualitative, semi-

quantitative, and quantitative analysis. One of

the benefits of the application of the DBS tech-

nique is that the semiquantitative or qualitative

analysis from the blood spots can be directly

performed without extraction using a mass spec-

trometer equipped with a desorption electrospray

ionization (DESI) or matrix assisted laser desorp-

tion ionization (MALDI) source. Samples col-

lected on DBS matrix have been analyzed using

a variety of biological and analytical techniques.

The first published method for DBS samples used

a microbial assay (Guthrie and Susi 1963). There

are published assays based on immunological

techniques (Boemer et al. 2009; Worthman and

Stallings 1994; Lemonnier et al. 1991; Mizuta

et al. 1982). Qualitative assay of DBS samples

were also performed using nuclear magnetic res-

onance spectroscopy (Constantinou et al. 2004).

Recent DBS assay methods are mostly based on

liquid chromatography-tandem mass spectrome-

try (LC-MS/MS). The speed and sensitivity of

MS/MS made the DBS sampling useful and cost

effective for PK and TK studies in pharmaceuti-

cal research and development.

A validated method is needed for the quanti-

tative analysis of drugs and metabolites collected

in the DBS card matrix. If the method is needed

for exposure assessment in support of preclinical

or clinical studies, the validation should be com-

pleted according to regulatory guidelines (US

Food and Drug Administration, Guidance for

Industry: Bioanalytical Method Validation, May

2001).

The coated cards have proprietary chemicals

in the matrix that may cause matrix effects and

ion suppression in MS/MS detection. Therefore,

matrix effects and ion suppression should be

investigated when using a mass spectrometric

detection method for the bio-assay. Assay vali-

dation for DBS matrix is more time consuming
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than that in a liquid bio-matrix (plasma, serum,

or whole blood) due to the steps needed to study

some effects that are specific to DBS card matrix

only. The effects such as chromatographic parti-

tioning, blood volume, and hematocrit effects

have been discussed for samples collected on

DBS cards (Mei et al. 2001; Adam et al. 2000;

Holub et al. 2006; Newman et al. 2009; Wilhelm

et al. 2009a; Liang et al. 2009). While the hemat-

ocrit value in a whole blood sample impacts the

concentration of analytes in blood, the chromato-

graphic effect is negligible in the DMPK-A and

DMPK-B cards. Since DBS is a dry matrix,

freeze-thaw stability study is not applicable.

However, as previously indicated, the stability

of DBS matrix under shipping conditions (e.g.,

at 60�C) must be evaluated during the validation

process.

4.3.2 Preparation of Standards and
Quality Control Samples

Stock solutions for standard and quality control

(QC) samples are prepared separately using the

pre-weighed amount of each analyte and dissol-

ving in a suitable solvent. The stock solutions are

diluted in whole blood within the dynamic range

of the assay method for the preparation of the

standard and QC samples. It is also common

practice to make working solutions in plasma

matrix (from the stock solutions) at high concen-

trations and these solutions are then diluted in

whole blood to prepare the standard and QC

samples. In order to minimize dilution of the

blood matrix, it is important that the volume of

the spiking solution be maintained less than 5%

of the total volume during the preparation of

standard and QC matrices. Typically less than

50 mL of the standard or QC in whole blood is

used on each spot using the procedure described

in the “Specimen collection on DBS” section.

Calibration standards are made fresh on the

day of analysis. The QC samples are prepared,

dried, and stored with the study samples to mimic

the same storage conditions. The cards contain-

ing the calibration standards need to be dried

completely before punching any disc from these

cards.

4.3.3 Sample Extraction and Analysis

After drying the DBS cards spotted with whole

blood, the blood proteins are precipitated on the

paper matrix. Depending on the sensitivity

requirement of the assay, one or more discs of

specific diameter (e.g., 3 mm) is punched out of

each DBS and transferred to a specified well in a

96-well plate. A Harris Uni-Core punching tool

(http://www.tedpella.com/histo_html/unicore.htm)

is commonly used for manual punching. The

punching tools of punches of different sizes are

shown in Fig. 4.2. This punching step of DBS

cards can be automated using the BSD1000 Gen-

ePunch automated punch system (http://www.

bsdrobotics.com). There is also the semi-auto-

mated BSD600-DUET punch system shown in

Fig. 4.3 that can be used for punching DBS

cards. The supplier in the USA for both these

robots is ID Biological Systems (http://www.

id-biological.com).

The BSD1000 robot has been designed to

accommodate commonly used DBS cards. The

cards are preloaded into a card magazine. The

system automatically scans the sample area to

determine possible areas for punching the card.

It has a module for punching of disks into

96-well plates. This unit also has the BSD Low-

Pressure Air System, with a humidifier, which

reduces the effects of static electricity. The

instrument has highly flexible software and bar-

code reading capability that provides positive

identification of card magazines, samples, stan-

dards, controls, and plates throughout the whole

process. The software generates a comma-delim-

ited ASCII file after every run. This file can be

exported into the LIMS or another downstream

instrument for further use. The unit can scan the

sample (or controls and standards) barcodes

determined in the input file and punch the num-

ber of disks required into specified wells of the

96-well plate. The unit will only punch the sam-

ple if the barcode scanned is identical to the one

in the input file.
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The extraction process involves dissolving the

target analytes from the paper discs in a solvent

and subsequent analysis of the extract. For a

regular off-line extraction, a specified volume

of extraction solvent (e.g., methanol) is pipetted

into each well. The internal standard used for LC/

MS methods is already dissolved in the extrac-

tion solvent. An automated liquid handler (e.g.,

Tomtec Quadra 4) can be used to add the extrac-

tion liquid to the 96-well plate. The plate is then

sealed and mixed on an automatic shaker. The

plate can also be briefly kept in a sonication bath

to facilitate the extraction process if needed. The

plate is then centrifuged and a specific volume

(e.g., 50 mL) of liquid is removed from each well

using the automated liquid handler (e.g., Tomtec

Quadra 96) and transferred to a clean 96-well

plate. The extracts can be dried under dried nitro-

gen gas and the residue is reconstituted in a

suitable solvent if needed. The plate is placed

on an autosampler for analysis. The off-line

extraction procedure described here is most com-

mon, though an online extraction procedure for

punched DBS samples has been reported recently

(Déglon et al. 2009). A preliminary assessment

of direct quantitative analysis of drugs in DBS

samples has been investigated and reported by

Abu-Rabie and Spooner (2009) using a CAMAG

thin-layer chromatography mass spectrometer

interface (TLC-MS). The method was simple,

saved time, and did not involve high-perfor-

mance liquid chromatographic (HPLC) separa-

tion. The method sensitivity was higher than the

regular method using the off-line extraction of

punched spots. However, the authors acknowl-

edged that the introduction of internal standard

needs to be investigated for such direct on-line

method.

Since the early 2000s, the most commonly

used detection methods have been based on liquid

chromatography-mass spectrometric (LC-MS or

LC-MS/MS) detection (Spooner et al. 2009;

Wilhelm et al. 2009a; Otero-Santos et al. 2009;

Liang et al. 2009; van der Heijden et al. 2009; ter

Heine et al. 2009a; ter Heine et al. 2009b;

Barfield et al. 2008; Higashi et al. 2008; Koal

et al. 2005; Lai et al. 2001). It is the high selectiv-

ity and sensitivity of recent MS/MS instruments

Fig. 4.3 BSD600-DUET Semi-automated punch system

(with permission from BSD Robotics)

Fig. 4.2 Harris Uni-Core punching tools of different diameters for manual punch (with permission fromTed Pella, Inc.)
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that has made DBS amenable to PK studies in

pharmaceutical research and development. It is

important to evaluate matrix effects and ion sup-

pression during the validation of LC-MS based

methods (US Food and Drug Administration,

Guidance for Industry: Bioanalytical Method

Validation, May 2001). Other reported analytical

techniques include assays based on liquid

chromatography-fluorescence (LC-FL) detection

(Kand’ár and Žáková 2009; Jansson et al. 2003),

liquid chromatography-photodiode array (LC-

PDA) detection (Wilhelm et al. 2009b), liquid

chromatography-ultra violet (LC-UV) detection

(Ntale et al. 2009; Dean et al. 2006), LC-

coulometric electrode array (LC-EC) detection

(Melby et al. 2005), gas chromatography-mass

spectrometric (GC-MS) detection (Deng et al.

2005), and immunological detection (Boemer

et al. 2009; Worthman and Stallings 1994; Lem-

onnier et al. 1991; Rattenbury and Taylor 1988;

Lampe et al. 1987; Li et al. 1986).

4.3.4 Special Considerations for DBS
Sampling

Selection of DBS card: Different types of cards

are available and the signal intensity of the same

compound may vary greatly due to the card

matrix. Internal data shown below in Table 4.1

illustrates the mean (n ¼ 3) signal intensity for

compound A on FTA DMPK-B and on FTA

DMPK-A type cards varies by as much as 60%.

Therefore, it is very important to experiment

with different types of cards during the assay

development and select the card matrix that max-

imizes the signal intensity of the analyte.

Sample homogeneity on the DBS: Homoge-

neous distribution of analytes on the entire area

of the blood spot is very important. The homoge-

neity may depend on the blood volume, interac-

tion of the compound with the red blood cells

(RBC) and type of DBS card used. This test is

performed during method development and vali-

dation because the standards and the QC samples

are prepared using blood of specific volume and

hematocrit value (discussed later) but the spot

volume of the actual samples may vary due to

less control during sample collection and physi-

ological condition of the subject. For example

the samples collected by tail bleeding of animals

or skin-pricking of human subjects may vary in

volume and the hematocrit value. If the analyte

distribution is heterogeneous on the DBS matrix,

the analyte concentration of the punched disc

sampled from the center of the spot will be higher

than those of the peripheral region of the spot. In

a paper published from Centers for Disease Con-

trol and Prevention (Mei et al. 2001) an accuracy

difference of 13% was reported in 6 mm punched

discs from the center of the DBS when the blood

volume varied from 25 to 125 mL and the results

was reproducible between two different sources

of DBS cards.

The effect of blood volume on FTA-Elute

(FTA DMPK-B) card was studied with dextro-

methorphan and its metabolite (Liang et al.

2009). An accuracy difference of <10% was

observed for the quality control samples when

the blood volume was changed from 25 to 50 mL.
The effect of blood volume on the accuracy was

less than 5.5% when a spotted blood volume of

10 or 20 mL was compared with 15 mL for acet-

aminophen (Spooner et al. 2009). An acceptable

accuracy difference of �15% is acceptable

according to the FDA guidance for quality con-

trol samples. Our laboratory has observed a pre-

cision of 8.9% or less for the test compound,

shown in Table 4.2.

Dried blood spots (whole blood) vs. plasma

data: Plasma is typically preferred over whole

blood for the assessment of systemic exposure

due to conveniences in storage, processing for

analysis and homogeneity. In both plasma and

whole blood (as a fluid or as DBS matrix), the

Table 4.1 Selection of the card matrix

Card type Peak area of

compound A

Mean

(n ¼ 3)

FTA DMPK-A

(FTA)

5,790

6,610

6,350

6,250

FTA DMPK-B

(FTA-Elute)

9,270

10,600

10,235

10,035
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concentration of any compound is affected by the

blood-to-plasma distribution, the hematocrit

value, and systemic clearance. According to

Rowland and Emmons (2010), for drugs showing

less variability in fraction unbound in plasma ( fu)
and blood cell-to-unbound plasma concentration

ratio (r) the use of whole blood or DBS as an

alternative to plasma is acceptable. However, for

compounds with large variability in either fu or r,
it may be important to include correction for

these factors, since this variability can confound

both PK and PK/pharmacodynamic interpreta-

tions. For compounds with a low value of

blood-to-plasma ratio close to 0.55 the variability

in fu is important when using whole blood or

DBS for exposure assessment. For compounds

with large blood-to-plasma ratio >2 the variabil-

ity in r is critical. All these ratios can be evalu-

ated in vitro using blood obtained from the study

species of interest prior to implementing the use

of whole blood or DBS for exposure assessment

(Rowland and Emmons 2010).

The Hematocrit effect: The hematocrit, also

known as packed cell volume (PCV), is

expressed as the percent volume occupied by

red blood and other cells in the whole blood. It

is normally 48% (range 42–52%) for adult men

and 42% (range 36–48%) for adult women and

28–68% for neonates (Purves et al. 2004). The

effect of hematocrit on DBS can be severe for

erythrocyte bound compounds because uneven

diffusion of the compounds on the card may

result in spot heterogeneity especially when

using uncoated card matrix. It is advisable to

maintain the hematocrit parameter of the stan-

dard and quality control samples close to the

mean value for the patient population used in

the study. As mentioned above, the effects of

the hematocrit and the blood-to-plasma distribu-

tion ratio are dependent on the compound. For

example, the DBS analysis of cyclosporine A

was not affected by the hematocrit (HT) value

when studied in quality control samples in blood

containing 20–70% HT values (Wilhelm et al.

2009a). Similarly, the DBS analysis of 25-

hydroxy vitamin D2 and 25-hydroxy vitamin

D3 concentrations were not affected when stud-

ied at HT values of 40–60% (Newman et al.

2009). In a study examining the influence of HT

and localization of punch in DBS on levels of

amino acids and acylcarnitines were studied, the

hematocrit values of 20–60% severely affected

the analyte concentrations (Holub et al. 2006).

The sampling of thyroxine on an uncoated matrix

showed HT effects when studied using 125I-thy-

roxine in blood containing HT values of 30–70%

(Mei et al. 2001).

4.4 Review of Applications

The DBS technique has been used for both qual-

itative and quantitative determination of a wide

variety of compounds in diagnostic and pharma-

ceutical laboratories. Compounds analyzable in

whole blood, serum, or plasma can be analyzed

from DBS provided they are nonvolatile and

nonreactive to air. Some of the compounds ana-

lyzed using DBS include nucleic acids (DNA and

RNA), enzymes, enzyme inhibitors, amino acids,

hormones, biomarkers, vitamins, antibiotics,

antiepileptics, antivirals, antimalarials, antitus-

sive, anticonvulsant, alkaloids, immunosuppres-

sants, thyroglobulin, trace elements, sugars,

carnitine, cholesterol, glutathione, and acetamin-

ophen. Applications of this technique include

TDM, neonatal screening, epidemiological stud-

ies (mostly associated with TDM and newborn

screening), PK/TK studies and determinations of

various diagnostic compounds.

Therapeutic drug monitoring (TDM): Thera-

peutic drug monitoring can be essential for effec-

tive drug treatment management, and is commonly

employed in hospitals and clinics. The use of

blood spot cards is a simple method of sampling

Table 4.2 Response of compound A in different punched

discs in the same dried blood spot on FTA DMPK-B card

Nominal conc.

(ng/mL)

Peak area Mean

(n ¼ 3)

CV (%)

20 834

816

779

810 3.46

200 8,666

7,907

7,253

7,942 8.90
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blood for quantitative determination of drugs

and metabolites for TDM (Edelbroek et al.

2009; Wilhelm et al. 2009; van der Heijden

et al. 2009; Cheung et al. 2008; Hoogtanders

et al. 2007; AbuRuz et al. 2006; Abu Ruz et al.

2010). TDM of several immunosuppressive

drugs has been reported using DBS technique.

DBS assay of cyclosporin A has been developed

for monitoring blood concentrations in patients

using both immunological (Lampe et al. 1987)

and LC-MS/MS techniques (Wilhelm et al.

2009). The immunoassay used 20 mL blood per

spot and the samples on DBS matrix were shown

to be stable for at least 4 weeks at room tempera-

ture. The method precision was 11.5% for quality

control (QC) samples at 0.25 mg/L. The LC-MS/

MS assay was validated for a dynamic range of

25–1,440 mg/L. The assay showed a negligible

matrix effect and had a recovery of 97% for

cyclosporine A in QC samples. The DBS were

stable for a period of at least 17 days in the

refrigerator at 4�C.
An LC-MS/MS assay for everolimus was

reported for TDM in stable renal transplant

patients (van der Heijden et al. 2009). The sam-

ple volume used on the blood spot was 30 mL and

the standard curve range was 2–30 mg/L. The
DBS samples were stable for 32 days at 4�C
and for 3 days at 60�C. An assay for tacrolimus,

based on LC-MS/MS detection, was reported in

which a 30 mL aliquot of blood per spot was used

(Hoogtanders et al. 2007). The assay range was

1–30 mg/L, stabilities at different temperatures

were studied. The tacrolimus concentrations of

24 stable out patients were similar when com-

pared by DBS vs. whole blood quantification.

Determination of metformin in DBS has been

reported using only 10 mL blood (AbuRuz et al.

2006). The method was applied for the analysis

of blood spots taken from diabetic patients to

assess adherence to medications and to evaluate

the relationship between metformin level and

metabolic control of diabetes. The method used

reversed phase HPLC separation with UV detec-

tion. Themethod recovery of metformin was more

than 84%. The limits of detection and quantifica-

tion were 90 and 150 ng/mL, respectively. The

intra- and inter-day precision (measured by CV%)

was less than 9%. The accuracy (measured by

relative error, %) was less than 12%. Stability

analysis showed that metformin was stable for at

least 2 months when stored at �70�C. A similar

HPLC-UVmethod has been recently reported for

the therapeutic drug monitoring of Lamotrigine

in DBS by Abu Ruz et al. (2010).

Quantification of antiretroviral drugs in DBS

samples using LC-MS/MS was reported (Koal

et al. 2005). The study used DBS from HIV/

AIDS patients as the basis for TDM. This study

included seven protease inhibitors amprenavir,

nelfinavir, indinavir, lopinavir, saquinavir, rito-

navir, atazanavir and two non-nucleoside reverse

transcriptase inhibitors nevirapine, and efavir-

enz. Reserpine was used as the internal standard.

The DBS samples were punched out and

extracted using 50:50 methanol/0.2 M zinc sul-

fate (v/v) as extraction reagent. The limits of

detection were 8–70 ng/mL, the lower limits of

quantification (LLOQ) were 41–102 ng/mL, the

linear concentration ranges were 41–10,000 ng/

mL, the accuracies were 92–113%, and the QC

recoveries were 62–94%. The ion suppressions

of the compounds in the ionization source were

investigated and were comparable to data

obtained from human plasma. Significant corre-

lations between real patient plasma and DBS

were obtained for samples containing lopinavir,

atazanavir, ritonavir, saquinavir, and efavirenz.

For the quantitative determination of the HIV-

integrase inhibitor raltegravir in human plasma,

DBS, and peripheral blood mononuclear cell

(PBMC) lysate, an assay was developed and

validated using LC-MS/MS (ter Heine et al.

2009a). The study also included the qualitative

analysis of the main metabolite, raltegravir-glu-

curonide. Raltegravir was extracted from 50 mL
of human plasma by protein precipitation using a

mixture of methanol and acetonitrile. Extraction

from DBS was performed with a mixture of

methanol, acetonitrile, and 0.2 M zinc sulfate in

water (1:1:2, v/v/v) and extraction from cell

lysate was performed using 50% methanol in

water. The method was validated over a range

of 50–10,000 ng/mL in plasma and DBS and a

range of 1–500 ng/mL in PBMC lysate. Diben-

zepine was used as the internal standard. The

100 T.K. Majumdar and D.R. Howard



method showed good specificity, accuracy, pre-

cision, and robustness. Accuracies ranged from

104 to 105% in plasma, 93 to 105% in DBS, and

82 to 113% in PBMC lysate. The respective

precisions over the concentration range were

less than 6, 11, and 13% in plasma, DBS, and

PBMC lysate, respectively. The method was

used for therapeutic drug monitoring and phar-

macological research in HIV-infected patients

treated with raltegravir.

Quantification of etravirine (TMC125) in

plasma, DBS, and PMBC lysate by LC-MS/MS

has been published by ter Heine et al. (2009b).

The method was validated over a range of

25–5,000 ng/mL in plasma, 50–10,000 ng/mL

in DBS and 5–2,500 ng/mL in PBMC lysate,

respectively. The respective accuracies ranged

from 89 to 106% in plasma, 94 to 109% in

DBS, and 91 to 105% in PBMC lysate. Preci-

sions ranged from 1.9 to 14% in plasma, 4.7 to

20% in DBS, and from 3.1 to 11% in PBMC

lysate. The assay was successfully used for ther-

apeutic drug monitoring in HIV-infected patients

treated with etravirine.

The antiepileptic drug topiramate for TDM

has been assayed using LC-MS/MS (la Marca

et al. 2008). The linear calibration curve range

was 0.5–50 mg/L in DBS with a correlation coef-

ficient of 0.999. The precision varied from

2.13–11.85% in the concentration range of

0.5–50 mg/L, and the accuracy varied from

93.9–111%. The data observed in this method

was comparable with those obtained using a

commercially available fluorescence-polariza-

tion immunoassay (FPIA) kit.

A rapid and simple enzyme-linked immuno-

sorbent assay (ELISA) was developed for the

detection of the antimalarial drug quinine in

urine, serum, and DBS (Rowell and Rowell

1987). The assay had a limit of detection of

3 mg/L, using 5 mL of blood on DBS. No cross-

reactivity was observed with commonly adminis-

tered drugs. The assay was used to screen

samples of DBS and urine from a volunteer

after taking a dose of 300 mg of quinine. In

another study the antimalarial drug methylene

blue was assayed using LC-MS/MS methods

from whole blood, DBS, and plasma (Burhenne

et al. 2008). The assay methods were developed

according to FDA guidelines. Extraction was

performed using aqueous acetonitrile. Sample

extracts were chromatographed on a mixed

mode column (cation exchange/reversed phase)

using an aqueous ammonium acetate/acetonitrile

gradient. The methods were linear within

75–10,000 ng/mL concentration range. The

respective inter-batch accuracies of the whole

blood, plasma, and paper spot methods varied

between �4.5 to +6.6, �3.7 to +7.5, and �5.8

to +11.1%, respectively. The corresponding pre-

cisions varied from 3.8 to 11.8%. After a single

500 mg oral dose, the methylene blue concentra-

tions were detectable for up to 72 h in plasma.

The methods were applied in clinical studies on

healthy individuals and malaria patients.

A method for simultaneous determination of

antimalarial drugs chloroquine, proguanil, and

their metabolites from a whole blood sample

(80 mL) collected on DBS was developed

(Lejeune et al. 2007). The method was based on

HPLC-UV (254 nm). The assay was linear in the

range of 150–2,500 ng/mL for chloroquine and

metabolite and 300–2,500 ng/mL for proguanil

and cycloguanil. Both inter- and intra-batch pre-

cisions were below 10.3%. The stability of the

compounds and metabolites on DBS was evalu-

ated at temperatures �20, 4, 20, and 50�C for

1, 5, and 20 days. Decrease in the chloroquine

and proguanil levels were observed under the

storage conditions. The assay showed good accu-

racy, precision, and was suitable for use in PK

and epidemiological studies on antimalarial

treatments.

A bioassay method was developed and vali-

dated for the quantitative determination of sulfa-

doxine (SD) and sulfamethoxazole (SM) in

0.1 mL of capillary blood sampled on DBS

(Malm et al. 2008). Extraction was performed

using a solid phase method. Analytes were

detected with an UV lamp at 256 nm. The

lower limit of quantitation was 5 mmol/L for

both analytes. The precisions were 4.2 and

3.9% for SD and SM, respectively. Three brands

of sampling papers were compared with respect

to absorption properties, extraction recoveries,

and precision. Punching out DBS instead of
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cutting spots into strips prior to extraction was

also evaluated. The importance of uniformity of

the sampling paper, sample volume, and the ben-

efits of DBS were discussed. Avoiding possible

preanalysis errors resulted in more accurate and

precise data in this study.

A sensitive and specific HPLC-MS/MS assay

for the simultaneous determination of the anti-

biotics vincristine and actinomycin-D in human

DBS has been published (Damen et al. 2009).

The analytes were extracted from the punched-

out disk (0.25 in. diameter) and sonicated for

15 min in a mixture of acetonitrile-methanol-

water (1:1:1, v/v/v) containing vinorelbine as

the internal standard. The standard curve range

for vincristine was 1–100 ng/mL and that for

actinomycin-D was 2–250 ng/mL. The assay

was suitable for application in clinical studies

involving vincristine and actinomycin-D.

The use of a simple pre-column derivatization

method for the determination of aminoglycoside

antibiotics (Ags) has been reported (Tawa et al.

1998). The stability of the o-phthalaldehyde

(OPA) derivatives of the Ags obtained using

b-mercaptopropionic acid (b-MP) was investi-

gated using a HPLC-Fluorescence detection

method. One of the fluorescent derivatives of

sisomicin was stable for at least 6 h in 50%

methanol. The method was applied to rabbit

whole blood samples collected after subcutane-

ous injection of 1 mg/kg of the Ags, using DBS

on filter paper punched disks. The detection lim-

its of sisomicin and netilmicin in the DBS were

0.053 and 0.50 mg/mL, respectively. The method

allowed monitoring Ags in blood at therapeutic

levels.

A simple method based on LC-UV (334 nm)

detection has been reported for the antitubercu-

losis drug rifampicin in human plasma and DBS

(Allanson et al. 2007). Extraction from plasma

was performed using a solid phase cartridge and

that from DBS was performed using acetonitrile

as the solvent. The recovery of rifampicin from

plasma and blood spots was 84.5 and 65.0%,

respectively. The assay was linear over the con-

centration range of 0.5–20 mg/mL. The limit of

quantification was 0.5 mg/mL in plasma and

1.5 mg/mL in blood spots. Both intra-day and

inter-day precision data showed reproducibility

(R.S.D. �8.0%, n ¼ 9). Stability studies showed

rifampicin was stable in plasma for up to 9 h after

thawing, up to 9 h in extract. Five patient samples

were analyzed using the methods described. A

correlation was found between the concentra-

tions of rifampicin in plasma and blood spots

(r2 ¼ 0.92). This method was proposed as a

means of therapeutic drug monitoring of rifam-

picin in patients with tuberculosis.

A commonly used enzyme immunoassay was

modified for the measurement of theophylline in

plasma and DBS (Rattenbury and Taylor 1988).

The recovery of theophylline added to samples

was 62–76%. The correlation of results from the

spots with those from plasma was 0.965. In an

earlier publication by Li et al. (1986), an assay

for theophylline in which DBS was used success-

fully as an alternative matrix for quantification of

theophylline using a modified FPIA. The method

provided results comparable with those of the

conventional serum assay. Results from 64 pairs

of DBS and serum specimens analyzed by the

respective FPIA methods yielded the correlation

of 0.988. A major advantage of the FPIA was that

it required only basic laboratory skills. When

coupled with the use of DBS, this system was

effective in remote theophylline monitoring, par-

ticularly suited for home care. The major conclu-

sion from both of these two papers was that

theophylline concentration was identical when

measured in plasma, serum, and DBS.

Neonatal Screening: Newborn screening to

identify infants with treatable congenital disor-

ders is carried out worldwide. The use of novel

analytical instrumentation, such as tandem mass

spectrometry (MS/MS), has expanded the ability

to screen for more than 50 metabolic diseases

with a single DBS. The feature that makes meta-

bolic disorders particularly amenable to screen-

ing is the presence of specific small-molecule

metabolites. The relatively simple and less inva-

sive nature of DBS sampling and the use of micro

volume blood make it a very useful sampling

method for neonatal and juvenile subjects. The

early published articles on the use of DBS tech-

nique were in the area of newborn screening

(Guthrie and Susi 1963; Hill et al. 1967). This
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is an application area where the largest number

of published articles using the DBS sampling

technique has been observed.

Lysosomal storage disorders (LSDs) comprise

more than 40 genetic diseases that result in the

accumulation of products that would normally be

degraded by lysosomal enzymes. A tandem mass

spectrometry (MS/MS) based method is avail-

able for newborn screening for five LSDs (De

Jesus et al. 2009). Many clinical screening

laboratories are initiating pilot studies to evaluate

the incorporation of this method into their

screening process. The authors developed and

evaluated DBS quality control (QC) materials

for LSDs and used the MS/MS method to inves-

tigate their suitability for LSD QC monitoring.

This method involves incubation of 3.2 mm

punches from DBS controls for 20–24 h with

assay cocktails containing substrate and internal

standard and subsequently analysis using MS/

MS. Samples were run in triplicate for 3 consec-

utive days. Results were reported as product-to-

internal standard ratios and enzyme activity units

(mmol/L/h). Enzyme activity interday precision

(CV%) for the high, medium, and low series

were 3.4–14.3% for galactocerebroside a-galac-
tosidase, 6.8–24.6% for acid a-galactosidase A,

7.36–22.1% for acid sphingomyelinase, 6.2–26.2%

for acid a-glucocerebrosidase, and 7.0–24.8%

for lysosomal acid a-glucosidase. Stability

assessment of DBS samples stored at �20 and

4�C showed minimal enzyme activity loss over a

period of 187 days. DBS stored at 37 and 45�C
had lower activity values over the 187 day eval-

uation time. Suitable QC materials for newborn

screening of LSDs were developed for labora-

tories performing LSD screening using DBS.

Newborn screening of mucopolysaccharido-

sis-I is done by monitoring the activity of the

enzyme a-L-iduronidase. A new a-L-iduronidase
substrate has been synthesized for monitoring the

enzyme activity for a method using LC-MS/MS

(Blanchard et al. 2008). The assay used a DBS on

a newborn screening card as the enzyme source.

The enzyme reaction conditions and procedures

for the assay, including the concentration of

substrate, the reaction pH, and the incubation

time were optimized. The a-L-iduronidase activity

measured for five patients with mucopolysac-

charidosis-I was well below that found for ten

randomly chosen newborns. Inter- and intra-

assay precision values were less than 10%.

Chalcraft and Britz-McKibbin (2009) reported

a capillary electrophoresis-electrospray ioniza-

tion-mass spectrometry (CE-ESI-MS) assay for

neonatal screening that allowed the direct analy-

sis of amino acids, acylcarnitines, and their

stereoisomers from DBS. Online sample precon-

centration allowed the quantification of metabo-

lites with poor sensitivity in complex biological

samples without ion suppression or isomeric/

isobaric interferences. Method validation para-

meters showed accurate quantitation of 20 differ-

ent amino acid and acylcarnitine biomarkers

associated with inborn error of metabolism in

neonates.

Phenylketonuria (PKU) is one of the most

common inborn errors of metabolism caused by

mutations in the gene for phenylalanine hydrox-

ylase and resulting in elevated levels of phenyl-

alanine (Phe) and decreased level of tyrosine

(Tyr) in the blood. The determination of Phe and

Tyr is the most reliable approach for the diagno-

sis of PKU. An HPLC-fluorescence method for

the simultaneous measurement of Phe and Tyr in

samples of DBS and plasma has been developed

and evaluated recently (Kand’ár and Žáková

2009). The intra-assay and inter-assay precisions

were below 10%. The method recoveries of Phe

and Tyr were 92.0 and 103%, respectively, and

the limit of detection was 10.0 and 5.0 mmol/L,

respectively.

Tyrosinemia type-I (TYR-1) is a disorder that

causes early death if left untreated. Newborn

screening for this condition is problematic due

to the diagnostic marker, succinylacetone which

requires a separate first-tier analysis based on the

tyrosine concentration. Turgeon et al. (2008)

developed a new assay that simultaneously quan-

tifies acylcarnitines, amino acids, and succinyla-

cetone in DBS by flow injection tandem mass

spectrometry (FIA-MS/MS). The extraction of 3/

16 in. DBS punches were performed with 0.3 mL

methanol containing amino acid and acylcarni-

tine stable isotope-labeled internal standards.

The extract was derivatized with butanol and
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hydrochloric acid. In parallel, the extraction of

succinylacetone was done from the residual filter

paper with 0.1 mL of a 15 mmol/L hydrazine

solution containing the internal standard 13C5-

succinylacetone. The derivatized aliquots were

combined in acetonitrile for MS/MS analysis.

Elevated levels of succinylacetone were observed

in retrospectively analyzed newborn samples of

11 TYR-1 patients. The duration of storage of

the samples was 1 week–52 months with original

succinylacetone and tyrosine concentrations

13–81 and 65–293 mmol/L, respectively.

An improved diagnostic method for tyrosine-

mia type-1 based on quantifying succinylacetone

in DBS by ultra-performance liquid chromato-

graphy (UPLC) MS/MS has been published

(Al-Dirbashi et al. 2008). Succinylacetone

extracted from a single 3/16 in. disk from DBS

was derivatized with dansylhydrazine. The deri-

vatized extract was analyzed by UPLC-MS/MS.

The calibration curve was linear within the range

0.2–100 mmol/L. Intra-day (n ¼ 13) and inter-

day (n ¼ 10) variations were less than 10%.

The cutoff level of succinylacetone in DBS

from healthy infants obtained by the method

was 0.63 mmol/L (n ¼ 151). In DBS from

patients with established tyrosinemia type 1

(n ¼ 11), concentration of succinylacetone was

6.4–30.8 mmol/L.

Second-tier LC-MS/MS assays of DBS has

been reliably used for the screening congenital

adrenal hyperplasia (CAH) where the primary

methods were based on immunoassays. 21-Hydro-

xylase enzyme deficiency CAH is one of the

target diseases in many newborn screening pro-

grams. Affected newborns may show slightly ele-

vated levels of 17-OH-progesterone (17-OHP) in

the routine immunoassay screening test. The

diagnosis of 11b-hydroxylase deficiency was

made by a second-tier LC-MS/MS from DBS

(Peter et al. 2008). This method was very helpful

in the work-up of elevated 17-OHP observed in

immunoassays. It was reported that existing

immunoassays of 17-OHP suffer from cross-

reactivity mostly with steroid sulfates leading to

false positive concentrations of 17-OHP (Finger-

hut 2009a). The authors used a second-tier LC-

MS/MS method on diethyl ether extract of DBS

and found two distinct subgroups of initially

false positive cases.

It was thought that17a-hydroxypregnenolone
(17-OHPreg) was one of the major causes of the

false elevated 17-OHP levels. To test this

hypothesis an LC-MS/MS method was devel-

oped that enabled the simultaneous determina-

tion of 17-OHPreg and 17-OHP in DBS (Higashi

et al. 2008). The application of the method

showed that the blood level of 17-OHPreg was

elevated in the very-low birth weight (<1,500 g)

infants compared to those in the normal birth

weight (>2,500 g) infants (P < 0.05). However,

the 17-OHPreg concentration was not high

enough to cause the false positive results in the

enzyme immunoassay-based screening and it

was considered that the false positive results

came from other endogenous components rather

than 17-OHPreg.

Stored DBS cards are a valuable source for

postmortem investigations to evaluate the cause

of death in early childhood. Fatty acid oxidation

disorders, carnitine cycle disorders, and acidurias

during neonatal screening have been done by

detecting acylcarnitine profiles from DBS. How-

ever, diagnostic uncertainties arising from the

unknown stability of acylcarnitines and free car-

nitine during prolonged storage have been a

problem in the screening process. Stability of

acylcarnitines and free carnitine in DBS samples

has been reported by Fingerhut et al. (2009b).

The authors reported that at �18�C acylcarni-

tines were stable for at least 330 days. If stored

for more than 2 weeks at room temperature,

acylcarnitines were hydrolyzed to free carnitine

and the corresponding fatty acids. The rate of

decay was logarithmic and dependent on the

chain length of the acylcarnitines. Short-chain

acylcarnitines hydrolyzed quicker than long-

chain acylcarnitines.

Many treatable disorders such as Wilson dis-

ease are characterized by absent or diminished

large proteins in plasma or within circulating

blood cells, for which there are currently no

cost-effective screening methods. An assay for

quantifying ceruloplasmin (CP) in DBS for new-

born screening of Wilson disease has been

recently reported (de Wilde et al. 2008). In this
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method, CP-specific peptides from DBS samples

digested by trypsin were quantified using isoto-

pically labeled peptide internal standards using

LC-MS/MS. The calibration curve was linear

from 200 to 950 mg/L. Intra-assay precision for

CP concentrations of 250, 350, and 550 mg/L

was 9.2, 10.7, and 10.2%, respectively. Inter-

assay precision for 19 different batches was 8.9,

5.8, and 6.9%, respectively. A method compari-

son study on previously tested patient samples

for CP gave comparable results with lower limit

of quantification of 7 mg/L. This approach may

be used for newborn screening of other treatable

genetic conditions, such as primary immunodefi-

ciencies, that have large proteins as biomarkers.

Congenital hypothyroidism is a disease asso-

ciated with severe developmental and physical

morbidities. An ELISA method has been devel-

oped to quantify thyroid stimulating hormone

(TSH) levels on newborn DBS (Boemer et al.

2009). The method was accurate over a concen-

tration range from 17.48 to 250 mIU/L. Based on

99.5 percentile of a 16,459 newborn population

the cut-off was fixed at 20.1 mIU/L and validated

against normal and pathological neonatal popu-

lations.

Thyroid dysfunction is more common in indi-

viduals with Down’s syndrome (DS) than in the

general population. DBS is an excellent and sim-

ple means of sampling infants and adolescents

for measurement of TSH to screen for thyroid

dysfunction. Murphy et al. (2008) reported the

clinical assessment of 394 children for thyroid

dysfunction including the screening of 305 chil-

dren (aged 4 months–18.9 years) for hypothy-

roidism using capillary whole blood TSH

sample on DBS. Thyroid dysfunction was

detected in 4.6% of the children. The parents of

the children reported minimal distress by finger-

prick screening.

A well known assay (Gen-Probe Aptima

assay) for human immunodeficiency virus type 1

(HIV-1) RNA has been adapted for the diagnosis

of HIV infection in infants by using DBS (Kerr

et al. 2009). The assay was very sensitive and

specific. In another article, testing was performed

on 617 DBS from HIV-exposed infants in five

countries using an ultra-sensitive p24 antigen

assay (Cachafeiro et al. 2009). The sensitivity

was 94.4% (67/71) and the specificity was

100% (431/431) for infants with DBS specimens

�20 months old. DBS older than 30 months

demonstrated only 72.2% sensitivity (39/54)

(P < 0.001) but displayed 100% specificity (61/

61). Lofgren et al. (2009) reported a procedure

for the assessment of a DBS-based HIV-1 RNA

service for remote healthcare facilities in a low-

income country Tanzania. A method comparison

and operational evaluation of DBS RNA against

conventional tests for early infant diagnosis of

HIV and HIV RNA quantitation was performed

under field conditions in Tanzania. DBS samples

were prepared and plasma was frozen at �80�C
for shipment. DBS samples were mailed and

plasma samples were couriered to a central labo-

ratory for testing using the Abbott m2000 sys-

tem. Infant diagnosis DBS samples were also

tested for HIV-1 DNA by ROCHE COBAS

AmpliPrep/COBAS TaqMan System. Results of

DBS RNA were compared with conventional

tests. DBS provided HIV-1 RNA results compa-

rable to conventional methods to remote health-

care facilities.

The country of Botswana has high antenatal

human immunodeficiency virus (HIV) preva-

lence (33.4%). Infant HIV diagnosis is challeng-

ing in resource-limited settings, and HIV

prevalence among HIV-exposed infants in Bots-

wana is unknown. DBS polymerase chain reac-

tion (PCR) provided a feasible method to identify

the HIV-infected children population (Creek

et al. 2008). Collection and testing of DBS was

successfully integrated into routine infant care in

the public health system. The staff in 15 clinics

and a hospital were trained to obtain DBS on

HIV-exposed infants age 6 weeks–17 months

receiving routine care. Roche Amplicor 1.5 DNA

PCR testing was performed on the samples on

1931 HIV-exposed infants age 6 weeks–17

months, of whom 136 (7.0%) were HIV infected.

Searles et al. (2008) published a study in

which the feasibility of obtaining DBS from

newborn screening archives for subjects in epi-

demiologic studies was evaluated. These speci-

mens were used for genotyping, and for the

evaluation of potential for bias in their use. The
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authors attempted to locate DBS at Washington

State archives for 230 participants in a previous

case-control study of childhood cancer, who

were born between 1978 and 1990. Specimens

for 203 (88%) children were retrieved, including

199 (94%) born in months when a DBS catalog

was available. Genotyping assays were com-

pleted for all the specimens. Among the controls

the genotype distributions were similar to exist-

ing results.

In summary, monitoring of treatment with

HIV viral load and resistance testing, as recom-

mended in industrialized countries, is rarely

available in resource-limited settings due to high

costs and stringent requirements for storage and

transport of plasma. DBS are easy to collect and

store, and can be a convenient alternative to

plasma. Recently, a number of studies have

demonstrated the feasibility and reliability of

using DBS to monitor viral load and genotypic

resistance (Johannessen et al. 2009).

Pharmacokinetic and TK applications: Exten-

sive use of DBS sampling techniques has been

reported for newborn screening, therapeutic drug

monitoring, and epidemiology. However, the PK

and TK applications of DBS have been very

limited. The use of DBS for TK studies involving

small animals will result in ethical and financial

benefit for the studies. The micro volume sam-

ples used in DBS will allow serial bleeding of

small animals, like mice and rats. It is possible

for these samples to be taken from the main study

groups, limiting or possibly eliminating the need

for additional satellite animals specifically to

assess exposure, and therefore, reducing the

number of animals used per study. Fewer animals

will translate into reduced costs for test article,

husbandry, and labor.

Beaudette and Bateman (2004) reported a

method for obtaining PK data from rats using

DBS for discovery stage exposure assessment of

drug candidates to facilitate the decision making

for lead optimization. The analysis method had

high selectivity, high sensitivity, and the speed

offered by the liquid chromatography-tandem

mass spectrometry (LC-MS/MS). Another

discovery stage study in rats reported on the

pharmacokinetics of a cathepsin K inhibitor

using DBS as the sample matrix (Mauriala et al.

2005). Metabolites were initially detected from

microsomal incubations and characterized using

tandem mass spectrometry. Microsomal results

were then used to design a multiple reaction

monitoring (MRM) method with MS/MS for the

detection of parent drug and metabolites. DBS

extracts collected from the rat PK study were

analyzed. The circulating metabolites were

detected using MRM and their identities con-

firmed on the basis of fragment ion spectra col-

lected simultaneously. The use of DBS provided a

means for reanalysis of PK samples for metabo-

lite identification without the need for complex

sample storage and preparation in this study.

In a TK study in dogs, the animals were orally

administered acetaminophen and whole blood

samples were collected on DBS (15 mL per spot)

at different time points to assess the drug expo-

sure (Barfield et al. 2008). Methanol extracts of

the DBS samples were analyzed using HPLC-

MS/MS. In this study, the quantitative analysis

of a drug extracted from DBS provided good

quality TK data while minimizing the volume of

blood withdrawn from the animals. DBS assays

have been recently applied to several TK studies

for acetaminophen and dexamethasone adminis-

tered to beagle dogs and rats (Liang et al. 2009).

The acetaminophen data were similar to those

observed by Barfield et al. (2008).

There have been a limited number of reported

applications of DBS in human PK assessments.

In a clinical study involving hyperphenylalani-

naemia, the oral loading test with tetrahydrobiop-

terin (BH4) was used to differentiate the variants

of hyperphenylalaninaemia and to screen for

BH4-responsive patients (Zurfluh et al. 2006).

The outcome of the loading test was dependent

on the genotype, dosage administered, and phar-

macokinetics of BH4. A total of 71 patients with

hyperphenylalaninaemia (mild to classic) were

administered 20 mg/kg of BH4 according to dif-

ferent protocols (1 � 20 mg and 2 � 20 mg).

The blood BH4 concentrations were measured

in DBS at different time points (0–48 h) post

administration. Maximal BH4 concentrations

(Cmax) were measured 4 h (Tmax) after BH4

administration in 63 out of 71 patients. After
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24 h, the blood levels of BH4 dropped to 11% of

Cmax. The PK parameters for BH4 in blood were:

Tmax ¼ 4 h, AUC(0–32h) ¼ 370 nmol � h/g Hb

(hemoglobin), and T1/2 values for absorption

was 1.1 h, for distribution was 2.5 h, and for

elimination was 46.0 h. Among the mild PKU

patients, 97% responded to BH4 administration.

Another recent study data has been reported on

the pharmacokinetics of tetrahydrobiopterin

(BH4) following oral loadings with three single

dosages in patients with PKU (Gramer et al.

2009). In this study, the authors reported that

BH4 pharmacokinetics were variable between

patients in terms of absolute levels of BH4 meta-

bolites after BH4 dosing.

In a clinical PK study, ten patients with

chronic asthma were given oral doses of 424 mg

choline theophyllinate at 09.0 h and 848 mg at

21.0 h for 4 days. At regular intervals during day 1

and day 4 of treatment theophylline concentra-

tions were measured in plasma and DBS by fluor-

immunoassay (Hibberd et al. 1986). The day and

night time exposure data (PK parameters) of

asymmetrical doses of slow release choline theo-

phyllinate were compared at day 1 and at day 4 of

treatment when steady state had been achieved.

From all the patients and at all the time points

throughout the study (179 measurements), the-

ophylline measured from extracted DBS showed

a close correlation with plasma concentrations,

the regression line was y ¼ 0.785x + 0.056,

r ¼ 0.989. Theophylline concentrations measured

in blood spots were slightly lower than those

measured in plasma, but exhibited the same PK

profile as measured in plasma.

Therapeutic hypothermia reduces mortality

and neurologic impairment in neonates with

hypoxic-ischemic encephalopathy. Topiramate

exerts a neuroprotective effect in asphyxiated

neonatal animal models. The influence of hypo-

thermia on the pharmacokinetics of topiramate

was evaluated in a clinical study in which asphy-

xiated neonates were treated with prolonged

whole-body hypothermia and topiramate (Filippi

et al. 2009). Thirteen newborns were treated with

mild or deep whole body hypothermia for 72 h.

All the subjects were orally administered with

5 mg/kg of topiramate once a day for the first

3 days of life, and seven subjects had concomitant

phenobarbital treatment. Topiramate concentra-

tions were measured on serial DBS sampling of

the newborn subjects. Topiramate concentrations

reached a virtual steady state in nine newborns.

PK parameters Cmax, Cmin, Tmax, T1/2, and AUC

values were calculated after topiramate adminis-

tration for these nine newborns. With respect to

normothermic infants, the time of maximal con-

centration (Tmax) was mildly delayed and appar-

ent total body clearance was lower, suggesting

slower absorption and elimination. The PK para-

meters did not differ significantly between

infants on deep vs. mild hypothermia and in

those on topiramate monotherapy vs. add-on

phenobarbital. Most neonates on prolonged

hypothermia treated with 5 mg/kg of topiramate

once a day exhibited drug concentrations within

the reference range for the entire treatment

duration.

Recently, a paper has been published on the

use of DBS as a sample collection technique for

clinical pharmacokinetics (Spooner et al. 2009).

In this article the authors used acetaminophen as

a compound to demonstrate the utility of DBS

sampling technique for in human PK studies for

drug development. The bioanalytical method

used HPLC-MS/MS for analyzing acetamino-

phen from human blood (15 mL) collected on

DBS. Method validation parameters were dis-

cussed for the standard curve range of

25–5,000 ng/mL. Validation parameters such as

precision, accuracy, linearity, sensitivity, selec-

tivity and effect of the spotted blood volume, the

influence of the blood spotting device, and the

temperature of the spotted blood were discussed.

The validated method was successfully applied

to a clinical study involving single oral dose of

500 mg and 1 g acetaminophen.

Various diagnostic applications: A fast, sim-

ple, and reproducible method for the quantitative

determination of steroid hormones has been

reported by Janzen et al. (2008). In this method

corticosterone, deoxycorticosterone, progesterone,

17a-hydroxy progesterone, 11-deoxycortisol, 21-
deoxycortisol, cortisol, androstenedione, testos-

terone, and dihydrotestosterone were quantified

in micro-volume of serum and in DBS samples
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using LC-MS/MS. No derivatization was needed.

The validation showed excellent precision, sensi-

tivity, recovery, and linearity with correlation

coefficients of greater than 0.992.

Low levels of 25-hydroxyvitaminD (25OHD),

during early childhood development, was asso-

ciated with a range of adverse health outcomes.

An assay based on DBS samples was developed

(Eyles et al. 2009) where 25-hydroxyvitamin D3

(25OHD3) and 25 hydroxyvitamin D2 (25OHD2)

were extracted from 3.2 mm DBS punches, and

derivatized with 4-phenyl-1,2,4-triazoline-3,5-

dione (PTAD) prior to analysis using LC-MS/

MS. Validation parameters such as precision,

accuracy, and the impact of storage conditions

were assessed. The limit of detection was

<1 nmol/L, and 2 nmol/L for 25OHD3 and

25OHD2, respectively. The mean 25OHD3 con-

centrations in 118 archived DBS varied from 4.8

to 67.8 nmol/L. Another LC-MS/MS method for

the determination of 25-OHD2 and 25-OHD3 in

DBS has also been recently reported by Newman

et al. (2009).

An improved method for the measurement of

retinol in DBS on filter paper has been reported

(Erhardt et al. 2002). Retinol was extracted

by acetonitrile protein precipitation followed by

n-hexane extraction and was analyzed by HPLC.

The intra- and inter-assay variability was <6%,

the detection limit was 0.1 mmol/L, and the

method recovery was 97% in spiked samples.

DBS retinol consistently decreased 18–23% dur-

ing the 1st week of storage. After 1 week, retinol

remained stable in the blood spots at 23�C for

more than 3 months. O’Broin and Gunter (1999)

developed and evaluated a method for the deter-

mination of folate from DBS samples. In this

method, folate was eluted from DBS by sonica-

tion in 5 g ascorbic acid/L containing 0.1% (by

volume) Triton X-100. The method recovery was

>95%, the inter-and intra-assay precision was

<8 and <9%, respectively.

Orfanos et al. (1980) reported a method for

quantitative determination of glutathione from

DBS samples. The sample preparation involved

elution of the analyte from a small disk of dried

blood spotted on filter paper. After enzymatic

reduction of oxidized glutathione, total glutathione

in the eluate was measured colorimetrically with

5,50-dithiobis(2-nitrobenzoic acid) reagent. The

stability of the total oxidized glutathione in the

DBS was assessed. The results from the method

were compared with a spectrophotometric method

that used liquid blood and the results were in

good agreement. The method may be useful in

early detection of 5-oxoprolinuria and some

forms of nonspherocytic hemolytic anemia.

Perchlorate is an environmental pollutant that

is frequently detected in drinking water and

foods. High exposure to perchlorate can inhibit

the thyroid’s uptake of iodine leading to devel-

opmental abnormalities in fetuses and newborns.

Otero-Santos et al. (2009) developed a method

for analyzing perchlorate in the DBS of new-

borns. The method used methanol extraction of

ten discs of 3.2 mm from DBS spots. The extract

was dried, reconstituted, and analyzed in by ion

chromatography interfaced with electrospray

ionization tandem mass spectrometry. The

lower limit of quantitation for the method was

0.10 ng/mL and the precision varied from 5.8 to

16.2%. Using the method, perchlorate was

detected in 100% of the DBS collected from

100 newborns.

4.5 Advantages and
Disadvantages of Using DBS

Advantages:DBS offers many advantages includ-

ing (1) the DBS technique uses less than 0.1 mL

of whole blood with many recent applications

using less than 20 mL. Such low-volume sam-

pling enables serial bleeding of small animals,

newborn subjects, and critically ill patients for

exposure assessment, (2) for TK studies the use

of DBS will result in using fewer animals, less

test article (costly at the development phase) for

dosing the animals, (3) the procedure is less

invasive and samples can be collected from

human subjects by simple finger pricking which

may improve subject comfort in clinical studies,

(4) the coated DBS card matrix lyses cells, inac-

tivates pathogens, denatures blood proteins and

enzymes, and stabilizes the target compounds.

Hence, DBS are considered nonhazardous and
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cards may be shipped in zippered bags contain-

ing desiccants, (5) the sample collection proce-

dure is economical because there is no need

for centrifugation, sub-aliquoting, and freezing

(needed for plasma collection), (6) cost of shipping

is much less than tradition plasma samples because

it may not require special packaging with dry ice

typically used for plasma samples, (7) the storage

of the DBS cards is simpler than storing conven-

tional plasma samples, (8) there is also significant

time and cost saving during bioanalysis of DBS

samples compared to the plasma or serum samples.

The bioassay involves a simple one step solvent

extraction using minimum amount of solvent, no

need for expensive solid-phase extraction (SPE)

cartridges, and there is no need to assess freeze-

thaw stability during themethod validation process,

(9) Compounds that can be analyzed from plasma,

serum or whole blood can be easily analyzed using

the DBS technique, and (10) Another convenience

is that semiquantitative or qualitative analysis of

DBS samples can be directly performed without

extraction using mass spectrometers equipped with

DESI orMALDI. For these many reasons, DBS are

ideal for phase II/III studies in developing countries

and very convenient for population PK studies.

Disadvantages: The DBS sampling cannot be

used for volatile and air sensitive compounds.

Light sensitive compounds still require special

handling. Ultra-low quantitation limit (pg/mL)

may be limited for DBS due to the utilization of

micro-volume amount of sample. Therefore,

DBS samplingmay not be suitable for monitoring

drugs andmetabolites where the blood concentra-

tions are very low. This limitation is expected to

be resolved using detector with higher sensitivity

in the near future. There are only two manufac-

turers for DBS cards, currently.

DBS data is dependent on blood/plasma distri-

bution of the target compounds and will provide

low exposure data for compounds with high dis-

tribution in plasma. In this situation, the plasma

method will provide higher exposure values than

DBS or whole blood. As for any whole blood

assessment, care should be taken when com-

paring results of different matrices. Automation

is currently limited for DBS. A variety of robotics

for accurate punching of DBS cards and for

high-throughput bioassay is not yet available.

The coated card has proprietary matrix compo-

nents known to cause both ion suppression and

matrix effects in some LC-MS/MS assays. The

method validation for DBS bioassay is more time

consuming, and require additional experiments

such as evaluation of spot homogeneity of ana-

lytes, hematocrit effect, effect of blood volume on

analyte concentrations, and effect of storage at

high temperature (e.g., 60�C) needed to mimic

the shipping conditions.

4.6 Regulatory Considerations

Regulatory authorities accept systemic drug

exposure data from biological fluids such as

plasma, serum, and whole blood (US Food and

Drug Administration. C. F. R. 60, 11264 1995;

ICH Harmonized Tripartate Guideline 1994).

The DBS sampling technique is similar to using

whole blood and has been in use for more than 45

years for neonatal screening of in born errors of

metabolism, therapeutic drug monitoring, and

epidemiological screening, and for systemic

exposure monitoring of varieties of biologically

active compounds (Guthrie and Susi 1963;

Edelbroek et al. 2009; Spooner et al. 2009). The

existing DBS cards provide an accurate and

reproducible absorption of blood specimens

and much better quality than Whatman 903

paper which met the quality in line with National

Committee on Clinical Laboratory Standards

(NSQAP). The FDA approved the Whatman 903

paper as a class II medical device. DBS is a

simple, convenient, and accurate matrix for expo-

sure and concentration assessment in whole

blood. Bioassay on DBS can be successfully vali-

dated using currently established guidelines

provided by drug regulatory authorities.

4.7 Summary

The dried blood sampling technique has been in

use since early 1960s. The procedure is less inva-

sive and the DBS specimens are very easy to

collect, dry, and transport. The DBS has been
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widely used for neonatal screening, therapeutic

drug monitoring, epidemiological studies, and

monitoring of many biologically active com-

pounds.

There are both advantages as disadvantages of

using DBS as a sampling tool. This sampling

techniques has been only recently been used in

drug development laboratories. The current limi-

tation of DBS in quantifying low systemic con-

centrations of analytes can be expected to be

resolved with more sensitive detectors in the

near future.

For diagnostic and semiquantitative applica-

tions in clinical laboratories, the DBS can be a

very useful tool. DBS assays may be validated to

comply with regulatory guidelines. With the

observed growing interest from pharmaceutical

companies and the potential benefits to be gained

by both patients and researchers, we can expect

DBS to quickly become an important new tool

for the development of new medicines in phar-

maceutical research and development programs.
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Microdosing: Pharmacokinetic and
Metabolism Data Early in the Drug
Development Process

5

Graham Lappin

Abstract

Microdosing is the use of low, sub-pharmacologic doses (typically in the

microgram range using less than 100th lower than the anticipated thera-

peutic dose and usually with the drug radiolabeled with 14C) to study the

pharmacokinetics of a drug in early clinical development. The concept of

microdosing has been around for over a decade and is now finding

application in drug development. Although questions of dose linearity

remain, insights to the reasons of non-linearity, should it occur, are now

beginning to be understood. Microdosing is also being used to obtain early

knowledge of drug metabolism, enabling better selection of drug candi-

dates for full development.

5.1 Introduction

A microdose study is performed at a very early

stage of drug development to obtain preliminary

pharmacokinetic or distribution data on a drug

candidate in human volunteers. The concept of

obtaining early pharmacokinetic data in humans

prior to Phase 1 clinical trials was first suggested in

the latter part of the 1990s, with the first data

published in 2003, albeit as a summary in a review

article (Lappin and Garner 2003). As its name

implies, the dose administered in a microdose

study is very small, the amount being defined by

both the EMEA (2004) and FDA (2006) as 100th

of the predicted pharmacologic dose or 100 mg
whichever is the smaller. These small doses are

assumed to be inherently safer than pharmacolo-

gically active doses and therefore the regulatory

authorities will approve human microdose studies

based upon limited preclinical safety evaluation.

This enables the drug candidate to be administered

to human volunteers earlier and with less expendi-

ture compared to a Phase 1 clinical study (Lewis

2009). Microdosing therefore circumvents many

of the obstacles to the administration of drugs at

proposed therapeutic dose levels to humans at an

early stage of drug development. Microdosing

studies, however, should have no pharmacologic

effect on the subjects and are used solely to gain

information on the metabolism and pharmacoki-

netics of a candidate drug in humans, albeit at very

low concentrations.

To date, the microdose studies reported in the

literature have been with small molecule drugs
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rather than therapeutic proteins. The FDA (2006)

regulatory guideline classifies a microdose of

protein product as a maximum dose of 30 nM,

but to the author’s knowledge, no such micro-

dose study has been conducted (unless by PET,

see below). Although there is no intrinsic reason

why microdose studies could not be performed

with protein products, there are good reasons

why microdosing studies with antibodies, other

than those with soluble target antigens, may not

be applicable. The pharmacokinetics of these

substances are known to be nonlinear below con-

centrations where the target ligand is unsatu-

rated, due to target mediated disposition (Wang

et al. 2008). Unless otherwise stated therefore,

this chapter is concerned with human microdos-

ing studies with small molecules.

Prior to the publication of the first summary

microdose data (Lappin and Garner 2003)

numerous studies had been performed utilising

sub-pharmacological doses of drug candidates in

conjunction with the imaging technique, Positron

Emission Tomography (PET), although these

were not necessarily called microdose studies at

the time. In retrospect, however, it can be argued

all PET studies utilising drugs labelled with a

positron-emitting isotope meet the definition of

amicrodose study (Wagner et al. 2008). PET is an

imaging technique that utilises relatively short-

lived positron-emitting radioisotopes and is

therefore largely concerned with the study of

drug distribution over comparatively short peri-

ods of time, rather than the determination of

pharmacokinetics to a point where elimination is

essentially complete. Moreover, because of the

short radioactive half-lives of positron emitting

isotopes, PET studies are virtually always carried

out using the intravenous route of administration

and therefore do not study absorption kinetics.

PET is nevertheless a widely used and very pow-

erful technology and the reader is referred to a

number of reviews (Bergstrom et al. 2003; Bauer

et al. 2008; Wagner et al. 2008). PET is not

considered further in this chapter as the focus is

on what might be termed “classical” pharmacoki-

netics.

The general design of a microdose study

would typically consist of four to eight human

volunteers, typically young, healthy, males but

not necessarily so, as female volunteers have

been used previously (Lappin et al. 2006a, b).

The volunteers are administered a maximum of

100 mg of a candidate drug. There is no theoreti-

cal restriction to the route of administration

although most commonly, microdoses have

been given orally or intravenously (IV). Follow-

ing administration, samples of blood (plasma)

and sometimes excreta are collected and ana-

lysed to determine the concentration of parent

drug (and sometimes metabolites) over time.

Where plausible, biopsies might be taken to pro-

vide some information on the drug’s distribution

(Lappin et al. 2007). From these concentration–

time data, the pharmacokinetics of the drug can

then be characterised. Since microdosing is often

used to select a drug for full development from a

number of candidates, several microdose studies

might be performed in parallel so comparative

data are acquired (Madan et al. 2008). Microdose

studies are not performed routinely and are best

applied to situations where certain pharmaco-

kinetic parameters are the key drivers to the

selection of a drug candidate for further develop-

ment and where the traditional methods of pre-

dicting the drug’s pharmacokinetics in humans

from in vitro data (e.g. in silico modelling, ani-

mal models or allometric scaling) are believed to

be unreliable.

5.2 Analytical Methods

Because very low doses of drug are administered

in a microdose study, the plasma concentrations

are consequently very low and therefore highly

sensitive analytical techniques are necessary to

measure the drug concentration. A discussion of

the analytical modalities may be found outside

this chapter with a number of reviews being

available (Lappin et al. 2009). Accelerator Mass

Spectrometry (AMS) and LC-MS/MS have been

commonly used to determine drug concentra-

tions in biological samples, such as plasma,

obtained from microdose studies.

AMS, although becoming more widely

applied, is not a routinely available analytical
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method. AMS is an isotope ratio technique, first

developed for radiocarbon dating in the 1970s

(Bennett et al. 1977, 1978) and applied to biomed-

ical research in the 1990s (Garner 2000). AMS

can be applied to a wide range of isotopes but 14C

is the most widely used in biomedical work since

it can be incorporated into the core structure of

organic molecules. Biological samples (e.g.

blood, plasma, excreta) are oxidised to produce
14CO2, then reduced to carbon, in a process known

as graphitisation. The graphite thereby produced,

typically 2 mg, is placed into the AMS ion source.

Carbon ions are accelerated to very high energy to

facilitate efficient isotopic separation and mea-

surement (Lappin 2006).

Figure 5.1 shows a schematic of how biological

samples, using plasma as the example, are typi-

cally analysed by AMS. An aliquot of the plasma

can be analysed without any chromatographic sep-

aration to provide the total 14C concentration (i.e.

the sum of parent drug and metabolites). Samples

can also be extracted and analysed by some chro-

matographic method such as HPLC or UPLC.

Because of the necessity for graphitisation, there

is currently no routine interface between HPLC

and AMS. To generate chromatograms therefore,

it is necessary to collect fractions of the chro-

matographic eluant and graphitise each fraction

separately (Lappin and Garner 2004, 2005). If all

the fractions collected across a chromatogram are

analysed, a complete metabolite profile can be

generated (an example of a chromatogram is

shown in Figs. 5.6–5.8). Alternatively, selected

fractions can be analysed by AMS, for example

at the retention time corresponding to the parent

drug, and its concentration then determined. [As

an aside, for parent drug analysis, analytical losses

have to be taken into account to determine the

mass per volume concentration (Lappin et al.

2008)]. Determination of parent drug concentra-

tion enables concentration–time plots to be gener-

ated along with the calculation of pharmacokinetic

parameters (an example is shown in Fig. 5.2).

Under the right circumstances, AMS can

achieve analytical sensitivities in the femtogram

to attogram range (10�15 to 10�18 g) which is

typically one thousand to one million times

more sensitive than LC-MS/MS (Hellborg and

Skog 2008). For a fuller description of AMS and

how it is applied to biomedical research, the

reader is referred to (Lappin 2006). As an isotope

ratio technique, AMS requires the drug to be

Fig. 5.1 A schematic

showing options for sample

analysis using AMS
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enriched with a rare isotope, almost always 14C

(Lappin and Garner 2004; Lappin and Stevens

2008). When AMS is chosen as the analytical

method therefore, some customised radiosyn-

thetic chemistry is necessary to produce the 14C-

labelled drug. This effort, unless combined with

the requirement of 14C-drug for other purposes

such as regulatory animal or human metabolism

studies, is potentially an extra cost burden com-

pared to standard development plans. In addition,
14C-drugs are radioactive and therefore the expo-

sure to radioactivity administered to human

volunteers must be considered. When designed

around the use of AMS however, the levels of

radioactivity administered to human volunteers

are kept very low (typically less than 1 mCi) and
hence, the study does not require specific

approval by regulatory authorities for the admin-

istration of radioactivity (although the regulatory

authorities should be informed or consulted

regarding the study in advance).

5.3 Nomenclature

Microdosing is a relatively recent innovation.

The terminology is also relatively new and

some incertitude has entered the nomenclature.

It is therefore worth clarifying some of the termi-

nology, which is summarised in Table 5.1.

Microdosing studies are sometimes referred to

as Phase 0 studies or, more precisely, human

Phase 0.

Some observers have not favoured the term

Phase 0, although it is becoming common par-

lance and there are many advantages in using this

description (Kinders et al. 2007; Eliopoulos et al.

2008). Phase 0 describes studies in humans prior

to Phase 1 and are performed at doses lower than

those intended for therapeutic use. Microdose

studies are classified as Phase 0, but the terms

are not necessarily interchangeable; microdose

studies are in effect a subset of Phase 0 studies.

Phase 0 studies can also include studies in

humans where the dose is greater than 100 mg
and where some pharmacologic effects are man-

ifest (Gutierrez and Collyar 2008). The regu-

latory authorities require more preclinical safety

data than microdose studies to allow a “low

pharmacologic dose” study to proceed, but still

less than required for a full Phase 1 (FDA 2006).

This chapter is focused on true microdosing stud-

ies, rather than Phase 0 per se.

There has been some confusion over the use of

the termmicrodosing and occasionally it has been

incorrectly applied. Much of this confusion has

arisen from various applications of AMS, as this

technique can be applied tomicrodose-related but

nevertheless distinctly different areas of drug

development (Brown et al. 2005). A number of

Fig. 5.2 An example of a normalised dose plot. The plot

has been taken from Lappin et al. (2006a, b) and shows a

comparison of log-linear concentration–time plot for a

100 mg oral microdose (open circles) and 7.5 mg oral

therapeutic dose (filled circles) of midazolam to healthy

volunteers (error bars are standard error, n ¼ 6). The

plasma drug concentration on the Y-axis was presented

normalised to a 1 mg dose. The shapes of the plots closely

align showing the linearity of the pharmacokinetics over

the 75-fold dose range
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publications have appeared on the use of AMS in

human absorption, distribution, metabolism and

excretion (ADME) studies where the levels of 14C

in terms of the radioactivity dosed was compara-

tively low (Garner et al. 2002; Beumer et al.

2007). It is, however, incorrect to term these

types of ADME studies as “microdosing” as the

total mass of drug administered is in the therapeu-

tic dose range. The confusion may have arisen

from the fact that only very small amounts of 14C-

drug are included in the total mass of the dose but

it is the total mass of drug administered that

defines a microdose study. Such “low radioacti-

vity” ADME studies are in fact no different from

any other human ADME study, it is just the spe-

cific radioactivity of the drug administered is

lower than normally used.

Another type of study which has been

commonly confused with microdosing is the so-

called “intravenous tracer study”. In these

studies, a low dose (�100 mg) of 14C-drug is

administered intravenously (IV) to human volun-

teers close to the time when a non-labelled phar-

macologic dose is given by the extravascular

route, usually orally. Plasma samples are col-

lected over time and each sample is analysed by

a technique such as LC-MS/MS tomeasure the total

drug concentration and also by HPLC followed by

AMS to measure the 14C-drug concentration.

The IV dose, being so low does not contribute

significantly to the overall systemic concentra-

tion, permits LC-MS/MS data to provide the

pharmacokinetics of the extravascular dose and

the AMS data to provide the pharmacokinetics of

the IV dose. The overall plasma concentrations

are dependent upon absorption of the pharmaco-

logic oral dose and therefore by definition are at

pharmacologically relevant concentrations. Thus,

the IV pharmacokinetics are relevant to the phar-

macologic dose, not the “microdose” adminis-

tered IV. This technique was first developed in

the 1970s using stable isotopic labels (Browne

et al. 1993; Fairweather-Tait and Dainty 2002)

as way of removing artefacts in absolute bioavail-

ability determinations where there may be

unequal clearance between the oral and IV

administrations. The use of isotopic tracer for

the IV dose (stable or radioisotope) is a better

study design in this respect and the method has

been used on and off for over 30 years. The

method has been updated recently and used in

conjunction with AMS, whereupon confusion in

the terminology then arose. The technique has the

advantage that the very low IV dose can often be

justified without conducting preclinical safety

studies for this route of administration, providing

there are toxicology data from the oral route and

sufficient exposure information. Of course,

Table 5.1 Clarification of some of the terminology surrounding microdosing

Nomenclature Explanation

Human Phase 0 Studies on humans prior to Phase 1. The studies are conducted at either sub-

pharmacologic doses or low doses that exhibit some pharmacologic action. These

studies are performed under regulatory guidelines (e.g. the FDA’s Exploratory IND)

that allow the studies to be conducted based on reduced preclinical safety data

compared to a Phase 1 study

Microdose A category of human Phase 0 study where the dose is defined as 100th of the

pharmacologic dose or 100 mg, whichever is the lower value (30 nM for protein

products)

Low specific activity

ADME studies

Sometimes confused with a microdose study, a low specific activity ADME study uses

doses of drug relevant to therapeutic doses but with low levels of 14C. The definition of

“low” is typically 1 uCi (37 kBq) per subject or less

IV Tracer study A study where a low mass of 14C-drug is administered IV to human volunteers along

with a therapeutic dose of non-labelled drug by the extravascular route. The tracer

allows for IV pharmacokinetics to be obtained in humans at therapeutically relevant

systemic drug concentrations but without the need to conduct IV preclinical safety

toxicology or extensive IV formulation. This type of study is not classified as a

microdose study as it is performed in a Phase 1 setting
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appropriate preclinical safety evaluations have to

be conducted for the oral dose given at a thera-

peutically relevant dose level. In addition, the low

concentration of the IV dose only requires rudi-

mentary effort for formulation. The IV adminis-

tered 14C-drug acts as a tracer, tracking the

passage of the IV dose, which is where these

types of studies have gained their name “intrave-

nous tracer study”. It is however, incorrect and

sometimes confusing to call these microdose

studies. An example of a study using an IV tracer

is Sarapa et al. 2005. The IV tracer approach is

reviewed by (Lappin et al. 2006a, b).

5.4 Pharmacokinetic-Dose
Linearity

There has been much debate about how well the

pharmacokinetics of a microdose might predict

the pharmacokinetics at a higher pharmacologic

dose (Harenberg 1998; Lappin and Garner 2006;

Bertino et al. 2007; Rowland 2007) and there are

a number of publications that review the compar-

isons in some detail (Lappin and Garner 2008;

Ings 2009). It is not the purpose of this chapter to

restate the conclusions of these reviews but the

published data at the time of writing is sum-

marised in Table 5.2. The published data consti-

tutes a growing body of evidence to support the

utility of microdosing although there is still some

way to go in order to fully assess this technique.

Nevertheless, a better understanding is growing

for those properties of a drug that might lead to

significant non-linearity in the pharmacokinetics

seen between a microdose and a therapeutic

dose. Of the 18 drugs reported in the literature

so far, 15 demonstrated linear pharmacokinetics

within a factor of 2 between a microdose and a

therapeutic dose.

To compare the linearity of a microdose with

a pharmacologic dose, the concentration–time

data can be plotted on separate graphs, typically

using the classical log-linear plot, however, the

data are more meaningful when plotted normal-

ised against dose. Time of sampling is plotted on

the X-axis and the concentrations of the drug in

plasma per 1 mg dose are plotted on the Y-axis.

The dose against which the data are normalised

could be any unit of mass but 1 mg seems to be

Table 5.2 Summary of published data where the pharmacokinetics observed at a microdose has been compared to

those from a therapeutic dose

Drug Linearity (and dose range)a Species References

A-1A adrenoceptor Linear 5–500 mg Human (Lappin and Garner 2003)

7-deaza-20-C-methyl-adenosine Linear 0.02–1 mg/kg Dog (Sandhu et al. 2004)

Fluconazole Linear 0.001–5 mg Rat (Balani et al. 2006)

Tolbutamide Linear 0.001–5 mg Rat

MLNX AUC non-linear Rat

Warfarin Non-linear distribution Human (Lappin et al. 2006a, b)

Midazolam Linear 0.1–5 mg Human

Diazepam Linear 0.1–10 mg Human

ZK-253 Linear 0.1–50 mg Human

Fexofenadine Linear 0.1–50 mg Human (Yamane et al. 2007)

Zidovudine Linear 0.02–1 mg Human (Vuong et al. 2007)

Diphenhydramine Linear 0.1–50 mg Human (Madan et al. 2008)

NBI-1 Linear 0.1–50 mg Human

Antipyrine Linear 0.17–1670 mg/kg Rat (Ni et al. 2008)

Carbamazepine Linear 0.17–1670 mg/kg Rat

Metoprolol Some non-linearity Rat

Atenolol Linear 1.67–1670 mg/kg Rat

Digoxin Linear 1.67–1670 mg/kg Rat

aPharmacokinetics described as linear if the parameter for a microdose, when normalised for the therapeutic dose is

within a factor of 2
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becoming the convention (Fig. 5.2). The shapes

of the curves can be compared directly and if

they overlay each other are considered to be

dose linear.

The shape of the plasma concentration–time

curve is an important consideration, although

often forgotten in the literature, where data are

frequently only reported as mean pharmaco-

kinetic parameters. An example of a case where

the microdose and pharmacologic dose were

linear is presented in Fig. 5.2. Strictly speaking,

units of, for example, pg/mL per 1 mg dose can be

mathematically expressed as the reciprocal of the

volume, but this expression does not immediately

describe the situation and therefore the more

descriptive (if mathematically less precise) units

of mass/volume per mass of dose is immediately

more meaningful.

5.5 Dose Routes

There is a great deal of benefit to the inclusion of

an intravenous dose in a microdose study, even

when the drug is only destined for oral adminis-

tration. The intravenous dose provides the funda-

mental pharmacokinetic parameters of clearance

(CL) and volume of distribution (V) without the

confounding effect of bioavailability (F).

Microdose studies are typically cross-over

designs. If both an oral dose and an intravenous

dose are included in the study design, an estimate

of the absolute oral bioavailability can be obtained.

As an example, the author was involved in a

study where the plasma concentrations following

the oral microdose were very much lower than

anticipated. It was concluded that the drug had

unexpected limited absorption, but when the

intravenous data were obtained, it became appar-

ent the low plasma concentrations were explained

by a very high volume of distribution of several

thousand litres and the drug was virtually 100%

bioavailable (unpublished data).

There are currently no published data for

microdose studies other than by oral or IV routes

of administration, although the author has con-

ducted one microdose study for a dermally

applied compound. Using the dermal route

opens up another consideration as both the total

dose administered and the surface concentration

(i.e. mg/cm2 of skin) have to be taken into

account. The rate of absorption through the skin

is dependent upon the surface area concentration,

whilst the total amount absorbed over the study

duration (i.e. systemic exposure) is dependent

upon the total amount placed on the surface of

the skin, the rate of absorption, and the time the

drug remained on (or possibly in) the skin. On

this basis, the total dose applied in the dermal

microdose study was 100th the pharmacologic

dose, thus qualifying it as a microdose, but the

surface concentration was kept the same as that

intended for clinical use by limiting the area of

skin to which the drug was applied to 100th of

that exposed during a therapeutic clinical study.

In this way the systemic exposure was at “micro-

dose concentrations” but the rate of absorption

was the same as expected in clinical use.

5.6 Isotopic Tracers in Microdosing

LC-MS/MS has been successfully used for the

determination of parent drug in plasma and other

body fluids in microdosing studies (e.g. Bertino

et al. 2007; Ni et al. 2008). On the other hand, at

the outset of a study, it is difficult to predict the

likely plasma drug concentration, which may be

very low as shown in the example above where

the drug had an unexpectedly high volume of

distribution. For many microdose studies there-

fore, researchers choose the most sensitive ana-

lytical technique available, which is currently

AMS. AMS is an isotope ratio technique and

therefore has the potential disadvantage that the

drug has to be isotopically labelled, typically

with 14C.

Figure 5.1 shows a schematic of how biological

samples are typically analysed by AMS. An ali-

quot of the plasma can be analysed to determine

the total 14C concentration (i.e. unchanged drug

together with metabolites) or the sample can be

extracted, analysed by HPLC and selected frac-

tions (e.g. those corresponding to parent drug)

analysed by AMS. Consequently, two sets of
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concentration–time data are generated, one for

total 14C expressed as mass equivalents per milli-

litre of plasma (e.g. pg equiv/mL) and another for

unchanged parent drug, expressed as mass per vol-

ume of plasma (e.g. pg/mL). These data can then be

plotted on the same axes. Examples of these plots

are shown in Figs. 5.3–5.5. The respective Areas

Under the Curve (AUCs) can be calculated from

the concentration–time data and presented as a

ratio quantifying the proportion of the parent drug

to total metabolites in circulation (typically as a

percentage of AUCparent to AUCtotal).

Fig. 5.3 Plasma log-linear

concentration–time plot for

an intravenous microdose

(100 mg) of fexofenadine to
healthy human volunteers.

The concentration for total
14C (filled circles) is plotted
with unchanged drug (open
circles). The plots are
virtually superimposable,

with 85% of the plasma 14C

representing parent drug

(based on the AUCs). Error

bars are standard deviation,

n ¼ 6

Fig. 5.4 Log-linear

plasma concentration–time

plots from a microdose

study with midazolam.

Total 14C (filled circles) is
plotted together with

concentration of parent

drug (open circles) in
plasma following an

intravenous administration

to healthy volunteers. Error

bars are standard error,

n ¼ 6

Fig. 5.5 Log-linear

plasma concentration–time

plots from a microdose

study with midazolam.

Total 14C (filled squares)
is plotted together with

concentration of parent

drug (open squares) in
plasma following an oral

administration to healthy

volunteers. Error bars are

standard error, n ¼ 6
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Care has to be taken in the interpretation of

these data as it provides information only with

regard to the point of measurement. For example,

if plasma is analysed in this way then the data

may not provide complete information on the

metabolism of the drug outside the plasma com-

partment. Tolbutamide exemplifies this situation

as it is well metabolised in the body but it is the

parent drug that is the dominant species in circu-

lation and therefore plasma contains virtually no

metabolites (Matin and Rowland 1973). From

plasma data alone, it might therefore be incor-

rectly surmised that tolbutamide is not signifi-

cantly metabolised.

An example of how total 14C and parent drug

concentration data are compared is shown in

Fig. 5.3. As part of a microdose study, fexofena-

dine was 14C labelled and administered IV

(100 mg) to six human volunteers (Lappin et al.

2010). The amount of radioactivity administered

was 7.4 kBq, 200 nCi. Plasma was collected from

the volunteers over time and analysed by AMS for

total 14C and for unchanged parent drug using

HPLC followed by AMS analysis of the isolated

fraction at the retention time of parent drug. Fig-

ure 5.3 shows that the concentration–time plot for

total 14C and for parent fexofenadine in plasma

track each other very closely. The AUCparent to

AUCtotal showed 85% of the plasma radioactivity

was parent drug, and hence by difference, 15% of

the plasma radioactivity was metabolites. This

was consistent with the known limited metabo-

lism of fexofenadine (Chen 2007).

Further insights into the metabolism of a can-

didate drug can be gained when the total 14C

and parent drug plots are compared for the oral

and IV doses. The results from a microdose

study with midazolam are presented in Figs. 5.4

and 5.5 (modified from Lappin et al. 2006a, b).

Midazolam, a benzodiazepine derivative, is a

short-acting sedative typically used during short-

term surgical procedures. Following an intrave-

nous dose of 100 mg 14C-midazolam (7.4 kBq,

200 nCi) to six human volunteers, at the first

sampling time point (0.25 h), the plasma concen-

tration of total 14C was similar to parent drug

(Fig. 5.4). The concentration of total 14C and

parent drug then rapidly diverged with time, as

midazolam was metabolised. Following an oral

100 mg dose of 14C-midazolam (7.4 kBq, 200 nCi)

the concentration of total 14C and parent mida-

zolam were significantly different from the first

plasma sampling (Fig. 5.5). The lower concen-

tration of parent midazolam compared to total
14C reflects the high first pass metabolism of this

drug. The absolute bioavailability of midazolam,

calculated from the respective AUCs for both the

oral and IV microdose was approximately 22%,

which compares well with reported values for

higher therapeutic doses (Heizmann et al. 1983).

The relatively low bioavailability of midazolam,

however, was shown to be due to first pass metab-

olism rather than any limitation of absorption. By

conducting a microdose cross-over study (IV and

oral dosing) with 14C-midazolam therefore, it was

possible to obtain a clearer description of how

the drug was handled by the body, albeit at a low

dose. Knowledge about the bioavailability of a

drug and whether a low bioavailability is due to

limitations of absorption or first pass effects

can be pivotal to the drug’s development. Poor

absorption can be possibly tackled by reformula-

tion whereas first pass effects are not formulation-

dependent and may require other approaches such

as the development of a prodrug. By employing

a microdosing study, this information can be

gained at the earliest possible stages in human

volunteers, prior to conducting a full preclinical

safety toxicology package supporting Phase 1.

5.7 Metabolite Profiling in
Microdose Studies

Samples of plasma or other biological samples

generated in a microdose study can be extracted

and chromatographically analysed to generate a

full metabolite profile (Fig. 5.1). The presence of

the 14C-tracer ensures that all the metabolites are

revealed, assuming the metabolites still retain the
14C isotope in the structure, even if obscure cata-

bolic pathways are involved. Moreover, 14C is

fully quantitative, allowing for the quantification

of parent and metabolites, even if the chemical

structures of the metabolites are uncertain.
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Metabolite profiles from microdose studies

are produced using very low doses (�100 mg),
so there is a question as to whether the metabo-

lism will be the same at higher pharmacologic

doses. There are, in fact, surprisingly little data in

the literature showing full metabolic profiles

from microdose studies and so two examples

are presented here (unpublished data) as shown

in Figs. 5.6–5.8.

14C-diazepam was intravenously adminis-

tered as a microdose (100 mg) or a therapeutic

dose (10 mg) to six healthy male volunteers. For

both dose levels, 7.4 kBq (200 nCi) was admi-

nistered. Plasma samples were taken periodi-

cally and those taken 24 h after dosing were

pooled across subjects, making two pools, one

for the 100 mg dose and one for the 10 mg dose.

The plasma pools were extracted and analysed

Fig. 5.6 Chromatographic profiles of plasma from

human volunteers administered 14C-diazepam intrave-

nously at doses of 100 mg (open squares) or 10 mg

(filled squares). The profiles were produced by ana-

lysing HPLC fractions with AMS (results of individ-

ual fraction analysis shown by data points – see text).

The peak at retention time of approximately 11 min

is parent diazepam. The peak at a retention time of

approximately 9 min is 4-hydroxy-diazepam. The two

profiles were virtually identical. (Note the scale on

the Y-axis. The metabolite profile of diazepam was

generated by injecting just 0.2 dpm onto the HPLC

column, demonstrating the extreme sensitivity of

AMS)
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Fig. 5.7 Chromatographic metabolite profile of plasma,

2 (filled squares) and 4 h (open circles) after the oral

administration of 100 mg 14C-paracetamol to human

volunteers. (Results of individual fraction analysis

shown by data points – see text)
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by HPLC, using conditions described in Lappin

et al. (2006a, b). The eluant from the HPLC was

collected as a series of fractions. Each fraction

was then graphitised (see above) and analysed

by AMS. The resulting chromatographic metab-

olite profile is shown in Fig. 5.6. The peak

at a retention time of approximately 11 min is

unchanged diazepam. The peak at retention time

of approximately 9 min is 4-hydroxy-diazepam.

The two profiles were virtually identical despite

a 100-fold difference in dose.

In a separate research study undertaken as part

of the European Microdosing AMS Partnership

Programme (unpublished at the time of writing

but with the latest results given at http://www.

EUMAPP.com) the metabolic profiles in plasma

and urine derived from human subjects adminis-

tered a microdose of [14C]-paracetamol (acet-

aminophen in the USA) was investigated by

HPLC followed by AMS analysis. Data from

the radiochromatograms generated from the

microdose were compared with data for the ther-

apeutic doses published in literature. Paraceta-

mol is a widely used analgesic and antipyretic.

It is absorbed rapidly from the gastrointestinal

tract and is metabolised primarily in the liver by

conjugation to form paracetamol–glucuronide

and paracetamol–sulphate. These major polar

conjugates are excreted by the kidneys in the

urine. A minor fraction is metabolised via hepa-

tic cytochrome P450 to a highly reactive alkylat-

ing metabolite (N-acetyl-p-benzoquinoneimine).

This metabolite rapidly conjugates with gluta-

thione and is eventually excreted in the urine

as cysteine and mercapturic acid conjugates.

In situations of overdose, the glutathione conju-

gation pathway is saturated resulting in toxic

concentrations of the active N-acetyl-p-benzo-

quinone imine.

In the research study, six healthy male volun-

teers were orally administered 100 mg, 7.4 kBq

(200 nCi) 14C-paracetamol. Plasma and urine

samples were collected periodically following

dosing. Plasma collected at 2 or 4 h after oral

administration was pooled across subjects. Urine

was pooled across subjects from 0 to 24 h. Plasma

extracts and urine were analysed by HPLC using

the method of (Vertzoni et al. 2003). The HPLC

eluant was collected as a series of fractions across

the chromatogram and analysed by AMS. The

reconstructed radiochromatogram for plasma

and urine are shown in Figs. 5.7 and 5.8, respec-

tively. The principal metabolites observed in the

profiles were unchanged paracetamol and its sul-

phate and glucuronide conjugates, which was

consistent with what would be expected from

the known metabolic pathway of paracetamol.

The quantities of each of these compounds were

compared to results previously published and the

comparisons are shown in Figs. 5.9–5.11. For-

both 2 and 4 h after dosing, the proportions of

paracetamol to the glucuronide and sulphate
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Fig. 5.8 Chromatographic metabolite profile of urine

0–24 h after the oral administration of 100 mg (200 nCi)

14C-paracetamol to human volunteers. (Results of indi-

vidual fraction analysis shown by data points – see text)
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conjugates present in plasma were very similar

(Figs. 5.9 and 5.10, respectively). In all cases, the

glucuronide was the most abundant species, fol-

lowed by unchanged paracetamol and then the

sulphate. In urine, the proportions of paracetamol

to the glucuronide and sulphate conjugates were

also consistent, with the glucuronide being most

abundant, followed by the sulphate and then

unchanged paracetamol. Interestingly, unchanged

paracetamol is not always detected in urine

demonstrating differences in the data can occur

from study to study (Pabba et al. 2002). Notwith-

standing this, the microdose predicted the meta-

bolism of paracetamol over a dose range of

15,000-fold very well. These data were consis-

tence with those of Tozuka et al. (2010).

Although the use of an isotopic tracer can be

very useful in revealing the pattern of metabolites

and their quantities, it is nevertheless worth

remembering that if unknown metabolites are

Fig. 5.9 Comparison of relative amounts of unchanged

paracetamol paracetamol–sulphate and paracetamol–glu-

curonide present in plasma across a 10,000-fold dose

range 2 h after oral dosing. [100 mg data generated in

the author’s laboratory, 1,000 mg data after Jensen et al.

(2004) and 1,500 mg dose data after Prescott (1980)]

Fig. 5.10 Comparison of relative amounts of unchanged

paracetamol, paracetamol–sulphate and paracetamol–

glucuronide present in plasma across a 10,000-fold dose

range 4 h after oral dosing. [100 mg data generated in

the author’s laboratory, 1,000 mg data after Jensen et al.

(2004) and 1,500 mg dose data after Prescott (1980)]
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revealed, structural elucidation can be very chal-

lenging given the potentially very low concentra-

tions encountered following microdosing. The

occurrence of unique human metabolites is how-

ever, rare and therefore putative identification can

usually be made by chromatographic retention

time comparison with, for example, laboratory

animal studies. In addition, it should be remem-

bered that microdose data are preliminary and if a

unique human metabolite was observed, even if

it’s full chemical structure was unknown, this in

itself is very valuable information in terms of the

further development of the drug. Such information

would enable drug developers to critically assess

the future potential of the compound and perhaps

realign future regulatory studies to address spe-

cies-specific metabolism at an earlier stage than

would otherwise be thought necessary.

5.8 Linear and Non-linear
Pharmacokinetics

At overdose levels of paracetamol, metabolites

from the glutathione-pathway appear in plasma

and urine. It is probably unrealistic to expect a

microdose study with paracetamol to predict

these effects as the dose used is well below that

which would cause any enzyme saturation. The

chromatogram shown in Figs. 5.7 and 5.8, how-

ever, do possess some minor unidentified peaks

and it is interesting to speculate that some

glutathione-related metabolites might have been

formed in the microdose study. The point is

nevertheless illustrated that generally, non-

linearities that appear in the kinetics due to

the saturation of some system (such as certain

enzymes) will occur at higher doses rather than

lower doses. For example, it might be speculated

that because of the high first pass observed with

midazolam, at very low doses, the midazolam

presented to CYP-3A4 in the GI-tract and liver

would be at such a low concentration that all of

the compound would be metabolised and no

unchanged parent drug would be measured in

the systemic circulation. This, however, was not

observed. The equilibrium of formation of meta-

bolites from midazolam was maintained through-

out the dose range examined (100 mg to 7.5 mg).

Presumably, if the midazolam dose were high

enough to saturate CYP-3A4, then non-linearities

in the pharmacokinetics would result.

Fig. 5.11 Comparison of relative amounts of unchanged

paracetamol, paracetamol–sulphate and paracetamol–glu-

curonide present in 0–24 h urine across a 15,000-fold dose

range. (1,500 mg dose data after (Prescott 1980),

1,000 mg (a) dose data after Jenson et al. Comparison of

relative amounts of unchanged paracetamol, paraceta-

mol–sulphate and paracetamol–glucuronide present in

plasma across a 10,000-fold dose range 4 h after oral

dosing. [100 mg data generated in the author’s laboratory,

1,000 mg (a) data after Jensen et al. (2004), 1,000 mg (b)

data after Pabba et al. (2002) and 1,500 mg dose data after

Prescott (1980)]
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Similar speculations were made with fexofe-

nadine, a substrate for the efflux transporter Pg-P.

Given the very low concentrations expected in the

GI-tract following a microdose of fexofenadine,

the Pg-P system would be expected to pump any

absorbed fexofenadine out of the epithelial cells

of the small intestine and hence prevent the drug

from being absorbed into the hepatic portal vein.

As with midazolam, however, when microdose

(100 mg) and therapeutic dose (60 mg) data for

fexofenadine were compared, the pharmacoki-

netics observed for the microdose predicted

those at the therapeutic dose very well (Lappin

et al. 2010; Yamane et al. 2007). The equilibrium

between the amount of drug absorbed through the

GI-tract and that which was pumped out by P-gP

was therefore apparently maintained over the

100 mg to 60 mg dose range. Non-linearities in

the amount of fexofenadine absorbed are how-

ever, known to occur at higher doses (240 mg)

where saturation of the P-gP system is likely to

occur (Robbins et al. 1998).

Of course, there are situations where non-lin-

ear pharmacokinetics are observed at lower

doses, as illustrated by the aforementioned target

mediated disposition observed with antibodies.

Another example would be warfarin. Due to the

presence of a low-capacity, high-affinity binding

site, coupled with a low volume of distribution,

the kinetics prior to the drug’s elimination phase

were non-linear at lower doses (Levy et al. 2003;

Lappin et al. 2006a, b).

5.9 Summary

A microdose, defined as 100th of the predicted

pharmacologic dose of drug or 100 mg whichever
is the smaller, is administered to human volun-

teers prior to Phase 1 studies to obtain an early

readout of pharmacokinetics. The low dose is

assumed to be inherently safer than a pharmaco-

logically active dose and therefore the regulatory

authorities will approve human microdose stud-

ies based upon limited preclinical safety evalua-

tion. A question as to how well microdose data

will predict the pharmacokinetics at higher ther-

apeutically relevant doses arises, but there is a

growing body of published studies where such

dose comparisons can be made, and to date there

is around 80% of orally administered microdose

studies and 100% intravenous microdose data

predicted the pharmacokinetics at higher doses

within a factor of 2. As well as providing data on

the pharmacokinetics of the parent drug, micro-

dosing can also be used to obtain an appreciation

of its metabolism. Provided the candidate drug is
14C labelled, the isotopic tracer can be used to

provide qualitative and quantitative metabolic

data, albeit at low doses. Such early data can

help drug developers assess the future potential

of a drug candidate and schedule the regulatory

studies to best address any issues of metabolism

of pharmacokinetics.
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Metabolite Testing in Drug
Development 6
Angus N. R. Nedderman and Don K. Walker

Abstract

A significant consideration during the development of drug candidates is

the impact of metabolites on efficacy and safety. Following the publica-

tion of the Metabolites in Safety Testing (MIST) guidance by the FDA in

2008, the focus on defining appropriate strategies to underwrite metabolite

safety has intensified. Many analytical technologies are available to deter-

mine the identity and abundance of metabolites and further approaches

continue to emerge. Furthermore, the scientific debate in recent years has

enabled a pragmatic case-by-case approach to understand the significance

of the metabolic pathways of novel compounds. In this respect, a number

of key considerations apply, notably the specific structure, pharmacologi-

cal activity, abundance, pharmacokinetics and physicochemical proper-

ties of individual metabolites, together with the administered dose of the

parent compound. By considering all these factors, appropriate strategies

can be defined to derive fit-for-purpose data to ensure that the safety and

efficacy profiles of candidate compounds are properly understood.

6.1 Introduction

Metabolite characterisation is recognised to be a

key component of the drug discovery and deve-

lopment continuum due to its potential impact on

the clearance, efficacy, and safety of drug candi-

dates (Korfmacher et al. 2001; Watt et al. 2003).

In the development phase, defined as the period

following nomination of a drug candidate, moni-

toring of the unmetabolized drug, or “parent”,

during clinical and safety programmes is stan-

dard practise. However, for most drug candi-

dates, metabolic clearance strategies are also

necessary to ensure the impact of metabolic pro-

ducts on safety and efficacy is understood.

Knowledge of the pharmacokinetics and pharma-

codynamics of drug metabolites may prompt fur-

ther investigation to understand the role that

metabolites can have on drug response. The pub-

lication of the FDAMetabolites in Safety Testing

(MIST) guidance in 2008 (FDA Guidance 2008)

has brought metabolite safety issues into sharper

focus, and much thought has been given to the

A.N.R. Nedderman (*)

Department of Pharmacokinetics, Dynamics and

Metabolism, IPC 664, Pfizer Global Research and

Development, Ramsgate Road, Sandwich, Kent CT13

9NJ, UK

e-mail: angus.nedderman@pfizer.com

P.L. Bonate and D.R. Howard (eds.), Pharmacokinetics in Drug Development,
DOI 10.1007/978-1-4419-7937-7_6, # American Association of Pharmaceutical Scientists 2011

131



application of strategies to ensure the safety of

metabolites will be assessed as drug development

programmes proceed through clinical testing and

ultimately to registration. A core principle of the

FDA MIST guidance is the identification of dis-

proportionate human metabolites, defined as

those drug-related components present in

human circulation at steady-state at higher expo-

sures than observed within toxicology studies.

This chapter will discuss approaches employed

to generate these metabolism data, the interpre-

tation of metabolism data in the context of safety

assessments, and strategic considerations to

ensure safety is adequately assessed throughout

the drug discovery and development process.

6.2 Methodologies to Generate
Metabolism Data

6.2.1 Metabolism Studies in Drug
Discovery

Metabolite identification studies in drug discov-

ery are typically conducted with mass spectro-

metry as the primary tool and use a variety of

approaches and instrumentation to generate sup-

porting structural information (Prakash et al.

2007). Additional technologies and strategies,

such as NMR spectroscopy or chemical derivati-

sation, can be used to provide more specific

structural data. However, practical considera-

tions, including time, costs, and the high failure

rate of clinical candidates’ translation to useful

medicines, can limit their routine application

during the discovery phase. Indeed, the optimal

approach to discovery metabolism studies is to

ensure that fit-for-purpose data are generated

efficiently and projects can apply this knowledge

within an optimal time frame.

Recent technological developments have

enabled metabolism studies to be conducted ear-

lier in the discovery process in order to more

routinely influence chemical design. Notably, in

silico prediction tools (Cruciani et al. 2005; Testa

et al. 2005), on-line approaches to characterising

metabolites (Van Liempd et al. 2007) and high-

resolution MS and HPLC methods (Castro-Perez

et al. 2005) have grown in popularity within the

pharmaceutical industry and provide rapid

metabolite characterisation data to increase con-

fidence in efficacy and safety understanding.

6.2.2 Metabolite Scouting in Early
Development

Regardless of the diligence with which discovery

metabolism studies are undertaken, it is impor-

tant to generate in vivo human metabolism data

early in drug development in order to validate the

findings in the discovery phase. Whilst it is fea-

sible for definitive metabolism data to be gene-

rated using radiolabelled compound in the early

stages of development, such studies are typically

conducted in Phase II due to their cost and com-

plexity. Therefore, metabolite “scouting” a term

applied to the qualitative and semiquantitative

analysis of metabolites using cold, or non-radi-

olabelled, compound is a common strategy dur-

ing single and multiple-dose studies in healthy

volunteers. Whilst the analytical approaches are

similar to those employed during the discovery

phase, further diligence may be required to pro-

vide semiquantitative information in order to

underwrite human safety.

Metabolite quantitation without radiolabelled

material or an authentic standard is not trivial,

although many technologies exist that can be uti-

lised (Wright et al. 2009). Notably, metabolite

quantitation using NMR spectroscopy continues

to grow in popularity with recent advances in

sensitivity. Historically used for fluorinated com-

pounds (Scarfe et al. 1999) where endogenous

compounds provide no interfering signals, NMR

has recently been applied to the quantitation of

non-fluorine containing compounds (Dear et al.

2008; Espina et al. 2009). Although emerging

quantitative techniques may be attractive, the

key to metabolite quantitation during metabolite

scouting is an assessment of relative, rather than

absolute, abundance, such that mass spectromet-

ric or UV detection are appropriate approaches in

many cases. Therefore, a typical scouting strategy

is to compare metabolic profiles, ideally at steady

state, between clinical and nonclinical toxicology
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studies. Information on the relative abundance

and structure of metabolic products at this stage

is important with regard to on- and off-target

pharmacological activity and will be discussed

within the strategic considerations section.

6.2.3 Definitive Metabolism Studies
in Drug Development

Definitive metabolism data in humans and ani-

mal species are typically generated following

administration of radiolabelled compound, thus

enabling the detection and accurate quantitation

of all drug-related material, assuming that the

position of radiolabel is appropriate and metab-

olism does not yield any unlabelled compo-

nents. A variety of approaches are available

for radiochemical analysis, including a number

of methods to quantify low-levels of radioactiv-

ity, which are typically required for the analysis of

plasma samples (Nassar et al. 2003; Nedderman

et al. 2004; Boernsen et al. 2000).

One technique that provides quantitative data

of exquisite sensitivity, albeit without the capa-

bility to provide direct structural information, is

accelerator mass spectrometry (AMS). This

approach has had something of a renaissance

following the publication of the MIST guidance

(FDA guidance 2008). Historically used for car-

bon dating (Bennett et al. 1977) and biomedical

investigations (Elmore et al. 1990), AMS has

been applied to ADME studies for a number of

years (Kaye et al. 1997), and provides robust

metabolite quantitative data of exceptional sen-

sitivity (Young et al. 2001; Garner et al. 2002).

Technologies to provide structural information

during the ADME programme are as described

earlier, although the definitive nature of these

studies means that more frequent use of

resource-intensive technologies such as NMR

are applied to generate specific structural data.

Assessment of metabolite profiles across species

is facile for definitive studies, and the identifica-

tion of disproportionate human metabolites can-

not be excluded at this typically late stage of the

development programme. Such a finding may

necessitate a return to additional safety, pharma-

cokinetic, or toxicology studies to support human

safety characterisation.

6.2.4 Case Study

A good example of an emerging metabolite pro-

file has been illustrated for the non-nucleoside

reverse transcriptase inhibitor (NNRTI), lersi-

virine (UK-453061). In vitro studies conducted

during the discovery phase identified N-dealky-

lated and hydroxylated metabolites; information

which, together with pharmacokinetic data from

toxicology species, provided the basis for the

predicted human pharmacokinetic profile (Allan

et al. 2008). In early development, plasma sam-

ples from first-in-human studies confirmed the

presence of the hydroxylated components (with

additional information on the relative abundance

of the two positional isomers) but showed only

trace levels of the N-dealkylated metabolite.

In addition, an abundant glucuronide conjugate

of parent was identified together with a carbox-

ylic acid metabolite formed by oxidation of

the alcohol function (Fig. 6.1) and some addi-

tional phase II conjugates. The information from

these studies prompted further studies to confirm

the presence of the carboxylic acid metabolite

in toxicology species at sufficient exposure in

order to demonstrate appropriate safety cover.

A human radiolabelled ADME study with lersi-

virine was subsequently conducted during phase

II, which confirmed the major routes of metabo-

lism identified through the metabolite scouting

and provided additional information around

minor metabolic products as well as definitive

quantitation of the individual routes both in the

systemic circulation and the excreta.

6.3 Pharmacokinetic
Considerations

6.3.1 Physicochemical Aspects

When considering the pharmacokinetic beha-

viour of drug metabolites, a useful first point of

reference is the physicochemical properties.

These can provide valuable information on the

6 Metabolite Testing in Drug Development 133



rate and route of clearance, tissue distribution

and plasma protein binding. In general, metabo-

lism converts lipophilic drug molecules into

more polar metabolites in order to facilitate

their removal from the body. The increase in

polarity may be substantial, such as in the case

of glucuronide conjugates. The polarity change

may be more subtle, for example in the case of

oxidative metabolism resulting in hydroxylation

or dealkylation of small aliphatic units. Increased

polarity facilitates the removal of drug-derived

metabolites via passive filtration in the kidneys

and may increase susceptibility to biliary excre-

tion via the bile. This is illustrated for the

cholinesterase inhibitor SM-10888, where phar-

macokinetic properties of individual metabolites

were determined in rat and related to physico-

chemical properties (Yabuki et al. 1994).

Hydroxylation of the parent molecule resulted

in an approximate reduction of 0.6 units in the

log D7.4 value and renal clearance increased

almost fourfold. Direct glucuronidation of the

parent molecule resulted in a 3.6 unit reduction

in log D7.4 with a 100-fold increase in the renal

clearance. Whilst this compound illustrates the

general rule that metabolism increases polarity

and thus increases clearance; it also provides an

example of a metabolic product (a ketone) which

has increased lipophilicity resulting in lowered

clearance. In order to enable effective renal

clearance by passive processes, it is generally

regarded that a log D7.4 value below 0 is required

(Smith et al. 1996). Hence the absolute lipophi-

licity of the parent molecule and the degree of

polarity introduced by metabolism will deter-

mine if a metabolite is susceptible to renal clear-

ance. For highly lipophilic molecules such as

amiodarone (Log D7.4 > 5.0), relatively small

changes in lipophilicity due to N-dealkylation

do not greatly enhance the ability to clear meta-

bolites from the body (Holt et al. 1983).

In addition to the impact that the change

in physicochemistry imparts on the clearance

of molecules, metabolic transformation can

also influence other disposition characteristics.

Tissue affinity and plasma protein binding are

dependent on the physiochemical properties of a

molecule. In general, decreasing lipophilicity
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Fig. 6.1 Major metabolic pathways for lersivirine

(UK-453,061). Nonclinical in vitro studies demonstrated

formation of the hydroxylated and N-dealkylated metabo-

lites. Metabolite scouting in human plasma identified the

glucuronide conjugate of parent and the carboxylic acid
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will reduce the affinity for tissue and plasma

protein binding due to decreased hydrophobic

interactions.

However, there may be cases where changes

in the physicochemistry result in additional

specific interactions leading to increased binding.

It is well recognised that carboxylic acids

exhibit particularly high plasma protein binding

due to their ionic interaction with albumin (Smith

et al. 1996). Hence metabolic transformations

that yield a carboxylic acid metabolite can show

increased plasma protein binding which may

result in decreased availability for clearance

and, potentially, pharmacological effect. An

example is provided by the angiotensin II recep-

tor antagonist losartan and its pharmacologically

active metabolite EXP3174. In this case, the

metabolite has higher plasma protein binding

than the parent compound (Christ 1995) due to

oxidation of the alcohol function to an acid.

A more subtle impact on tissue disposition due

to changing physicochemistry was encountered

in the discovery of the calcium channel blocker

amlodipine. In this case, the primary amine

amlodipine was first observed as a metabolite of

the dimethyl tertiary amine analogue, which pos-

sessed a long duration of action due, in large part,

to formation of amlodipine as a metabolite

(Humphrey 1996). Amlodipine possesses a

large volume of distribution, larger than those

of the secondary and tertiary amine analogues,

and this has been attributed to a specific ion-pair

interaction between the amine and acidic phos-

pholipid headgroups present in cell membranes.

The large volume of distribution (21 L/kg)

results in a long elimination half-life of around

35 h in man (Stopher et al. 1988).

6.3.2 Metabolite Kinetics

Schematically the formation and elimination of

drug metabolites can be represented as shown in

Fig. 6.2. In this scheme the amount of metabolite

in the body (M) is governed by the balance

between its formation (determined by the amount

of parent molecule (D) and its rate constant for

elimination (k) and fraction metabolised to the

particular metabolite (fm)) and its elimination

(determined by the amount of metabolite (M)

and the rate constant for metabolite elimination

(km)). The concentration of the metabolite (Cm)

can be described mathematically but requires

information on its volume of distribution (Vd)

according to the following equation (Clark and

Smith 1986):

Cm ¼ fm � D

Vd

k

km � k
ðe�kt � e�kmtÞ (6.1)

In the majority of cases the rate constant for

metabolite elimination is larger than the rate

constant for parent drug elimination, reflecting

that metabolites are more readily eliminated

from the body than the parent molecule. In

D M EM 

Amount of
drug in body 

Amount of metabolite
eliminated 

Amount of 
metabolite in body 

Metabolite formation
fm x k 

Metabolite elimination
k(m) 

Drug eliminated by
other pathways 

Fig. 6.2 Schematic representation of the formation and elimination of metabolites

6 Metabolite Testing in Drug Development 135



addition, metabolites are generally more polar

than parent compound resulting in a reduced

volume of distribution. These two factors of

higher clearance (Cl) and reduced volume of

distribution (Vd) will generally mean that the

half-life of a metabolite would be shorter than

that of the parent molecule if it was administered

directly.

In reality, the observed half-lives of metabo-

lites are often the same as parent molecule as

their elimination becomes formation rate-limited

where the decline in the concentration of parent

drug limits the rate of formation and hence elim-

ination of the metabolite. Mathematically when

“km” is significantly larger than “k” the term “exp

(�kmt)” in (6.1) becomes negligible and the

change in metabolite concentration is a function

of the rate constant for parent drug elimination

(i.e. “k”).

While formation rate-limited metabolite phar-

macokinetics are the more common situation,

there are numerous examples where metabolites

exhibit elimination rate-limited pharmacokinet-

ics (k >> km). Examples include parent drug

molecules which are particularly susceptible to

rapid metabolic clearance resulting in metabo-

lites which no longer possess such a vulnerable

site of metabolism; this is of course an intrinsic

design principle of prodrugs, like esters, which

are cleaved to yield more slowly eliminated phar-

macologically active moieties. An example of an

intrinsically designed prodrug is the ACE inhibi-

tor enalapril which has a short elimination half-

life but is rapidly hydrolysed to the carboxylic

acid active moiety enalaprilat which has an

elimination half-life of about 35 h (Ulm et al.

1982). Other examples of longer-lived metabo-

lites include metoprolol and its hydroxylated

metabolite and nitroglycerin and its dinitrate

metabolites.

6.3.3 Population Variability and
Drug Metabolites

Increasingly, population variability in drug

response is recognised as an important conside-

ration in the evaluation of new medicines.

Pharmacogenetic determinants of drug response

include genetic polymorphisms of drug metabo-

lising enzymes and transporters which impact the

pharmacokinetics of the compound and hence the

resultant pharmacological effects (Eichelbaum

et al. 2006). The influence of genetic polymor-

phism on pharmacokinetics may also need to be

extended to drug metabolites, particularly when

these possess pharmacological activity in their

own right.

Probably the best known genetic polymor-

phism amongst drug metabolising enzymes is

the CYP2D6 polymorphism with multiple

forms of the enzyme present within the popula-

tion and absence of active protein in approxi-

mately 7% of the Caucasian population. The

antimuscarinic agent tolterodine is extensively

metabolised by CYP2D6 and its pharmacokinet-

ics show marked variation between CYP2D6

extensive metabolisers (EMs) and poor metabo-

lisers (PMs). However, due to the pharmacod-

ynamic contribution from the active metabolite

of tolterodine, which is formed by CYP2D6, the

genetic polymorphism appears to have little

impact on the antimuscarinic effect probably

due to the additive effect of parent compound

and metabolite (Brynne et al. 1998). Thus phar-

macogenetic considerations should include active

metabolites in the overall assessment of popul-

ation variability on drug effect.

6.4 Strategic Considerations

6.4.1 Timing of Metabolism Studies

The FDA MIST guidance refers to the need to

generate metabolism data “as early as possible”

in drug development in order to appropriately

underwrite safety. As a result, some pharmaceu-

tical companies have accelerated the definitive

ADME programmes for novel compounds, often

administering low levels of radioactivity in early

clinical studies and using AMS analysis to

generate metabolism data (Lappin and Stevens

2008). Whilst this is a valid approach, its cost and

time effectiveness may be questioned given the

high concordance between animal and human
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metabolism (Smith 1991) and the technologies

that are available to identify metabolites in the

absence of radiolabel. For this reason, a more

pragmatic approach may be to conduct diligent

metabolite scouting on plasma samples from

Phase I clinical studies and toxicology species

and then complete definitive radiolabelled stud-

ies later in development. Typically this will be

after evidence is obtained supporting the potential

utility of the drug candidate as a medicine, and

when the time, effort and expense of synthesising

the appropriate radiolabel(s) and bioanalytical

standards are justified. Early radiolabelled studies

may well be appropriate, for instance, when spe-

cificmetabolism issues need to be addressed early

in drug development in order to inform safety

concerns or to generate definitive data to provide

appropriate context around an in vitro safety

observation.

6.4.2 Metabolite Monitoring
Strategies

In the absence of radiolabelled material, robust

and reliable quantitative data for metabolite

exposure are best obtained via formal metabolite

monitoring during clinical and safety pro-

grammes, typically using validated LC-MS/MS

assays. However, since this approach requires

synthesis of an authentic standard, precise struc-

tural definition of the metabolite is required.

It may also necessitate potentially laborious ana-

lytical method development and possibly require

an isotopically-labelled internal standard. For

these reasons, quantitative assays for metabolites

can prove costly and should not be undertaken

lightly.

Metabolite identification studies during drug

discovery should yield valuable information well

in advance of clinical and safety study design in

order to inform the metabolite monitoring strat-

egy. Typically, formal metabolite monitoring in

clinical studies will only be necessary in Phase I

following identification of an active metabolite

of significant abundance relative to parent com-

pound, as such a metabolite may affect the clini-

cal safety and efficacy of the administered drug.

As a rule of thumb, unless a metabolite is

expected to contribute more than 25% relative

potency to parent (based on free exposure and

pharmacological activity (Smith and Obach

2005)), then routine quantitation need not be

employed. Thus, discovery metabolism studies

should be designed to provide sufficient informa-

tion to enable synthesis and subsequent pharma-

cology testing of the metabolite. Whilst the

activity of a metabolite can in principle be deter-

mined by on-line activity profiling (Van Liempd

et al. 2007), the common approach involves syn-

thesis and testing driven by a combination of

abundance (allowing for the caveats associated

with quantitative data in the absence of authentic

standards and/or radiolabelled material) and a

knowledge of the pharmacophore of the parent

compound and the metabolite structure. Even

when an active metabolite is identified in drug

discovery, it may still be appropriate to apply a

degree of pragmatism to the monitoring strategy

and conduct an informal semiquantitative analy-

sis of the metabolite in question during the first-

in-human study, the data from which can inform

the need to continue to a formal monitoring strat-

egy in subsequent studies. This approach allows

for the possibility that an active metabolite may

be a minor component relative to parent com-

pound in patients, and therefore, its impact on

safety and efficacy may be negligible. It should

be remembered, however, that the extent of

plasma protein binding of a metabolite may be

lower than the parent compound and the relative

potency can be greater than the parent. Under

these circumstances, a metabolite may make a

greater contribution to the pharmacological

effect than judged simply on a comparison of

total concentration or exposure.

Whilst data generated during drug discovery

will guide the initial metabolite monitoring strat-

egy, subsequent metabolite scouting studies in

human plasma from Phase I clinical studies

should be used to refine the monitoring approach.

These data inform decisions to either terminate

formal monitoring of a metabolite found subse-

quently to be a minor component, or can initiate

monitoring of a component not previously

detected in vitro, but which is found to represent
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a significant component in terms of safety or,

possibly efficacy.

Furthermore, definitive metabolism data gen-

erated using radiolabelled material can also

affect the monitoring strategy. Even though

these data will not typically be generated until

Phase 2 of clinical development, the information

is usually necessary to underwrite safety during

Phase 3 development and to inform the clinical

drug-interaction programme.

6.4.3 The Significance of
Disproportionate Human
Metabolites

It is well known that unique human metabolites

are rare (Leclercq et al. 2009), reflecting the

similarity of drug metabolising pathways

between humans and laboratory animal species

(Smith 1991). However, scenarios where meta-

bolites may not be unique but have higher rela-

tive exposures in humans than in animal species

are more common and in such circumstances, it

is appropriate that additional safety considera-

tions are made. Indeed, such thinking is integral

to the FDA’s MIST guidance document. Within

this document, metabolite considerations are

framed into a decision tree. The first consider-

ation for a human metabolite is its relative abun-

dance in the systemic circulation compared to

parent compound. If this is less than 10% then

the metabolite can be considered not to pose a

safety concern. For those metabolites that exceed

10% relative to parent then a consideration of

their safety risk is required. The choice of a

level of 10% was made to provide consistency

with other FDA and Environmental Protection

Agency guidance. For these metabolites the

next consideration is with regard to their sys-

temic exposure in the toxicology species. If at

least one animal species used in the toxicology

programme demonstrates adequate exposure

(approximately equal to or greater than human

exposure) then it can be assumed that the meta-

bolites’ contribution to the overall safety profile

has been assessed. Importantly the guidance

recognises that although metabolites may occur

in higher proportions in humans compared to

animals in toxicology studies, in many cases,

the higher doses used in toxicology studies result

in overall higher systemic exposures of drug and

metabolites which means that the animals have

been exposed to higher absolute amounts of

metabolites and thus metabolite safety has been

adequately assessed. The guidance uses the term

“disproportionate drug metabolite” which is

defined as a metabolite that exceeds 10% of

parent systemic exposure and is present only in

humans or present in humans at higher plasma

concentrations than are encountered in the ani-

mals used in the nonclinical studies.

Whilst the MIST guidance lays out the funda-

mental principles of metabolite safety assess-

ments, a number of additional areas are worthy

of further specific consideration. First, the gui-

dance states that it is appropriate to consider

metabolites accounting for 10% or more of the

parent AUC in human plasma. Although this is

an appropriate consideration, designed to guard

against unnecessary responses to underwrite the

safety of metabolites of extremely low abun-

dance, it is less readily applied to extensively

metabolised compounds, where many metabo-

lites may occur at high proportions of parent

compound. In these circumstances, it is prag-

matic to focus on the most abundant metabolites

that represent more than 10% of the total drug-

related material, as a threshold for considerations

of metabolite safety testing. This limitation of the

guidance has been recognised within the FDA

and provides further rationale for the need for

case-by-case assessments (Atrakchi 2009). In all

cases, any metabolite structure that raises a spe-

cific safety concern (e.g. structural alert), irre-

spective of amount, should be given due

consideration. Secondly, a case has been made

that absolute, rather than relative, abundance is

the key consideration, and therefore the adminis-

tered dose should be taken into account (Smith

and Obach 2006). Thus, metabolites of low dose

compounds are less likely to give rise to safety

issues while even low level (in% terms) metabo-

lites may be a cause for concern if the dose level

is very high, as the circulating concentration and/

or total body burden may impart significant
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chemical stress. A third consideration is around

the specific structure of the metabolites in ques-

tion. Metabolites of similar structure to the par-

ent compound, such as those arising from

hydroxylation or demethylation, are likely to

have on- or off-target pharmacological activity

similar to the parent molecule and thus are wor-

thy of further consideration.

Metabolites of very different structure to the

parent drug are highly unlikely to possess similar

activity, though they may have off-target effects.

Caution should be exercised, however, in dis-

missing the potential safety concerns of all meta-

bolites that are structurally unrelated to the

parent compound. In particular, any metabolites

resulting from reactive metabolic pathways are

indicative of a mechanism that may give rise to

safety concerns. Such “smoking gun” metabo-

lites, including methylcatechols or migrated

acyl glucuronides, should be given serious con-

sideration, and may only be identified in excreta,

showing that although plasma metabolites are

typically of key importance, those present in

excreta cannot be ignored. An example of a

“smoking gun” metabolite was observed for

the 5-lipoxygenase inhibitor zileuton, where an

N-acetylthiophene metabolite was detected in

urine, indicative of the formation of a reactive

sulphoxide component (Joshi et al. 2004)

(Fig. 6.3). The therapeutic use of zileuton is

limited due to hepatotoxicity, possibly as a result

of this metabolic pathway.

One final consideration noted in the FDA

guidance is that some structures may be consid-

ered benign, regardless of the relative abundance

in humans and animal species. Notably, ether

glucuronides are cited in the guidance as compo-

nents that should not give rise to safety concerns,

due to the likelihood that they will be pharmaco-

logically inactive and the fact that they typically

have low volumes of distribution and rapid clear-

ance due to their polarity. However, whilst ether

glucuronides are typically benign, there are

examples where such conjugates do possess

on-target pharmacological activity, such as mor-

phine 6-glucuronide which is an opioid mu

agonist of 50-fold greater potency than the parent

compound (Gong et al. 1991). Furthermore,
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alternative classes of phase II conjugate do need

to be given due consideration from a safety per-

spective, most notably acyl glucuronides, which

have been shown to form covalent adducts to

proteins, a mechanism that may be implicated

in toxicity (Bailey and Dickenson 1996). Caveats

and considerations such as those described in this

section show that safety considerations for meta-

bolites must be made on a case-by-case basis,

applying sound reasoning to ensure that safety

is appropriately underwritten.

6.5 Strategies to Underwrite the
Safety of Disproportionate
Human Metabolites

Whilst the occurrence of disproportionate meta-

bolites is relatively rare, on the occasions when

they are encountered, a strategy will be required

to understand the safety profile of the particular

chemical entity. It should be recognised that the

MIST guidelines state that provided a metabolite

is present in approximately equivalent absolute

concentrations in at least one toxicology species

at the NOAEL then its safety can be considered

qualified, barring some unusual safety consider-

ation. Even in situations where a metabolite is

not adequately exposed in the toxicology

programme there may be justification that spe-

cific toxicity testing is not required if there is a

clear case that the particular structure can be

shown to be devoid of hazard (e.g. ether glucur-

onides). In those cases where exposures to a

human metabolite is not covered in safety studies

then essentially two alternatives remain: the par-

ent compound may be examined in a different

non-clinical species to see if any of these provide

adequate exposure to the metabolite or the

metabolite may be directly administered to an

animal species. The actual safety studies that

need to be carried out with such a metabolite

should be determined on a case-by-case basis

taking into account regulatory guidance such as

the International Conference on Harmonisation

M3 Guidance for Non-Clinical Safety Studies

(ICH Guidance M3, 2009), the disease indication

and the risk assessment. In a situation where

the direct administration of a metabolite might

be required there may need to be additional

consideration concerning the route of administra-

tion should the metabolite not be orally absorbed.

This in itself may add further complexity to the

interpretation of data where route-specific effects

could potentially contribute to the safety profile

(Prueksaritanont et al. 2006). The specific testing

of metabolites in general toxicology, genotoxi-

city studies, reproductive toxicology studies and

carcinogenicity studies has been discussed

within the scientific literature (Baillie et al.

2002). In addition, in vitro safety studies can be

utilised to identify particular risks associated

with metabolite structures.

An example where additional safety testing

was conducted for a specific metabolite was

reported recently for the acyl coenzyme A: cho-

lesterol acyltransferase (ACAT) inhibitor pacti-

mibe (Kotsuma et al. 2008). An oxidative

metabolite of pactimibe, R-125528, formed by

CYP3A4, is cleared by CYP2D6 (Fig. 6.4) and

significant accumulation of R-125528 was

observed after chronic administration of pactimibe

to CYP2D6 poor metabolisers during the clinical

programme. In order to fully characterise the

safety following administration of pactimibe to

humans, additional safety studies were conducted

for R-125528 to show the exposure of R-125528

could be tolerated in animals significantly in

excess of the exposure observed in clinical studies.

6.6 Summary

The publication of the FDA’s MIST guidance in

2008 has precipitated renewed interest and sig-

nificant activity in the field of metabolite char-

acterisation to underwrite the safety of novel

compounds. Although the derivation of metabo-

lism data is a holistic process, conducted

throughout drug discovery and development,

particular focus is applied to the early develop-

ment phase, where the opportunity to generate

in vivo data in humans presents itself for the first

time. For this reason, much effort is being

expended on the development of approaches to

generate information of metabolite structure,
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abundance and pharmacological activity during

this phase of development. Technologies such as

accelerator mass spectrometry have generated

significant interest and undoubtedly have a

place in the safety assessment process. Such

approaches, however, are unlikely to achieve

routine utility in early development until their

cost effectiveness and speed are improved.

Thus, the improvement of existing methodolo-

gies and the development of novel technologies

to generate key metabolism data will remain an

area of substantial focus.

Regardless of the available technologies, the

key to metabolite safety assessments is to con-

sider each case individually, rather than follow

specific rules and such thinking is specifically laid

out in the FDA guidance. Thus considerations

around the relevance of structure, activity, phar-

macokinetics, abundance and dose to the overall

safety profile of a compound are critical to appro-

priately addressing safety concerns. Such think-

ing, based on the generation of fit-for-purpose

data at the appropriate phase of drug discovery

and development, will ensure that the correct

decisions can be made around metabolite moni-

toring strategies, disproportionate metabolites

and subsequent alterations to clinical and safety

programmes, thereby ensuring that human safety

is consistently and adequately addressed.
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The -Omics in Drug Development 7
Majid Y. Moridani, Robyn P. Araujo, Caroline H. Johnson, and
John C. Lindon

Abstract

New advancement in genomics, proteomics, and metabonomics created

significant excitement about the use of these relatively new technologies

in drug design, discovery, development, and molecular-targeted thera-

peutics by identifying new drug targets and better tools for safety and

efficacy studies in preclinical and clinical stages of drug development

as well as diagnostics. In this chapter, we will briefly discuss the applica-

tion of genomics, proteomics, and metabonomics in drug discovery and

development.

7.1 Pharmacogenomics in Drug
Development

7.1.1 Introduction

Genomics, proteomics, and metabonomics are

new tools and techniques that are increasingly

used in the optimization process in drug devel-

opment and discovery. Although each of these

tools has its own advantages and limitations, the

expectation is that the use of these technologies

will increase the current success rate of drug

discovery and development. Here, each of these

branches of study will be discussed separately.

The completion of the Human Genome Project

generated a significant amount of information

related to inherited materials, which in turn, cre-

ated new hope for the development of novel

medicines based on a patient’s genetic makeup.

This new information has made it possible to

understand the underlying biology of disease pro-

cesses in greater detail, which can potentially be

used to recategorize diseases into new subtypes

and stages, which may require different thera-

peutic approaches and medical interventions.

Studies have demonstrated that variations in drug

responses exist between different individuals,

genders, age groups, and ethnic populations

(Anderson 2008; Gomez and Ingelman-Sundberg

2009). These differences are attributed to varia-

tions in a single gene or multiple genes interacting

with environmental factors. Understanding how

these variations influence the pathophysiology of

diseases and lead to variations in drug response
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and toxicity can ultimately improve drug discovery

and development processes.

Pharmacogenetics and pharmacogenomics

are closely related sciences that deal with inter-

individual variations in genomic information

(Kalow 2006). Pharmacogenetics looks at the

influence of a single gene on a drug response.

A number of classic genetic examples that in-

fluence phenotypes by single gene variations

exist, including alcaptonuria, phenylketonuria,

butyryl cholinesterase, N-acetyltransferase, and

CYP2D6 enzyme. These single gene variations

result in altered metabolism in endogenous

substrates or drugs such as succinylcholine,

isoniazid, and debrisoquine. For instance, indi-

viduals who are N-acetyltransferase slow meta-

bolizers, taking regular doses of isoniazid have

better efficacy responses to the drug than indi-

viduals who metabolize the drug normally.

Adverse drug reactions, however, are seen

more often in the slow metabolizer group.

Pharmacogenomics, on the other hand, looks

at the whole genome with an aim to develop

reliable biomarkers that accurately predict

drug responses, adverse drug reactions, dose

requirements, susceptibility to disease, and dis-

ease stages. Pharmacogenomics is heavily

dependent upon technology and statistical ana-

lyzes of complex data to investigate many

genes and gene patterns by simultaneously

looking at structure and expression of many

different genes. These new technologies have

the ability to look at low, medium, or large

scale genotyping or expression analyzes using

DNA and RNA materials derived from blood

or tissue samples obtained from patients and

healthy subjects for comparison studies. How-

ever, in order to be able to utilize these genetic

markers in drug design, clinical practice, and

drug development, they need to be clearly

linked to clinical information and endpoints

such as efficacy, pharmacokinetics, safety/

adverse reactions, disease state, and disease

predisposition. In the following we discuss a

number of technical, regulatory, and scientific

advances in the use of genomics in drug dis-

covery and development.

7.1.2 Genomics in Drug Discovery

Drug discovery is a time consuming and expen-

sive process with a high rate of failure (Kola

and Landis 2004; McHale 2008). For instance,

20% of the candidate molecules fail during pre-

clinical toxicology. An additional 10% fail due to

pharmacokinetic limitations during preclinical

assessment. Another 15% of drug development

molecules fail due to safety and toxicity concerns

during clinical studies. These high rates of failure in

drug discovery and development require strategies

to improve target identification, lead optimization,

better clinical trial planning, identification of new

disease targets, and the drug development process.

Genomic technology may enable the identifi-

cation of toxicological failures as early as possible

and may significantly reduce drug development

costs associated with animal use, consumables,

and infrastructure-related costs, as well as scien-

tists’ time. The technology can be used for cross

disease applications for various unrelated dis-

eases, organ system targets rather than candidate

targets, molecular pathway targets rather than dis-

ease target, and prediction of likely variability in

biology and populations.

Genomic and mRNA expression studies can

be extremely powerful tools in the assessment of

drug efficacy and toxicology which in turn can

improve drug development process. Using the

genomic approach, biological endpoints can be

assessed instead of traditional pharmacological

responses. mRNA profiling can assist in the vali-

dation and evaluation of drug targets, and organ

targets sharing the same expression profile and

pathways leading to efficacy and toxicity. By

using multiple targets, mRNA-profiling makes

it possible to identify toxicity in major organs

such as liver, kidney, and vascular system,

instead of utilizing traditional histopathology

techniques which may not be as sensitive. By

looking at specific mechanisms and structure-

based toxicity all the organs that can serve as a

target can be examined. One of the advantages of

expression profiling is that it can also be used to

study RNA regulation and as a surrogate for

protein-expression studies.
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Moreover, genomic biomarkers can be used to

enrich early clinical studies with individuals most

likely to respond to the drugs or least likely to

develop adverse drug reactions. Failure to deter-

mine efficacy in a targeted subpopulation of

patients who are positive or negative for certain

biomarkers may prevent the need for larger clini-

cal trials, which require significant investments in

time and financial resources. In other words,

genomic information has significant utility in

identifying failing drug candidates as early as

possible in drug discovery pipeline (Burczynski

2009; Ferrer-Dufol and Menao-Guillen 2009).

Another way to improve the drug development

process is by developing new targets and using

molecular pathways such as receptors and their

underlying signal transduction. Genomic advances

and the completion of the Human Genome Project

have significantly increased the number of drug

targets from 500 to 3,000. Pharmaceutical indus-

tries have currently developed drugs for 120 of the

original 500 targets; hence, a large number of drug

targets remain to be explored. Genetic markers can

also be used to find new indications for drugs in

development by investigating the effect of the

most common genetic variations in the drug target

(protein, receptor, channel, transporter, or

enzyme) and correlating this with disease risk

across a wide range of diseases. This will provide

invaluable information regarding possible interin-

dividual differences in drug response, efficacy,

toxicity, adverse drug reactions, and pharmacoki-

netic endpoints.

Cell culture is a necessary part of the drug

discovery process. Specific target drug and their

polymorphic variants can be expressed in cell

culture for screening purposes. In addition, animal

models are extensively used in toxicological and

efficacy studies as part of drug development. The

genetics of the animals can be altered to create

new disease model or for enhanced toxicological

and efficacy studies. Similar to the Human

Genome Project, various Animal Genome Pro-

jects are either underway or have been completed.

For instance, the mouse is extensively used in

drug research discovery and development.

Hence, the Mouse Genome Project (http://www.

ncbi.nlm.nih.gov/projects/genome/guide/mouse/;

Boguski 2002) can provide invaluable informa-

tion regarding the relevance of diseases in mice

to those in humans and preclinical results to those

of clinical trial outcomes.

Briefly, genomic technology has the potential

for identifying drug responders from nonrespon-

ders, populations at-risk for adverse reactions,

and drug response outliers. Genomic technology

can be used for new biomarker association stud-

ies, drug dose adjustments, selective recruitment

of patients to enrich clinical trials with indivi-

duals carrying specific molecular characteristics,

for differentiating new drugs from first-line ther-

apy by targeting a subpopulation of patients who

will benefit mostly from the therapy, and in the

investigation of drug action/toxicity mechanisms

and molecular pathways.

7.1.3 Examples of Technological
Advances in Genomics Research

Technology is no longer a limiting factor in

genomics research. The major barriers for wide-

spread implementation of genomics in drug dis-

covery, clinical trials, and clinical practice are

related to DNA/RNA sample collection and stor-

age guidelines, the amount of quality data needed

for a test or group of biomarkers to be considered

as required or recommended by the FDA, the

number of samples needed for statistical validity

and analyzes, and the regulatory challenges for

clinical trials in a global research environment.

Lack of education among scientists and clini-

cians is another barrier for efficient use of geno-

mic information in drug development and

clinical practice. Currently, these challenges are

being addressed at ongoing interactions between

numerous regulatory agencies, industries, acade-

mia, and interest groups. In the following,

we discuss a number of examples from Affyme-

trix (http://www.affymetrix.com) and Illumina

(http://www.illumina.com) to highlight techno-

logical advances made in this area.

Affymetrix and Illumina are leading manufac-

turers of microarray technology that enable the

screening of thousands to millions of single
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nucleotide polymorphisms (SNPs) and copy

number variants (CNV) on a single chip. An

example of the microarray technology is Affyme-

trix’s GeneChip Microarray (Dalma-Weiszhausz

et al. 2006; http://www.affymetrix.com), which

can be used for both targeted genotyping and

whole-genome association studies. The Gene-

Chip Systems enable successful association stud-

ies with a targeted approach that offers flexible

multiplexing from 3,000 to 20,000 SNPs per

assay. The Affymetrix technology can also be

used for Whole Genome Association (WGA)

studies, covering 1.8 million genetic markers of

SNPs and probes for the detection of CNV. The

Affymetrix SNP Array includes large numbers of

genetic variations on a single array providing

maximum panel power and coverage of the

genome on a single chip. Another example from

Affymetrix is the DMET Plus Premier Pack

(http://www.affymetrix.com), which contains a

comprehensive group of pharmacogenetic mar-

kers for drug metabolism investigation. It

includes approximately 2,000 drug metabolism

markers related to 225 genes and provides cover-

age of common and rare SNPs, insertions, dele-

tions, tri-alleles, and CNV.

Illumina also developed genotyping technolo-

gies that can assist with sequencing, whole-

genome SNP genotyping, CNV analyzes, focused

and custom SNP genotyping, linkage analyzes,

biomarker validation, screening, molecular test-

ing, and methylation profiling. For instance, Infi-

nium HD BeadChips technology (http://www.

illumina.com/pages.ilmn?ID¼40) is capable of

screening between 300,000 and 1,000,000

genetic markers for two to twelve samples per

single chip. The Semi-Custom Human1M-Duo+

and HumanHap550-Quad+ products from Illu-

mina allow for two to four samples per BeadChip

to be screened for 60,000 SNPs per sample.

Another example from Illumina includes Human-

CytoSNP-12 which allows for screening 12

samples per bead for common cytogenetic abnor-

mality studies. This BeadChip contains approxi-

mately 300,000 genetic markers associated with

about 300 syndromes. In addition, technology is

available from Illumina for genome-wide mRNA

expression- and microRNA expression-profiling

and degraded RNA, such as those derived from

formalin-fixed paraffin-embedded-tissue. Seque-

ncing technology is also available from Illumina

for genome sequencing, transcriptome analysis,

gene regulation, epigenetic analysis, andmultiplex

sample sequencing for up to 12 samples per bead.

7.1.4 Examples of FDA Cleared
Devices for Genetic Testing

Here, a number of FDA-cleared devices will be

discussed to highlight both technological and reg-

ulatory advances made in this area. As first exam-

ple, the Roche Amplichip CYP450 Test, which

was introduced in 2005, was the first FDA-cleared

pharmacogenetic test for the analysis of the

CYP2D6 and CYP2C19 genes (http://www.

amplichip.us; Hillman and Nikoloff 2009; de

Leon et al. 2009). These genes are involved in

the metabolism of many drugs in use on the mar-

ket. The AmpliChip CYP450 Test determines a

patient’s genotype and can predict if a phenotype

is a poor, intermediate, extensive, or ultrarapid

metabolizer. The AmpliChip CYP450 can be

used when planning the inclusion and exclusion

criteria for clinical trials and in medical practice

for use in dose adjustment. However, one should

also note that other clinical information and the

patient medical history should be also taken into

account before making a decision for dose adjust-

ments based on genetic tests.

Another example of an FDA-cleared device, the

MammaPrint (Agendia, http://usa.agendia.com/en/

mammaprint.html; van’t Veer et al. 2002), is a

gene expression profiling test to assess the risk of

cancer recurrence in patients with breast cancer.

MammaPrint, approved for marketing in 2007, is

the first in vitro diagnostic multivariate index

assay (IVDMIA) to receive FDA approval. The

test is based on the expression of 70 genes in

the tumor for determining the risk of breast can-

cer recurrence (Fig. 7.1, reproduced with permis-

sion from Agendia). If breast cancer is detected

early, the tumor can be removed by surgical

intervention, and most patients can fully recover.

However, 30% of patients with breast cancer in

stage I or II develop metastases within 5–10 years
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after surgery. The test helps to stratify tumors into

high and low risk of relapse. Patients with high

risk of relapse need systemic therapy. Before the

MammaPrint test became available, it was not

possible to accurately stratify patients, hence

approximately 70% of the patients who would

not benefit from systemic therapy received it

unnecessarily. In this group, adverse drug reac-

tions could often have been eliminated if the

tumors had been stratified to the low risk of

relapse category. To maximize its clinical utility,

one should also bear in mind that the MammaPrint

Fig. 7.1 MammaPrint: Classification of breast cancer
tumor sample into high risk and low risk of recurrence
of the disease (http://usa.agendia.com/en/mammaprint.

html). MammaPrint is an in vitro diagnostic multivariate

index assay (IVDMIA) based on the expression of 70

genes in the tumor for determining the risk of breast

cancer recurrence. The test helps to stratify tumors into

high and low risk of relapse. Patients with high risk of

relapse need systemic therapy. Reproduced with permis-

sion from Agendia
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results are indicated for use by physicians as prog-

nostic markers which should be used in combina-

tion with other clinical laboratory tests and data.

The list of FDA-approved genotyping kits

also includes the Trugene HIV-1 test (Bayer)

which is a sequence-based assay targeted at the

protease and reverse transcriptase regions of the

HIV-1 genome. These regions of the virus

genome code for drug resistance against antire-

troviral protease and reverse transcriptase inhibi-

tors. When resistance develops, the patient’s

viral load can increase, worsening clinical prog-

nosis, and eventually accelerating the develop-

ment of drug-resistant viruses. Drug-resistant

patients may be subjected to severe side effects

of antiviral drugs despite having no hope of ben-

efiting from drug therapy. The Trugene HIV-1

test permits early identification of drug-resistant

viruses, and hence of identifying patients who

will not benefit from antiviral therapy (http://

www.research.bayer.com).

Another example from this series is the

Invader UGT1A1 Molecular Assay (Genzyme),

which is an in vitro diagnostic test that detects

two polymorphisms in the UGT1A1 gene: the

normal UGT1A1*1 allele and the mutation

UGT1A1*28 allele in genomic DNA. The

UGT1A1 enzyme is responsible for the metabo-

lism of irinotecan, a drug used to treat metastatic

colorectal cancer. The active metabolite of irino-

tecan is metabolized and deactivated by the

UGT1A1 enzyme. UGT1A1 activity is dimin-

ished in individuals with genetic UGT1A1*28

polymorphism. Colorectal patients with reduced

UGT1A1 activity are at significantly increased

risk of developing severe neutropenia when trea-

ted with irinotecan (http://www.genzymege-

netics.com). This test will help identify patients

with a greater risk of developing irinotecan tox-

icity. In addition to approving the device, it is

interesting to note that the FDA has recom-

mended UGT1A1 testing before prescribing iri-

notecan, but stopped short of requiring the test

for its prescription (http://www.fda.gov).

The PathVysion HER-2 DNA Probe Kit

(Abbott), another example of an FDA approved

devices, is designed to detect amplification of

the HER-2/neu gene via fluorescence in situ

hybridization (FISH) in formalin-fixed paraffin-

embedded human breast cancer tissue specimens

(http://www.pathvysion.com). The test results

are intended for use in combination with other

clinical and pathologic information used as prog-

nostic factors in stage II, node-positive breast

cancer patients. The test is also used to predict

disease-free and overall survival in patients trea-

ted with adjuvant chemotherapy. The PathVy-

sion HER-2 DNA test is one of the two tests

required by the FDA as an aid in the assessment

of patients who are candidates to receive Trastu-

zumab therapy (http://www.fda.gov).

7.1.5 Examples of FDA “Required”
or “Recommended” Genetic
Biomarkers

Here, we discuss a number of genetic biomarkers

that are required or recommended by FDA for

their testing in drug therapy. The FDA has gener-

ated a “Table of Valid Genomic Biomarkers in

the Context of Approved Drug Labels” on which

tests are indicated as “required,” “recommended,”

or “for information only” (http://www.fda.gov;

Moridani 2009). In addition, the FDA has issued

a document entitled “Guidance for Industry Phar-

macogenomic Data Submissions” to encourage

research and voluntary data submissions from

pharmaceutical industry (http://www.fda.gov/

cder/guidance/6400fnl.pdf). The following exam-

ples highlight the regulatory advancements in the

use of genomics information in guiding drug

selection or dose adjustment.

The “required” tests are indicated for identi-

fying potential responders (http://www.fda.gov;

Moridani 2009). The tests are required because

drugs are shown to have an enhanced efficacy in

the subpopulation of patients who tested posi-

tive for the biomarker. The FDA’s required

tests provide information about patients

infected with CCR5-tropic HIV-1, EGFR-posi-

tive colorectal cancer, Her2/neu-positive breast

cancer, and Philadelphia chromosome-positive

acute lymphoblastic leukemia (Ph+ ALL) with

resistance or intolerance to prior therapy. The

above four “required” tests are approved for the
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following drugs: Maraviroc (CCR5-tropic HIV-

1), Cetuximab (colorectal cancer), Trastuzumab

(breast cancer), and Dasatinib (Ph+ ALL),

respectively. Required tests are currently used

for drug selection and identification of respon-

ders; all in the area of cancers and infectious

disease.

The FDA has also indicated a number of tests

as “Recommended” Tests, which assist with dose

selection/adjustment to prevent a drug’s severe

toxicities/side effects and/or to enhance a drug’s

efficacy, but it stopped short of requiring them

prior to drug prescription. The recommended

biomarker tests include: protein C deficiency,

CYP2C9 and VKORC1 variants (for Warfarin),

G6PD deficiency (Rasburicase and Dapsone),

HLA-B*1502 (Carbamazepine), LDL receptor

deficiency or mutation testing (Atorvastatin),

HLA-B*5701 (Abacavir), TPMT (Azathioprine,

Thioguanine, and Mercaptopurine), UGT1A1

(Irinotecan), and urea cycle disorder deficiency

(for Valproic acid, Sodium Phenylacetate, Sodium

Benzoate, and Sodium Phenylbutyrate). LDL

receptor deficiency or mutation testing is the

only test in this category that is recommended

to enhance efficacy through dose adjustment for

Atorvastatin, whereas the rest of the listed

recommended tests serve to reduce the incidence

and severity of drug toxicity.

It is interesting to note that recommended

tests are commonly performed for dose selec-

tion/adjustment. Currently, they have no use in

identifying responders from nonresponders. The

tests are recommended because of the known

association between the biomarkers, drug doses,

and toxicity/efficacy, as observed in clinical

studies. The tests are not on the FDA required

test list because: (a) no prospective clinical stud-

ies have been undertaken to show that the utili-

zation of such tests actually changes any clinical

endpoint, (b) clinicians have other tests at their

disposal to guide them in dose selection/adjust-

ment (e.g. INR for warfarin therapy), and (c)

physicians can use the presentation of toxicities

or lack of clinical response to guide them for

subsequent dose adjustments.

FDA also enlisted a third category of genetic

biomarkers known as “for information only.”

Although the tests classified by FDA as “for

information only” are valid genomic markers

they require additional clinical evidence before

elevating them to the FDA’s recommended test

or required test categories (http://www.fda.gov).

There are many biomarkers and drugs are listed

under this category. Examples of biomarkers in

this category include: C-KIT expression, deletion

of chromosome 5q, EGFR expression, G6PD

deficiency, Ph+ chromosome responders, PML/

RAR alpha fusion gene (retinoic acid receptor

responders and nonresponders), and variants of

drug metabolizing enzymes CYP2C19, CYP2C9,

CYP2D6, DPD, UGT1A1, and NAT (http://www.

fda.gov). These biomarkers may find utilization in

identifying responders from nonresponders or in

dose selection/adjustment to enhance drug efficacy

and safety. As new clinical information becomes

available, some of these biomarkers may be reca-

tegorized as required tests or recommended tests.

7.1.6 Concluding Remarks

The Human Genome Project created significant

excitement about using genomics and expres-

sion-profiling information in drug design, dis-

covery, and development by identifying new

drug targets and better tools for safety and effi-

cacy studies in preclinical and clinical stages of

drug development. Genomic information can

also be useful in clinical practice and in planning

clinical trials by aiding in the identification of

responders and nonresponders, the prediction of

adverse drug reactions, dose optimization, risk

assessment in disease predisposition, and prog-

nosis. However, it should be noted that genomic

information must be used in connection with

patients’ medical history and not as a replace-

ment for medical judgment. As with other tests, it

too has limitations. Some of these limitations can

be overcome by using proteomics and metabo-

nomics, which will be discussed in the following

subsections.
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7.2 Proteomics in Drug
Development

In recent years, the growing interest in elucidat-

ing the “organization and dynamics of the meta-

bolic, signaling and regulatory networks through

which the life of the cell is transacted” (Anderson

et al. 2000) has spawned powerful proteomic

technologies that now make it possible “to gen-

erate quantitative protein expression data on a

scale and sensitivity comparable to that achieved

at the genetic level” (Anderson et al. 2000). With

the era of molecular medicine now upon us, these

proteomics technologies and approaches are

becoming increasingly important to the fields of

drug discovery and drug development as we

attempt to acquire a new level of knowledge

about how a potential drug target is wired into

the control circuitry of a complex cellular signal-

ing network.

As we discuss in this section, the exquisite

sensitivity and specificity of many of these new

technologies, such as reverse-phase protein

microarrays and laser capture microdissection

(LCM), provide rich and detailed proteomic pro-

files comprising hundreds of phospho-protein

end points, enabling tiny clinical specimens to

undergo a thorough molecular analysis. Coupled

with a new generation of tools to create, screen,

test and evaluate targeted chemical compounds

to modulate the activities of the cell’s protein

workforce, these technological advances are

now creating unique opportunities to study and

treat a wide range of human diseases with an

efficacy hitherto unimagined.

Progress in proteomics technology is now

being made at all levels of the disease detection

and treatment spectrum, from the development of

nanoparticles to detect incipient asymptomatic

disease via the capture of disease-relevant pro-

tein peptides, to the wide-angle proteomic

profiling of tiny clinical specimens to yield

extensive molecular information on the activa-

tion states of potential drug targets.

In this section, we present an overview of a

number of key proteomics technologies and con-

ceptual advances germane to the fields of drug

discovery and development. We begin with a

consideration of some key recent technical devel-

opments, which together have resulted in a para-

digm shift in our study of human disease at the

level of cellular proteins. In the ensuing discus-

sion, we outline some of the critical challenges in

drug development and pharmacoproteomics

today, and identify some novel ideas in the devel-

opment of molecular-targeted regimens that offer

promise in addressing some of those challenges.

7.2.1 Recent Advances in Serum
Proteomics and the Promise
of Early Disease Detection

The study of the human plasma proteome is now

assuming an ever greater importance in the

detection and treatment of disease, and is thought

to hold the key to a revolution in disease diagno-

sis and therapeutic monitoring (Anderson and

Anderson 2002). Indeed, since plasma continu-

ally perfuses the body’s tissues, it is thought

to contain most, if not all, human proteins (at

least in fragment form) (Araujo et al. 2008) and

represents the largest and deepest version of the

human proteome present in any clinical sample

(Anderson and Anderson 2002), thereby supply-

ing the richest and most detailed source of infor-

mation about the physiological state of the body.

For this reason, plasma (or its close cognate,

serum) has a pivotal role to play in early disease

detection, since abnormal physiological states

are expected to leave some specific fingerprint

in the composition of circulating proteins

(Anderson 2005) in the blood, so that the onset

of disease may be detected by the altered pres-

ence or abundance of the constituent molecular

species in serum (Tirumalai et al. 2003). The

early detection of diseases such as cancer,

which may be asymptomatic until an advanced

and often incurable stage, holds the promise of

improved clinical outcomes, with an associated

reduction in disease related mortality and mor-

bidity (Diamandis and van der Merwe 2005).

One of the great complexities of the serum

proteome, however, is its extraordinarily wide

dynamic concentration range, with more than
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ten orders of magnitude of concentration separ-

ating the high-abundance resident proteins such

as albumin from the rarest proteins now detected

clinically (Tirumalai et al. 2003). It is critical to

appreciate that the pathophysiological state of

the body’s tissues is predominantly reflected

in the low molecular weight (LMW) and low-

abundance (LA) region of the serum proteome

which contains the low-level tissue leakage and

active secretion of a mixture of small intact pro-

teins and proteolytic fragments of large proteins.

Consequently, these LMW/LA protein markers,

or “biomarkers,” have become the focus of the

experimental and clinical quests for diagnostic or

prognostic information.

Owing to these technical and analytical chal-

lenges, early attempts to characterize this LMW/

LA region of the serum proteome involved a

separation process (using affinity methods, for

example (Tirumalai et al. 2003)) whereby the

high abundance, high molecular mass proteins

such as albumin, thyroglobulin, and immunoglo-

bulins were removed from the serum sample in

order to isolate the LMW/LA region of interest

for subsequent analysis and study. This approach

was based on the assumption that the small pro-

tein fragments exist in a free, uncomplexed state.

However, it is now becoming apparent that large

and relatively abundant proteins such as albumin

can act as carrier proteins within the blood,

binding a range of physiologically important

molecules such as hormones, cytokines, and lipo-

proteins (Tirumalai et al. 2003) along with a

spectrum of enzymatically generated and proteo-

lytically clipped protein fragments (Petricoin

and Liotta 2004). Therefore, discarding the high

molecular mass portion of a serum sample almost

certainly means dispensing with much of the pro-

tein complement germane to the study of disease.

Now at the dawn of a new era in molecular

diagnostics, with the urgent need to discover

novel biomarkers that are useful for disease diag-

nosis, mathematical modeling and analysis (see

(Araujo et al. 2008) and references therein) have

spawned an intense interest in the concept of

creating nanoscale harvesting particles which

could act as even more efficient harvesters of

disease-related biomarkers than natural harvesters

such as albumin. Indeed, the design and develop-

ment of such “nanoharvesters” are currently well

underway. Luchini et al. (2008), for example,

have introduced an affinity bait molecule into

N-isopropylacrylamide to produce a “smart” nano-

scale hydrogel particle that performs three inde-

pendent functions in one step, in solution: (a)

molecular size sieving, (b) affinity capture of all

solution-phase target molecules, and (c) complete

protection of the sequestered proteins and peptides

from enzymatic degradation. This new technology

represents a unique and rapid method for blood-

derived biomarker isolation and analysis.

These technological developments presage a

future in which patients could potentially be

screened for various early-stage (and as yet

asymptomatic) diseases such as cancer with an

out-patient infusion of biocompatible nanoparti-

cles (Geho et al. 2007). The infused particles

with their intrinsic “barcode” (Geho et al. 2007)

could later be sorted from a blood sample, with

their molecular content subsequently extracted

and identified using mass spectrometry-based

tools. Should this screening procedure reveal a

biomarker signature associated with a high prob-

ability of a particular early-stage cancer, for

example, subsequent clinical procedures could

then be used to identify any atypical mass or

lesion in the organ of interest if it exists, and to

procure a biopsy sample for further analysis.

Thus, this nanotechnology-based early-detection

field is beginning to open up possibilities for

the early detection of curable disease, rather

than simply better detection of advanced disease

(Araujo et al. 2008). See references (Geho et al.

2007; Liotta and Petricoin 2008) for further

details on these exciting possibilities.

As elaborated in the sections to follow, we can

envision a future in which such a biopsy sample

could be subjected to further processing and anal-

ysis via the various sensitive and powerful proteo-
mics technologies available today, in order to gain

insight into the function of activated signaling

pathways in the procured cells, thereby develop-

ing a rational basis for devising an individualized

molecular-targeted therapeutic regimen.
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7.2.2 New Developments in the
Proteomic Profiling of Patient
Tissue Samples

In the context of cancer drug development in

particular, it is widely recognized that each

patient’s tumor is unique with its own set of

pathogenic molecular derangements (Araujo

et al. 2007a). While individualized therapeutic

strategies have been used in medicine for quite

some time (Wulfkuhle et al. 2006), an ever

increasing armamentarium of molecular-targeted

anticancer drugs is becoming available for clini-

cal use is generating a pressing need to develop

new techniques for accurately identifying those

patients who will derive the greatest benefit from

a given drug. It is important to note, in this con-

nection, that while tumors of the same type often

display genetic variation from patient to patient,

they often share similarities at the level of protein

signaling pathways.

Recent technical innovations such as LCM

and reverse phase protein microarrays (RPAs),

in particular, now make it possible to segregate

pure populations of tumor cells from stromal

tissue obtained from small patient biopsies, and

to survey the expression levels and activation

states of hundreds of signaling proteins within

these cell populations (Araujo et al. 2007a).

This is a vitally important advance in pursuing

the goal of individualizing cancer therapies in

view of the fact that signaling proteins are, them-

selves, the targets of many of the new anticancer

drugs currently available or under development.

The advantages of the RPA profiling technol-

ogy are many. RPAs do not require direct label-

ing of the sample analyte, which often destroys

the epitope that is being detected, and do not

utilize a two-site antibody sandwich, which

often limits the repertoire of analytes that can

be effectively measured. Therefore, there is no

experimental variability introduced due to ana-

lyte labeling yield, sandwich antibody affinity

mismatch, or epitope masking (Liotta et al.

2003). In addition, the RPA array format is capa-

ble of extremely sensitive detection, with detec-

tion levels approaching attogram amounts of a

given analyte (Paweletz et al. 2001). Third-gen-

eration amplification chemistries now available

can be used for highly sensitive detection (King

et al. 1997). For example, coupling the detection

antibody with highly sensitive tyramide-based

avidin/biotin signal amplification systems com-

bined with quantum dots can yield detection sen-

sitivities down to fewer than 1,000 molecules/

spot. Using commercially available automated

equipment, RPAs exhibit excellent within-run

and between-run analytical precision (3–10%

coefficient of variance) (Paweletz et al. 2001).

7.2.3 Challenges Ahead for
Individualized Molecular
Medicine

A small handful of outstanding successes points

to the potential for a major revolution in the

treatment of human disease in the area of molec-

ular-targeted therapeutics. The extraordinary suc-

cess of the small-molecule ABL kinase inhibitor

imatinib mesylate (Gleevec/Novartis) in the

treatment of chronic myelogenous leukemia

(CML), for example, has made this targeted ther-

apy the “poster child” for the concept that strict

dependency on certain key oncogenic mutations

could apply to a wide range of spontaneously

occurring human cancers (Evan 2006). More

recently, somatic mutations within the kinase

domain of the epidermal growth factor receptor

(EGFR) have emerged as important predictors

of responsiveness to the EGFR tyrosine kinase

inhibitor gefitinib (Iressa/AstraZeneca) for patients

with nonsmall-cell lung cancer (NSCLC) (Lynch

et al. 2004). Even the problem of tumor recurrence

in these responsive NSCLC and CML tumor types

reveals that the majority of relapses involve resis-

tance mutations in the target kinase, rather than an

altogether novel oncogenic expedient, which sug-

gests that room for evolutionary maneuver in sur-

viving tumor cells is highly constrained, even in the

face of genomic instability (Araujo et al. 2007a).

With protein kinases now representing a

major focus of today’s drug discovery efforts,
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a key question now looms for the field of cancer

drug development: How can the abundance of

proteomic data – now made available via the

technological advances described in Sect. 7.2.2 –

be used to reveal an effective therapeutic strategy

for a given patient’s tumor, with its own unique

molecular profile? It is tempting to believe that

these rich and information-dense representations

of protein signaling are able, by themselves, to

provide vital clues on the nature of the signaling

mechanisms underpinning the disease at hand –

pointing to hyperactive/underactive pathways,

ectopic expression of proteins, presence or

absence of an important feedback mechanism,

or some other key feature.

However, in view of the modest progress in

drug development and clinical implementation

over recent years, it is becoming increasingly

apparent that this level of knowledge may not

be enough to understand the function of a pro-

posed therapeutic target within the context of the

cellular network. Indeed, the static patterns

revealed in proteomic profiles, no matter how

rich and detailed, are not a proxy for the cellular

mechanisms regulated by the profiled molecules

(Araujo et al. 2007a). A number of insightful

articles have entered the literature in recent

years, highlighting the many advanced computa-

tional approaches becoming available to parse

high-dimensional “omic” data in order to discern

key features of the underlying signaling networks

and processes (Janes and Lauffenburger 2006), as

well as more mechanistic and predictive “simple–

complexity”-based modeling approaches that

focus on overarching control mechanisms

orchestrating cellular signal transduction (Araujo

and Liotta 2006; Araujo et al. 2007a, b). These

later approaches, in particular, have been foun-

dational in introducing the drug discovery and

development communities to the crucial concept

that a protein’s suitability as a therapeutic target

is determined largely by the nature of its contri-

bution to the signaling network’s control cir-

cuitry, rather than by its aberrant activity per se

(Araujo et al. 2007b).

Beyond the problem of identifying effective

techniques to selectively modulate aberrantly

activated signaling pathways with target-based

drugs, toxicity remains an additional challenge

(Geho et al. 2005). The narrow “therapeutic

index” of much of the existing pharmacopeia

means that only a very restricted dosing range

produces therapeutic benefit with tolerable tox-

icity, with doses outside of this range producing

either unacceptable toxicity or insufficient thera-

peutic benefit (Araujo et al. 2004). Recent theo-

retical studies of intracellular signaling have

focused on a new concept in the treatment of

disease – “network-targeted” combination ther-

apy – which holds the promise of circumventing

many of these shortcomings. In this new

approach, the emphasis is on distributing drug

delivery among a multiplicity of targets, rather

than concentrating the therapeutic intervention at

a single signaling molecule (Araujo et al. 2004;

Araujo et al. 2005; Araujo et al. 2007a)

(Fig. 7.2).

Combination therapies afford at least five key

benefits in comparison with monotherapies:

1. For a given drug dose at each molecular tar-

get, the attenuation of downstream signals is

significantly enhanced when a multiplicity of

targets is chosen rather than a single target,

particularly when the nodes are serially linked

(Araujo et al. 2005) (see Fig. 7.2).

2. The desired response may be produced with

lower doses of the necessary agent when

multiple nodes are targeted, rather than a single

node in isolation (Araujo et al. 2004; Araujo

et al. 2005). Not only could this property reduce

the harmful side effects of drugs in current use,

but it may impart clinical applicability to a huge

compendium of agents which, of themselves,

are too toxic at their therapeutically effective

doses. This new concept may therefore spawn

an enormous new repertoire of molecular-

targeted drugs for clinical evaluation.

3. The location of target nodes in relation to the

local architecture of the signaling network has

important implications for the effectiveness of

the therapy (Araujo et al. 2004; Araujo et al.

2007a, b). Nodes embedded in negative feed-

back loops may represent very poor targets in

some cases (Sauro and Kholodenko 2004), for
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example, since the automatic control charac-

teristics of this signaling motif have the ten-

dency to constrain the system response to

follow a defined set point and resist the effects

of any disturbances. Moreover, recent theoret-

ical studies (Araujo et al. 2004) provide cir-

cumstantial evidence that receptors, being at

the most upstream location in a signaling cas-

cade, may represent quite poor targets. This

is an important consideration in view of the

number of drugs developed to target receptors

(Iressa, Herceptin, etc.). On the other hand,

receptors may represent a less complex

therapeutic target in comparison with down-

stream nodes embedded in more complicated

network architectures involving interpathway

cross talk and feedback loops (Araujo et al.

2004).

4. One of the consequences of the markedly

nonlinear relationships between kinetic para-

meters and concentrations of signaling pro-

teins is the nonadditive attenuation of signals

for a multiplicity of target nodes, in compari-

son with targeting the same nodes individu-

ally (Araujo et al. 2005). Signal attenuation

may therefore be synergistic, producing an

Fig. 7.2 (adapted from Araujo et al. 2004): A model of
the effects of network-targeted combination therapy,
applied to a simple stereotypical signaling cascade.
Graphs depict the temporal evolution of a biochemical

signal as it progresses through a six-node network com-

prising proteins P1 through P6, in response to the bind-

ing of a stimulus, S, to a cell-surface receptor, R. (a):

the unperturbed network (no targeted inhibitors); (b)

node 1 inhibited with a dose of IC50; (c) nodes 1 and

2 each inhibited simultaneously with doses of IC50; (d)

nodes 1 through 3 each inhibited with doses of IC50;

(e) nodes 1 through 4 each inhibited with doses of IC50;

(f) nodes 1 through 6 each inhibited with doses of IC50.

As shown, as more nodes are added to the treatment

regimen, the output signal progressively diminishes.

Note that the biochemical signal under consideration

(represented on the vertical axis, [P6]) is the activation

level of the most downstream protein, P6 (see Araujo

et al. 2004 for modeling equations, parameters, and

further details on the mathematical model)
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extra inhibition that is not due to an extra dose of

drug. We may therefore view this bonus inhibi-

tion as entirely nontoxic (Geho et al. 2005).

5. As demonstrated recently by mathematical

modeling (Araujo et al. 2007a), one of the

most promising aspects of network-targeted

combination therapies is their potential to com-

bat the problem of tumor resistance. A combi-

nation of inhibitors that target a sensitive

signaling pathway at multiple nodes reduces

the necessity for each individual drug to exert a

significant influence on its own target. In this

way, a more robust and potent regimen results,

which reduces the opportunities for resistant

clones to emerge from within the tumor mass

(Araujo et al. 2007a).

7.2.4 Concluding Remarks

As we have briefly outlined in this subchapter,

the promise of pharmacoproteomics for the

integrated coupling of diagnosis with therapeutic

intervention represents a new paradigm, and sug-

gests new directions for the development and

application of molecular-targeted therapeutics

in the future. This expanding field is surging

with potential, with innovations in molecular

network analysis, risk stratification, early disease

detection, development of individualized tar-

geted therapies and posttherapy monitoring.

7.3 Metabonomics in Drug
Development

Systems biology is usually viewed as a way of

integrating data over many aspects and levels of

molecular biology, the main levels of which are

genomics, transcriptomics, proteomics, and

metabonomics (also called metabolomics), i.e.,

multivariate analyzes at the genome, gene tran-

scription, protein and metabolite levels, respec-

tively. Metabonomics, in the context of systems

biology, focuses on understanding the biochemi-

cal effects of a systematic change on a biological

system brought about by an intervention,

whether it is the result of a biological stimulus,

genetic manipulation, or drug intervention

(Nicholson and Lindon 2008). Such systematic

metabolic profiling and their temporal changes

caused by lifestyle, environment, genetic or

xenobiotic effects are usually achieved through

the analysis of biofluids and tissues by nuclear

magnetic resonance (NMR) spectroscopy and

mass spectrometry (MS), and the spectral

data interpreted using chemometric techniques

(Lindon et al. 2006).

Metabonomics is particularly important in

systems biology because it provides a “top-

down” approach that gives an integrated view of

the biochemistry as opposed to “bottom-up” stud-

ies where the effects of an individual gene, or

groups of genes, are investigated (Nicholson and

Lindon 2008). Relating genomic and transcrip-

tomic data to actual observed biological end-

points can be challenging because the linked

effects between specific genes, the possibility of

adaptive effects in the organism, and complex

highly nonlinear interactions between gene exp-

ression and environmental factors can affect risk.

In addition, at present, proteomics methods

can be somewhat labor-intensive and not high-

throughput, although major advances as detailed

in this chapter are being made. However, it is

advantageous to integrate all these technologies

despite their different levels of biological control

and their very different temporal effects. It is also

necessary to recognize that pharmacological or

toxicological effects at the metabonomic level

can induce adaptation effects at the proteomic or

transcriptomic levels. The environment and life-

style of the organism also has a large effect at all

stages of molecular biology, and this variation

has to be considered and integrated into any anal-

ysis. A major input comes from the symbiotic gut

microflora that have their own ecosystem of

diverse metabolic processes that interact with

the host and for which, in many cases, the gen-

omes are not known.

Here we describe the main analytical technol-

ogies that are involved in the analysis of meta-

bonomic samples and the role that metabonomics
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can play in the preclinical and clinical regimes in

drug development. We also summarize the

important emerging fields of pharmacometabo-

nomics and metabolic phenotyping since these

will be of importance for personalized healthcare

and the understanding of health risk factors.

7.3.1 Analytical Techniques

The analysis of biological samples for metabo-

nomic studies have been predominantly carried

out using proton (1H) NMR spectroscopy, but

increasingly, MS coupled to a separation system

such as gas chromatography (GC), high-perfor-

mance liquid-chromatography (HPLC), or ultra-

performance liquid-chromatography (UPLC), is

being used, albeit often in a more targeted

approach. It is also possible to hyphenate these

techniques for accurate metabolite identification;

the most general of these is HPLC-NMR-MS, in

which the eluting HPLC peak is split, with paral-

lel analysis by directly coupled NMR and MS

techniques.

NMR spectroscopy is a nondestructive tech-

nique that is highly effective for metabolic profiling

and for metabolite identification (Claridge 2008).

It is not as sensitive as MS but recent develop-

ments in cryoprobe technology have increased

the sensitivity by up to a factor of 5 by cooling

the detector coil and preamplifier to ~20 K,

through a reduction of thermal noise in the

electronics of the spectrometer. Two-dimensional

(2-D) NMR spectroscopy can also enhance infor-

mation recovery and aid in metabolite discovery

by increasing signal dispersion and revealing

the connectivities between signals. 2-D J-resol-

ved (JRES) experiments have proved very use-

ful by which peaks from macromolecules are

attenuated, and the projection of the 2-D spec-

trum on to the chemical-shift axis yields a fin-

gerprint of peaks from only the most highly

mobile small molecules, with the added benefit

that all of the spin-coupling peak multiplicities

are removed to give single peaks for each pro-

ton. Data acquisition is also possible on intact

tissue samples using high resolution magic-

angle-spinning (MAS) NMR spectroscopy. The

tissue is spun rapidly at an angle of 54.7� rela-

tive to the applied magnetic field, which reduces

many effects of line broadening. Thus an

integrated physiological interpretation of both

biofluid and tissue data can be made. In order

to analyze all the different types of biological

samples, specific NMR pulse sequences are

used. Observed peak intensities can be edited

on the basis of their molecular diffusion coeffi-

cients (to attenuate small molecule peaks) or on

NMR relaxation times (to attenuate large mole-

cule peaks).

Examples of some of these different types of

NMR spectroscopic analysis for human blood

plasma are shown in Fig. 7.3. This gives the

standard one-dimensional 1H NMR spectrum

with the water peak suppressed (Fig. 7.3a), a
1H NMR spectrum acquired using the CPMG

pulse sequence which causes attenuation of

peaks from macromolecules (Fig. 7.3b), and a

spectrum edited on the basis of molecular diffu-

sion coefficients (Fig. 7.3c), which removes

peaks from fast diffusing small molecule meta-

bolites, thus being complementary to the CPMG

result. Figure 7.3d shows a skyline projection of

a 2-D JRES spectrum.

MS is generally coupled to HPLC for meta-

bonomic studies on biofluids, and both positive

and negative ion mode MS are usually acquired.

Tandem MS/MS experiments can also be per-

formed in which fragments ions can be further

analyzed to provide more structural information.

UPLC which operates at around 12,000 psi with

a smaller 1.7 mm reversed-phase packing mate-

rial gives better chromatographic peak resolution

than HPLC, with a ~ tenfold increase in speed

and three- to fivefold increase in sensitivity. This

reduces the problem of ion suppression in the MS

from coeluting peaks.

MS and NMR spectroscopy are complemen-

tary analytical tools for metabonomic analysis

and combining both techniques provides the opti-

mal means to obtain full molecular characteriza-

tion. In order to analyze the complex data sets

that are produced via these methods, a number of

chemometric tools have been developed and

applied. Unsupervised methods such as principal

components analysis (PCA) simply look for
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Fig. 7.3 (a) Standard one-dimensional 1H NMR spectrum

of human blood plasma with the water peak suppressed,

(b) a spin-echo 1H NMR spectrum of the same sample

acquired using the Carr-Purcell-Meiboom-Gill (CPMG)

pulse sequence which causes attenuation of peaks from

macromolecules, (c) a 1H spectrum of the same sample

edited on the basis of molecular diffusion coefficients

which removes peaks from fast diffusing small molecule

metabolites, (d) the skyline projection of a two-dimensional

spectrum acquired using the J-resolved pulse sequence. In its

two-dimensional form, this spectrum shows NMR chemical

shifts and spin-coupling patterns in orthogonal directions.

When the two-dimensional spectrum is projected on to the

chemical shift axis, it results in a single line for each multi-

plet, from only the most mobile metabolites, (e) mean tra-

jectories of PC1 vs. PC2 scores for NMR spectra from urines

from hydrazine-treated rats and mice and (f) mean trajec-

tories of PC1 vs. PC3 scores for urines from hydrazine-

treated rats and mice illustrating the different magnitudes

and direction of metabolic effect in the rat and mouse. Key:

filled triangle, mice; open triangle, rats; full line, control

group; broken line, high dose (mice 250 mg/kg, rats

90 mg/kg); thick dotted line, low dose groups (mice

100 mg/kg, rats 30 mg/kg). Key points of inflection in the

trajectories are labeled a–e for the high dose rat and mouse.

Parts (e) and (f) reproduced with permission from Bollard

et al. (2005)
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clusters or patterns of similarity in the data to give

an understanding of the relationships between

samples and sample class. PCA expresses the vari-

ation in a data set using a smaller number of factors

or principal components. Using “supervised”

methods such as partial least squares (PLS), multi-

parametric data sets can be modeled so that a class

or other response variable of separate samples (a

“validation set”) can be predicted based on a series

of mathematical models derived from the original

data or “training set” (Lindon et al. 2001). PLS

relates a datamatrix of spectral intensity values to a

matrix containing measurements of a response for

those samples. PLS can show how the time axis

can influence a data set, which is useful when

analyzing the progression of a disease. It can also

be combined with discriminant analysis (DA) to

establish the optimal position to place a discrimi-

nant surface which separates classes.

New statistical spectroscopic methods for

improving structural identification of metabolites

have been established. Statistical total correla-

tion spectroscopy (STOCSY) takes advantage

of the colinearity of the intensity variables

for the multiple peaks of a metabolite whose

concentration varies across a set of NMR spectra,

so that correlations from NMR peaks belonging

to the same molecule can be identified (Cloarec

et al. 2005). The method calculates statistical

correlation matrices for individual spectral data

points corresponding to data points of interest,

and plots the correlation coefficients as a pseudo-

NMR spectrum, allowing all peaks from the

same molecule to be identified. An extension of

STOCSY, statistical heterospectroscopy (SHY)

allows for the coanalysis of data sets obtained

by both NMR spectroscopy and MS. Chemical-

shift data from NMR and m/z data from MS can

be cross-correlated. This has been demonstrated

using 600 MHz 1H NMR and UPLC-TOF-MS

data acquired from the analysis of rat urine in

control and hydrazine (a model liver toxin) trea-

ted animals (Wilson et al. 2005; Crockford et al.

2006). This approach has the potential to corre-

late data from any two spectroscopic or indeed

other multivariate analytical measurements such

as transcriptomics.

7.3.2 Preclinical Drug Development

The selection of candidate drugs for clinical

development remains one of the greatest chal-

lenges facing the pharmaceutical industry. One

key factor that has to be achieved is the absence

of drug adverse effects. Metabonomics has a

recognized role in toxicity assessment and can

be used for definition of the metabolic character-

istics of normal animals and the classification of

the target organ or region of toxicity, the bio-

chemical mechanism of that toxin, the identifica-

tion of combination biomarkers of toxic effect

and evaluation of the time-course of the effect,

e.g. the onset, evolution, and regression of toxic-

ity. There have been many studies using 1H NMR

spectroscopy of biofluids to characterize drug

toxicity going back to the 1980s, and the role of

metabonomics and magnetic resonance in toxi-

cological evaluation of drugs has been compre-

hensively reviewed (Lindon et al. 2004).

The usefulness of metabonomics for the eval-

uation of xenobiotic toxicity effects was compre-

hensively explored by the COMET group

(Consortium on Metabonomics in Toxicology),

formed between five pharmaceutical companies

and Imperial College, London (Lindon et al.

2003) to develop methodologies for the acquisi-

tion and evaluation of metabonomic data gener-

ated using 1H NMR spectroscopy of urine and

blood serum from rats and mice for preclinical

toxicological screening of candidate drugs. Pre-

dictive models of toxicity were constructed using

NMR-based metabonomic data (around 35,000

NMR spectra), taking into account the whole

time course of toxicity. Databases of spectral

and conventional results were generated for a

wide range of model toxins and treatments (147

in total) and these served as the basis for success-

ful computer-based expert systems for toxicity

prediction (Lindon et al. 2005).

Some toxins were studied in both the mouse

and the rat in order to evaluate species differences

and examples of this are shown in Fig. 7.3e and f.

PCAs based on urine 1H NMR spectra from both

mice and rats administered the liver toxin hydra-

zine are shown. Despite the much higher relative
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dose used in the mice the mean metabolic trajec-

tories for the mice are much less extensive than

those for the rat (Bollard et al. 2005).

A follow-up project, COMET-2, is on-going

with the aim of improved understanding of bio-

chemical mechanisms of toxicity relevant to

pharmaceutical development. Here, NMR spec-

troscopy, LC-MS, and in vitro and in vivo label-

ing studies are being carried out with the aim of

determining the mechanisms of action of model

toxic xenobiotics. One system that has been stud-

ied by COMET-2 is galactosamine hepatotoxic-

ity since this shows high variation between

animals and the mechanism of its effect is

unknown (Coen et al. 2007).

Most studies have limited themselves to meta-

bonomics but a few have attempted to integrate

data from different -omics into a systems biology

view. These include investigations of the liver

toxicity of acetaminophen and Methapyrilene

using both transcriptomics and metabonomics

(Coen et al. 2004; Coen et al. 2007; Craig et al.

2006). So far, this is not usually done at the level of

coanalyzing data from different -omics, but more

usually at the level of defining altered metabolic

pathways from the two studies, and then identify-

ing commonality and unifying observations.

7.3.3 Clinical Studies

There are many studies using NMR-based meta-

bonomics for probing the altered metabolic status

in a wide variety of human diseases and most

have been summarized and reviewed recently

(Lindon et al. 2007). Many used only low num-

bers of subjects and while statistically valid con-

nections have been made between NMR spectral

profiles and disease, the discovery of real bio-

markers of disease remains elusive and the

biological relevance of metabolic differences is

often not fully explained.

One area of application of NMR-based meta-

bonomics that has already been used effectively

in the clinic is the diagnosis of inborn errors of

metabolism. Diabetes, Alzheimer’s disease, oste-

oarthritis, and male infertility have also all been

studied through NMR spectroscopic analysis of

plasma, cerebrospinal fluid, synovial fluid and

seminal fluid, respectively. The analysis of

urine has also been particularly insightful for

the investigation of drug overdose, renal trans-

plantation, and other various renal diseases.

Some metabonomics studies have been carried

out on tissue samples to examine prostate cancer,

renal cell carcinoma, breast cancer, Duchenne

muscular dystrophy, cardiac arrhythmia, and car-

diac hypertrophy. Cancer metabonomic studies

have however now progressed to serum analysis

and subsequent diagnosis of epithelial ovarian

cancer (Odunsi et al. 2005). Tissues themselves

can be studied using HR-MAS NMR spectros-

copy and published examples include prostate

cancer, renal cell carcinoma, breast cancer and

various brain tumors. One study that has

attempted to fully coanalyze and integrate

plasma data from metabonomics and proteomics

has been the study of human prostate tumor

xenografts in mice (Rantalainen et al. 2006).

Cardiovascular disease has been investigated

for many years using 1H NMR spectroscopy of

plasma or serum and there are many published

examples concentrating on lipoprotein composi-

tion (Ala-Korpela 2008). The diagnosis of coronary

artery disease based upon the metabolic profile in

blood plasma has been attempted (Kirschenlohr

et al. 2006) and conflicting results obtained. How-

ever, this type of study is fraught with the problem

thatmost subjects are already on some form of drug

therapy such as statin administration and this can

confuse diagnostic findings unless taken into

account as reported (Brindle et al. 2002).

7.3.4 Pharmacometabonomics and
Personalized Healthcare

As personalized healthcare becomes more

achievable, drug treatments will have to be tai-

lored to an individual to achieve maximal effi-

cacy and avoid adverse reactions. The subject of

pharmacogenomics was established to base such

decisions on a person’s genome, investigating

the genetic make-up of different individuals

(their genetic polymorphisms) and their varying
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abilities to handle pharmaceuticals both for their

beneficial effects and for identifying adverse

effects. However, this cannot provide informa-

tion on lifestyle or symbiotic gut microfloral

effects and an alternative approach to probe

intersubject variability in response to drug treat-

ment is to use metabolic profiling as demon-

strated by the prediction of the metabolism and

toxicity of a dosed substance, based solely on the

analysis and modeling of a predose metabolic

profile (Clayton et al. 2006). This approach,

which has been termed “pharmacometabo-

nomics,” is sensitive to both the genetic and

modifying environmental influences, including

gut microfloral effects that determine the basal

metabolic fingerprint of an individual, since

these will also influence the outcome of a drug

intervention. In this first exemplification, acet-

aminophen was administered to rats and a link

was observed between the predose urinary metab-

olite profile and the variable extent of both the

liver damage sustained after dosing and the pat-

tern of xenobiotic metabolism. This concept has

now been demonstrated in humans for the first

time, and a key biomarker of acetaminophen

metabolism was shown to be a human/gut micro-

bial co-metabolite (Clayton et al. 2009). The

potential of this approach for personalized health-

care is clear and ultimately adverse drug reactions

could be avoided and drugs and dose levels tar-

geted more effectively according to the metabolic

characteristics of the individual. The possibility of

stratifying patients as suitable or not for drug

clinical trials also becomes evident.

7.3.5 Population-Wide Studies for
Disease Risk Assessment

The incorporation of metabolic profiling compo-

nents into large-scale human population studies

such as biobanks or epidemiological cohorts is

increasing, including retrospective analysis of

samples. These large studies present practical

and logistical challenges, but they are feasible,

and metabonomics is well suited to characteriz-

ing the metabolic phenotypes of populations,

being particularly relevant for high risk popula-

tions with a prevalence of pathological or pre-

pathological conditions. These studies can allow

insight into the prevalence of disease, and coa-

nalysis of the metabolic profile with a range of

factors such as diet, medication, and other life-

style factors to elucidate risk levels is possible

(Holmes et al. 2008). Using large-scale meta-

bolic phenotyping from 17 populations in

China, Japan, USA, and UK, geographic meta-

bolic differences were shown to be greater than

gender differences, and it was seen that even

those populations that are genetically similar

can be very dissimilar metabolically and also

have different disease propensities. For example

the Japanese and Chinese are genetically similar,

but have different metabolic phenotypes, and

their disease types are also different. Through

pairwise comparisons across countries, a large

variation in the metabolic phenotype was

observed between Japanese subjects that live in

Japan, and Japanese resident in the USA. In this

study, novel urinary biomarkers related to blood

pressure were also identified that indicated a link

between diet and gut microbial activity. This

study therefore showed how environmental fac-

tors such as lifestyle and diet can have a large

affect on the incidence of disease, irrespective of

genetics. This also has implications regarding the

targeting of therapies to appropriate populations.

7.3.6 Concluding Remarks

In summary, it is apparent that metabonomics

will have significant future influence on the drug

development and discovery process. Metabonomic

analysis has a high level of biological reproduc-

ibility, high throughput, and low cost per sample

and analyte. In addition biofluid analysis is mini-

mally invasive, and biomarkers are closely

identifiable with real biological endpoints. A fur-

ther advantage of metabonomics is that interspe-

cies comparison of metabolic biomarkers is

potentially easier than for transcriptomics or pro-

teomics. Against this, some problems have been

highlighted with the multiple analytical technolo-

gies (sensitivity and dynamic range) and the com-

plexity of the data sets. Continuing developments
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of these techniques will overcome these issues.

Currently standards for data and operations are

being set up, but there is still the need for regu-

latory agencies to be trained in the data interpre-

tation and for more well trained practitioners.

The ultimate goal of systems biology must be

the integration of data acquired from living

organisms at the genomic, protein, and metabo-

lite levels. Transcriptomics, proteomics and,

metabonomics will all play an important role in

this. Through understanding the total biology of

an organism via the combination of these -omics

technologies and taking into account the envi-

ronmental, genetic, and temporal effects on

them, an improved understanding of the causes

and progression of human diseases will be

achieved. With the twenty-first century goal of

personalized healthcare, the improved design

and development of new and better targeted

pharmaceuticals should also be attainable.

7.4 Considerations for the
Application of the -Omics
in Drug Development

In this section, we discuss how the technologies

presented can be incorporated into nonclinical

and clinical investigations. From a practical

point of view, we also discuss what we should

consider when planning clinical trial protocols,

informed consent, and handling and storing of

samples and data. The techniques used to analyze

the data are also briefly outlined.

7.4.1 Informed Consent

Like any other study, clinical trial should be

explained in a study protocol for which an

approval should be sought from the Institutional

Review Board (IRB). It is important to realize

that informed consent is a process of obtaining

permission for voluntary participation in a clini-

cal trial rather than simply explaining the study

protocol to volunteers for legal reasons. The

key component for informed consent is the infor-

mation that should be presented in a manner that

the potential volunteers can easily understand.

For practical reasons, the number of elements

should be clearly indicated in the protocol and

verbally explained to the potential subjects. For

instance, whether the participation in the study is

optional or mandatory, or whether the samples

collected will be used for definitive or tentative

analysis of certain biomarkers. The difference

between optional or mandatory participation

and tentative or definitive analysis should be

clearly explained to the potential participants.

For instance, optional participation does not

exclude the volunteer to enroll in a clinical trial,

which may or may not benefit the subject. On the

other hand, if the subject declines providing a

sample for subsequent mandatory analysis, he or

she is automatically disqualified from enrolling

in that clinical trial. In definitive analysis, all the

samples will be analyzed for specified biomar-

kers, whereas in tentative analysis samples are

stored and analyzed when needed. Regardless of

the study type, participants are permitted to with-

draw from the clinical trial at any given time. For

example, if a subject enrolls as a volunteer in a

mandatory definitive clinical trial to provide a

sample for genomic analysis, the subject is per-

mitted to withdraw from the study. However, all

the samples collected prior to the time of with-

draw can be still used in subsequent analysis

without the subject’s consent.

The code of Federal Regulations 21 CFR 50

discusses the protection of human subjects in

research (21 CFR Part 50 and Protection of

Human Subjects FDA http://www1.va.gov/oro/

apps/compendium/Files/21CFR50.htm. Accessed

December 21, 2009). The specific requirements

for consent form 21 CFR section 50.25 contain

eight basic elements with six additional elements

when appropriate and are given as follows (http://

www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/

CFRSearch.cfm?FR¼50.25):

(A) Basic elements of informed consent: when

seeking informed consent, the following

information shall be provided to each subject:

1. A statement that the study involves

research, an explanation of the purposes

of the research and the expected duration
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of the subject’s participation, a descrip-

tion of the procedures to be followed, and

identification of any procedures which

are experimental.

2. A description of any reasonably foresee-

able risks or discomforts to the subject.

3. A description of any benefits to the sub-

ject or to others which may reasonably be

expected from the research.

4. A disclosure of appropriate alternative

procedures or courses of treatment, if

any, that might be advantageous to the

subject.

5. A statement describing the extent, if any,

to which confidentiality of records iden-

tifying the subject will be maintained and

that notes the possibility that the Food

and Drug Administration may inspect

the records.

6. For research involving more than mini-

mal risk, an explanation as to whether

any compensation and medical treat-

ments are available if injury occurs and,

if so, what they consist of, or where fur-

ther information may be obtained.

7. An explanation of whom to contact for

answers to pertinent questions about the

research and research subjects’ rights,

and whom to contact in the event of a

research-related injury to the subject.

8. A statement that participation is voluntary,

that refusal to participate will involve no

penalty or loss of benefits to which the

subject is otherwise entitled, and that the

subject may discontinue participation at

any timewithout penalty or loss of benefits

to which the subject is otherwise entitled.

(B) Additional elements of informed consent:

when appropriate, one or more of the follow-

ing elements of information shall also be

provided to each subject:

1. A statement that the particular treatment

or procedure may involve risks to the

subject (or to the embryo or fetus, if the

subject is or may become pregnant)

which are currently unforeseeable.

2. Anticipated circumstances under which

the subject’s participation may be termi-

nated by the investigator without regard

to the subject’s consent.

3. Any additional costs to the subject that

may result from participation in the

research.

4. The consequences of a subject’s decision

to withdraw from the research and proce-

dures for orderly termination of participa-

tion by the subject.

5. A statement that significant new findings

developed during the course of the

research which may relate to the subject’s

willingness to continue participation will

be provided to the subject.

6. The approximate number of subjects

involved in the study.

(C) The informed consent requirements in these

regulations are not intended to preempt any

applicable Federal, State, or local laws

which require additional information to be

disclosed for informed consent to be legally

effective.

(D) Nothing in these regulations is intended to

limit the authority of a physician to provide

emergency medical care to the extent the

physician is permitted to do so under appli-

cable Federal, State, or local law (http://

www.accessdata.fda.gov/scripts/cdrh/cfdocs/

cfcfr/CFRSearch.cfm?FR¼50.25).

Additional considerations should be given if

a pharmacogenomic test is planned. This is

because there are always special concerns

about privacy of the participants when genetic

tests are used. It is generally acceptable to have

two separate consent forms, one for general

procedure and another for genetic testing com-

ponent. From an operational perspective, this

makes it even easier to present complex materi-

als to participants in separate forms. This strat-

egy is especially useful for optional clinical

trials where refusal of participation in genomic

research/biomarker discovery component will

not prevent the eligibility and enrolment of the

main clinical trial.
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7.4.2 Considerations for Handling and
Storing Samples and Data

The protocol should discuss standard methods

and procedures used in sample collection, sample

storage, sample identification, sample integrity,

and sample collection for future use, as well as

data storage and data handling. The duration of

sample storage is important and it should there-

fore be indicated in the protocol. This is espe-

cially important in sample collection for future

use. Generally, sample collection for future uses

is permitted by the IRB for a specific drug class,

disease and therapeutic area, and specified dura-

tion of the study. Another important consider-

ation is the protection of patient privacy which

can be achieved by de-identification process of

samples, in which a link between de-identified

samples and original information is maintained,

or by anonymization, in which the link is perma-

nently removed. From a practical point of view,

the process of de-identification and anonymiza-

tion can influence the degree of enrolment as

some individuals prefer the latter method

because researchers are not able to link the

results back to the patients’ identity. Although

anonymization permits pharmaceutical decision

making based on the results obtained from the

biomarker–phenotype correlation study, it has

consequence for regulatory decision making.

This is because regulatory agencies may wish to

examine the integrity of the data. One should also

note that the research is now conducted in a global

environment and therefore global regulations

should be taken into account before clinical trial

planning as regulations vary among countries.

The area of consideration should include standard

methods and procedures used in sample collec-

tion, sample storage, sample identification, sam-

ple integrity, sample collection for future use,

data storage, data handling, and the shipment of

the samples to other parts of the world for geno-

mic, proteomic, and metabonomic analyzes.

Specific considerations should be given to the

type of samples collected for subsequent bio-

marker analysis in drug discovery process. For

instance, blood samples are excellent sources for

DNA and RNA, which can be extracted from

leukocyte and whole blood. The latter source

and method of collection suffer from the pres-

ence of a significant amount of mRNA from

erythrocytes source. Generally, the blood sam-

ples can be collected in an EDTA vacutainer

blood sample collection tube, stored at 4�C, and
shipped overnight for DNA and RNA collection.

This method is more practical for a multicenter

clinical trial. For the best recovery and stability,

high yield can be achieved if DNA and mRNA

are extracted immediately and stored at �70�C.
Serum and plasma samples are widely used in

protein and metabonomic research projects. The

storage of serum and plasma samples at�20�C is

generally satisfactory. Citrate, EDTA, and hepa-

rin vacutainer blood collection tubes can be used

for plasma collection; however, each can cause

interference with the measurement of biomarkers

depending on the technologies used. The use of

serum samples for the discovery of small pep-

tides should be avoided as many of the small

peptides can bind to larger molecules as carriers,

which may be lost during coagulation process.

Tissue biopsied samples can be used as paraf-

fin embedded and fresh or frozen samples. Major

concerns related to this type of samples include

the stability and recovery rate of mRNA and

microRNA for genomic expression research and

the quality of proteins needed in proteomic

research. For instance, paraffin-embedded sam-

ples diminish the quality and yield of RNA

extraction. Sample contamination with other

cell types present in a biopsied specimen is

a major concern, which requires specific consid-

eration. Precision sample removal using laser

capture microdissection (LCM) can significantly

improve the quality of sample collection by

removing specific cell populations needed for

biomarker studies from the surrounding tissue.

Urine samples are used in metabonomic and

drug toxicological studies. Generally, urine sam-

ples are unstable and need to be stored at �20�C.
Stability and integrity of analyte should be taken

into account when urine samples are used.
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7.4.3 Application of the -Omics
in Drug Discovery

As an example of application in drug discovery,

biomarkers can be used for better planning of

clinical trials as shown in Fig. 7.4. Integration of

biomarkers in clinical trial planning can assist in

helping explaining outliers or variability in phar-

macokinetics data, subject enrolment for inclusion/

exclusion in clinical trials, and the identification

Biomarker 1

Biomarker 2

Inclusion Exclusion Criteria/ 
Co-development of Biomarker-Drug

Individuals

Genotype  1

Balanced Design

Individuals

Inclusion in the study

Genotype  2

Genotype  1

Genotype  2

Treatment

Control

Biomarker 1

Biomarker 2

Explanation of Toxicity, Efficacy, and Mode of Drug Actions

Individuals

No toxicity/
More efficaciousTreatment

Treatment

More toxicity/
Less efficacious

Classic Clinical Trial Design

Individuals

Treatment

No Treatment

Some respond 
Some develop toxicity

No efficacy

a

b

c

d

Fig. 7.4 The application of biomarkers in clinical trial
designs. (a) Classic clinical trial design, no biomarkers

are used in selection of patients to receive a specific

therapy. (b) Biomarkers can be used as inclusion/exclu-

sion criteria to receive a therapeutic intervention. (c)

Balanced design is a clinical trial design in which the

biomarkers are included in the treatment and control

arms of the study. Balanced design can potentially explain

how the biology of biomarkers influences therapeutic out-

comes. (d) Biomarkers can also be used in search of

explanation for toxicity and efficacy in a subpopulation

of patients who received the therapy
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of responders from nonresponders, and those who

may be at increased risk of developing toxicity.

Biomarkers can be also used to make an informed

strategic decision whether the clinical trial should

continue or be stopped. In the following, we dis-

cuss two examples to illustrate how biomarkers

can be incorporated into clinical investigations

and drug discovery process.

Imatinib Mesylate – Gleevec® (BCR-ABL
kinase inhibitor). Imatinib is used in the treat-

ment of a number of cancers such as CML, gas-

trointestinal stromal tumors (GISTs), and acute

lymphoblastic leukemia (ALL). Imatinib was

developed using principles of rational drug

design by Novartis in late 1990s and received

FDA approval in 2001. Investigators first

screened chemical libraries against defective

BCR-ABL protein, the tyrosine kinase product

of Philadelphia chromosome mutation, to iden-

tify a compound that can inhibit BCR-ABL pro-

tein, which remains in active form. The active

site of ABL-BCR tyrosine kinase has a binding

site for ATP on which imatinib can bind and

therefore inhibit its activity (Druker and Lydon

2000). The results from clinical trials (Druker

et al. 2001b) not only provided evidence for the

BCR-ABL role in CML, but also demonstrated

the potential for the development of drugs based

on specific biomarker present in diseases. In

another clinical trial by the same group (Druker

et al. 2001a), BCR-ABL protein was used as

inclusion criteria for recruiting CML and ALL

patients (Fig. 7.5). BCR-ABL enzyme is present

in all cases of CML but only in 20% of cases of

ALL. The conclusion of the trial was that the

BCR-ABL tyrosine kinase inhibitor imatinib had

substantial activity in CML and Ph-positive ALL.

Trastuzumab – Herceptin® and Tamoxifen

(Breast Cancer Therapy). In addition to chemo-

therapy, trastuzumab (Herceptin®) and tamoxi-

fen are widely used in the treatment of breast

cancer patients by targeting Her2-axis and the

hormone-axis pathways (Toi et al. 2005).

Figure 7.6 illustrates a simplified decision tree

for choosing appropriate drug treatment based

on molecular markers of Her-2, estrogen

receptor, progesterone receptor, and CYP2D6

metabolizing enzyme (http://www.nccn.org/

professionals/physician_gls/PDF/breast.pdf). In

breast cancer therapy, trastuzumab, a monoclo-

nal antibody that binds Her2, is used in the treat-

ment of women with Her2-overexpressing breast

cancer. Although Her2 overexpression is useful

in making decision who will receive trastuzu-

mab, only about one-third of patients with Her-

2 overexpression respond to trastuzumab treat-

ment (Toi et al. 2005). Therefore, there is a need

to find additional predictive response markers in

order to identify patients who likely to benefit

from trastuzumab treatment (Beano et al. 2008).

The other drug tamoxifen is used in the treat-

ment of ER+ (estrogen receptor positive) breast

ALL patients

20% of patients

BCR-ABL positive

80% of patients

BCR-ABL negative
Not receive Imatinib

Receive Imatinib

Inclusion/Exclusion

N

N

NHN
CH3

HN

O

N

N
CH3

Imatinib

Fig. 7.5 Clinical trial planning for imatinib therapy in
acute lymphoblastic leukemia. The inclusion of BCR-

ABL positive acute lymphoblastic leukemia (ALL)

patients in clinical trial enriches the clinical trial with a

population of patients who are more likely to respond to

imatinib. For instance, a clinical trial of imatinib in ten

BCR-ABL positive ALL patients will lead to substantial

therapeutic response in all ten patients (100% response

rate). In contrast, if BCR-ABL marker is not used as an

inclusion criterion for patient enrolment, a minimum of

50 ALL patients are needed to observe substantial thera-

peutic response to imatinib in ten patients (20% response

rate). Hence, the inclusion of biomarkers as a criterion

in patient recruitment can significantly reduce the cost

of clinical trial and improve the attrition rate in drug

discovery
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Decision Tree in Breast Cancer Therapy

25% HER-2 postitive

Trastuzumab therapy

75% ER-Positive and/or

PR Positive

ER-Negative and/or
PR Negative

75% Her-2 Negative

BreastCancer
Patients

CYP2D6 slow metabolizer

CYP2D6 normal metabolizer Tamoxifen
+/- chemotherapy

Aromatase inhibitor
+/- chemotherapy

Consider chemotherapy

Does not need trastuzumab therapy/
Consider treatment with tamoxifen if ER/PR positive
Consider chemotherapy

1/3 repospond to trastuzumab

2/3 do not repospond to trastuzumab

Fig. 7.6 Decision tree for making therapeutic choices
depends on molecular markers in breast cancer patients.
75% of breast cancer patients have tumors which over-

express estrogen receptor (ER) and are good candidates to

receive hormonal therapy with tamoxifen. 25% of patients

have tumors that overexpress Her-2 and are good candi-

dates to receive trastuzumab. The tumors that overexpress

both biomarkers are good candidate to receive both

tamoxifen and trastuzumab

N

Tamoxifen
Low affinity for ER
Long plasma half life

O

H
N

N-desmethyltamoxifen
Lowaffinity for ER
Long plasma half life

O
NH2

N-desdimethyltamoxifen
Low affinity for ER

O

OH

Metabolite Y
Low affinity for ER

ON

4-hydroxytamoxifen
High affinity for ER
Short plasma half life

O

HO

H
N

Endoxifene
High affinity for ER
Short plasma half life

O

HO

CYP3A4/A5

CYP3A4/A5

CYP2D6CYP2D6 SSRIs

Fig. 7.7 The role of CYP2D6 genetic polymorphism and
drug–drug interaction in metabolic bioactivation of pro-
drug tamoxifen to active drug endoxifen. SSRIs, selective
serotonin reuptake inhibitors; ER, estrogen receptor. The

normal activity of CYP2D6 liver enzyme is needed for

bioconversion of tamoxifen to endoxifen. CYP2D6

genetic polymorphism can diminish or abolish the bio-

conversion of tamoxifen to active drug endoxifen. SSRIs

antidepressant drug–CYP2D6 interaction prevents bioac-

tivation of tamoxifen to endoxifen leading to the develop-

ment of tamoxifen resistance in breast cancer patients
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cancer in women (Blanchard et al. 2005). How-

ever, a fraction of patients who receive tamoxi-

fen does not respond to the therapy or develop

tamoxifen resistance. Recently, it was reported

that CYP2D6 genetic polymorphism was respon-

sible for underlying molecular mechanism in

tamoxifen resistance. This is because tamoxifen

is a prodrug and needs to be activated by CYP2D6

and CYP3A4 liver enzymes to its active form

endoxifen which has a higher affinity for estrogen

receptor (Fig. 7.7) (Desta et al. 2004; Wang et al.

2004). CYP2D6 slow metabolizers may benefit

more from aromatase inhibitors. Patients who are

menopausal may benefit from ovarian ablation.

For additional information on association between

CYP2D6 polymorphisms and outcomes among

women with breast cancer treated with tamoxifen,

please refer Schroth et al. (2009).

Another mechanism for development of

tamoxifen resistance includes drug–drug interac-

tion involving the CY2D6 enzyme. Many breast

cancer patients suffer from depression and hence

need to receive selective serotonin reuptake

inhibitor (SSRI) antidepressant prescription drugs

which can cause drug–drug interaction by inhibit-

ing CYP2D6 enzyme and limiting the bioconver-

sion of prodrug tamoxifen to its active drug

endoxifen (Jin et al. 2005; Beckmann et al. 2009).

As outlined above, the use of breast cancer

biomarkers is an excellent example to illustrate

the utility of the –omic information in nonclini-

cal and clinical setting to address important ques-

tions related to underlying mechanisms by which

patients are not responding to specific therapy or

developing drug resistance. Such biomarkers can

be used in the identification of patients who may

benefit from trastuzumab, tamoxifen, aromatase

inhibitor, or a combination.

7.4.4 Considerations for Statistical
Analysis in Microarrays

Microarrays offer great promises for drug

design, drug discovery, target identification,

hypothesis generation, comparative genomics,

diagnostics, prognostics, personalized medicine,

and in the understanding of molecular mechanism,

biochemical pathways, and gene networks (Fan

and Ren 2006). In the discovery stage, a vast

amount of data is generated when microarray

experiments are conducted which makes the

interpretation of microarray results very difficult.

To obtain meaningful information from micro-

array data, researchers need to utilize powerful

statistical analysis methods. In principle, micro-

array data analysis requires a different statistical

analysis from traditional statistical methods,

because it attempts simultaneous inferences on

thousands of genes where only a small fraction

of genes are statistically different. Furthermore,

consideration should be given to a number of

statistical problems which arise during microar-

ray data analysis as a result of multiple testing.

For each statistical test performed, there is some

probability to make erroneous inferences. Sev-

eral incorrect inferences can inadvertently hap-

pen in an analysis that includes multiple

statistical tests. Hence, researchers can easily

arrive at inaccurate conclusions. Pounds (2006)

discusses how to estimate and control multiple

testing error rates. Briefly, to minimize the chance

of arriving at incorrect conclusions, important

attention should be given to sample size, statistical

power, statistical methods, and the type of soft-

ware used when planningmicroarray experiments.

The statistical techniques that are widely used in

microarray data analysis include fold-change,

clustering, classification, genetic network analysis,

and simulation (Hanai et al. 2006). Subsequently,

the candidate biomarker should be validated in

separate experiments to minimize the chance of

making incorrect inferences. The softwares that

are mainly used in microarray data analysis

include R software (http://www.r-project.org/)

and Bioconductor (http://www.bioconductor.org).

The latter is the most comprehensive software

that is used in gene expression data analysis.

7.5 Summary

Genomics, proteomics, and metabonomics are

finding widespread application in drug discovery,

diagnostics, and clinical medicine. Technology is
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becoming a less important barrier in the applica-

tion of the -omics technology in drug develop-

ment. The major barriers in widespread uptake of

the -omics in the drug development process

include the lack of regulatory and research guide-

lines in a global research environment, lack of

physician and scientist training, interpretation of

results, and the complex nature of the data gener-

ated in the preclinical and clinical stages of drug

development.
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Optimal Design of
Pharmacokinetic–Pharmacodynamic
Studies

8

Lee-Kien Foo and Stephen B. Duffull

Abstract

This chapter provides an overview of the theory and application of

optimal design with the focus on PKPD studies. Different optimality

criteria for parameter estimation and model discrimination, together

with various methods to estimate sampling window are discussed. Some

practicality issues, design tips, ways to assess the design performance, and

available software are addressed with an example to demonstrate the

applicability of optimal design to PKPD studies.

8.1 Introduction

Setting up and running efficient and experimen-

tally successful studies is an essential part of the

drug development process. Inefficiencies and

experimental failure associated with poorly or

costly (nonparsimonious) designs are wasteful

of limited physical and human resources. An

efficient study is one that optimizes the balance

between what is to be learnt and the resource

constraints available to the researcher. Within

this definition, the absence of study constraints

and unlimited resources should yield maximally

informative studies. However, the absence of

limiting conditions is not realistic and hence

formal methods to optimize the efficiency of the

design of experiments have received significant

attention in the statistical literature.

Perhaps the first formal application of optimal

design technique was performed by Smith

(1918), in her work for optimizing polynomials.

Although there were significant advances in opti-

mizing the design of studies in the following

years it took until 1981 when the first application

of the theory of optimal design for nonlinear

models reached the pharmacokinetic literature

(D’Argenio 1981). In this work, D’Argenio intro-

duced the concepts and showed the design of

pharmacokinetic studies was not only amenable

to these techniques, but the gain in terms of

parsimony could be considerable.

Around the same time, more complex meth-

ods for analysis of pharmacokinetic data were

introduced (Sheiner and Beal 1983), which

allowed data from many individuals to be ana-

lyzed simultaneously. The NONMEM program

introduced by Sheiner and Beal was a pioneering

breakthrough for the application of nonlinear

mixed effects modeling. The benefits of nonlinear
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mixed effects modeling allowed researchers to

relax many logistical constraints which meant

population pharmacokinetic studies could be per-

formed in the target patient population, thereby

maximizing the clinical utility of the pharmaco-

kinetic information collected. Despite the bene-

fits evident from the population approach, however,

the design of these studies was considerably

more complex and prone to failure. It was almost

20 years later before the first work appeared that

provided a method for optimizing the design of

nonlinear mixed effects models (Mentré et al.

1997). This work included a population pharma-

cokinetic example. Since this time the pharma-

ceutical literature has exploded with new

methods and applications for optimal study

design.

The aim of this chapter is to provide a brief

overview of the theory and application of optimal

design for population pharmacokinetic and phar-

macokinetic–pharmacodynamic studies.

8.2 Theory of Optimal Design

In general, clinical trials provide two types of

information: (1) the hypothesis test, i.e., is the

drug effective? and (2) what are the character-
istics of the drug that confer effectiveness? These

questions have been posed under the framework

of “learning and confirming” where the hypothe-

sis testing in studies of type 1 constitute a con-

firming trial and studies of type 2 constitute a

learning trial (Sheiner 1997).

The distinction between study types lies not in

the quality of the study but in the type of infor-

mation provided. Study type 1 provides confir-

mation about the utility of a drug and Study type

2 supports the science underpinning the claimed

therapeutic utility. The confirming trial relies on

a study design robust enough to provide a maxi-

mal probability the study will successfully test

the hypothesis. In contrast, the learning trial relies

on an experimental design exquisitely sensitive

to the study conditions. A highly sensitive study

maximizes the signal from any given change in

the underlying system. It is the latter study type

that predominates in pharmacokinetics, i.e., one

where we wish to characterize pharmacokinetic

properties of the drug in question.

The sensitivity of a study can be formally

described as the rate of change in the response

of interest to a change in the parameter of inter-

est. We assess this as the derivative, which we

can compute easily using numerical methods,

where

df

dy
¼ f 0ðyÞ ¼ lim

h!0

f ðyþ hÞ � f ðy� hÞ
2h

:

y is a parameter of interest, f is our response

variable, and h a change in the value of y,
which is usually taken to be as small as practical.

Since most pharmacokinetic models have more

than one parameter, we would rewrite the nota-

tion as a partial derivative,

@f

@y1
¼ f 0ðy1Þ ¼ lim

h!0

f ðu; y1 þ hÞ � f ðu; y1 � hÞ
2h

;

u ¼ ðy2 . . . ypÞT;
(8.1)

where, T is the transpose of the vector. Maximiz-

ing the derivative of the model with respect to the

parameter values of interest will maximize our

investigation’s information content and, there-

fore, what we will learn.

8.2.1 Linear Regression

We introduce the derivation of optimal design

within the framework of linear models. Linear

regression models the linear relationship

between the observed response y and one or

more covariates where:

y ¼ Xuþ «; e�iidNð0; s2Þ: (8.2)

u is a vector of coefficients, X is a matrix of

covariates and « a vector of random errors

which we assume to be independently and iden-

tically distributed with mean 0 and variance s2.
The expectation and variance of y are given by

E½y� ¼ Xu and V½yjXu� ¼ s2.
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Various methods have been developed for

parameter estimation in linear regression. The

simplest and most commonly used is ordinary

least square (OLS). OLS methods minimize the

sum of the squared residuals (SS), which is given

by SS ¼ ðy� XuÞTðy� XuÞ. We can find the

values of u that minimize the sum of squares by

solving for u when the derivative of the sum

of squares given u equals zero. This gives

rise to u ¼ ðXTXÞ�1
XTy. For simplicity we

assume the variance s2 is homoscedastic. The

variance–covariance matrix of estimation is

therefore V ¼ ðXTXÞ�1
. The smaller the varian-

ce–covariance matrix, the more precise the esti-

mates of u. It can be seen that if the derivatives of
the model are computed with respect to the param-

eter vector u (as per (8.1)), the sensitivity matrix is

given by X and the product of the sensitivity

matrices (which is termed the Fisher information

matrix, MF) will yield XTX.

The associated standard error (SE) for the

vector of coefficients u is given by the square

root of the diagonal entries of the variance–cov-

ariance matrix. Since SE is a function of the

covariate X only, thus optimizing X will mini-

mize the SE. According to the Cramér–Rao

inequality (Cramér 1946; Rao 1945), the Fisher

information matrix is the lower bound of the

variance–covariance matrix VrMF
�1 (note here

that this inequality implies that the difference of

the inverse of the Fisher information matrix from

the variance–covariance matrix will be positive

definite). Therefore the standard error can be

approximated with the inverse of the Fisher

information matrix.

Using the simple linear regression model

y ¼ y1 þ y2x the expected value of Y is equal

to E½y� ¼ Xu

E

y1
y2

..

.

yn

2
6664

3
7775 ¼

1 x1
1 x2
..
. ..

.

1 xn

2
6664

3
7775 y1

y2

� �
:

Locating values of xi; i ¼ 1; . . . ; n that mini-

mize the variance–covariance matrix of estima-

tion, thus minimizing the SE, is equivalent to

maximizing the Fisher information matrix since

the Fisher information matrix is the inverse of

variance–covariance matrix. If two designs are

considered – one where Design 1 has six values

of xi evenly spaced over the range and one

(Design 2) where the values of xi are optimized

so that they minimize the variance–covariance

matrix V, then for Design 2 all the values of xi
are located at only two points on the line, with

three points at the lowest and three points at the

highest value of the range (Fig. 8.1). Note that it

is not necessary to know the values of y1 or y2 to
optimize the design for linear regression. In this

particular example optimizing the location of the

values of xi significantly improves the efficiency

of the design.

8.2.2 Nonlinear Regression

Now consider models nonlinear in the parameter

values. The same process is followed but the

sensitivity matrix is now also a function of the

unknown parameter values. As an example, con-

sider an instantaneous input single compartment

model of the form:

yj ¼ fj þ ej; ej �iidNð0;s2Þ: (8.3)

where, fj ¼ D
Vd

exp �CL
Vd

tj

� �
:

CL and Vd are clearance and volume of dis-

tribution. The predicted concentration f changes
over time t for a drug given dose D.

The first partial derivative of this model with

respect to CL is

@f

@CL
¼ �Dt

Vd2
exp �CL

Vd
t

� �

omitting the index j for simplicity. If D ¼ Vd ¼1

and CL ¼ ln(2), then the concentration f and the

absolute value of the sensitivity of the concentra-

tion to the changes in CL for different values of

t is shown in Fig. 8.2. The sensitivity matrix

can be extended to include all partial derivatives

for all parameters ðyi; i ¼ 1; . . . ; pÞ at time
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points of interest ðtj; j ¼ 1; . . . ; nÞ, which is then
termed the Jacobian matrix:

J ¼

@f ðt1Þ
@y1

� � � @f ðt1Þ
@yp

..

. . .
. ..

.

@f ðtnÞ
@y1

� � � @f ðtnÞ
@yp

2
6666664

3
7777775
:

For the instantaneous input single compart-

ment model p ¼ 2 and

J ¼

@f t1ð Þ
@Vd

@f t1ð Þ
@CL

..

. ..
.

@f tnð Þ
@Vd

@f tnð Þ
@CL

2
666664

3
777775;

Fig. 8.1 Design 1 – xi evenly spaced over the range. Design 2 – xi located at only two points at the lowest and highest
value of the range

Response

Sensitivity

Fig. 8.2 The function value and the sensitivity of the concentration to changes in CL for different t values
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¼

D
Vd

2
CL
Vd

t1 � 1
� �

� exp �CL
Vd

t1

� �
- Dt1

Vd
2 exp �CL

Vd
t1

� �
..
. ..

.

D
Vd

2
CL
Vd

tn � 1
� �

� exp � CL
Vd

tn

� �
- Dtn

Vd
2 exp �CL

Vd
tn

� �

2
6666666664

3
7777777775
:

In the case of linear regression, the Fisher infor-

mation matrix for the linear regression model was

introduced as MF ¼ XTX. Here the sensitivity

matrices for the linear case are replaced with the

Jacobian matrices and the Fisher information

matrix is written as MF ¼ JTJ. Note that J ¼ X

for linear models.

8.2.3 Accounting for Random Noise

In our derivation of the information matrix for

linear and nonlinear models, random error has

been ignored. In doing so, the model is forced to

have an implicit additive variance structure. All

designs, however, must consider how reliable

response measurements can be determined at

different sampling times since there is always

random noise in an experiment. If there were no

experimental noise then, on the basis of the sig-

nal to noise ratio, every design would be the

optimal design. If the random noise in an experi-

ment, referred as the residual unexplained varia-

bility (RUV), exceeds the variability in the

response, then the design will be poor since any

information contained in the response will be

overwhelmed in the random noise of the experi-

ment. Hence, the response should be weighted by

the random noise, or RUV.

The Fisher information matrix weighted by

the random noise is, therefore, MF ¼ JTS�1
J

for the nonlinear regression model and MF ¼
XTS�1

X for linear model where in both cases

S ¼ s2 � In and s2 is defined in either (8.2) or

(8.3) and In is the identity matrix of dimension

n, where n is the number of observations.

In pharmacokinetic studies, there are three

common forms of error models. Since the Jaco-

bian matrix is weighted by the residual error,

different error models will affect the informa-

tiveness of the design. The three error models

are shown in Table 8.1 and the sensitivity of the

response (f) to CL over the range of times for

each of the error models is shown in Fig. 8.3.

The importance of error model specification is

most obvious in the proportional error model. It

is seen in Fig. 8.3 that the design becomes expo-

nentially more informative as the concentrations

decline (exponentially). This error model implies

that as the concentration approaches zero, the

error approaches zero and hence the design

would be optimal. Clearly this is an unreasonable

assertion and it highlights the inappropriateness

of this particular error structure.

8.2.4 Nonlinear Mixed Effects
Regression

Finally, the notation for a nonlinear mixed

effects regression model is introduced. This

model consists of a two-stage hierarchy:

Stage 1 – model for the data

yij ¼ f ðxij; yiÞ þ eij; eij�iidNð0; s2Þ:

Stage 2 – model for heterogeneity

yi ¼ gðzi; yÞ þ �i; �i �iidNð0;oÞ:

The parameters of interest include both the fixed

effects and the variance of the random effects,

F ¼ ðy1; . . . ; yp;o1; . . . ;oq; s2Þ ¼ ðu;O;SÞ. In

contrast to fixed effects models, for nonlinear

mixed effects regression, neither the expectation

E½y� nor the variance V are available in closed

form. It is usual to therefore linearize the model

around the random effects using a first order

Taylor series approximation to give:

Table 8.1 Common error models and variance structures

Error model Notation Variance

Additive yj ¼ fj þ ej s2 ¼ s2add
Proportional yj ¼ fj� ð1þ ejÞ s2j ¼ s2prop � f 2j
Combined yj ¼ fj � ð1þ e1; jÞ

þ e2;j
s2j ¼ s2prop � f 2j
þ s2add
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E½y� � f ðxj; uÞ and V � JTVJþ S:

The Fisher information matrix for a nonlin-

ear mixed effects regression model is then

given by

MFðF;XÞ ¼ AðE;VÞ CðE;VÞ
C0ðE;VÞ BðE;VÞ
� �

AðE;VÞ ¼ 2JV�1Jþ tr
@V

@yn
V�1 @V

@ym
V�1

� �
;

m& n ¼ 1; . . . ; p

BðE;VÞ¼ tr
@V

@ln
V�1 @V

@lm
V�1

� �
;

m&n¼ 1; . . . ;q

CðE;VÞ ¼ tr
@V

@ln
V�1 @V

@ym

� �
;

m ¼ 1; . . . ; p; n ¼ 1; . . . ; q

F ¼ ðy1; . . . ; yp;o1; . . . ;oq; s2Þ and
l ¼ ðo1; . . . ;oq; s2Þ

where tr(�) is the trace function.

8.2.5 Defining a Population Design

A population design is the sum of the information

from each patient in the study. In the above

notation X was used to represent a population

design. Here, X is defined by

X ¼ x1 � � � xN
w1 � � � wN

� �
and x ¼ x1 � � � xn

v1 � � � vn

� �
:

The variables N, w, x, and n are used to denote
the number of elementary designs, the weighting

for each elementary design, the support points

within an elementary design and the weighting

for each of the support points, respectively. If

there were the same number of elementary

designs as there were patients in the study then

x would represent an individual design for a

single patient much as would be considered for

the nonlinear regression example above. It is

inefficient to consider a separate design for each

patient since logistical issues would forbid a

study protocol that listed out a different design

for every patient in a particular study! It is there-

fore usual to consider x to be an elementary

design for which a proportion of patients w are

assigned. A cohort of patients who are assigned

Additive error

Combined error

Response

Proportional error

Fig. 8.3 The graph shows how different error models affect the informativeness of the design
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to a single elementary design is termed as a group

of patients with the patients within any given

group being considered exchangeable. The sim-

plest population design would therefore have a

single elementary design, i.e., N ¼ 1, providing

a single group of patients. This type of design is

similar to the designs used prior to the advent of

nonlinear mixed effects modeling software. If

there is more than 1 elementary design it is

straightforward to deduce that each elementary

design may have fewer support points than there

are fixed effects parameters to estimate since

there will be borrowing strength between groups

of patients. In the following equation we show

the information matrix for a population design as

the sum of the information matrices from the N

groups of patients as

MFðF;JÞ ¼
XN
k¼1

nkMFk ðF; xkÞ:

For further discussion on sparse designs see

Duffull et al. (2005).

For the purposes of this chapter x will be

considered to be a sampling time, but this is not

a requirement of population optimal designs and

realistically any controllable independent vari-

able could be included as a potential design vari-

able, including dose, infusion duration and so

forth. It is important to note that optimizing

over multiple conditionally independent vari-

ables simultaneously on continuous space is not

a simple problem.

8.2.6 Optimality Criteria

An optimal design is one in which theMF matrix is

maximized in some manner. The process of opti-

mizing the Fisher information matrix is usually

simplified by computing a criterion that sum-

marizes the size (or volume) of the matrix. The

choice of the criterion will depend on what the

researcher wishes to learn. The most commonly

used summary measures are the alphabetic opti-

mality criteria (Atkinson and Donev 1992). Gen-

erally A, C, D, E, G, L, Q, and V criteria (some of

which will be discussed shortly) have been used to

optimize a design for parameter estimation where

the design is conditioned in a prior point estimate

of the parameter value. The multiple letter opti-

mality in particular, ED and EID (Walter and

Pronzato 1987), API (D’Argenio 1990), HClnD

(Foo and Duffull 2010) have been used where the

design is conditioned in a prior distribution of the

likely values of the parameters. Criteria for model

discrimination include Ds and T optimality.

The D-optimality criterion, which refers to the

determinant of a matrix, is the most commonly

used summary measure of the “bigness” of a

matrix in PKPD. The criterion is given by

CD ¼ det
MF1;1 MF1;2

MF2;1 MF2;2

� �

¼ MF1;1 �MF2;2 �MF1;2 �MF2;1 :

The determinant is defined as the volume

of the joint confidence ellipsoid when taken

on the variance–covariance matrix. Minimizing

the determinant of the variance–covariance

matrix is equal to maximizing the determinant

of the MF matrix since MF
�1

�� �� ¼ MFj�1
and

��
log MF

�1
�� �� ¼ �log MFj j which is a useful finding

since inverting a scalar (e.g. a determinant) is

considerably easier than inverting a large matrix,

where |�| denotes the determinant.

The value of CD has no intrinsic meaning but

values can be compared empirically and the larg-

est one relates to the better design. A CD may be

transformed into an efficiency rating when com-

paring to anotherCD by taking the ratio to the pth

root (where p ¼ total number of parameters).

Eff ¼ CDð1Þ
CDð2Þ
� �1

p

:

The efficiency (Eff) which is expressed as a

fraction provides some indication of the approxi-

mate number of patients required for Design 1 to

be equivalently informative to Design 2. For

example if Eff ¼ 0.5, then for a single group

design the number of patients in Design 1 needs

to be doubled to achieve the same efficiency as

Design 2.
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8.3 Application of Optimal Designs

In this section particular issues pertinent to the

application of optimal design to population phar-

macokinetic–pharmacodynamic studies will be

considered. In the following subsection, designs

robust to misspecification of the prior parameter

values and misspecification of the likely model

will be discussed. Later subsections deal with

designs for discrimination between competing

models, a framework for considering designs

for multiple response (MR) models, and finally

an introduction to sampling windows.

8.3.1 Robust Designs

Two main sources of uncertainty should be taken

into account prior to conducting the experiment:

(1) uncertainty in the model space and (2) uncer-

tainty in the parameter space. In both cases it is

natural to consider optimizing the prior infor-

mation that is available. For the special case of

linear models, only uncertainty in the likely

model space is necessary (since the Fisher infor-

mation matrix for linear regression does not

depends on the parameter values), whereas for

nonlinear models it is also important to establish

designs that are robust to the prior initial estimate

of the parameter values.

8.3.1.1 Designs Robust to the Parameter
Space

There are a variety of criteria available for sum-

marizing the Fisher information matrix over a

distribution of possible prior parameter values.

Three criteria will be briefly introduced: ED,

API, and HClnD. Each of these criteria involves

evaluating the determinant of the Fisher informa-

tion matrix over the prior distribution of the

parameter values.

As noted in the section on nonlinear mixed

effects regression, the parameters of interest for a

nonlinear mixed effects model include both the

fixed effects and random effects, F ¼ ðu;O;SÞ.
It is common to use Monte Carlo simulations to

generate the underlying parameter space for the

purpose of robust designs. However, this may be

computationally impractical for models of high

dimension. It is important that the distributional

form for each parameter should ensure that only

legal values are generated, for instance this could

mean a multivariate log-normal distribution for

fixed effects parameters, an inverse Wishart dis-

tribution for the variance–covariance matrix of

the between subject effects and an inverse

gamma distribution for the distribution of the

residual variance. Fortunately, the computational

burden can be eased since the value of the vari-

ance of the between-subject random effects para-

meters often has limited influence on the support

points for the design and, hence, the dimension-

ality can be reduced by considering uncertainty

(i.e. a prior) on the fixed effects parameters only.

The ED-optimality criterion (Walter and

Pronzato 1987; and for applications see Hooker

et al. 2003) optimizes the design by maximizing

the expectation of the determinant of the Fisher

information matrix over the prior of the para-

meters so that

CED ¼ arg max

X
E MFðu;XÞj j½ �ð Þ

¼ arg max

X

ð1
�1

� � �
ð1

�1
MFðu;XÞj j

�gðuÞ dy1 . . . yp and

E[�] is the expectation value and g(u) is the joint
prior distribution of the parameters.

The API-optimality criterion (D’Argenio

1990) optimizes the design by maximizing the

expectation of the logarithmic of the determinant

of the Fisher information matrix over the prior of

the parameters

CAPI ¼ arg max

X
E log jMFðu;XÞjð Þ½ �ð Þ

¼ arg max

X

ð1
�1

:::

ð1
�1

log jMFðu;XÞjð Þ � g

�ðuÞ dy1 . . . yp:

The API method is similar in spirit to ED

optimality. It is usual in both methods to use
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Monte Carlo simulations to solve for the multiple

integrals and these would usually be set up over a

definite integral space. Recent work suggests that

the API design has more consistent properties

compared to ED design and generally performs

slightly better in terms of providing designs with

lower standard errors (Foo et al. submitted).

However, this work has only incorporated mod-

els of low dimensionality where the integrals

could generally be solved in closed form.

A relatively new criterion is hypercube

D-optimality (HClnD), which uses the same tech-

nique as product D-optimality (Zhu and Wong

2000) and has been shown to be consistent and

as accurate as ED and API but generally 100-fold

faster (Foo and Duffull 2010; Foo et al. submit-

ted). HClnD-optimality criterion optimizes the

design over extrema regions of the parameter

domain

CHCInD ¼ arg max

X

Xm
i

log MFðufig;X
�� ��� �1

p

 !
;

where there are m combinations of parameter

values with each set representing a vertex on a

“hypercube.” Generally, the parameter set would

be taken at the 95% confidence intervals so that a

two parameter model, the hypercube, would be

formed from m ¼ 4 sets of parameters.

Parameter set i Parameter values

1 y1,L, y2,L
2 y1,H, y2,L
3 y1,L, y2,H
4 y1,H, y2,H

L and H represent low and high values for the

parameter, respectively.

Other similar applications of this criterion have

been published (Waterhouse et al. 2005; McGree

et al. 2007; Hennig et al. 2007; Roos et al. 2008).

8.3.1.2 Designs Robust to the Model
Space

Developing designs robust to the model space

may arise under many settings. In the first setting

there may be uncertainty on the form of the final

model, perhaps a nonlinearity in the disposition

phase is suspected, and a design is required to

perform well over a range plausible alternative

candidate models (see for example Waterhouse

et al. 2005; Roos et al. 2008). The second scenario

may arise where there ismore than one drug being

administered at the same time, perhaps a drug–-

drug interaction study, and hence the design

should perform well over both drugs. From a

design perspective these scenarios are equivalent.

Let us consider the example where there are

two possible models M1 and M2, M1 6¼ M2,

where

M1 ¼ yf1g1 expð�yf1g2 � tÞ;

M2 ¼ yf2g3

yf2g1

yf2g1 � yf2g2

ðexpð�yf2g2 � tÞ

� expð�yf2g1 � tÞÞ:

We use the index {i} to denote the model.

Here the product D-optimal design can be used

to derive design that is robust to the uncertainty

in the model space (Zhu and Wong 2000). Prod-

uct D-optimality is similar to HClnD in that it

combines the information across models by sum-

ming the log of the determinants

CPD ¼ arg max

XPD

Xm
i

log MFðufig;XPDÞ
�� ��� �ai=pi !

;

which provides a similar solution to Bayesian

model averaging (Hoeting et al. 1999). Product

D-optimality differs from HClnD in that the

value of a, the weighting for each model, can

be specified and the dimension of the model pi is

not necessarily the same for all models. The

efficiency of the product design for estimation

of the parameters under any given model, e.g.,

M1, can then be compared to the D-optimal

design for this model in order to assess the loss

of efficiency associated with optimizing over a

number of competing models as

EffM1 ¼ jMFðF1; X̂1PDÞj
jMFðF1; X̂1DÞj

 ! 1
p1

:
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In this notation, X̂1
PD

is the design optimized

under the product D-optimal criterion for M1 and

X̂1
D
is the design optimized under the D-optimal

criterion for M1 only.

8.3.2 Model Discrimination

Criteria for model discrimination differ from cri-

teria for parameter estimation. Indeed designs

that are optimal for discrimination are generally

suboptimal for parameter estimation and vice-

versa (Atkinson 2008; Waterhouse et al. 2009).

Hence optimizing a design solely for discrimina-

tion does not guarantee that the design will per-

form well for parameter estimation. Indeed the

work of McGree et al. (2008) addresses potential

compound criteria that could be used to incorpo-

rate design criteria that are naturally opposed

(such as D and T optimality).

The two most commonly used criteria for

model discrimination are T and DS-optimality.

T-optimal designs are so-called because they

maximize the design for model discrimination

using an F-test, where T denotes testing (Atkin-

son and Fedorov 1975a; Atkinson and Fedorov

1975b). The T-optimality criterion follows a

standard mini-max framework where for two

models M1 and M2, M1 6¼ M2, predictions of

the concentration are made from M1 and M2 is

fitted to this data thereby providing parameter

estimates for M2 by minimizing the sum of

squared differences. At the next stage, times are

selected that maximize the sum of squared dif-

ferences between M1 and M2 under the current

parameter estimates for M2. Given these new

time points model predictions are made from

M1 and M2 is fitted to these predictions. The

process is then repeated. This is shown as

Step1 : û
f2gðx̂Þ¼argmin

uf2g

X
ðM1�M2ðx̂;uf2gÞÞ2;

Step 2 : x̂¼ arg max
j

X
ðM1�M2ðx; ûf2gÞÞ2:

For the first iteration of step 1 an initial esti-

mate of the design (x0) is substituted for the

T-optimized design x̂. Note, T-optimality does

not require that the two models are nested.

DS-optimality is essentially D-optimality where

a subset of the parameters is considered to be

nuisance parameters. This procedure can be used

for model discrimination if M1 and M2 are nested

and share a common structure, i.e., M1 � M2.

Accurate estimation of the noncommon para-

meters present in M2 will enable M2 to be distin-

guished from M1. However as with T-optimality,

designs that are DS-optimal may be degenerate for

parameter estimation for both M1 and M2.

The criterion is provided by partitioning the

information matrix into submatrices that contain

the parameters of interest and nuisance para-

meters separately. Here we are only interested in

the information matrix for the parameters of M2

that are not shared by M1, shown here asMF2;2ðM2Þ

MFðM1M2Þ ¼ det
MF1;1ðM1M2Þ MF1;2ðM1M2Þ
MF2;1ðM1M2Þ MF2;2ðM2Þ

� �
;

CDS
¼ MF2;2ðM2Þ

��� ��� ¼ MFðM1M2Þ

��� ���
MF1;1ðM1M2Þ

��� ��� :

8.3.3 Multiple Response Models (MR)

There are at least three types of MR model fra-

meworks that may occur in PKPD. All of these

models are linked by common fixed effects. We

use A to denote the amount of drug input into the

system. (1) Nested unidirectional where

A ! B ! C;

for example PKPD and parent and metabolite

models. Here B and C could be the concentration

of parent and metabolite in the plasma. The

responses in these models are linked by common

fixed effects. (2) Nested bidirectional,

A ! B $ C:

For example, a pharmacokinetic model where

observations are taken from two compartments in
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equilibrium (e.g. plasma (B) and cerebrospinal

fluid (C)). And finally, (3) Nonnested,

A ! B & A ! C;

which might arise in the situation in which there

are two clearance mechanisms that run in parallel

and the end products of both are measured.

Under the unidirectional nested model frame-

work A ! B ! C multiple responses (B) and

(C) from administration of A can be estimated

from a single design. The conditional nature

allows observations in C to inform about the

relationships from A ! B and B ! C whereas

observations in B only inform on A ! B. For

PKPD we would have,

Dose !PK�model
Concentration !PD�model

Effect:

The information matrix for multiple response

models is provided by summing the information

about each parameter over each response (as per

Draper andHunter 1966 for a fixed effectsmodel).

MF ¼
Xm
i¼1

Xm
j¼1

sijJTi Jj;

where, J is the usual sensitivity matrix. Using

more specific notation for a PKPD model then

the PK data would provide the following infor-

mation.

MFPKjPK ¼ MF1;1ðPKjPKÞ 0

0 0

� �
:

The symbol “|” is used to denote that the

information matrix is conditioned on specific

data, for exampleMFPKjPK denotes the information

matrix for the pharmacokinetics parameters

conditioned on observing pharmacokinetic data.

The PD responses provide information about the

PK and PD models

MFPKPDjPD ¼ MF1;1ðPKjPDÞ MF1;2ðPKPDjPDÞ
MF2;1ðPKPDjPDÞ MF2;2ðPDjPDÞ

� �
:

The information matrix for the PKPD multi-

ple response is thus given

MFPKPDjPKPD ¼ MFPKjPK þMFPKPDjPD :

The story has been generalized from fixed

effects models and the computation of designs

for PKPD is based on the same principles as used

in NONMEM using the first-order method.

Details and applications are provided by:

McGree et al. (2009), Hooker and Vicini

(2005), Waterhouse et al. (2005) and Gueor-

guieva et al. (2006).

8.3.4 Sampling Windows

Sampling windows represent a time window of

opportunity where nearly optimal samples can be

taken (Fig. 8.4). It is impossible for any executed

clinical study to conform exactly to an optimal

design where in this case the design will be sub-

optimal and termed “unplanned suboptimality,”

and represents a design in which the researcher

did not plan for execution error. Sampling win-

dows provide a mechanism for “planned subop-

timality” where the researcher optimizes regions

in which some level of execution error will have

minimal effect on the performance of the design.

Currently, three techniques have been proposed to

estimate sampling windows: (1) analytical solu-

tion, (2) numerical estimation of windows and (3)

POSTHOC simulation of windows. Newer meth-

ods based on adaptive designs have also been

proposed (Duffull et al.).

8.3.4.1 Analytical Solution
An analytical solution has been proposed based

on the equivalence theorem for a fixed effects

model. The equivalence theorem, which has also

been proposed to apply to mixed effects models

(Bogacka et al. 2005), states that (amongst other

statements) the standardized variance of the pre-

diction dðt; x	; uÞ at t, defined as

dðt; x; uÞ ¼ Jðti; u)MF
�1ðx; uÞJTðti; u)

for ti ¼ t1; . . . ; tn;

will always be 
p and that dðt; x	; yÞ ¼ p at the

optimum values of t where p is the number of
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parameters (Atkinson and Donev 1992) and

Jðti; yÞ is the ith row in the Jacobian matrix. An

example of the surface of the standardized vari-

ance is given in Fig. 8.5. This method does not

currently link the loss D to a specific loss of

efficiency but this could be performed easily.

This method has analytical appeal as an exact

solution, but cannot be expressed explicitly for

nonlinear mixed effects models.

8.3.4.2 Numerical Estimation of Windows
Two basic approaches have been proposed for

this problem. The first method optimizes the

length of a fixed set of sampling windows

d

Δ = 0.8

p = 2

Δp = 1.6

Fig. 8.5 An example of the surface of the standardized variance and sampling windows

Response

Fig. 8.4 Graph shows three sampling windows for a nonlinear response model
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assuming the windows are symmetric (�dW)

around the optimal sampling times (Graham

and Aarons 2008). An estimate of d could then

be included in the design. The assumption of

symmetry and a uniform size of d makes the

method more difficult to use in a practical

sense. Later research relaxed the assumption of

symmetry. The second main method was based

on constructing a finite set of potential sampling

windows and then searching over the sampling

window space to see which sampling windows

appear to perform best (Ogungbenro and Aarons

2008) which is quite an appealing process as long

as the user specifies at least one good set of

sampling windows.

8.3.4.3 POSTHOC Simulation of Windows
An early description of this method (Duffull et al.

2001) is similar in spirit to a simplified profile

likelihood method for determining a 95% confi-

dence interval on a parameter (for estimation).

The method is termed POSTHOC since the opti-

mal design is estimated first and then the sam-

pling windows computed subsequently. The

method involves fixing all but one sampling

time and then varying this sampling time until

the efficiency of the design falls to some prede-

fined value (say 80% of the efficiency of the

optimal design). The method provides marginal

estimates of the sampling windows. The main

issue with this method is that the windows may

not be sufficiently conservative since they do not

account for correlation between samples. Despite

this, the method has been used with success

(Green and Duffull 2003). A Monte Carlo ver-

sion has also been used where the joint windows

are estimated by simulation (see for example

Roos et al. 2008). This method avoids the less

conservative pitfalls of the marginal estimates.

8.4 Practicalities

In this section we outline a framework for the

application of the theory of optimal design for

solving population pharmacokinetic or phar-

macokinetic–pharmacodynamic problems. This

includes a brief discussion of the design space,

some design tips and methods of assessment of

the final design.

8.4.1 Design Space

In this section, basic components of the design,

model, and parameter space are reviewed. In

many cases the designer will not be the person

who originally conceived the study and indeed

there are some benefits of separating these pro-

cesses. An initial interview process is essential to

ensure that the study will meet the needs of the

principle investigator while ensuring that it has a

high probability of success. Typically, the

designer must be familiar with the basic layout

of the research study including the maximum

number of patients that can be enrolled, the dos-

ing schedule, the study layout (double blind,

open label, cross-over), dates and times of clinic

visits and the maximum number of samples per

patient, as well as the likelihood of dropouts

based on the investigator’s prior experience. In

addition, the designer should be aware of poten-

tial constraints on the design space and impor-

tantly the flexibility of these constraints. All

constraints should be considered relative since

experimental failure due to excessively tight con-

straints is an ultimate failure of a trial and the

designer’s role often requires a formal assess-

ment of the constraints. In particular, a nonex-

haustive list of typical constraints might include:

samples are constrained to be the same for all

groups (i.e. one sampling schedule), dose levels

are fixed, samples from within a period of time

(e.g. 8 h postdose) are constrained to be the same,

some samples may be fixed (e.g. trough samples

[it is a common misconception that trough sam-

ples are useful for estimating AUC]), samples

may arise from complex procedures and cannot

be readily repeated within a specified period of

time, samples may be required within a defined

period of time postdose, samples from multiple

response models may be constrained to be at

the same time (e.g. plasma drug concentration

and plasma biomarker measurement) or may be

required to be at different times (e.g. plasma drug

concentration and blood pressure measurement).
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All of these constraints form the basis for setting

out the design space. Some, or many, of these

constraints may have been decided arbitrarily

by the principle investigator without critical

thought.

In addition to design constraints the designer

must also be critical of the model and parameter

space. Considering a diverse model space helps

your design to be robust to assumptions about the

model. It should be noted that development

teams often strive to find the best single model

for their data. There is no reason to assume that

this model will also be the best model for any

new study design, e.g., a best model from a Phase

1 study is not necessarily going to be best for

a Phase 2 study (see Roos et al. 2008 for an

example of this). Questions the designer may

ponder are: what models could conceivably have
described the prior data? and is there evidence of

nonlinearity? This latter question may require

designs optimal for both parameter estimation

and model discrimination. If there are uncertain-

ties in the model space then there will almost

certainly be uncertainty in the parameter space.

Considering a diverse parameter space helps

your design to be robust to assumptions about

the parameter values. Some questions that the

designer may ponder: could patients in the new

study have a lower or higher value of clearance

than expected? Is a drug interaction possible?
Would a greater than anticipated clearance

affect the assay performance?

8.4.2 Design Tips

Every design will have some individuality,

which means that a standard recipe to solve the

design problem is likely to provide suboptimal

designs or perhaps even designs that fail. Despite

this there are some practical considerations for

designing studies. The first and, arguably, most

important step is to ensure that the model(s)

being used as the basis for the study design

describe the potential data. When designing an

experiment there is no data to let you assess

whether your coded model is correct (and an

error of units can have disastrous effects). It is

therefore essential that the designer ensures that

the model they are using as the basis of their

design matches (or is able to match) the predic-

tions of a model from a previous analysis.

Constructing a design provides an ideal

opportunity for the designer to informally check

the identifiability of the parameters of the pro-

posed model. This process is not intended to

replace formal identifiability theory, and is rather

like a pleasant side effect of the design process.

Simply, the Fisher information matrix for a

model that is not identifiable will be rank defi-

cient (i.e. have a column and a row of zeros) and

therefore yield a determinant of zero. There are

two types of identifiability: structural (a priori)
identifiability and deterministic (a posterior)

identifiability. Both can be assessed in the frame-

work of design. Structural identifiability is used

to refer to a model that has 1 or more parameters

that cannot be locally identified irrespective of

the intensity of the study design, for example

attempting to estimate the fraction of drug

absorbed for an oral dose when only oral dosing

is being considered. Deterministic identifiability

is more subtle and describes a model that

is structurally identifiable but given the study

constraints gives exceedingly poor parameter

estimates and a determinant close to zero. Struc-

tural identifiability can be tested by assessing

the information matrix using an impossibly

intensive design with the thought that if this

design doesn’t work then something is wrong.

Deterministic identifiability can be tested by

assessing the information matrix for the most

intensive (but allowable) design within the

study constraints, for example a study where

blood samples are not allowable within the first

few hours will provide exceedingly poor esti-

mates of a the model parameters of a rapid

input phase.

Finally, here are some tips on developing

designs. You will notice that the need for an

optimization run, i.e., a formal numerical optimi-

zation process, is indeed rather uncommon.

1. Determine the maximum allowable design

and evaluate its performance for the models

under consideration. No optimization is

needed to assess this.
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2. Reduce the maximal design and assess the

loss of design performance. No optimization

needed to assess this.

3. Explore benefits of early versus late sampling

and samples taken on the first dose or a dose at

steady state. No optimization needed to assess

this.

4. Establish a set of designs that appear to work

well and optimize these to locate a currently

optimal design.

5. Determine the sensitivity of the design to any

assumptions that may have been made, i.e.,

the loss of efficiency given a change in a

variable of interest.

8.4.3 Assessment of the Performance
of the Design

A design that is optimal is not necessarily guar-

anteed to perform well in practice. It is possible

to choose an optimal design from a set of candi-

date designs where all the candidates are poor.

The performance question is therefore, how well
does the design fair when it is used in conjunc-

tion with the analysis software that will be used

in the actual study? This question can be

answered with the use of simulation-estimation

techniques. A common technique is to simulate a

large number of data sets under the design and

model(s), then fit the candidate models to these

data and assess the parameter estimates. For an

unbiased model, the standard deviation of the

distribution of the set of parameter estimates is

an empirical estimate of the asymptotic standard

error. These values should agree with those pre-

dicted from the Fisher information matrix.

8.5 Software

There are numerous software programs available

for optimizing the design of population pharma-

cokinetic and pharmacokinetic–pharmacody-

namic studies (Mentré et al. 2007). Important

differences are inherent in the platform they use

(some rely on the presence of R or MATLAB) or

on their range of built-in features. These include

robust design features, the ability to handle a

variety of design constraints and types of models.

Selected software details are presented below.

The earliest design software was based on

population Fisher-information matrix (PFIM),

which was developed in S (PFIM_S) and

MATLAB (PFIM_M) simultaneously in 1999

(Retout et al. 2001). PFIM, which has a graphical

user interface (GUI) called the PFIM interface,

has been further developed and now runs under R

as a set of scripts from the command line in R.

POPT (Population OPTimal design) was devel-

oped from the MATLAB version of PFIM. POPT

requires MATLAB to run and uses the MATLAB

script functionality to describe models. Win-

POPT (Windows Population OPTimal design)

is a Windows GUI version of POPT and runs as

a standalone program. It contains most of the

same features as POPT. PopDes (population

design) is a graphic user interface for a set of

script/function applications written in MATLAB

and requires MATLAB to run. PopED (popula-

tion optimal experimental design – note this soft-

ware also uses the ED-optimality criterion) is a

GUI for a set of script/function applications writ-

ten for MATLAB and requires either MATLAB

or O-Matrix to run. PkStaMp (pharmacokinetic

sampling times allocation – Matlab platform) is a

graphic user interface of a set of scripts/functions

written in MATLAB and runs as a standalone

program. All software except PkStaMp are freely

available for download.

Note, at the time of writing this chapter all

software can be identified easily using the Goo-

gle search engine, except POPT which can be

located using the term “WinPOPT.”

8.6 Examples

The application of optimal design is illustrated

through an example of designing a population

study for a drug following a one compartment

first order input PK model of the form:
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Cij ¼ Dikai

Vdi kai � kið Þ
� exp �ki � tij

	 
� exp �kai � tij
	 
� �þ eij;

ki ¼ CLi

Vdi
and eij �iid N 0;Sð Þ:

CL and Vd are clearance and volume of dis-

tribution, ka is the rate constant of absorption

(per time). The jth plasma concentration C for

individual i changes over time t for a drug given

dose Di. The fixed effects parameters of this

model are CL, Vd, and ka which have arbitrary

values 4, 20, and 1, respectively. The variance of

the random effects parameters of CL, Vd, and ka

are assumed to be the same, independent and

lognormal with value equals to 0.1. Combined

error model with variance of the proportional

error s2prop equals to 0.1 and variance of the

additive error s2prop equals to 0.05 is also assumed

(see Table 8.2 for parameter values).

The softwareWinPOPT is used to optimize the

population study of 100 patients. Four blood sam-

ples will be collected from each patient. A single

elementary design consisting of four time points

to collect the blood samples is decided. The dose

given to each patient is 100 mg with dose interval

24 h (the upper bound of sampling times). Three

sampling schedules, an empirical design, an opti-

mal design using the D-optimality criterion (as per

Sect. 8.3), and a robust design using HClnD (as

per Sect. 8.4.1) will be considered.

8.6.1 Evaluation of an Empirical
Design

The first design is an empirical sampling sched-

ule with sampling times fixed at 1, 4, 8, and 12 h

postdose. The empirical design is evaluated with

WinPOPT where the determinant of Fisher infor-

mation matrix is given as 6.42 � 1015. The nor-

malized determinant which is the value of the

determinant raise to the power of one over the

number of parameters in the model, for this design

is 181. The utility of a design can be determi-

ned by using the asymptotic estimates of the

estimation standard error of all eight parameters

provided in the WinPOPT output. The smaller

the estimation standard error means the design

will result in an estimate that is more reliable. In

practice, the estimation standard error is consid-

ered as acceptable if the value is less than some

predefined limit; for example, it is often desirable

for the standard error of the fixed effects para-

meters to be<20% and<50% for variance of the

random-effects parameters. The percentage stan-

dard error of the three fixed effects parameters

CL, Vd, and ka are 4, 6, and 10%, respectively

for the empirical design. The percentage standard

error of the variance of the three random effects

parameters are 19, 30, and 96%, respectively.

The percentage standard error of the variance of

the proportional error is 7%. Here we have fixed

the additive error component since its value is of

minimal importance and we know that omitting

the value will yield inappropriate optimal

designs (as per discussion in Sect. 8.2.3). We

also know that the best estimate of the additive

variance will arise from a predose blood sample

which, in this circumstance, will not be consid-

ered further. The percentage standard errors are

presented in Table 8.3.

8.6.2 D-Optimal Design

The design is then optimized with the inbuilt

exchange algorithm in WinPOPT, where the

optimal sampling times are found to be 0.301,

3.84, 3.84, and 12.8 h postdose. The D-optimal

design consists of three unique time points with

Table 8.3 Percentage standard error of parameter esti-

mates in empirical design and D-optimal design

Parameter CL Vd ka s2CL s2V s2ka s2prop
Empirical

design SE

(%)

4 6 10 19 30 96 7

D-optimal

design SE

(%)

4 5 7 21 26 54 7

Table 8.2 Parameter values for one-compartment first-

order input PK model

Parameter CL Vd ka s2CL s2V s2ka s2prop s2add
Value 4 20 1 0.1 0.1 0.1 0.1 0.05
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repetition of one of the time points. The repeti-

tion of a time point does not mean that we can

omit one sample (e.g. omitting 3.84 h) by taking

only three samples instead of four as the standard

error of estimates will be higher if we do so.

Rather the repeated time point provides two

important interpretations: (1) given there are

three fixed effects parameters and therefore

there should be only three unique time points

then a repetition of a time point indicates that

an optimal design has been found since no new

unique time points should become evident no

matter how many more samples are taken and

(2) that the time point at about 4 h is important

and while we would not recommend taking two

blood samples at exactly the same time we would

recommend taking two samples within the same

sampling window centered on this time. The

determinant of the Fisher information matrix for

the optimal design is 4.66 � 1016 and the nor-

malized determinant is 241. The increase in the

determinant value indicates that the optimal sam-

pling schedule is a better design. The efficiency

of the empirical design as compared to the opti-

mal design can be calculated by taking the ratio

of the normalized determinants (as per the calcu-

lation for efficiency in Sect. 8.3). The efficiency

value of 0.75 indicates that the number of

patients in the empirical design needs to be

about 33% more to achieve same efficiency as

the optimal design.

The percentage standard error of CL, Vd, and

ka in the optimal design are shown in Table 8.3.

On average, the standard error values are lower

for the optimal design than those from the empir-

ical design for both the fixed and variance of the

random effects parameters. Note that the vari-

ance of the random effects parameter of CL

which is marginally higher which is compensated

for by a highly significant decrease in the stan-

dard error of the variance of the random effects

parameter of ka.

8.6.3 Robust Design

Although the optimal design is efficient, it will be

suboptimal and perhaps even fail if the nominal

parameter values are very different from the true

(but unknown) values associated with the forth

coming study. A robust design method can be

used to account for the uncertainty in the para-

meter space. Here we use HClnD as per

Sect. 8.3.1. In this setting, the parameter assumes

values at the extrema of an interval around the

fixed effects values. We only consider the uncer-

tainty on the fixed effects parameter values for

CL, Vd, and ka. The robust design is conducted

for this population study by constructing vectors

of all combinations of parameter sets with CL

taking a value of either 2 or 8; Vd a value of

either 10 or 40, and ka as 0.5 or 2. Eight compo-

nent models were developed where each model

has a different vector of parameter values with

different combinations of the parameter values

are shown in Table 8.4. The HClnD-optimal

design is achieved via the multiple model single

response method in WinPOPT. The final sam-

pling times for the HClnD design are 0.301,

1.86, 5.29, and 15.9 h postdose. The normalized

determinant values for the eight models range

from 81 to 415. The percentage standard error

of each parameter is given in Table 8.5. For CL

the standard errors range from 4 to 9%, Vd from

4 to 28%, and ka from 7 to 24%. When compared

to the optimal design (above) the relative effi-

ciencies of the eight component models ranged

from 0.34 to 1.72.

There are four unique sampling times with no

repetitions in the robust design, while the model

only has three fixed-effects parameters. This

relaxation of the general rule that a unique sam-

pling time is required for each fixed effects

parameter occurs when parameters adopt signifi-

cantly different values. The divergent parameter

values result in a split of the regions where

Table 8.4 Combinations of the values of the three fixed-

effects parameters for eight component models used in the

HClnD-optimal design

Parameter set CL Vd ka

1 2 10 0.5

2 2 10 2

3 2 40 0.5

4 2 40 2

5 8 10 0.5

6 8 10 2

7 8 40 0.5

8 8 40 2
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sampling times are most informative. From the

standard error value in Table 8.5, we also see that

some parameter sets fairly well (e.g. parameter

set 1) and some fairly poor (e.g. parameter set 5);

in particular, this is the case for the standard error

of the variances of the random effects of V and

ka. The component model with parameter set 5

provides the most stress on the design as the half-

life of elimination is short and only limited drug

remains towards the end of the sampling interval.

In addition, the similarity of the rate constant for

absorption and rate constant for elimination

makes differentiation of these processes more

challenging. One hopes that this particular sce-

nario is an unlikely occurrence. Nevertheless, the

design could be enriched to accommodate this

particular set if it was felt likely to be plausible.

8.7 Summary

The design of PK and PKPD studies is often

overlooked in the imperative to conduct studies

that aim to show the safety and efficacy of new

medicinal compounds. In some circumstances

the design may be chosen from one that has

been conducted previously in the hope that it

will perform well in the new circumstances of

the current study. The result may be a design that

fails to identify key PK or PKPD features of the

medicinal compound or a design that places an

excessive load on diminishing resources. The use

of optimal design methods are becoming widely

accepted in industry and these methods offer a

formal process to evaluate and identify designs

that are both parsimonious as well as carry a high

probability of success.
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Pharmacokinetic Studies in Pregnant
Women 9
Jamie L. Renbarger and David M. Haas

Abstract

The only way to determine appropriate medication dosing during preg-

nancy is to evaluate the pharmacokinetics and pharmacodynamics of

individual medications in pregnant women. This type of clinical investi-

gation can present a variety of challenges and concerns. This chapter

summarizes what is known about physiologic changes in pregnancy and

the impact these changes can have on drug disposition, and provides a

model approach for completing pharmacokinetic studies in women during

pregnancy.

9.1 Introduction

Conventional drug development is generally

conducted in the adult population and does not

include women of reproductive age or pregnant

women. The appropriate therapeutic use of drugs

in pregnant women in order to ensure efficacy for

the woman, as well as safety for the fetus, is a

major concern for patients and health care pro-

fessionals. Medication use during pregnancy is

often necessary and sometimes critical to the

health of both the mother and the child. Pharma-

coepidemiological surveys indicate that about

one half of all obstetric office visits involve a

medication (Lee et al. 2006); 83% of women use

at least one medication at some point during

pregnancy (Headley et al. 2004) and nearly one

third of all pregnant women use two or more

drugs during pregnancy (Rubin et al. 1993).

Although it has been increasingly recognized

that a single standard dose is not appropriate for

everyone, information-guided drug treatment for

obstetric patients is still largely extrapolated

from drug development trials conducted in men

and nonpregnant women. Drug development

research for pregnant women has also been

largely excluded due to many concerns and

potential risks including teratogenic, psychologi-

cal, social, technical, ethical, and legal. As a

result primarily of the tragic situation with tha-

lidomide in the 1960s (McBride 1961), the focus

of the majority of obstetric pharmacology studies

in the past has been on drug safety – and specifi-

cally on avoiding harm to the fetus. However,

given the myriad of physical, hormonal, and

physiological changes occurring throughout

pregnancy, it would be expected that drug dispo-

sition may also change during pregnancy.
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In recent years, the gap in knowledge in

obstetric pharmacology has been recognized

and there has been an increased focus on system-

atically evaluating the pharmacokinetics and

pharmacodynamics of medications in pregnant

women. This work has revealed continual

changes in drug disposition throughout preg-

nancy (Tracy et al. 2005). In the case of many

drug metabolizing enzymes and renal excretion

of many drugs, activity can increase dramatically

throughout pregnancy (Tracy et al. 2005), which

has the potential to significantly decrease expo-

sure of pregnant women to medications and

could result in lack of efficacy with potentially

serious consequences to both the mother and the

child. However, this is not the case for all drugs

or for all drug metabolizing enzymes. As such,

application of dosing regimens developed for

nonpregnant populations in pregnant women is

not appropriate. Furthermore, extrapolating dos-

ing of specific medications based on what is

known about other medications, drug metaboliz-

ing enzyme activity, and renal function is also

not appropriate at this time given the limited data

available. With concerns about potential for ter-

atogenicity, the vast majority of practitioners are

reluctant to dose escalate medications for preg-

nant women above standard, published doses;

however, in the case of some drugs, this may be

required. The only way to determine appropriate

medication dosing during pregnancy is to evalu-

ate the pharmacokinetics and pharmacodynamics

of individual medications in pregnant women.

This type of clinical investigation can present a

variety of challenges and concerns.

This chapter summarizes what is known about

physiologic changes that occur during preg-

nancy, the impact these changes can have on

drug disposition, and provides a model approach

for completing pharmacokinetic studies in

women during pregnancy. With the increased

participation of obstetric patients in clinical

trials, progress has been made in drug research

and development, which provides valuable ther-

apeutic information for pregnant women. How-

ever, information guiding drug usage for the

majority of drugs used in during pregnancy is

still scarce and incomplete. Furthermore, the

current therapeutic practice for the majority of

medications used during pregnancy does not take

into account the profound physiologic changes

that take place during pregnancy. The use of

drugs in pregnant women is largely based on an

empiric understanding of dosage, safety and effi-

cacy from nonpregnant women rather than scien-

tific evidence. The lack of appropriate drug

testing and research in pregnant women is a

significant public health concern. Consequently,

there is an urgent need to study drug metabolism,

disposition, toxicity and efficacy in women dur-

ing pregnancy in order to understand the signifi-

cant differences in drug actions and responses

during these critical times and to develop effec-

tive and safe therapeutic regimens and drugs.

9.2 Physiologic Changes During
Pregnancy

A pregnant woman’s body undergoes profound

changes in anatomy, physiology, and metabolism

to support the entire pregnancy, which ultimately

support growth and development of the fetus.

Such alterations are required to increase cardiac

output and to maintain uteroplacental perfusion

and fetal demands. However, these changes can

have dramatic effects on drug disposition, phar-

macokinetics, and pharmacodynamics. Failure to

take these changes into consideration when using

medications during pregnancy can result in a

variety of consequences (compared to the non-

pregnant state) including: (1) no significant

changes; (2) decreased maternal exposure result-

ing in decreased drug efficacy; or (3) increased

maternal exposure resulting in increased toxicity.

The following is a summary of some of the

important physical and physiological changes

that occur during pregnancy.

General changes. There is an increase in both

total body weight and body fat during pregnancy.

The increase in weight is due in large part to

increased body water in both intravascular

(plasma volume) and extravascular spaces. In

addition, along with the increase in plasma vol-

ume, there is a decrease in albumin concentration
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during the second trimester with albumin reach-

ing 70–80% of normal values by the end of

pregnancy (Dean et al. 1980).

Cardiac changes. The cardiovascular system

of the pregnant woman must meet the demands

of both the mother and the fetus. Maternal car-

diac output begins to increase by about 6 weeks

of gestational age. Cardiac output ultimately

increases by about 40% compared to the non-

pregnant state due to an increase in heart rate

and stroke volume combined with a 20–30%

decrease in systemic capillary resistance (Clark

et al. 1989). The maternal heart rate peaks in the

third trimester with a 15% increase over the

average heart rate in a nonpregnant woman.

Maternal blood volume increases progressively

during pregnancy by about 2 L or 30 to 50%

more than the volume during the nonpregnant

state (Naylor and Olson 2003). Furthermore, onco-

tic pressure also decreases during pregnancy –

primarily as a reflection of the decline in albumin

concentration (Chesnutt 2004).

Respiratory changes. Changes that occur in

the respiratory system are a function of a combi-

nation of hormonal, biochemical, and mechanical

changes. Ventilation and oxygen consumption

are the major parameters that change during preg-

nancy. Minute ventilation increases by about 50%

during pregnancy – primarily due to the increased

metabolic rate, changes in the mechanics of

breathing, and increases in progesterone concen-

tration (Elkus and Popovich 1992; Crapo 1996).

The change begins before the end of the first

trimester and remains relatively constant through-

out pregnancy (Chesnutt 2004). Oxygen consump-

tion increases by 15–20% in singleton pregnancies

in order to meet the increased demand placed on

the mother by the growing fetus (Torgersen and

Curran 2006).

Renal changes. Changes occurring in the

renal system during pregnancy are a result of

functional and structural adaptations (Torgersen

and Curran 2006). By 16 weeks of gestational

age, the glomerular filtration rate increases

by 50% and remains elevated throughout preg-

nancy (Davison and Dunlop 1980). In addition,

creatinine clearance increases during pregnancy

resulting in lower serum creatinine, blood urea

nitrogen, and uric acid concentrations (Davison

1987).

Gastrointestinal changes. Gastroesophageal

reflux is a common problem during pregnancy.

This can begin in the first trimester due to pro-

gesterone’s causing smooth muscle relaxation

resulting in lower esophageal sphincter relaxa-

tion. As pregnancy progresses, displacement of

the stomach by the uterus can cause exacerbation

of these symptoms (Chesnutt 2004). Gastric

emptying and intestinal motility are also reduced

during pregnancy secondary to smooth muscle

relaxation by progesterone (Krauer and Krauer

1977; Dvorchik 1982; Anger and Piquette-Miller

2008) while gastric pH seems to increase

throughout pregnancy (Krauer and Krauer

1977; Dvorchik 1982).

Nakai et al. reported a significant increase in

the amount of hepatic blood flow after 28 weeks

of gestational age (Nakai et al. 2002), resulting in

increased delivery of drugs and toxins to the liver

for metabolism. In addition, drug metabolism via

hepatic metabolizing enzymes is altered during

pregnancy. This is discussed in detail below.

9.3 Pharmacokinetic
Considerations

The physiologic changes that occur during preg-

nancy can result in changes in pharmacokinetics.

The majority of the research performed to date is

observational in nature and involves small num-

bers of women. The information below is meant

as a summary to guide development of pharma-

cokinetic studies to evaluate new agents for use

in pregnant women.

9.3.1 Absorption

Given the changes that occur within the gastroin-

testinal tract during pregnancy, one could

hypothesize that drug absorption would change

in pregnant compared to nonpregnant women. At

this point, there are limited data to document that

any of these changes significantly affect drug

absorption. Paracetamol (acetaminophen) is one
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drug with evidence of a difference in absorption

between pregnant and nonpregnant women.

Simpson et al. (1988) studied single dose phar-

macokinetics of paracetamol in 28 pregnant

women compared to 14 nonpregnant controls

and found a delay in paracetamol absorption in

the women who were 12–14 weeks pregnant

compared to the control group. Paracetamol is

absorbed in the upper small bowel and as such

the rate of absorption depends on the rate of

gastric emptying. As such, the delay in gastric

emptying during pregnancy is likely the cause for

the difference in absorption between pregnant

and nonpregnant women (Simpson et al. 1988).

In contrast, small studies of other agents have

revealed no difference in absorption between

women during pregnancy and in the postpartum

period. One example is sotalol, a b-receptor
antagonist. O’Hare et al. (1983) studied the phar-

macokinetics of intravenous and oral doses of

sotalol in six women during the third trimester

of pregnancy and again 6-weeks postpartum.

They found the bioavailability to be 85–90%

both during pregnancy and postpartum. Similar

studies were performed in pregnant women with

asymptomatic urinary tract infections receiving

b-lactam antibiotics (ampicillin (Philipson 1977),

cephradine (Philipson et al. 1987), or cefazolin

(Philipson et al. 1987)), in whom bioavailability

was evaluated during the second or third trimes-

ter of pregnancy and again at least 6-weeks post-

partum. These studies found no difference in the

bioavailability of these antibiotics during preg-

nancy compared to postpartum.

One problem with these trials is the small

number of subjects studied – as such they are

all significantly under-powered to evaluate the

hypotheses that they are testing. Sample size is

often a challenge in studying medications during

pregnancy; however, a critical question is

whether studies such as those described above

add to the science or not – and in fact, whether

they are helpful to practitioners prescribing

medications to women during pregnancy and to

the women themselves or not. In some cases, the

studies may foster a false sense of security if they

find no difference between pregnant and non-

pregnant women. However, adequately powered

studies may reveal the opposite results. A critical

question for investigators to consider prior to

publishing studies such as these is what impact

the results may have.

9.3.2 Distribution

The increase in total body water associated with

pregnancy creates a larger potential volume of

distribution of hydrophilic drugs and the increase

in body fat during pregnancy creates a larger

potential volume of distribution for lipophilic

drugs (Anger and Piquette-Miller 2008). These

changes along with changes in protein binding

during pregnancy could increase the apparent

volume of distribution of many drugs thereby

resulting in a decrease in initial concentration

(C0) after a loading dose and peak plasma

concentration (Cmax) after repeated dosing

(Anderson 2005).

Another important factor to consider is the

decrease in albumin plasma concentration,

which begins in the second trimester and con-

tinues throughout the remainder of pregnancy to

70–80% of prepregnancy concentrations (Dean

et al. 1980). In many cases, this change is par-

tially off-set by an increase in drug metabolism

that occurs with many enzymes during preg-

nancy (see Sect. 9.3.3). However, the decrease

in protein binding can be clinically significant for

a small number of drugs that are both highly

protein bound and predominantly eliminated

hepatically (Benet and Hoener 2002). One

group for which this is important is low extrac-

tion ratio drugs in which therapeutic drug moni-

toring measures total plasma concentration.

Given the gradual increase in the free fraction

of these drugs throughout pregnancy, total

plasma concentration will underestimate the

amount of free drug available relative to the

nonpregnant state. Examples of this type of

drug include the anticonvulsants phenytoin and

valproic acid (Yerby et al. 1990; Tomson et al.

1994a, b). The mean plasma concentration of

phenytoin drops 56% over the course of preg-

nancy to its lowest level at the time of delivery

and rising again in the postpartum period (Yerby
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et al. 1990). However, the decrease in free phe-

nytoin is only 31%. Phenytoin dose adjustments

during pregnancy based on total plasma concen-

trations would result in a disproportionate

increase in free phenytoin thereby potentially

putting the fetus at risk for the teratogenic effects

of the drug (Yerby et al. 1990).

The second group of drugs in which a drop in

plasma protein binding can be clinically signifi-

cant is the high extraction ratio drugs with

narrow therapeutic indices administered intrave-

nously. In the case of these drugs, the decrease in

plasma protein binding associated with preg-

nancy could result in an increase in the free

fraction of drug sufficient to fall outside of the

therapeutic index resulting in increased side

effects for the mother and potentially risks to

the fetus (Yerby et al. 1990; Anderson 2005).

Unfortunately, there are no published data in

pregnancy evaluating pharmacologic changes of

any such drugs.

9.3.3 Metabolism

The primary route of drug metabolism is via

hepatic enzymes, including both phase I (oxida-

tion) and phase II (conjugation) drug metaboliz-

ing enzymes. The activity of many of these

enzymes is known to be altered during preg-

nancy; some are increased and some are decreased.

Furthermore, overall hepatic clearance of drugs

is dependent not only on drug metabolism, but

also protein binding and blood flow to the liver –

both of which are also altered during pregnancy

(Morgan and Smallwood 1990). Consequently,

the overall effect of pregnancy on drug metabo-

lism is a very complex issue requiring systematic

evaluation of individual drugs. The groups of

enzymes most commonly involved in drug

metabolism include the cytochrome P450

(CYP) enzymes, uridine diphosphate glucurono-

syltransferases (UGT) and the N-acetyl trans-

ferases (NAT).

The CYPs are a multigene superfamily of

hemoproteins that catalyze oxidation reactions

of a multitude of both endogenous and exoge-

nous compounds. Cytochrome P450 enzymes are

present primarily in the liver but are also found in

the gastrointestinal tract, kidneys, and lungs.

In addition, to drug metabolism, this group of

enzymes is important in hormone synthesis and

metabolism, cholesterol synthesis, and vitamin D

metabolism. Based on data from studies of

drug metabolism during pregnancy, pregnancy

appears to have different effects on the various

CYP enzymes resulting in an increase in activity

of CYP2A6, -2C9, -2D6, and -3A4 and a

decrease in activity of CYP1A2 and -2C19.

CYP1A2 is a member of the CYP superfamily

involved in the metabolism of such things as

caffeine, acetaminophen, theophylline, cloza-

pine, and olanzapine. In the case of caffeine,

multiple studies have evaluated the effect of

pregnancy on its metabolism (Aldridge et al.

1981; Knutti et al. 1981; Bologa et al. 1991).

These studies have all found that the half-life of

caffeine is significantly longer during pregnancy

compared to the half-life in postpartum women

and nonpregnant control subjects, supporting the

idea that CYP1A2 activity is decreased during

pregnancy. These studies indicate that activity of

this enzyme begins to decline during the first

trimester and returns to baseline by 1 month

postpartum. Based on these trials of caffeine

metabolism, caffeine half-life increases from

approximately 3.4 h in control subjects to 8.3 h

in pregnant subjects (Aldridge et al. 1981; Knutti

et al. 1981; Bologa et al. 1991). However, the

confounding effect of volume of distribution can-

not be ignored. Expression of CYP1A2 is also

known to be induced by some polycyclic aro-

matic hydrocarbons, some of which are found

in cigarette smoke. In addition, pharmacogenetic

variability in CYP1A2 is an important determi-

nant of the inducibility. In nonpregnant subjects,

CYP1A2*1F is associated with higher inducibil-

ity of enzyme expression by smoking (Sachse

et al. 2003). Nordmark et al. (2002) studied preg-

nant women to evaluate the effect of this allele

on CYP1A2 expression during pregnancy. They

studied women in their first trimester of preg-

nancy (740 nonsmokers, 164 smokers) including

genotyping for the CYP1A2*1F allele and phe-

notyping of the CYP1A2 activity using caffeine

as a probe drug. In contrast to the effects of
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smoking seen in nonpregnant subjects, the inves-

tigators found no increased induction of CYP1A2

enzyme expression among pregnant carriers of

the CYP1A2*1F compared to pregnant women

who were not carriers of the variant allele (Nord-

mark et al. 2002).

CYP2A6 is the primary enzyme responsible

for metabolism of nicotine as well as its primary

metabolite, cotinine (Messina et al. 1997). Stud-

ies of nicotine and cotinine metabolism during

pregnancy have revealed a significant increase in

clearance of nicotine and cotinine as well as a

decrease in nicotine half-life (Dempsey et al.

2002; Klein et al. 2004). This information is

clinically relevant to the adequate prescribing of

nicotine replacement during pregnancy. Given

concerns about toxicity of the fetus secondary

to exposure to medications and chemicals in

utero, it is extremely uncommon for physicians

to prescribe higher doses of medications during

pregnancy than are recommended for nonpreg-

nant women. However, in prescribing nicotine

replacement, pregnant women are likely to need

larger doses than nonpregnant people due to the

increase in CYP2A6 activity during pregnancy.

Furthermore, nicotine replacement therapy may

be safer than smoking during pregnancy (Cole-

man 2007).

CYP2C9 is an important enzyme in the metab-

olism of more than 100 drugs, including some

drugs with narrow therapeutic indices (e.g., war-

farin, phenytoin). Multiple single nucleotide

genetic polymorphisms have been identified in

the coding and regulatory regions of the CYP2C9

gene (Garcia-Martin et al. 2006). Given the

availability of therapeutic drug monitoring for

phenytoin, a great deal of information is avail-

able about changes in phenytoin disposition dur-

ing pregnancy (Chen et al. 1982; Bardy et al.

1987; Yerby et al. 1990; Tomson et al. 1994a, b).

Phenytoin is metabolized by both CYP2C9 and

CYP2C19; however, CYP2C9 catalyzes the

major metabolic pathway (Bajpai et al. 1996). As

described above, phenytoin clearance progres-

sively increases beginning in the first trimester

and continuing throughout pregnancy; thus indi-

cating an increase in CYP2C9 activity during preg-

nancy. Furthermore, total plasma concentrations

decrease more than do free plasma concentrations

(due to the concomitant decrease in plasma albu-

min concentrations), which only significantly

increased in the third trimester. Phenytoin dose

adjustment is only necessary when the unbound

concentration increases; therefore, this is only

required for most women during the third tri-

mester (Tomson et al. 1994a, b). While there

are other CYP2C9 substrates commonly used

during pregnancy, there are no available phar-

macokinetic data on any of these medications.

However, based on what is known about phe-

nytoin, one would expect that CYP2C9 induc-

tion during pregnancy would require dosage

increases for all substrates of this enzyme

(Anderson 2005).

CYP2C19 is a member of the CYP superfam-

ily responsible for metabolism of such important

drugs as proton pump inhibitors and some antic-

onvulsants. There are limited pharmacokinetic

data related to CYP2C19 during pregnancy

from which to make conclusions about changes

in this enzyme that occur during pregnancy. One

example is the antimalarial drug proguanil which

is metabolized by CYP2C19 (Helsby et al. 1990).

Two studies evaluating proguanil pharmacoki-

netics during pregnancy have both found a sig-

nificant decrease in proguanil clearance during

pregnancy (Ward et al. 1991; McGready et al.

2003); thus indicating a decrease in CYP2C19

activity during pregnancy. Furthermore,

McGready et al. (2003) found that the inhibitory

effect of pregnancy on CYP2C19 was only

observed in the subjects who were extensive

metabolizers; suggesting a possible genotype

specific effect on CYP2C19 during pregnancy.

The pharmacokinetics of nelfinavir, metabolized

by both CYP3A4 and CYP2C19, has also been

studied in pregnant women (see CYP3A4 section

below). However, pharmacokinetic data on other

commonly used CYP2C19 substrates are not

available in pregnant women. Based on what is

known about proguanil and CYP2C19 activity

during pregnancy, one would expect that dosage

requirements for drugs like the proton pump

inhibitors would decrease during pregnancy.

CYP2D6 is responsible for metabolism of

many commonly used drugs and is one of the
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most extensively studied CYP enzymes. Dextro-

methorphan is used as a probe drug of CYP2D6

activity and has been used to evaluate activity of

this enzyme during pregnancy (Wadelius et al.

1997; Tracy et al. 2005). These studies have

found an increase in the metabolism of dextrome-

thorphan; thus potentially indicating an increase

in CYP2D6 activity during the second and third

trimesters of pregnancy in extensive metaboli-

zers. In contrast, CYP2D6 activity seemed to

decrease in the poor metabolizers (Wadelius

et al. 1997). This type of divergent response

does not seem possible and requires further inves-

tigation. Pharmacokinetic data are also available

for the CYP2D6 substrates metoprolol (Hogstedt

et al. 1983, 1985) and fluoxetine (Heikkinen et al.

2003; Ververs et al. 2009) during pregnancy and

support this increase in CYP2D6 activity in

extensive metabolizers during pregnancy (sum-

marized in Table 9.1). Interestingly, the only time

CYP2D6 induction is known to occur is during

pregnancy. Based on this information, one would

expect that for CYP2D6 extensive metabolizers,

drug metabolized by this enzyme may require

dose increases during the second and third trime-

sters of pregnancy.

CYP3A4 is the most abundant of the CYP

enzymes and is known to be responsible for

metabolism of more than half of all drugs meta-

bolized. Pharmacokinetic data are available for

multiple substrates of this enzyme during preg-

nancy (see Table 9.1); however, the information

is limited to the second and third trimesters.

Midazolam is often used as a probe drug to

evaluate CYP3A4 activity; and pharmacokinet-

ics of midazolam has been investigated in preg-

nant women (Wilson et al. 1987; Andrew et al.

2008; Hebert et al. 2008). This study evaluated

pregnant women awaiting elective cesarean

section delivery, women in active labor, and

nonpregnant women undergoing gynecologic

procedures as control patients. The study found

an increase in midazolam clearance in the women

awaiting cesarean sections compared to the con-

trol subjects, but no difference in the women in

active labor compared to the controls. Urinary

secretion of cortisol and its metabolites has also

been used as a nonspecific probe of CYP3A4

(Anderson 2005) activity and has been evaluated

in pregnant women. Findings in pregnant women

also support an increase in CYP3A4 activity

during pregnancy (Ohkita and Goto 1990). Stud-

ies with CYP3A4 substrates, including nifedi-

pine, carbamazepine, and multiple protease

inhibitors, have also been performed during

pregnancy (see Table 9.1). These findings sup-

port the conclusion that CYP3A4 activity is

increased during the second and third trimesters

(Anderson 2005).

Uridine diphosphate glucuronosyltransferases

are an important group of phase II drug metabo-

lizing enzymes. Activity of UGT1A4 during

pregnancy is probably the best characterized of

the UGT enzymes. The antiepileptic drug lamo-

trigine is metabolized by UGT1A4 and multiple

studies have evaluated its pharmacokinetics dur-

ing pregnancy – both alone (de Haan et al. 2004;

Pennell et al. 2004) and in combination with other

antiepileptic medications (Ohman et al. 2000;

Tran et al. 2002). The results of these studies

reveal a significant increase in lamotrigine clear-

ance during pregnancy with a greater increase

seen in the women on lamotrigine monotherapy

(see Table 9.1); indicating an increase in

UGT1A4 activity during pregnancy. The lesser

increase in clearance in women on other antiepi-

leptic medications is likely due to the fact that the

enzyme induction associated with pregnancy is

superimposed on the effect of enzyme inducing

medications and is, therefore, not as great

(Anderson 2005). Consequently, the relative

dose increase required to maintain lamotrigine

plasma concentrations during pregnancy in

women on concomitant therapy with enzyme

inducing antiepileptics should not be as great as

the dose increase in lamotrigine required for

women on monotherapy (Anderson 2005). Data

related to medications metabolized by other UGT

enzymes is limited (summarized in Table 9.1).

9.3.4 Excretion

The kidney is the main site for excretion of drugs.

Renal excretion is dependent on a combination of

glomerular filtration and tubular section in the
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proximal tubule and tubular reabsorption in the

distal tubule. Tubular secretion and reabsorption

of drugs and endogenous compounds is depen-

dent on a number of membrane transporters

expressed in the kidneys. Changes in these

saturable transporters during pregnancy and the

associated changes in drug excretion during preg-

nancy are poorly characterized. Changes in glo-

merular filtration rate (GFR) during pregnancy

have been evaluated. In one study, healthy

women were evaluated during pregnancy and

postpartum revealing a 50% increase in GFR

Table 9.1 Effect of pregnancy on drug metabolism

Drug Pregnancy

trimesters

studied

Findings (relative to

nonpregnant state)

Alteration in

pregnancy

Reference

Caffeine 1st, 2nd,

3rd, and

postpartum

Caffeine t1/2b longer;

clearance decreased;

metabolic ratio of caffeine

metabolites decreased

#CYP1A2 activity

#NAT activity

(Aldridge et al. 1981;

Knutti et al. 1981; Bologa

et al. 1991; Tsutsumi et al.

2001; Tracy et al. 2005)

Carbamazepine 1st, 2nd,

3rd, and

postpartum

# in total concentration; no

change in unbound

concentration

"CYP3A4 activity (Yerby et al. 1990;

Tomson et al. 1994a, b)

Dextromethorphan 2nd, 3rd,

and

postpartum

" in both O-demethylation

and N-demethylation of

dextromethorphan

"CYP2D6 activity

"CYP3A4 activity

(Wadelius et al. 1997;

Tracy et al. 2005)

Fluoxetine 3rd and

postpartum

" ratio of norfluoxetine:

fluoxetine

"CYP2D6 activity (Heikkinen et al. 2003)

Lamotrigine 1st, 2nd,

3rd, and

postpartum

"CL "NAT activity (Ohman et al. 2000; Tran

et al. 2002; de Haan et al.

2004; Pennell et al. 2004)

Metoprolol 3rd and

postpartum

"CL "CYP2D6 activity (Hogstedt et al. 1983;

Hogstedt et al. 1985)

Midazolam 3rd "CL in C section patients;

No difference in women in

active labor (vs.

nonpregnant women)

" or $ CYP3A4

activity

(Wilson et al. 1987)

Nelfinavir 2nd, 3rd,

and

postpartum

Nelfinavir oral clearance "
in pregnancy

M8 concentrations # in

pregnancy

"CYP3A4 activity

#CYP2C19
activity

(van Heeswijk et al. 2004;

Bryson et al. 2008)

Nicotine 2nd and

3rd

Nicotine and cotinine CL"
60 and 140%, respectively;

t1/2b # 50%; and conversion

to cotinine " 54%

"CYP2A6 activity (Dempsey et al. 2002;

Klein et al. 2004)

Nifedipine 3rd "CL "CYP3A4 activity (Prevost et al. 1992)

Paroxetine 2nd and

3rd

Paroxetine concentrations

progressively # in

ultrarapid

and extensive metabolizers

and " in intermediate and

poor metabolizers

"CYP2D6 activity

in UM and EM

# or no change in

CYP2D6 activity

in IM and PM

(Ververs et al. 2009)

Proguanil # proguanil CL during

pregnancy (possibly only

in CYP2C19 extensive

metabolizers)

#CYP2C19
activity

(Ward et al. 1991;

McGready et al. 2003)

Zidovudine 3rd and

delivery

"CL vs. no change " or $ NAT

activity

(Watts et al. 1991;

O’Sullivan et al. 1993)
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during the first trimester of pregnancy and a pro-

gressive increase in GFR throughout the remain-

der of pregnancy compared to postpartum

(Davison and Dunlop 1980). This correlates

with a change in renal hemodynamics at least

through the second trimester, when renal blood

flow has increased by as much as 80% (Dunlop

1981) followed by a decrease during the third

trimester. This decrease in renal blood flow cor-

relates with a decrease in GFR during the final

3 weeks of the third trimester of pregnancy

documented by the same group of investigators

(Davison et al. 1980).

Several drugs cleared by the kidneys unchanged

(without being metabolized first) have been studied

during pregnancy. This includes a number of

antibiotics (Philipson 1977; Assael et al. 1979;

Philipson and Stiernstedt 1982; Philipson et al.

1987; Heikkila and Erkkola 1991; Heikkila et al.

1992; Chamberlain et al. 1993; Nathorst-Boos

et al. 1995; Andrew et al. 2007), beta blockers

(Thorley et al. 1981; O’Hare et al. 1983; Hurst

et al. 1998; Hebert et al. 2005, 2008), digoxin

(Luxford and Kellaway 1983), lithium (Schou

et al. 1973), low-molecular weight heparins

(Blomback et al. 1998; Casele et al. 1999; Ensom

and Stephenson 2004), and clonidine (Buchanan

et al. 2009). These results reveal significant varia-

bility between drugs from no change in clearance

during pregnancy to a greater than 100% increase

in drug clearance during pregnancy. Many of the

drugs studied have low protein binding as such

the variability in renal clearance is likely to be

related to differences in tubular secretion and

reabsorption.

9.4 FDA Guidance

While there are known changes in physiology

and drug metabolizing enzymes that occur during

pregnancy that affect drug disposition, in many

cases it is difficult to predict the results that

these changes will have on individual drugs

without systematically investigating each drug

throughout pregnancy. As such, carrying out

carefully planned pharmacokinetic–pharmaco-

dynamic–pharmacogenetic studies during preg-

nancy is critical in order to optimize both the

efficacy of the medication for the woman and

the safety of the medication for both the woman

and the fetus. The Food and Drug Administration

(FDA) provides Guidance for Industry, which

provides a basic framework for designing and

conducting PK/PD studies in pregnant women.

It provides recommendations to sponsors on

how to assess the influence of pregnancy on

pharmacokinetics as well as pharmacodynamics.

Furthermore, it provides recommendations to

clinical researchers and pharmacologists about

issues to consider when designing PK studies in

pregnant women. While it provides recommen-

dations on when PK studies are appropriate dur-

ing pregnancy, it does not address ways to assess

efficacy or safety. FDA recommends using the

guidance in conjunction with other guidances as

well as pharmacology and clinical literature on

design, conduct, and interpretation of PK studies.

In addition, because of the specialized nature of

doing research in pregnant women, FDA also

recommends investigators planning obstetric phar-

macology studies to obtain advice from experts in

the fields of obstetrics, pediatrics, pharmacology,

clinical pharmacology, pharmacometrics, statistics,

and other applicable disciplines.

There is some debate as to who should be

included in studies of medications during preg-

nancy. Some argue that given the large number

of women who need medications during preg-

nancy, it is unethical to exclude them from trials

of drugs. In contrast, many support only includ-

ing women in trials for medications that they

need therapeutically.

Studies in pregnant women must conform to

all applicable regulations, including human sub-

ject protection. In addition, FDA recommends

that all studies in pregnant women have Institu-

tional Review Board Review and that informed

consent be obtained from all participants. The

Code of Federal Regulations (CFR Title 45 Sub-

part B 46.204) delineates the conditions under

which pregnant women may be involved in PK

studies. These include:

• Preclinical studies, including studies on preg-

nant animals, and clinical studies, including

studies on nonpregnant women, have been
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conducted and provide data for assessing

potential risk to pregnant women and fetuses;
and

• The risk to the fetus is no greater than minimal

and the purpose of the research is the devel-
opment of important biomedical knowledge

which cannot be obtained by any other means.
The FDA Guidance recommends that PK

studies be conducted in pregnant women in any

of the following situations:

• The drug is known to be prescribed in or used

by pregnant women, especially in the second

and third trimesters;
• For a new drug or indication, if there is

anticipated or actual use of the drug in preg-

nancy;
• Use is expected to be rare, but the conse-

quences of uninformed dosages are great;

• Pregnancy is likely to alter significantly the
PK of a drug (e.g., renally excreted drug) and

any of the above apply; and

• PK studies in pregnant women are NOT
recommended if the drug is not used in preg-

nant women or the drug has known or highly

suspect fetal risk.

9.5 Study Design

In general, it is important to include both phar-

macokinetics and pharmacodynamics when

doing an obstetric pharmacology study. Further-

more, it is imperative to studymedications during

the second and third trimesters of pregnancy.

Study during the first trimester is also important

for medications used clinically during the early

part of pregnancy. Utilizing an appropriate con-

trol group is also an important consideration. In

some cases data are available from historical

controls; however, in many cases a control

group is necessary for one or more components

of the study.

9.5.1 Participants

As stated above, in any obstetric pharmacology

study, it is important to study subjects throughout

pregnancy. This can be accomplished by enroll-

ing women early during their pregnancies with

continued follow-up throughout the pregnancy

and into the postpartum period or by enrolling

women on the medication being studied who are

in different trimesters of pregnancy. In many

cases, the drug under evaluation drives this deci-

sion. For example, in the case of an antidepres-

sant that a woman may take throughout her

pregnancy as well as postpartum, it would be

most scientifically advantageous to enroll

women early in pregnancy and to follow them

into the postpartum period. This allows follow-

ing the woman longitudinally such that changes

in the medication’s pharmacokinetics and phar-

macodynamics across pregnancy can be moni-

tored in subjects. Furthermore, if the subjects

continue to be followed into the postpartum

period or are enrolled prior to becoming preg-

nant, then the woman can be used as her own

control. In contrast, when studying something

that a woman may only be taking for a short

period of time (e.g., an antibiotic), different

women at various time-points in their pregnancy

taking the drug would need to be enrolled.

Enrolling a certain number of women in each

trimester of pregnancy is a reasonable approach

to take; however, pregnancy is a continuum and

for drugs with a narrow therapeutic index, it

might be important to enroll women over smaller

time increments than a trimester. Furthermore,

for any obstetric pharmacology clinical trial,

enrolling subjects to narrower windows of time

is likely superior; however, if this is not possible

or practical, it is at least important to ensure that

women enrolled in each trimester are dispersed

evenly over the trimester at the time they are

studied.

Development of appropriate inclusion and

exclusion criteria is critical to ensuring an effec-

tive clinical trial. In most cases, obstetric

pharmacology studies do not utilize healthy

volunteers given the potential risk of unnecessary

drug exposure to the fetus. As such, these trials

typically have as an inclusion criterion that the

woman is currently taking or planning to begin

taking (as part of routine clinical care) the medi-

cation of interest. Furthermore, in studies of drug
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disposition or efficacy, it is important to limit the

population enrolled to women with singleton

pregnancies (rather than multiparous pregnan-

cies) given the likely confounding effects of

variability in this factor. Age of the subject is

also an important consideration. Pregnant ado-

lescents should be considered as a separate pop-

ulation. If they are not excluded from a study,

adolescents need to be adequately represented to

allow analysis of this age group separately or be

part of a large enough study population to allow

for development of a pharmacologic model of the

data. At the other end of the age spectrum,

women over 40 years of age are often excluded

from obstetric pharmacology studies given the

potential for changes in drug disposition with

age. In addition, women with serious illnesses

(e.g., HIV, diabetes) not related to the study

drug of interest need to be carefully considered

for the potential to confound study data prior to

determining eligibility criteria.

Drug interactions are an important consider-

ation in developing exclusion criteria as well.

Given the limited knowledge regarding changes

in drug disposition during pregnancy, it is impor-

tant to minimize the confounding effects of drug

interactions in obstetric pharmacology studies,

As such, it is often best to exclude patients

known to be taking any moderate to strong

enzyme inducers or inhibitors that may interact

with the study drug of interest. Alternatively, if a

particular drug combination commonly used in

clinical practice includes a drug metabolizing

inducer or inhibitor, it may be important to

study such a combination.

9.5.2 Pharmacokinetics

The two alternatives for the pharmacokinetic

portion of obstetric pharmacology studies are a

standard full pharmacokinetic approach versus

a population pharmacokinetic approach. The

advantages of a full PK study are similar to that

in a nonpregnant population and include: fewer

subjects required and a comprehensive PK pro-

file is generated from each subject. The advan-

tages of a population PK study in an obstetric

pharmacology study include: number of PK sam-

pling times for each subject is limited, which can

be of particular importance to a busy pregnant

woman and given more subjects are enrolled, it

facilitates enrollment across the range of gesta-

tional ages. Choice of sampling time-points is

often similar for a drug to the time-point selected

for a nonpregnant population; however, it is

important to take into consideration what is

already known about drug disposition during

pregnancy so as not to miss critical time-points

that may not be standard in a nonpregnant popu-

lation. Optimal sampling (see Chap. 8) may also

be an option.

9.5.3 Pharmacodynamics

As part of any obstetric pharmacology study, it is

also important to systematically evaluate a med-

ication’s pharmacodynamics. Given the signifi-

cant physiologic changes that occur during

pregnancy, one cannot conclude that a drug’s

effects will be the same in pregnant and nonpreg-

nant women at similar exposures. In addition,

some conditions treated during pregnancy (e.g.,

hyperemesis gravidarum) are unique to preg-

nancy and evaluating a drug’s pharmacodynam-

ics is imperative to understanding appropriate

treatment of the pregnancy-associated condition.

9.5.4 Control Group

Selecting an appropriate control group is a criti-

cal component to obstetric pharmacology stud-

ies. Furthermore, in some cases, the control

groups differ for the pharmacokinetic and phar-

macodynamic portions of a single study. Some

examples of control groups include:

• Using a woman as her own control by study-

ing her throughout pregnancy and in the post-

partum period (control period)

• Using healthy pregnant women not on the

medication as PD control group

• Using women with the same illness (e.g.,

depression) not on medication (due to personal
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choice, physician recommendation, or another

reason) as the PD control group

• Using nonpregnant women of childbearing

age as the control group

Furthermore, for medications in which phar-

macogenetic variability may be clinically rele-

vant, it could also be important to enroll control

subjects of various genotypes.

9.5.5 Pharmacogenetics

While investigating how pharmacogenetic varia-

bility affects a drug’s pharmacokinetics and

pharmcodynamics has permeated many areas of

medicine; minimal work has been done in the

area of obstetric pharmacogenetics. In terms of

drug metabolizing enzymes, as discussed above,

we are continuing to refine our knowledge about

how enzyme expression and activity changes

during pregnancy. The superimposed effect of

pharmacogenetic variability on this has yet to

be systematically investigated; however, it is

possible that by taking pharmacogenetics into

account, we may be able to explain some of the

observed interindividual variability observed

between pregnant women (similar to nonpreg-

nant subjects). CYP2D6 is one example in

which taking genotype into account has been

important in an obstetric pharmacology study.

Ververs et al. (2009) evaluated the effect of

CYP2D6 genotype on paroxetine pharmacokinet-

ics and efficacy during pregnancy. Recall that

CYP2D6 activity generally increases during

pregnancy (Hogstedt et al. 1983, 1985; Heikki-

nen et al. 2003; Tracy et al. 2005). In this study of

paroxetine, they followed women throughout

the second and third trimesters of pregnancy.

They found for women who were extensive

(EMs) and ultrarapid metabolizers (UMs) of

CYP2D6, plasma paroxetine concentrations

steadily decreased over the course of pregnancy.

In contrast, in the CYP2D6 intermediate (IMs)

and poor metabolizers (PMs), plasma paroxetine

concentrations increased throughout pregnancy

(Ververs et al. 2009). The group also assessed

the women’s depressive symptoms throughout

the course of pregnancy and found that depres-

sive symptoms increased in the EM/UM group

and did not change in the IM/PM group. This is

one of the only examples of an obstetric pharma-

cology trial with a pharmacogenetic component

that exists in the literature. However, it is an

excellent example of why incorporation of phar-

macogenetics into these studies can be extremely

clinically relevant.

9.6 Summary

As demonstrated, several factors conspire to alter

the behavior of drugs given to pregnant women.

Pharmacokinetic–pharmacodynamic–pharmaco-

genetic studies are pivotal to assist with the ratio-

nal prescribing of drugs to pregnant women.

Understanding the physiologic and resulting

pharmacokinetic changes can be used to develop

the rationale for these studies in pregnancy. Uti-

lizing the FDA guidance, an appropriate control

group, and a scientifically sound study design

should guide those in drug development. Devel-

oping drugs that may be used by pregnant women

and testing them to ensure proper dosage and

use are vitally important from the standpoint of

therapeutic justice. This will allow health care

practitioners to step out of the age of empiric

therapeutics into an enlightened age of rational,

informed prescribing of therapy in pregnancy.

9.7 The Future of the Field

The field of obstetric pharmacology has grown

significantly over the past decade. The National

Institutes of Health’s (NIH) recognition of the

need for additional research in this area prompted

the establishment of the Obstetric-Fetal Pharma-

cology Research Unit Network with support

from the Office of Research on Women’s Health

to provide the expert infrastructure needed to test

therapeutic drugs during pregnancy. The Net-

work of four U.S. academic medical centers

allows researchers to conduct a whole new gen-

eration of safe, technically sophisticated, and

complex studies that will help clinicians protect
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the health of women, while improving birth out-

comes and reducing infant mortality. It is possi-

ble that this group will expand in the coming

years to further the scientific advancement in

this arena. The NIH is currently utilizing specific

program announcements in an attempt to stimu-

late additional research in this field. If measures

such as this are not effective, mandates may be

instituted requiring the study of medications in

pregnant populations prior to FDA approval.
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Design, Conduct and Analysis
of Thorough QT Studies 10
Tanya Russell, Daniel S. Stein, and David J. Kazierad

Abstract

Torsades de Pointes (TdP) is a type of polymorphic ventricular tachycar-

dia that can result in fainting and death. While there are genetic causes for

TdP, such as ion channel mutations, drug-induced TdP can occur, an

event that first gained prominence with the interaction between terfena-

dine and ketoconazole. While TdP itself cannot be studied in clinical trials

due to its low rate of incidence, a biomarker for TdP is prolongation of the

QT interval on an ECG. Today, almost every drug is expected to be

evaluated for its potential to prolong QT interval. This chapter discusses

measurement of QT intervals in clinical trials, the design and analysis of

“thorough” QT studies, including the intersection–union test and concen-

tration-QT modeling, as well as practical matters related to the Interna-

tional Conference on Harmonisation’s E14 guidance.

10.1 Introduction and Background

In 1841 Matteucci demonstrated each heart beat

was associated with electrical activity (Matteucci

1842). Over the ensuring years several investiga-

tors attempted to further describe the nature of

the heart’s electrical activity. The first human

electrocardiogram was recorded by Augustus

Waller in 1887 using a Lippmann capillary elec-

trometer and indicated only two waves named V1

and V2 (Waller 1887). Willem Einthoven, after

attending a demonstration by Waller in 1889,

began a series of experiments to develop a more

accurate and clinically suitable method of record-

ing the heart’s electrical activity (Zetterstr€om

2009). The electrical activity occurring in four

deflections was first demonstrated by Einthoven

and were originally named ABCD (Hurst 1998).

In 1895, Einthoven published an illustration

where the ECG waves were named PQRST,

probably to differentiate his corrected curve

which had been superimposed on the uncorrected

tracing. The mathematician Rene Descartes

used P and Q to demonstrate points on a curve.

Einthoven would have been instructed in this

work during his education and it is the likely

origin of the PQRST naming; in addition, by

using these letters, he eliminated confusion

between curves and allowed for later additions
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(Hurst 1998). With the construction of the string

galvanometer in 1901, Einthoven achieved his

goal of making an instrument that could accu-

rately record a full ECG recording from cutane-

ous input based on the Einthoven’s triangle of

bipolar currents using the right and left shoulder

and the left leg as references (leads I, II, and III in

the modern ECG). By 1906, Einthoven had pub-

lished a report on normal and abnormal ECGs

and by 1912 a comprehensive report on multiple

cardiac pathologies (Einthoven 1912). An exam-

ple of an ECG machine from 1912, which unlike

today used salt solution buckets, can be found in

Estes (2008). The ECG machine was in world-

wide use within 20 years and Einthoven would

win the Nobel Prize for his achievement in 1924

(Zetterstr€om 2009). The additional unipolar limb

leads (aVR, aVL, aVF, which are abbreviations

for augmented vector right, left, or foot) and the

precordial or ventricular leads (V1–V6) would

come much later with the invention of more

sophisticated electronics.

It is now known the electrical basis of the

ECG is governed by different ion channels in

the heart controlling sodium, calcium, and potas-

sium influx and efflux – for which a full review is

beyond the scope of this chapter (Ackerman and

Clapman 1997; Tseng 2001; Wehrens et al.

2002). Mutations in the genes governing these

channels can lead to serious diseases such as the

long QT syndrome which can result in life threat-

ening arrhythmias and death. The main channel

responsible for the potassium-driven repolariza-

tion reflected by the QT interval is the human

ether-a-go-go-related (hERG) or IKr (Inward

rapid potassium current). The hERG ion channel

has multiple sites for binding by drugs and is the

target of the class III antiarrthymic agents (Gra-

linski 2000; Tseng 2001). Binding of a drug to

hERG can be competitive or noncompetitive

with rapid or slow disassociation; therefore total

drug concentration is used to assess risk. In vitro

screening of drugs for potential risk of effects on

cardiac conduction involves screening against

the hERG channel and the isolated Purkinje

fiber conduction system. In vivo drug dosing

with full ECG telemetry monitoring to better

assess the potential risk is typically performed

in dogs. All drugs shown clinically to cause

potentially life threatening cardiac arrhythmias

(such as torsades de pointes (TdP), a specific

type of ventricular tachycardia) have been posi-

tive in hERG screening (Malik and Camm 2001).

However, many drugs with a risk indicated from

in vitro testing will not necessarily have an

increased risk demonstrated in either animals or

human evaluation. For additional information on

the non-clinical assessment of ventricular repo-

larization, the reader may refer to the ICH S7B

guidelines (International Conference on Harmo-

nisation 2005b).

10.1.1 What Is “QTc” and Why Do We
Measure It?

The QT interval duration is a reflection of the

time from the beginning of ventricular depolari-

zation marked by the QRS complex (ventricular

contraction) to the repolarization of the cardiac

conduction system marked by the end of the

T wave (Fig. 10.1). The length of the entire

cardiac cycle has to be shorter at higher heart

rates in order for a higher heart rate to occur.

The first two parts of the electrical activity, the

P wave (representing atrial depolarization) and

the QRS complex are relatively fixed, therefore

the QT interval must shorten as the heart rate

increases. To correct for changes in heart rate,

the QT interval is normalized to a heart rate of

60 bpm; this corrected QT interval is known as

the QTc interval.

The two most common formulae used to cor-

rect for the heart rate on the QT interval are

Bazett’s (1918) where the QTcB ¼ QT/(RR)1/2

and Fridericia’s (1920) where the QTcF ¼ QT/

(RR)1/3. At a heart rate of 60 bpm (RR ¼ 1 s)

both formulae agree and there is no correction.

Other correction formulae will be discussed in a

later section. An important reason for measuring

the QTc interval is that prolongation of the inter-

val is associated with an increased risk of poten-

tially life threatening cardiac arrhythmias. This is

seen on the ECG as TdP, a specific type of

polymorphic ventricular tachycardia, known for

its twisting form of wave pattern (see Fig. 10.2)
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due to change of electrical axis of the QRS com-

plex around the central isoelectric line.

Torsades de pointes can progress to ventricular

fibrillation and death. Concern with TdP and drug

induced arrhythmia began in the 1970s, but a

significant increase in attention to the issue came

in the 1990s when the non-sedating antihistamine

terfenadine was associated with an increased

incidence of arrhythmia and sudden death. Well

known examples of dose related arrhythmia are

the drugs sotalol (Bayer Healthcare Pharmaceu-

ticals 2007) and dofetilide (Pfizer Inc. 2006).

Fig. 10.1 Example 12-lead ECG recording of lead II demonstrating the various interval measurements

Fig. 10.2 Example of a telemetry tracing of torsades de pointes
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Sotalol, a non-selective beta blocker, given in

large clinical trials had a well described relation-

ship of increasing dose with an increase in mean

QTc interval duration, and an increased inci-

dence of sustained TdP (see Fig. 10.3).

Dofetilide, a class III antiarrhythmic drug

causes QTc interval prolongation as part of its

mechanism of action. In the data from large

clinical trials, there was an association between

increasing dose and TdP, and subsequently, an

increased incidence of ventricular fibrillation, as

well as the occurrence of TdP (see Fig. 10.4).

These examples illustrate that as the QTc interval

increases, the incidence of potentially life threat-

ening ventricular arrhythmias increases and the

occurrence of TdP is not the only ventricular

arrhythmia that increases in risk. Both agents

have significant labeling restrictions on their

clinical use.

Terfenadine causes an average QTc interval

increase in humans of 6 ms, but has been shown

to increase to 23 ms with a tripling of dose or

increase in parent drug exposure resulting from,

for example, inhibition of its CYP3A4 metabo-

lism (Gralinski 2000). These findings led to its

withdrawal from the market which was followed

by a series of high-profile drug withdrawals of

additional agents (e.g. cisapride, gemifloxacin)

by health authorities because of QT interval pro-

longation-related safety issues. These events led

health agencies to develop guidances regarding

drug-induced QT interval prolongation.

10.2 Global Regulatory Guidance:
ICH E14

10.2.1 ICH E14

The initial formal guidance concerning the

potential for QT interval prolongation by non-

cardiovascular drugs came in a 1997 “Points to

Consider” from the Committee of Proprietary

Medicinal Products (CPMP) of the European

Medicines Evaluation Agency (Committee for

Proprietary Medicinal Products 1997).

In 2001, the Therapeutic Products Directorate

(TPD) of Health Canada published draft guid-

ance on the assessment of QT interval prolonga-

tion potential on non-antiarrhythmic drugs. Like

the CPMP document, the TPD draft proposed

specific preclinical and clinical testing of new

Fig. 10.3 The relationship of sotalol dose to the increase in QTc intervals and occurrence of torsades (N ¼ 2,622) –

data from (Bayer Healthcare Pharmaceuticals 2007)
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compounds to identify potential QT interval pro-

longation. Working in conjunction with TPD, the

United States Food and Drug Administration

(FDA) revised the draft guidance and in November

2002 issued a preliminary clinical concept paper

entitled “The Clinical Evaluation of QT/QTc

Interval Prolongation and Proarrhythmic Poten-

tial for Non-Antiarrhythmic Drugs.” The docu-

ment was the focus of a February 2003 public

meeting sponsored by FDA, TPD, Drug Informa-

tion Association, and the North American Society

of Pacing and Electrophysiology. Following the

public meeting, the concept paper was revised

and subsequently accepted by the International

Conference of Harmonisation (ICH) for har-

monization as guidance for industry that was

finalized in May 2005 entitled, E14 Clinical eval-

uation of QT/QTc interval prolongation and

proarrhythmic potential for non-antiarrhythmic

drugs (International Conference on Harmonisa-

tion 2005a). A separate preclinical QT interval

guidance preceded ICH E14 into the ICH pro-

cess. The preclinical topic has been designated

S7B [Guidance on the Nonclinical Evaluation of

the Potential for Delayed Ventricular Repolari-

zation (QT Interval Prolongation) by Human

Pharmaceuticals] (International Conference on

Harmonisation 2005b). The ICH includes among

its members the United States Food and Drug

Administration, the European Medicines Evalua-

tion Agency and the Japan Ministry of Health,

Labour and Welfare.

The ICH E14 guidance and its implications

for drug development and approval will be out-

lined in further details in later sections. Briefly

the guidance describes the assessment of poten-

tial for QTc interval prolongation in clinical

trials and the need for a “Thorough QT/QTc

study” (TQT study) with suggested methods of

analysis and design. The overarching purpose of

the recommendations is to characterize the proar-

rythmic risk of the drug. The results of the

TQT study have significant implications for reg-

ulatory approval and for labeling in the context

of the drug’s overall risk-benefit in its intended

population.

Fig. 10.4 The relationship of dofetilide dose to the incidence of any ventricular arrhythmia, torsades de pointes, and

ventricular fibrillation (N ¼ 1,346) – data from (Pfizer Inc. 2006)
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10.2.2 QT Interdisciplinary Review
Team

In an effort to provide additional specific guid-

ance to sponsors, the Center for Drug Evaluation

and Research (CDER) at the FDA established

the Interdisciplinary Review Team (IRT) in

June 2006. The QT IRT includes clinical, statisti-

cal, pharmacology, and clinical pharmacology

reviewers, and project and database management.

The IRT is responsible for reviewing TQT study

protocols and reports submitted by sponsors.

Although the IRT provides a degree of standardi-

zation and consistency across various divisions

within the FDA, the IRT’s recommendations are

nonbinding, and final decisions still reside with the

individual therapeutic groups.

10.3 When to Conduct a Thorough
QT Study

The ICH E14 guidance does not mandate the

timing or conduct of a TQT study. It is the

decision of each Sponsor and each project team

to determine whether a TQT study is needed and

the best time to conduct the TQT study in the

development timeline. In general, this is a ques-

tion to be discussed with regulatory agencies

during the ongoing development program; such

as part of an End-of-Phase 2 meeting. Because

the purpose of the TQT study is to determine

whether or not the drug has proarrhythmic risk;

the results of the TQT study can influence the

need and extent of ECG monitoring for Phase

2 and 3 trials and the risk-benefit assessment for

the drug’s approval by agencies, and its approved

labeling. When the TQT study is positive, and

demonstrates prolongation of the QT interval, the

ICH E14 guidance recommends additional eval-

uation be performed in subsequent clinical trials.

The purpose of the continued evaluation is to

fully describe the effect of the drug on QT/QTc

interval in the target patient population. For this

characterization, it is important to collect ECGs

around the time of the anticipated maximum drug

effects based on the pharmacokinetics in the

population. If the TQT study is negative and

there is no QT interval signal, then the routine

safety monitoring of ECGs, as clinically indi-

cated, is recommended for later studies.

At face value, the guidance suggests the TQT

study should be conducted early in drug devel-

opment, prior to Phase 2 or Phase 3 so additional

ECG monitoring can be added to the Phase 2/3

protocols, if needed. However, in practice, it is

not straightforward. As with any expenditure in

drug development, there is a trade-off between

obtaining information earlier in development,

high attrition rates, and the cost of development.

Because these studies are expensive, require rel-

atively large subject numbers, multiple ECG’s,

and special ECG handling, the study conduct is a

significant investment compared to other healthy

subject trials. Investments spent early in the

development timeline may be wasted if the drug

does not progress. As a result of these trade-offs,

a more pragmatic approach is often taken. The

potential risk of the drug to prolong QTc interval

and result in a positive TQT study should be

assessed in early development by considering

the preclinical data package (see ICH S7b guid-

ance) (International Conference onHarmonisation

2005b) relative to QT/QTc prolongation. What is

the potential for the drug to cause QT/QTc inter-

val prolongation relative to the predicted concen-

trations needed for efficacy given the results

from HERG channel, dog telemetry, general tox-

icology findings, etc.? In the first studies in

humans, the ECGs can be recorded serially at

time points to match a subset of the pharmacoki-

netic samples. The relationship between concen-

tration and QTc interval can be explored across a

wide range of doses and concentrations using a

pooled analysis across the single and multiple

dose tolerance studies. Categorical analysis of

outliers as mentioned below is also helpful to

understand the relative risk. If the early clinical

data and preclinical data show a potential for

QTc interval prolongation, then it may be wise

to monitor ECGs in the patient trials. If the early

clinical data and preclinical data indicate little to

no risk of QTc interval prolongation, then a deci-

sion could be made to implement only routine

ECG monitoring for safety in the patient trials. In
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the later case, the Sponsor is accepting the risk

inherent in assuming the TQT study will be neg-

ative and further monitoring in Phase 2/3 would

not be required. In either case, the TQT study

would then be conducted later in development

either in parallel with Phase 2b or Phase 3 after

proof of concept has been established.

In addition to general development timeline

considerations, the availability of sufficient data

to make an informed choice of the dose will also

drive the timing of the TQT study. As is

explained more fully in the section on dose,

choosing the correct therapeutic and (when pos-

sible) supratherapeutic dose for the study is criti-

cal. If the TQT study is conducted too early in

development, there is risk the doses used in the

TQT study will not reflect the final therapeutic

dose, which can impact the interpretation of the

results and regulatory acceptance of the study.

A TQT study will be required for most drugs

at the time of filing based on the current regu-

latory environment, although there are excep-

tions since some drugs cannot be studied in

healthy subjects due to safety or tolerability con-

cerns. This is often the case with cancer therapies

due to cytotoxicity issues, but may also affect

other therapeutic areas, such as schizophrenia

where the drug may be tolerated at the therapeu-

tic dose in patients, but not in healthy subjects.

One alternative is to conduct the TQT study in

the patient population, but this may present pro-

blems resulting from the potential for increased

variability in the QTc interval in patients,

increased potential for a false positive study

with the parallel design (Hutmacher et al. 2008)

and the potential use of other concomitant med-

ications in the target population. Further, the use

of placebo or even active controls in some patient

populations may not be ethical. Alternative

approaches have been suggested for oncology

drugs. At a high level, the recommendation

involves characterization of the ECG parameters

across a wide range of doses (or concentrations)

usually from the dose escalation study in

patients. A separate ECG sub study under tightly

controlled conditions in the target patient popu-

lation preferably with concentration-QT interval

modeling included could then be added to the

regulatory submission package to characterize

the risk. Curigliano et al. (2008), Serapa and

Britto (2008), and Rock et al. (2009) have all

published in more detail on this topic. These

alternate approaches should be discussed with

the relevant regulatory authorities to gain accep-

tance of this package in lieu of the full package

that includes a TQT study.

10.4 Measuring QT/QTc Intervals

10.4.1 Machine, Semi-Automated, and
Manual Over-Read Methods

The techniques currently used for assessing ECG

intervals can be classified into three broad cate-

gories: fully manual, fully automated, and semi-

automated, or manual adjudication. When using

a manual over-read technique, a human reader

examines ECG waveforms and places reference

marks at the beginning and the end of the inter-

vals of interest, without the assistance of a com-

puter algorithm. When manual measurements are

made from ECG waveforms in a single lead,

multiple (three or more) cardiac cycles are gen-

erally averaged to produce the final determina-

tion of interval duration. An advantage of this

technique is that a trained reader reviews and

interprets the ECG tracings and is able to identify

potential artifacts such as T wave morphology

changes or the presence of U waves, which may

occur after the end of the T wave. These findings

may often be seen in patient populations, espe-

cially those with existing cardiac disease. A dis-

advantage to this technique compared to automated

approaches is the inherent inter- and intra-reader

variability, especially when multiple measure-

ments are performed over an extended period

of time (e.g. several months). Core ECG labora-

tories, which act like a central laboratory for

reading ECGs, performing manual over-read

techniques should observe standard operating

procedures based on prospectively defined

criteria for determining the onset and offset

of ECG intervals of interest, and all readers

should be trained in the consistent application

of these criteria (International Conference on

10 Design, Conduct and Analysis of Thorough QT Studies 217



Harmonisation 2008). Although the ICH E14

document recommends the reader be skilled, it

does not identify the specific training that is

needed. Using a trained technician to read ECG

recordings with a cardiologist review would be

consistent with the ICH E14 guidance. In an effort

to improve consistency in over-read values, the

guidance recommends limiting the number of

readers reviewing the ECG tracings. The guidance

asks for assessment of intra- and inter-reader

variability and suggests “a few skilled readers”

(not necessarily a single reader) to analyze a

whole TQT study, since increasing the number

of readers may increase variability (International

Conference on Harmonisation 2005a). It is re-

commended by some, however, that one reader

should examine all the ECG tracings for the same

subject throughout the trial.

For the fully automated (machine-read)

approach, ECG interpretation relies entirely

upon a computer algorithm for the measurement

of ECG intervals. The algorithm used to derive

QTc intervals from machine-read ECGs is not

consistent among the different manufacturers

and machines. It’s useful to know which correc-

tion factor was used if the investigator is reading

the initial machine recording output for real time

safety monitoring at the clinical site. Most digital

electrocardiographs are equipped with algorithms

that perform measurements on global waveforms

from all 12-leads. Although automated measure-

ments have the advantage of being consistent and

reproducible, they may be problematic and pro-

duce misleading results in the presence of a noisy

baseline or when dealing with abnormal ECG

rhythms, often resulting from low amplitude P

or T waves, or overlapping U waves (International

Conference on Harmonisation 2008). These issues

are usually not a concern with ECG tracings col-

lected from healthy subjects. The technology used

for the construction and measurement of wave-

forms vary between different computerized algo-

rithms and between different software versions

within individual equipment manufacturers (see

Sect. 10.5.2.1). Therefore, when using an auto-

mated approach, it is recommended the same

brand of electrocardiograph be used for all subjects

in the trial. In comparison with manual methods,

automated approaches offer advantages in terms of

absolute repeatability of measurements, lack of

reader errors related to fatigue and lapses of atten-

tion, and lower cost considerations.

The third approach to over-reading ECG

recordings is the semi-automated or manual adju-

dication method. This technique uses a computer

algorithm for the initial placement of reference

marks on the waveforms to note where on the

tracing the computer is making its measurements.

A human reader then reviews the reference

marks’ placement, and performs adjustments

when the computerized measurements are con-

sidered to be inaccurate. In an effort to ensure

consistency between readers, it is important the

laboratory performing the review of the auto-

mated measurements has prospectively defined

criteria for determining when changes to

computer-generated marks are corrected. This

approach can have the advantage of greater con-

sistency and reproducibility than fully manual

readings, while providing an opportunity to cor-

rect any errors made by the algorithmic methods.

In a review of 9,500 ECGs measured in healthy

subjects using the semi-automated approach,

only 10 (0.11%) of the recordings were corrected

by the investigator (Darpo et al. 2006).

The ICH E14 guidance currently recommends

either fully manual or semi-automated approaches

for determining QT intervals in TQT studies. If a

definitive TQT study has a positive finding for

QT interval prolongation, the fully manual or

semi-automated methods are currently recom-

mended to describe the effect of the drug on the

QT/QTc interval in an adequate number of

patients from the target population (International

Conference on Harmonisation 2005a). When the

TQT study is negative, automated methods are

adequate to assess routine ECG safety in later

phase clinical trials (International Conference on

Harmonisation 2005a, 2008). Currently, there are

several companies working on developing and

validating fully automated techniques. As these

devices become available, the recommendations

in the guidance for measuring ECG intervals

could be modified.
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Although manual ECG techniques have his-

torically been preferred in studies of drug-related

QT/QTc interval effects, manual techniques are

susceptible to reader bias and variability. A

recent analysis of ECG data using manual and

machine-based techniques from three studies in

healthy subjects demonstrated automated techni-

ques were capable of detecting small changes in

the QTc interval following a positive control that

were similar to those with manual readings and

arrived at the same conclusion (Darpo et al. 2006).

Based on these findings, there is evidence that

automated techniques are similar to manual over-

reads for measuring QT intervals in healthy sub-

jects (Darpo et al. 2006). In another comparison

of manual and automated measurements of QT

interval in healthy subjects, five TQT studies

were evaluated (Fosser et al. 2009). Results

from this analysis demonstrated that the fully

automated, fully manual, and semi-automated

methods all detected moxifloxacin-induced,

baseline adjusted, placebo-subtracted mean

changes in QTcF intervals. In general, manual

and semi-automated techniques were associated

with greater variability than a fully automated

method, but all were comparable for the purpose

of demonstrating assay sensitivity in healthy sub-

jects (Fosser et al. 2009).

One instance when manual over-reading of

ECG tracings may have a clear advantage over

automated methods is when the study is being

conducted in patients, especially those with car-

diac disease (McLaughlin et al. 1996). Electro-

cardiograms from patients often exhibit altered

T wave morphology relative to ECGs from

healthy individuals. In a study comparing auto-

mated QT interval measurement techniques in

cardiac patients and healthy subjects, the

machine-read measurements were two times as

variable as the manual reference performed by an

experienced reader (McLaughlin et al. 1996).

10.4.2 Correction Methods

As noted earlier the two most common correction

methods for the effect of heart rate on the QT

interval are the Bazett’s (1918), where the QTcB

¼ QT/(RR)1/2, and Fridericia’s (Fridericia 1920),

where the QTcF ¼ QT/(RR)1/3 (also called fixed

correction methods). Both formulae have issues

with overcorrection as the heart rate increases

above 60 bpm and under correction below

60 bpm. While the Bazett method is commonly

programmed into the automated ECG machine

readouts, the Fridericia’s correction is considered

to be more accurate in most cases. As a result, the

QTcF interval is often the default correction

method used for summarization and analysis of

the QTc interval data.

Other correction methods are available based

on linear regression techniques, nonlinear or lin-

ear regression modeling on pooled data, and

within subject data. For example, a common

linear correction formula is the Framingham

which is QTc ¼ QT + 0.154(1 � RR). Linear

correction methods are applied to the placebo or

baseline data to obtain the slope of the QT-RR

interval relationship.

An Individual Correction method (or subject

specific, QTcI) fits a regression model to the

QT-RR baseline data from each subject. The two

main issues with this method are (1) the need for

several baseline measurements to get a good

estimate and (2) the need for a wide range of

heart rates. Guidance from Health Canada sug-

gests greater than 100 QT-RR pairs should be

included per subject and the RR should range

from approximately 600–1,000 ms (Health

Products and Food Branch 2009). The use of a

12-lead Holter where the continuous recording is

sampled at multiple time points to collect the

ECG parameters has been used to produce the

requirement for several measurements. The heart

rate issue is more difficult in healthy subjects.

Methods such as exercise induced changes in

heart rate have been suggested. The regulatory

acceptance of these approaches in relevant

regions should be explored before implementing

these techniques or using QTcI interval as the

primary endpoint.

A population based correction method (also

called study specific or pooled correction) fits a

mixed effects regression model to the pooled

QT-RR data from all subjects within a study.

While an individual method assumes a different
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QT-RR relationship for each subject, the fixed

and population based methods assume the

QT-RR relationship is the same for all subjects.

A population based correction is often explored

as part of the population based concentration-QT

interval analysis and has been accepted by the

regulatory authorities as an alternative approach

when QTcF intervals and QTcB intervals dem-

onstrate significant correlation between QTc

interval and RR interval. An example plot of QTc

versus RR for three different corrections methods

demonstrating the varying degree of correlation

is shown in Fig. 10.5.

While these other correction methods have

been used to analyze ECG data, there is no con-

sensus on whether they have a significant advan-

tage over the common Fridericia’s method

(QTcF). In direct comparison of fixed, individ-

ual, and population methods on the same dataset

the differences were negligible, indicating an

effect on the individual but not the subject aver-

aged mean QTc interval (Wang et al. 2008). One
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Fig. 10.5 Plot of QTc by RR intervals for Bazett’s, Fridericia’s and a protocol-specific correction factors (Riley et al.

2006)
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of the major limitations of the use of any of these

alternate correction methods is that the broader

clinical database will largely include only QTcB

interval and/or QTcF interval collected from

machine-read ECGs. This may make it difficult

to summarize across studies and to fully assess

risk at the time of submission.

10.4.3 Alternative QT Interval
Assessment Approaches Under
Consideration

The standard formulae for QT interval correction

are heart-rate dependent. Therefore, if the drug

causes a change in heart rate, the hysteresis effect

in QT interval change with heart rate may lead to

an overestimate of the QTc interval change. The

adaptation to the acute change takes approxi-

mately 2 min to complete (Franz et al. 1988;

Lau et al. 1988).

The RR binning method has been proposed as

a means of controlling for heart rate. All the QT

values are distributed according to their preced-

ing RR interval into “bins” or groups. As an

example, the estimate of the QT interval at

1,000 ms or QT interval at 60 bpm is determined

from an average of the QT values in the

995–1,004 ms bin. A 12-lead Holter monitoring

system which allows for continuous ECG assess-

ment may be used for data collection. The differ-

ences in the estimated placebo corrected QTc

interval change from baseline using this tech-

nique may or may not be different than using a

simpler QTcF interval method (Extramiana et al.

2005; Malik et al. 2009). Because the averaged

values are collected over a range of time points

post dose, this approach results in under-estima-

tion of the maximum QT/QTc prolongation

(Health Products and Food Branch 2009).

A second approach is the estimate of the beat-

to-beat confluence of ECG data or “clouds”

(Fossa et al. 2005, 2007; Fossa 2008; Malik

2008). The premise is that methods to correct QT

intervals are confounded by changes in autonomic

state (normal physiological changes) and may not

accurately reflect or quantify arrhythmogenic risk.

To apply this technique, the beat-to-beat conflu-

ence of ECG data is sequentially plotted. The

nonparametric bootstrap resampling method is

used to compute the mean of the uncorrected

beat-to-beat QT interval value and the upper

and lower 95% confidence intervals. A high qual-

ity digital 12-lead Holter system is used for data

collection. Some validation of the method is

completed (Fossa et al. 2007), and this technique

is being explored as an alternative to traditional

correction techniques.

These alternate approaches are still under

investigation. Although there are examples where

these methods have been accepted by regulatory

authorities, discussion with the regulatory agen-

cies is warranted prior to their submission.

10.5 Study Design Considerations

10.5.1 Subjects

10.5.1.1 Patients or Healthy Subjects
One of the first considerations when designing a

TQT study is the study population to be included

in the trial. There are no regulatory requirements

to conduct the TQT study in the patient popula-

tion for which the study compound is being

developed, and therefore, these studies are typi-

cally conducted in a healthy subject population.

There is, however, one noted exception: when

there are safety concerns limiting tolerability of

the compound in healthy subjects. Examples

include neuroleptics and cytotoxic agents. In

these cases, it is prudent to conduct QT interval

studies in the patient population in which the

compound is being developed. Additional dis-

cussion of these situations can be found in the

Sect. 10.3.

Regarding other demographic factors, there

are no regulatory requirements to include or

exclude subjects from the study-population

based on age, gender or race. It is recognized,

however, females have slower cardiac repolari-

zation than males, which, on average, results in

longer baseline QTc intervals (Stramba-Badiale

et al. 1997). In addition, it has been reported

females are at a greater risk of developing TdP

associated with the use of certain cardiovascular
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agents (Makkar et al. 1993). There are also data

to support the existence of sex-related differences

in the sensitivity of drug induced QT interval

prolongation (Benton et al. 2000; Rodriguez

et al. 2001). In one study, a single low dose

infusion of ibutilide produced greater QT interval

prolongation in females than males, independent

of the concentrations of ibutilide (Rodriguez

et al. 2001). In addition, this same study con-

cluded females demonstrated greater QT interval

variability in response to ibutilide depending on

which phase of the menstrual cycle they were in

when they received the drug. Women during

menses and the ovulatory phase of the menstrual

cycle had the greatest QTc interval response,

relative to the luteal phase, thereby supporting a

role for sex hormones in drug-related QT interval

prolongation. Given this information, it is com-

mon to include sex as a covariate in the model

for concentration-QTc interval analysis (see

Sect. 10.6.2). Currently, there are no regulatory

requirements to have gender balance in TQT

studies provided the targeted indication is not

gender-based; and there is no regulatory guid-

ance for controlling the phase of menstrual

cycle during a TQT study.

Another factor to consider in the TQT trial is

the ethnicity of the study population. Ethnic var-

iation in drug metabolizing enzymes, e.g. (CYP)

2C9, 2C19, and 2D6, are well known and may

result in altered drug exposure (Shah 2005).

While there does not appear to be inter-ethnic

differences in QTc interval duration in the

absence of drug (Mansi and Nash 2005), ethnic

variability in the response to a challenge with a

drug known to prolong QT intervals cannot be

ruled out (Shah 2005). It is recognized ethnic

differences exist in cardiac sodium and potas-

sium channel variants in healthy individuals,

potentially linking a genetic component to an

individual’s susceptibility to clinically signifi-

cant drug induced QT interval prolongation

(Ackerman et al. 2003; Shah 2005). Caucasians

may be more susceptible to QT interval prolon-

gation by hERG blockers than Asians (Shah

2005). The ICH E14 guidance recommends gen-

otyping of patients should be considered for

those who experience marked prolongation of

the QT/QTc interval while on drug therapy

(International Conference on Harmonisation

2005a).

There are other diseases and conditions

reported to result in longer QT intervals, but the

impact these factors have on QT interval assess-

ment is unknown. Control of these conditions is

less important, and is unlikely to be an issue in a

crossover designed trial where subjects with

these demographic factors serve as their own

controls.

10.5.1.2 Inclusion/Exclusion Criteria
to Consider

As stated above, the general recommendation is

to conduct a TQT study in a healthy population

of males and females, unless there are safety and

tolerability concerns with administering the com-

pound to a healthy population. Consequently,

standard inclusion/exclusion criteria for healthy

volunteer studies would apply. Particular atten-

tion should be given to excluding individuals

who have history of risk factors for TdP, includ-

ing cardiac disease, hypokalemia, or a family

history of Long QT Syndrome. In addition, sub-

jects who have repeated baseline QT/QTc inter-

vals greater than 450 ms should be excluded

from the TQT study. It is also important to limit

all known and potential sources of QT/QTc

variability, so the use of concomitant medica-

tions, especially those known to alter the QT/

QTc interval should be excluded from the trial.

If conducting the trial in patients, these addi-

tional criteria should also be considered and

avoided including the exclusion of concomitant

medications likely to prolong QT intervals.

10.5.2 Study Design

10.5.2.1 Equipment Considerations
The ECG database for TQT studies is generally

derived from collecting 12-lead surface ECGs.

The primary challenge in measuring the QT

interval from 12-lead ECGs often involves the

consistency of being able to accurately and

reproducibly detect the end of the T wave. This,

unfortunately, is not always such a simple
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process. Changing T wave amplitudes and

morphologies, often seen in cardiac patients can

make this process a more challenging task. To

confound matters even more, there is no standar-

dized algorithm for QT interval measurement

used in today’s automated devices. Some ECG

machines may identify selected leads and use a

specific number of complexes for measuring QT

intervals, while others may determine a global

value across all 12-leads, often using the earliest

onset of the Q wave and the latest offset of the T

wave to calculate an integrated QT interval. In

addition to using different leads, automated

devices may also use various techniques to deter-

mine the offset of the T wave. These methods

often rely on the amplitude and slope of the

T wave. For example, the end of the T wave

may be identified as the intercept of iso-electric

level of the ECG tracing with a tangent line

drawn to the point of the maximum T wave

slope (McLaughlin et al. 1996). In a study that

evaluated different model electrocardiographs

manufactured by different companies, it noted

that one company’s brand consistently gene-

rated QT intervals 16–19 ms shorter than

manually measured values, whereas another

company’s device consistently recorded values

approximately 7 ms longer than the manual tech-

nique (Darpo et al. 2006). As a result of these

differences in automated devices, it is important

to standardize the brand and model of ECG

machine used for the collection QT interval

data when conducting a TQT study. The same

machines used for baseline ECGs should also be

used throughout the treatment phase of the study.

Other important factors to consider when select-

ing ECG machines include the use of modern

devices with the capability for digital signal pro-

cessing, and which have been calibrated and

serviced shortly before the study. In addition to

consistency of automated devices, proper train-

ing of the operators is critically important to limit

variability of ECG tracings and should include

instruction of skin preparation for applying elec-

trodes, correct and consistent lead placement and

subject positioning. Although not widely used

currently, an alternative to the 12-lead surface

ECG is the digital 12-lead Holter monitor, such

as the Mortara 12-lead telemetry system (http://

www.mortara.com), which allows for continuous

collection of ECG recordings in contrast to older

style machines which capture ECGs at distinct

time intervals.

10.5.2.2 Parallel or Crossover

To fully assess a compound’s potential to pro-

long the QT interval, the ICH E14 guidance

recommends a minimum of four treatment arms

which include placebo, positive control, and usu-

ally two doses of the study drug, one being the

clinically relevant dose, the other being a supra-

therapeutic dose (see below). If the pharmacoki-

netic profile of the drug candidate is suitable, the

preferred trial design for the TQT study is a

cross-over design. This design allows for reduced

within-subject variability and is more efficient by

requiring fewer subjects. Additionally, a sub-

ject’s response on study drug and active control

can be compared to his or her own response on

placebo. The possibility of carryover effect

between treatment periods is absent or negligible

since crossover studies are single dose with ade-

quate washout between periods. The crossover

design is also preferred if an individual correc-

tion approach (QTcI) is used to obtain the best

heart rate correction for QT interval values.

Despite the advantages of using a crossover

design, the use of a parallel design may be the

more appropriate choice of design in some situa-

tions. Generally a parallel design is logistically

more feasible when the properties of the study

drug will result in either a long dosing period for

multiple dose studies or a long washout period.

In either case, the length of the study for a cross

over design may be prohibitive. One example is a

drug with a long elimination half-life that results

in a long dosing period to attain steady-state or a

long washout period between treatments to fully

clear the drug and effects. Another example for

using a parallel design is when a carryover effect

is expected, such as with irreversible receptor

binding or long-lived active metabolites. The

choice of patients instead of healthy volunteers

may also drive a parallel design because it may

be less feasible or ethical to dose patients for the

length of a cross over study.
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10.5.2.3 Single or Multiple Dose

In general, the duration of dosing, or the dosing

regimen should be sufficient to characterize the

effect of the drug and its active metabolites at

relevant concentrations and should be guided by

available pharmacokinetic data for the com-

pound. TQT studies can be conducted as single

dose trials if the candidate is not significantly

metabolized and does not show significant accu-

mulation following repeat dosing, so the expo-

sure observed after a single dose is equivalent to

that seen at steady state (e.g. short half life

drugs). Dosing conducted to steady state is

recommended if there is significant accumulation

of the parent compound or its metabolite(s).

Some regulators and academic experts believe

multiple dose studies are necessary to rule out

delayed drug effects on cardiac tissues, which

may not be apparent following a single dose

administration. However, a single dose study is

generally adequate as recommended in the ICH

E14 guidance which states for drugs with short

elimination half-lives and no metabolites, a sin-

gle dose study may be sufficient (International

Conference on Harmonisation 2005a).

For drug candidates that require steady state

assessments, the active treatment arm(s) and pla-

cebo arm should all be dosed for the same dura-

tion, however, the positive control selected for

the study only needs to be given long enough to

have its expected effect on the QT/QTc interval,

which in general may accomplished with a single

dose.

10.5.2.4 Dose Selection

The doses selected to conduct the TQT study

should take several considerations into account.

According to the ICH E14 guidelines, doses

should include the expected clinically therapeu-

tic dose and a supratherapeutic dose (Interna-

tional Conference on Harmonisation 2005a).

The highest dose selected must take safety and

tolerability into account and the dose should

attempt to cover the worst case scenario for the

compound in regards to exposure. Selection of

the supratherapeutic dose may be selected as the

highest attainable dose for the compound, i.e.,

the maximum tolerated dose (MTD), or may

represent the dose necessary to achieve concen-

trations expected under conditions of maximal

metabolic inhibition. For example, if the com-

pound is a metabolic substrate of the cytochrome

P450 (CYP) enzyme system, and drug interaction

studies have demonstrated inhibition with the

most potent inhibitor in the metabolic class,

doses selected for the TQT study should be

selected to mimic concentrations achieved in

the drug interaction study. If issues with tolera-

bility of the supratherapeutic doses are due to

local irritation, then the use of a metabolic inhib-

itor to achieve higher concentrations may be

considered in lieu of a supratherapeutic dose.

However, the risk of the metabolic inhibitor’s

potential to prolong QT intervals should also be

considered.

More recently a stepwise approach, similar to

that taken for hepatic or renal studies, has been

proposed. In this case, the study is conducted

using only the supratherapeutic dose, the placebo

and the active control. If the supratherapeutic

dose has no effect on the QTc intervals (less

than the threshold of regulatory concern), then

the conclusion of a negative TQT study is held

and it is assumed the therapeutic dose would

likewise have no effect. If the supratherapeutic

dose prolongs QT/QTc intervals, then the study

would need to be repeated with the therapeutic

dose (and possibly another interim dose) to char-

acterize the risk at the therapeutic dose. Because

of the additional time and cost to conduct a

second study, this approach only seems wise if

the risk of QTc interval prolongation with the

supratherapeutic dose is extremely low. This

approach should be discussed up front with the

regulatory authorities to gain some agreement

before proceeding.

10.5.2.5 Experimental Conditions
As with any well-designed clinical trial, it is

important to control factors that may influence

measurement variability as much as possible. For

the TQT study, intrinsic variability in QT inter-

val measurements may be influenced by such

factors as the subject’s heart rate, food ingestion

and circadian rhythms. As a result, it is critical to

try to control these variables through the design
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of the study. Limiting a subject’s activity levels

during the trial, especially around the time of

ECG measurement is very important for con-

trolling fluctuations in heart rates. All scheduled

ECGs should be performed after the subject

has rested quietly for at least 10 min in a supine

position. The absence of any environmental dis-

tractions in the clinic (TV, radio, conversation)

during both the pre-ECG rest and the ECG

recording period must be emphasized. As heart

rates vary naturally throughout the day and night,

the most common method for normalizing the

effect of heart rate changes on the QT interval

is through the use of established correction for-

mulae (see above, Sect. 10.4.2). Other methods

for controlling error include the use of replicate

measurements at each ECG measurement time

point, use of time-matched baselines to account

for possible diurnal variation, and conducting the

trials under conditions of a quiet environment,

using consistent lead placement and using the

same ECG machines for each subject.

Special attention should be given to ensure

identical ECG lead placement in every treatment

period, particularly for multiple ECGs on multi-

ple study days. This may be achieved by clearly

marking the individual sites for the placement of

each lead on the subject with indelible ink. In

some cases, it may be appropriate to repeat abnor-

mal ECGs to rule out improper lead placement as

contributing to an observed ECG abnormality.

Supine body position with fully lowered headrest

should also be consistently maintained for each

ECG performed. In particular, changes in heart

rate should be avoided. Whenever the nominal

time points for different procedures coincide,

the ECGs should always be collected prior to

vital sign assessments and any concomitant blood

draws or other procedures. If possible, ECGs

should be collected at least 2–3 h after a meal in

order to avoid the effect of food intake on the ECG

(see below, Sect. 10.5.2.9). The time of meals

should be standardized between study days.

10.5.2.6 Blinding and Randomization
The ICH E14 guidance states: “The ‘thorough

QT/QTc study’ should be adequate and well-con-

trolled, with mechanisms to deal with potential

bias, including use of randomization, appropriate

blinding, and concurrent placebo control group.”

The placebo control for the potential effect of

the investigational drug is important to remove

the background variability affecting heart rate

and the QT interval. The study drug and placebo

are administered in a double-blinded and rando-

mized fashion as a result.

When the ICH E14 guidance was first intro-

duced, there was much discussion at conferences

about the need to double-blind the active control

treatment. The most recent communications

from the agencies suggest blinding of the active

control is not required for the trial. The Question

and Answer document released to supplement

the ICH E14 states, “The use of a double-blinded

positive control does not appear to be essential,

provided that the reading of ECGs is performed

in a blinded manner . . . and the study is carefully

designed to ensure that specified study proce-

dures are followed uniformly. This means the

same protocol for administering the test drug

and placebo, taking blood samples and collecting

the ECG data should also be used when admin-

istering the positive control. This does not mean

that other aspects of the study, such as the dura-

tion of treatment with the positive control and the

other treatment groups, would be identical. If

blinding of the positive control is performed,

common methods include the use of double-

dummy techniques and over-encapsulation.”

(International Conference on Harmonisation

2008). This was further emphasized in a presen-

tation by Garnett at a Drug Information Associa-

tion meeting in 2008 (Garnett 2008). The point

made in the presentation was that an analysis of

moxifloxacin response across multiple studies

did not indicate a difference based on blinding

and that, in at least one instance, overencapsula-

tion of the moxifloxacin for blinding caused poor

absorption and a failed study. In the later case,

concentration-QT interval analysis was used to

demonstrate the active control effect (Garnett

et al. 2008).

In addition to blinding the drug and placebo

treatments, it is recommended that the reading of

the ECGs for interval measurements have an

element of blinding to remove reader bias. This
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is discussed in the E14 Question and Answer

document where it states, “core ECG laboratories

blind subject, time (day) and treatment in order to

reduce potential bias. The T wave analysis,

which calls for all 12 leads, can be performed

after the QT interval analyses and requires com-

parison to the baseline ECG; it can, however, be

blinded as to treatment” (International Confer-

ence on Harmonisation 2008). Since digital

ECGs are most commonly used, the ECG can

be blinded during the data handling at the core

laboratory after the ECG is transmitted, but

before the reader measures the intervals. Usually

subject, date and time identifiers, along with any

machine read interpretations or intervals, are

removed from the digital recording and replaced

with a unique identifier prior to reading. The

results can be merged with the identifier data

after the reading using the common unique iden-

tifier. When using paper ECGs, the identifying

information to be blinded can be recorded in the

case report form and an opaque label with a

unique identifier that is also recorded in the

case report form is placed over the information

printed on the ECG, effectively blinding the

identifying information. Intervals (QT, RR,

QRS, etc.) can be read independently, but the

ECGs will need to be grouped by subject with

the baseline identified for waveform evaluation

and interpretation of the clinical findings of any

arrhythmias. The core laboratories working in

this area are quite experienced with these blind-

ing issues.

10.5.2.7 Positive Control
As recommended by the ICH E14 Guidance doc-

ument, TQT studies are required to include a

positive control arm to validate study sensitivity.

The positive control should show a significant

increase in QTc intervals; i.e., the lower bounds

of the one-sided 95% confidence interval (CI)

must be above 0 ms. This finding demonstrates

the trial is capable of detecting an increase in

QTc intervals, a finding that is essential when

concluding a negative result for the test drug is

meaningful. The study should be able to detect a

QTc interval effect of about 5 ms (the threshold

of regulatory concern) if it is present. Therefore,

the magnitude of effect of the positive control

is important. In selecting a positive control, spon-

sors of trials should use a positive control

demonstrating an effect of greater than 5 ms

(i.e., lower bound of a one-sided 95% CI > 5

ms). This approach has been proven to be useful

in many regulatory cases. If, however, the posi-

tive control has too large an effect, the study’s

ability to detect a 5 ms QTc interval prolongation

might be questioned. In this situation, the effect

of the positive control could be examined at

times other than the peak effect to determine

whether an effect close to the threshold of regu-

latory concern can be detected. Importantly, the

effect of the positive control (magnitude of peak

and time course) should be reasonably similar to

its usual effect. Results suggesting an underesti-

mation of the QTc interval effect might question

the assay sensitivity, thus jeopardizing the inter-

pretability of the TQT study results (International

Conference on Harmonisation 2005a).

Using these criteria, a single 400 mg dose of

moxifloxacin has generally become the standard

positive control, as it produces QTc interval pro-

longation in the range of 5–15 ms. The guidance

also allows for other positive controls, preferably

from the same drug mechanism class as the new

chemical entity. The reproducibility of the posi-

tive control to produce a consistent prolongation

in QTc interval in the range of interest (i.e.,

approximately 5–15 ms) must be well character-

ized and documented before using it in the TQT

study. Otherwise, the risk of a failed study due to

lack of assay sensitivity would be unacceptable.

Moxifloxacin has been well accepted because the

QTc interval prolongation is reproducible, well

characterized and falls in the range of clinical

concern. Blinding of the active control is dis-

cussed under Sect. 10.5.2.6.

10.5.2.8 ECG Collection Strategy
In general, when assessing QT/QTc interval

changes, it is recommended to collect replicate

ECGs (e.g. most commonly triplicate ECGs –

defined as three single ECGs recorded approxi-

mately 1–2 min apart) around the nominal ECG

time point for all scheduled baseline and on-

treatment ECGs in TQT trials. Single ECGs
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may be recorded at screening and at any post-

study follow-up visits. One example of when

replicate ECGs are not recommended is for stud-

ies in which the goal is to relate QT interval

changes to drug exposure while plasma concen-

trations of the drug are changing rapidly (e.g.

studies with IV bolus or short-term IV infusion

of a compound).

The ECG schedule for clinical studies with

intensive QT interval assessment must be

designed with several caveats in mind. Analyses

of various populations have demonstrated the

QTc interval varies with the time of day, sleep/

wake cycle, food, and other variables. Even after

appropriately controlling for heart rate, statisti-

cally significant diurnal effects on QT/QTc inter-

vals have been observed in some studies and

must be taken into account. The time points at

which ECGs are recorded in a TQT trial must

capture the peak effect of the parent compound

and any major metabolites. The goal of obtaining

ECG analysis times is to characterize any QT

interval changes with as few sampling times as

possible. This can often be achieved with six to

eight post-dose time-points. Due to the nature of

the analysis, in which the greatest change from

baseline values is the value of concern, the more

time-points assessed, the higher likelihood of

detecting false positive results. Using the fewest

number of time-points will also allow for greater

cost savings for the trial, especially when ECGs

are captured in triplicate. The nominal sampling

times for ECG collection should be based on the

PK profile of the parent compound and any major

metabolites, and should be appropriately sched-

uled around the Tmax of the compound being

evaluated. It is recommended whenever an ECG

is recorded, a PK sample should be collected

immediately after collection of the ECG. The

schedule of ECG time points after dosing should

include the expected Cmax and Cmin for the

plasma concentration of the molecule and, as

appropriate, the time of maximum expected bio-

logic response. For the positive control treat-

ment, ECG sampling should include a minimum

of about two to three time points near Tmax for the

compound. For moxifloxacin, these time points

should include at least 1, 2, and 4 h post-dose.

Additional ECG sampling times may be col-

lected and often are recorded on the same sched-

ule as the test drug. The parent and all relevant

metabolites should be considered for both plasma

and effect-related time points. Relevant metabo-

lites are those either abundant or biologically

active (see current guidance on metabolites in

safety testing for more information). Biological

activity of a metabolite in this context constitutes

the activity on the primary pharmacological tar-

get and, in rare cases where the data are avail-

able, the hERG activity of human metabolites.

Several additional time points must also be

included in the post-dose ECG schedule to rule

out delayed effects due to unknown metabolites

or delayed physiological effects and also to pro-

vide some information as to whether or not the

subjects have returned to approximate baseline

values after dosing.

As stated above, sources of variability should

be identified and controlled whenever possible.

This variability may be separated into biologic

variability and variability due to measurement

error. Methods to control biologic variability,

such as environmental factors, activity, food,

and diurnal effects are described in more detail

in the Sect. 10.5.2.5. Reducing measurement

error may best be accomplished by collecting

replicate measurements for QT/QTc interval

assessment. A rationale for recording replicate

ECGs is that the uncorrected QT interval is

assumed to be a continuous parameter that is

measured with error. The clinical assumption is

that under controlled experimental conditions

and a stable heart rate, the uncorrected QT inter-

val does not vary much over several minutes and

thus the biological variability is stable. Using the

mean from replicate measurements is one way to

reduce potential measurement error and obtain a

more precise and reliable estimate of the sub-

ject’s true response at a nominal time. To exam-

ine the effect of replicate measurements on QT

interval assessment, a study was conducted in

32 healthy subjects to specifically address this

question (unpublished data). Variability between

single ECG measurements was compared to

variability of triplicate measurements collected

2 min apart. In this study, all QT/QTc intervals
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were measured using both an automated method

(values taken directly from the ECG machine)

and a manual assessment conducted by two inde-

pendent vendors specializing in manual over-

read methods. Results from the study indicated

that, whether manual or automated readings were

used, triplicate ECGs reduced intra-subject varia-

bility. The Table 10.1 presents the intra-subject

standard deviations for time-matched changes in

QTcF intervals for automated measurements and

two different manual methods.

Whether manual or automated readings

were used, a reduction in intra-subject standard

deviation was observed with triplicate ECGs

compared to singlets, reaching about 10 ms.

Table 10.2 shows the effect of triplicate ECGs

on intra-subject standard deviations (SD) for

QTcF intervals and corresponding sample sizes

for a crossover study to compare study drug and

placebo at one time post dose with the following

assumptions: a ¼ 0.05 (one-sided test), 90%

power, non-inferiority limit of 10 ms and under

the null hypothesis a true mean difference d
between study drug and placebo of 0 or 5 ms.

Adjusting for baseline measurements is

important for several reasons, including detec-

tion of carryover effects, accounting for potential

diurnal changes, and reducing the influence of

inter-subject differences. The two types of base-

line assessments used in the TQT study are

“time-matched” and “pre-dose.” The decision

on the type of baseline to collect is influenced

by the study design and whether it is a parallel or

cross-over study. For parallel studies, one entire

day is dedicated to obtaining baseline ECGs,

occurring preferably 1 day prior to the first dos-

ing day. This baseline is “time-matched” because

ECGs are measured in triplicate at the same time

points on the day prior to the first treatment day

as on the treatment day. The baseline day is typi-

cally a treatment free day (no drug administered),

but alternatively a placebo may be administered.

Thus, common variables affecting QT intervals

over the course of the day will be accounted for

within each individual subject.

For crossover studies, a “pre-dose” baseline

immediately prior to dosing (or within

30–60 min before dosing, depending on the num-

ber of assessments in the study protocol) in each

period can be used as the period-specific base-

line. Often a triplicate measurement recorded at

three time points in the hour before the first

treatment dose is used for the pre-dose baseline.

The baseline is then the average of all the pre-

dose measurements. The pre-dose baseline

adjusts for between subject differences, but not

for diurnal effects. The adjustment for diurnal

effects is implicit in the assessment of time-

matched drug to placebo differences and, hence,

a baseline correction for diurnal effects is not

needed.

10.5.2.9 Food Effect Considerations
The effect of food consumption on the QT inter-

val has been evaluated in a limited number of

studies with somewhat conflicting results. In one

study, a 500 kcal formula meal was administered

to 11 healthy males and females (Nagy et al.

1997). QTc interval changes were compared to

a separate group of eight healthy males and

females who received an equivalent volume of

water. In the subjects receiving the liquid meal,

QTc interval increased approximately 23 ms

above baseline within 15 min of ingesting the

Table 10.1 Intrasubject standard deviations for time-matched changes in QTcF interval (ms)

Singlet ECGs Triplicate ECGs Reduction % Reduction

Automated 12.2 10.0 2.2 18

Manual 1 14.7 9.2 5.5 37

Manual 2 14.4 10.1 4.3 30

Table 10.2 Intrasubject standard deviations for QTcF

intervals measured from single ECGs and triplicate

ECGs and the corresponding sample size

SD d ¼ 0 ms d ¼ 5 ms

Single ECGs 14 44 79

Triplicate ECGs 9 20 30
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meal and stayed elevated for the study duration

of 60 min, whereas the QTc interval decreased

significantly following ingestion of water. The

investigators also observed an increase in heart

rate following meal consumption. In another

study, the influence of food on electrocardio-

grams was evaluated in 12 healthy male subjects

(Widerlov et al. 1999). A standardized meal was

given 1.5 and 5.5 h after baseline assessments

during separate sessions and compared to fasting

in a three-way crossover design. Increases in

heart rate, as well as alterations in T wave mor-

phology were observed after the meals, but there

was no change observed in the QTc interval. The

effect of grapefruit juice on QTc interval prolon-

gation has also been studied. In ten healthy male

and female subjects who consumed a liter of

grapefruit juice demonstrated a mean peak effect

of 12.5 ms at 5 h and QTc interval prolongation

persisting up to 8 h after ingestion of the grape-

fruit juice (Zitron et al. 2005).

Although the data are not conclusive, it may

be prudent when conducting TQT studies to

avoid measuring QTc intervals within 2–3 h

after a meal, and prohibit grapefruit juice during

the duration of the study.

10.6 Data Analysis

10.6.1 Statistical Analysis

10.6.1.1 Sample Size Considerations
Sample size depends on the study design,

planned analysis approach, and estimated vari-

ance of the primary endpoint. It is not uncommon

to see sample sizes of 40–60 subjects for a cross-

over design study using the primary endpoint

and analysis described in the ICH E14 guidance

and in the analysis section below. Agin et al.

(2008) cited simulations showing, that for the

intersection–union test with a one-sided 5% sig-

nificance level, a true mean drug effect of less

than 5 ms and comparisons to placebo at 8–10

times post-dose, approximately 60 subjects

would provide about 90% power if the noninfer-

iority limit were set at 10 ms. The number of

subjects may be reduced as the ability to consis-

tently measure the QT and RR intervals is

improved and the variability in the QTc interval

primary endpoint is reduced, as was discussed

above under Sects. 10.5.2.1 and 10.5.2.8.

10.6.1.2 Analyses of Central Tendency
The primary analysis described in the ICH E14

guidance seems straightforward at first glance,

but stirred much debate of a statistical nature

during the drafting of the original guidance and

after the final guidance was released. Simulations

assessing the false positive risk and suggestions

for further refinement of the statistical app-

roaches continue to appear in the literature.

The guidance recommends the primary analy-

sis as, “. . .the largest time-matched mean differ-

ence between the drug and placebo (baseline-

adjusted) over the collection period.” Addition-

ally it recommends analysis of changes around

the Cmax for each individual could be included.

This later point is generally accomplished by

sampling ECGs around the anticipated pharma-

cokinetic Tmax of the drug. The objective of this

analysis is to determine if the drug has an effect

on cardiac repolarization using QT/QTc intervals

as the surrogate endpoint. The “threshold for

regulatory concern, . . . is around 5 ms as evi-

denced by an upper bound of the 95% confidence

interval around the mean effect on QTc interval

of 10 ms.” (International Conference on Har-

monisation 2005a). The Question and Answers

document for the E14 guidance addresses more

specifically how this is to be calculated. The

largest time-matched mean difference is to be

calculated by comparing the mean QTc interval

for the drug across the study population to the

mean QTc interval for placebo across the study

population at each time point. The largest time-

matched mean difference is then the largest of

these differences at any time point (International

Conference on Harmonisation 2008).

The QT/QTc interval on-drug and on-placebo

is to be baseline corrected for analysis. Often the

double correction, once for baseline and once

between drug and placebo is referred to as a

“double delta” correction. The baseline used for

correction is dependent on the study design
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employed. As was mentioned above in the

Sect. 10.5.2.8, a time-matched baseline is used

for parallel group studies because it allows for

the detection of diurnal pattern differences

between subjects. A pre-dose baseline, composed

of an average of ECGs collected just prior to the

first dose of each cross-over treatment period, is

used for cross-over studies.

The Pharmaceutical Research and Manufac-

turers Association (PhRMA) formed a group of

statistical experts, the QT Statistics Expert Team

(PhRMA QT SET) in December 2002 in

response to the issuance of the joint United States

Food and Drug Association (FDA)/Canada Ther-

apeutic Products Directorate Concept Paper on

the clinical evaluation of QT/QTc prolongation

which was the predicessor to the ICH E14 guid-

ance. This group contributed statistical com-

ments during the drafting of the final ICH E14

guidance and has issued recommendations on the

statistical methods to address the primary analy-

sis in the guidance (Patterson et al. 2005; Agin

et al. 2008). The recommendations of this group

have been adopted as the statistical method of

choice because of the difficulties in constructing

a confidence interval for the largest difference in

a series of population means.

The PhRMA QT SET and the E14 Statistics

Group recommended the intersection–union test

(IUT) (Berger 1982) to exclude a clinically rele-

vant effect on the QT/QTc interval. “The param-

eter being tested at each time point i, i ¼ 1, . . . ,

t is m(D)i � m(P)i ¼ population mean for change

from baseline in QTcF intervals on-drug at time i

minus population mean for change from baseline

in QTcF on-placebo at time i.”
The null hypothesis of a positive QT/QTc

effect and the alternative hypothesis of a negative

QT/QTc effect can be expressed as the following

statistical hypotheses:

Ho : m Dð Þi� m Pð Þi> ¼ 10 ms for at least one i

Ha : m Dð Þi� m Pð Þi<10 ms for all i:

The one-sided 95% upper confidence bound

for m(D)i � m(P)i is computed at each time point

i. If the upper bounds of the t confidence intervals

for the difference between drug and placebo at

every time point are below 10 ms then the confi-

dence bound for the largest mean difference is

also below the limit and the definition of a nega-

tive study by ICH E14 is satisfied (Agin et al.

2008).

Using the same basic statistical approach, this

study will be deemed adequately sensitive to

detect QT/QTc interval prolongation if the

lower bound of the two-sided 90% confidence

interval for mean differences between the active

control and placebo at the most relevant post

dose time point (generally at historical Tmax) is

greater than zero.

From a practical standpoint, the analysis of

covariance is generally performed on the raw

QTc intervals at each time point using a mixed

effect repeated measures model with sequence,

period, treatment and treatment-by-time interac-

tion as fixed effects, subject within sequence as a

random effect, baseline QTc interval as a covari-

ate. Estimates of the adjusted mean differences

(Test Drug � Placebo) and the two-sided 90%

confidence intervals for each treatment and time

are obtained from the model using linear con-

trasts.

While the IUT approach is the currently

accepted method used to address the require-

ments of ICH E14, it is not without its issues.

Eaton et al. (2006) explored some of the difficul-

ties of constructing a one-sided confidence inter-

val for a maximal mean change in QTc interval

and proposed an approach consistent with that

given above. They performed simulations to

assess the performance of the method. The

method appears to work well when the collection

of mean changes from placebo (at each serial

time point) has a distinct maximum coordinate.

It, however, does not work well when all the

values are close to or equal to the maximum

(e.g. all mean differences from placebo are simi-

lar and close to the maximum) or when all values

are close to zero. Hutmacher et al. (2008) found

limitations resulting in larger false positive rates

with the IUT, particularly when the parallel

design is used and variability of the endpoint is

large. As more studies are conducted using these

techniques, it is likely further limitations will
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be published and suggestions for alternative

approaches may be forthcoming.

10.6.1.3 Categorical Analysis
In addition to the analysis of central tendency,

the ICH E14 guidance recommends specific cat-

egorical analyses that should be summarized.

Clinically important QT/QTc interval changes

should be summarized based on the number and

percentage of patients meeting or exceeding a

predefined value and could be defined in terms

of absolute QT/QTc interval intervals or change

from baseline. It is recommended these analyses

be separated by patients with normal versus ele-

vated baseline QT/QTc intervals if the study

includes patients with elevated baseline. This

separation is more likely to be relevant when

summarizing the QT/QTc interval data across

studies rather than for the TQT study itself

where the population is more homogeneous and

typically healthy subjects.

There is no consensus regarding an absolute

upper limit, however, for clinical trials, a prolon-

gation of QTc intervals >500 ms or an absolute

increase from baseline in QTcF intervals of

>60 ms on treatment is generally considered to

be a threshold for clinical concern. The ICH E14

guidance recommends summarizing the absolute

changes and change from baseline as follows

(International Conference on Harmonisation

2005a).

Absolute QTc Interval Prolongation:

• QTc interval >450 ms

• QTc interval >480 ms

• QTc interval >500 ms

Change from Baseline in QTc Interval:

• QTc interval increase from baseline >30 ms

• QTc interval increase from baseline >60 ms

10.6.2 Concentration-QTc Analysis

In the ICH E14 guidance, the analysis of the

exposure-response relationship of drug concen-

trations to changes in QT/QTc interval was orig-

inally proposed as a secondary analysis, however,

the guidance mentions there is active investiga-

tion ongoing regarding the role and method

for exposure-response in the TQT study analysis.

As this investigation continues to be published

and presented, the important role of analyzing

the concentration-QTc interval relationship has

become apparent.

A recent article on the role of concentration-

QT interval relationships written by reviewers at

the United States Food and Drug Administration

(Garnett et al. 2008) suggest both the formal

statistical analyses and the concentration-QT

interval analyses contribute to the ultimate deter-

mination of whether or not a drug prolongs the

QT/QTc interval. Whereas the IUT method has

fewer assumptions, the concentration-QT inter-

val analysis is based on the pharmacology of

drug-induced QT interval prolongation.

One critical piece to the acceptance of concen-

tration-QT interval analysis is establishing some

criteria around the method to be used. In this

chapter, a population based approach to a rigor-

ous concentration-QT interval analysis that has

been accepted by regulatory authorities during

product reviews is proposed, but it is acknowl-

edged this is not the only acceptable approach.

Agreement on a commonly accepted analysis

plan is yet to occur. In response to the ongoing

discussion, the Cardiac Safety Research Consor-

tium (CSRC) has initiated a team led by Luana

Pesco Koplowitz with broad representation from

the pharmaceutical industry and regulatory agen-

cies who are working on a white paper, “PK/PD

analysis for QT evaluation.” In addition to the

CSRC team, the Optimizing QT Initiative Task-

force was established in December 2008 as a

subteam to the PhRMA Clinical Pharmacology

Technical Group. The objective of this taskforce

is to optimize the performance characteristics of

thorough QT trials by applying PK/PDmethodol-

ogies. The taskforce plans to develop and rigor-

ously evaluate exposure-response approaches to

quantify the concentration-QT relationship and

demonstrate that the statistical robustness of the

approch is at least equivalent to the current statis-

tical methods (i.e. IUT). The outcome of both

these groups will significantly impact how con-

centration-QT data is analyzed and should be

considered when developing the analysis plans
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in the future. At the time of this writing, these

white papers have not yet been released. It is

important for the TQT study that a complete

concentration-QT interval analysis plan be writ-

ten in advance of data availability to avoid any

perception of data mining or bias in order to

interpret a “positive” study.

A three-step process is proposed for the con-

centration-QT interval analysis:

1. Evaluate the effect of the drug on heart rate;

2. Evaluate the methods for correcting the QT

interval for heart rate and determine the best

correction factor(s) to use for the primary

endpoint; and

3. Evaluate the relationship between drug and

relevant metabolite(s) and the QTc interval

and any significant covariates affecting this

relationship.

The first step in a concentration-QT interval

analysis is to evaluate the effect of the drug on

the heart rate. It is important to understand the

effect on heart rate because the heart rate (or RR

interval) is used to correct the QT interval. Fit a

linear mixed effect model to the RR interval data.

RRij ¼ INTþ �
ð1Þ
i þ ðSLOPE þ �

ð2Þ
i Þ

� CONCij þ eij (10.1)

where, RRij is the RR interval at the jth measure-

ment for the ith individual, INT is the mean base-

line RR interval estimated by the model when

concentration is equal to 0 (baseline), CONCij is

the drug concentration observed matched with the

RR interval at the jth measurement of concentra-

tion for the ith individual, and SLOPE is the

population mean slope; �
ð1Þ
i and �

ð2Þ
i represent

subject-specific random effects, which are

assumed to be normally distributed with mean

0 and variance-covariance matrix O; and eij repre-
sents the residual random variable with mean

0 and variance s2. Model diagnostics should be

performed to assess the model adequacy. The 95%

confidence interval estimate for the slope should

be computed and if the interval contains zero then

lack of effect may be concluded.

If there is no effect of the drug on heart rate,

then subsequent analyses of the corrected QT

interval are appropriate. If there is an effect of

the drug on heart rate, then the heart rate effect

will be confounded with the QT interval correc-

tion and may be problematic for quantifying the

true effect of the drug on QT interval. One option

might be to simultaneously fit the QT and RR

intervals with concentration (sometimes called

the “one-step” analysis), but this has not been

widely employed. Correction factors other than

QTcF and QTcB (e.g. individually corrected QT)

may also be examined to obtain the best correc-

tion factor. Regardless, the effect of drug on QTc

intervals must be carefully evaluated when the

drug has an effect on heart rate.

The next step in the analysis is to examine

different correction factors and determine the

suitability of each. The purpose of the RR (or

heart rate) correction is to obtain QTc interval

values independent of the underlying heart rate.

Because of the regulatory acceptance of the Fri-

dericia’s (QTcF) correction, the QTcF correction

is often used in analysis as the primary endpoint

unless there is significant issue with the correc-

tion. Bazett’s (QTcB) correction is also routinely

examined, more for historical reasons than

because it gives the best correction. Often a pop-

ulation based correction factor is estimated for

comparison as mentioned in the Sect. 10.4.2. The

population correction factor can be estimated for

the drug-free singlet ECG data using the follow-

ing model:

log (QTijÞ ¼ logðINTÞ þ �
ð1Þ
i

þ bpop logðRRij=1;000Þ þ eij
(10.2)

where, log(QTij) is the natural-log transformed

QT interval at the jth measurement in the ith
individual, INT is the mean QT interval evalu-

ated at an RR interval of 1,000 ms, bpop repre-

sents the population estimate of the population

correction factor. Other variables are as previ-

ously defined.

The appropriateness of these correction

factors are assessed by determining the slope of

the relationship between the corrected QT (QTc)

interval and the RR interval using drug-free data

(i.e. this can be only baseline data or both base-

line and placebo). The appropriate correction
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factor(s) should eliminate the correlation

between QTc and RR. A linear mixed effects

model should be fit to QTc versus RR intervals

and the slope estimates can be used as the basis

for the evaluation to compare among possible

correction factors. An example of QTc and RR

interval correlation for different correction fac-

tors is shown in Fig. 10.5.

The slope and intercept are parameters that

define the linear relationship between QTc and

RR intervals. Following the application of a cor-

rection factor to the QT data, if there is a correla-

tion between QTc and RR intervals, the value of

the slope parameter will be different from zero,

indicating the correction factor is suboptimal and

a relationship still exists between QTc and RR

(heart rate) intervals. A confidence interval (CI)

could be constructed using the standard error

(SE) of the estimated parameter at a given confi-

dence level to better evaluate the estimate of the

slope parameter. A significant slope may be

defined as the 95% CI (mean � 1.96 � SE)

excluding the null value. If both QTcF and

QTcB exhibit significant correlation between

QTc and RR, then other correction factors (as

described above in the Sect. 10.4.2) may be

examined to find the one with the least correla-

tion. It is important to coordinate this analysis

with the primary statistical analysis and use the

same choice for the primary correction factor for

both analyses.

The third step in the analysis is the examina-

tion of the concentration-QTc interval relation-

ship. Garnett et al. (2008) reported most drugs

that prolong the QT interval exhibit a dose- or

concentration-QT interval relationship. Though a

variety of pharmacodynamic models appear in

the literature (Piotrovsky 2005), a simple linear

mixed effects model can often be used to des-

cribe the exposure-response relationship. As part

of any modeling exercise, the adequacy of mod-

eling assumptions should be evaluated. This may

be performed through the use of informative

graphical exploration of the results with exami-

nation of the possibility of any delayed effect.

Justification for the choice of the pharmacody-

namic model (linear versus nonlinear) should be

provided in advance of applying the model.

The following linear mixed model can be used:

QTcij ¼ INTþ SEXi þ �
ð1Þ
i

þ ðSLOPEþ �
ð2Þ
i Þ � CONCij þ eij

(10.3)

where, QTcij is the dependent variable at the jth
measurement for the ith individual, INT is the

baseline QTc interval value estimated by the

model when concentration is equal to 0, SEXi is

the difference in INT for females, CONCij is the

drug concentration observed at the same time as

QTc for the jth measurement of concentration for

the ith individual, and SLOPE is the population

mean slope of the relationship between QTc and

CONC; �
ð1Þ
i and �

ð2Þ
i represent subject-specific

random effects, which are assumed to be nor-

mally distributed with mean 0 and variance-

covariance matrix O; and eij represents the resid-
ual random variable with mean 0 and variance

s2. When triplicate QTc interval measurements

are measured at each time point, the mean of the

three QTc interval measurements is used for the

analysis, although in theory, all replicate ECGS

could be used in the analysis with the model

expanded to include an additional variance com-

ponent to account for replication. As was dis-

cussed above in the Sect. 10.5.1.1, gender is

likely to have an effect on the relationship

between concentration and QTc interval and is

typically included in the initial model based on

this assumption.

There is ongoing debate regarding which

dependent variable should be used for the analy-

sis. Garnett et al. (2008) advocate the use of the

double delta QTc interval (baseline adjusted and

difference between time-matched drug-placebo).

This offers the advantage of being consistent

with the primary statistical analysis. Alterna-

tively, raw QTc or baseline adjusted QTc inter-

vals may be used for the dependent variable with

the inclusion of parameters in the model for

baseline and/or post-dose placebo as appropriate

(Russell et al. 2008). Figures 10.6, 10.7 and

Table 10.3 show an example of the analysis

of the effect of torcetrapib and its primary metab-

olite, BTFMBA, on QTcF intervals using these
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Fig. 10.6 Observed Fridericia’s-corrected QT interval versus torcetrapib and BTFMBA plasma concentrations (Riley

et al. 2007)
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techniques. Figure 10.6 shows the observed con-

centration-QTcF data for both parent and metab-

olite, BTFMBA. Figure 10.7 shows the mean

concentrations of the torcetrapib and BTFMBA

and the expected mean change in QTcF from

the intercept over time. In this case, the analysis

showed a lack of effect of drug on QTc interval.

Raw QTc interval was used as the dependent

variable and baseline, placebo and sex were

included in the model.

Fig. 10.7 Mean Torcetrapib

and BTFMBA concentrations

(top) and expected change from

mean intercept versus time

postdose (bottom) following
administration of torcetrapib/

atorvastatin 240/80 mg on day

21 (Riley et al. 2007)
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As an alternative example, Fig. 10.8 shows an

example of sotalol concentration versus QTcB

intervals in pediatrics, where a significant effect

on QTc intervals was demonstrated. Once the

final model parameters are estimated, the pre-

dicted population average double delta QTc

Table 10.3 Modeling results of Fridericia’s-corrected QTc interval versus torcetrapib and BTFMBA plasma concen-

tration analysis (Riley et al. 2007)

Parameter Model Para-meter

estimate (%RSEa)

IIVb

(%RSEa)

95% CIc

Intercept (ms) INT ¼ y1 þ y2 � PBOþ y3 � SEX 13.8

(7.23)d

Baseline y1 402 (0.289) (399, 404)

Placebo y2 �1.11 (45.0) (�2.08,

�0.358)

Sex effect for

males

y3 �11.2 (12.9) (�13.9,

�8.66)

Slope SLOPE ¼ y4 � torcetrapibþ y5 � BTFMBA

Torcetrapib

(ms/(ng/mL))

y4 �0.00842 (11.1) 0.00493

(49.8)d
(�0.00996,

�0.00665)

BTFMBA (ms/

(mg/mL))

y5 0.118 (16.9) 0.147

(34.0)d
(0.0793,

0.154)

Residual error

(ms)

s 9.92 (2.89)d

aPercent relative standard error (%RSE) calculated as standard error/|parameter estimate| � 100
bIIV ¼ interindividual variability expressed as standard deviations so that the reported values have the same units as the

structural model parameters with which they are associated
c95% confidence interval (CI) derived from nonparametric bootstrap estimates (n ¼ 1,000)
d%RSE of variance estimate

Fig. 10.8 Sotalol effect on QTc intervals in pediatric

subjects – observed QTc interval versus the individual

(empirical Bayes) predicted sotalol concentration for all

patients in the PK–PD study. Reprinted with kind permis-

sion from Springer Science + Business Media: (Shi et al.

2001)
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intervals and its corresponding upper 95% one-

sided confidence interval boundaries may be

evaluated at the average maximal plasma con-

centrations observed at the therapeutic and

supratherapeutic doses (Garnett et al. 2008).

This calculation can be used to assess the clinical

relevance of the findings given the slope and the

expected therapeutic concentration range. An

example of one such analysis is presented in

Fig. 10.9 looking at the predicted change in

QTc intervals using the observed mean Cmax at

the low end and high end of the expected thera-

peutic dose range.

10.7 Interpretation

The TQT study is designed to answer the basic

question, “Does the drug cause an increase in

QTc intervals that meets the threshold for regu-

latory concern?” The first part to interpreting the

results of the TQT study is to assess whether or

not the method was sufficiently sensitive to be

able to detect a QTc interval increase of clinical

concern. The positive control must show a sig-

nificant increase in QTc intervals (i.e. the lower

bound of the one-sided 95% confidence interval

must be above 0 ms) and also be able to detect a

mean maximal effect of about 5 ms. The effect of

the positive control should be similar in the mag-

nitude of maximum effect and time course to its

usual effect as demonstrated in the literature and/

or prior studies. If the positive control shows an

effect greater than 5 ms, then the effect of the

positive control could be examined at times other

than the peak effect to determine whether or not

an effect close to the 5 ms threshold of regulatory

concern can be detected (International Confer-

ence on Harmonisation 2008). If these criteria

are not met, then the assay sensitivity of the

study will be called into question and it will be

difficult to interpret the test drug results.
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Fig. 10.9 QTcF interval change from baseline versus

plasma concentration following single and multiple oral

doses. Arrows indicate the mean peak plasma concentra-

tion (Cmax) after the single dose (SD) and at steady state

after 7 days (SS). Closed circles and vertical lines are the

model-predicted mean and 90% confidence interval

QTcF. (Russell et al. 2008) The final, definitive version

of this paper has been published in The Journal of Clinical

Pharmacology 2008 by SAGE Publications, Inc., All

rights reserved#
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Assuming the study was sufficiently sensitive,

if the upper bound of the 95% one-sided confi-

dence interval for the largest time-matched mean

difference of the drug on the QTc interval

excludes 10 ms, then a negative TQT study can

be declared based on the ICH E14 guidance. A

concentration-QTc interval analysis that demon-

strates a lack of positive slope is further confir-

mation of these results. A negative study gives

reasonable assurance the mean effect of the drug

on QTc intervals is not greater than approxi-

mately 5 ms. Consequently, the proarrhythmic

risk of the drug should be low.

If the largest time-matched mean difference

exceeds these thresholds, then the study will be

positive. Once a study is determined to be posi-

tive, the analysis then focuses on characterizing

the relative risk of the drug’s effect on the QTc

intervals. The drug may have a positive effect

at the supratherapeutic dose, but not at the thera-

peutic dose. In this case, the compound’s

labeling may need to describe under what condi-

tions the supratherapeutic concentrations and

increased risk are likely to occur.

One of the most informative ways to help

characterize the drug effect is to carefully review

the concentration-QTc interval relationship. The

concentration-QTc interval analysis will help to

describe the concentrations and conditions under

which the increase in QTc interval exceeds the

threshold of concern. This, combined with an

understanding of the sources of variability that

will increase the drug concentrations, can pro-

vide greater understanding the relative risk-

benefit of the drug. In the example shown in

Fig. 10.9, the 20 mg dose at both single dose

and steady state and the 40 mg single dose do

not exhibit clinical relevant QTc interval

increase. It is only with the administration of a

40 mg dose given to steady state that the drug

effect on QTc interval begins to cross the limits

of the threshold for clinical concern. In this par-

ticular example, the concentration-QTc interval

analysis combined with an understanding of the

drug receptor occupancy helped drive the dose

selection for late-stage studies. In this example,

the concentration-QTc interval analysis also

teased out a different slope for the first day of

treatment compared to steady-state which helped

to explain results observed in the statistical anal-

ysis (Russell et al. 2008). The concentration-QTc

interval analysis may also help explain the results

when the IUT analysis results are incongruent, e.

g. highest dose has the smallest effect, time

course of effect inconsistent between treatments,

etc. (Hutmacher et al. 2008; Russell et al. 2008).

In an example described by Hutmacher et al.

(2008), the concentration-QTc interval results

combined with simulations of the placebo data

from the trial demonstrating a high likelihood of

a false positive result led to a conclusion by the

regulatory authority that the positive result of the

IUT analysis was likely a spurious result. Subse-

quently, the product labeling for this drug

referred to the concentration-QTc interval analy-

sis and concluded the drug did not exhibit QTc

interval prolongation.

Determining whether or not the test drug has a

clinically relevant effect on QTc interval requires

review of the full data package for the drug. All

data, preclinical and clinical, on the QT/QTc

interval and cardiac adverse events need to be

reviewed and summarized at the time of market-

ing submission to determine the relative risk of

the compound to prolong QT/QTc interval. The

results of the TQT study will be one critical

component to the risk assessment and will drive

the need to characterize the risk more fully in the

patient population.

10.8 Summary

The assessment of the proarrythmic risk of drugs

has made significant progress since the early

1990s. The ICH E14 guidance and subsequent

question and answer document give clear guid-

ance for a Thorough QT study design that can be

used to demonstrate that a drug does not cause a

QTc interval increase of clinical concern. The

design and conduct of the TQT study is becom-

ing fairly standard. The use of a reduced design,

similar to the approach used in the hepatic and

renal impairment studies, has been proposed, but

is not yet widely in use. The reduced design
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approach only seems to be warranted if the risk

of QTc prolongation is very low.

There are a few sections of the guidance,

primarily regarding the analysis and interpreta-

tion of the results, for which investigation con-

tinues. The use of the IUT analysis as the primary

statistical analysis for central tendency continues

to come under some scrutiny. The primary con-

cern seems to be around exploring the situations

in which the IUT is prone to false positive results

and proposing alternative analysis methods when

these conditions exist.

The output of the working group formed by

the Cardiac Safety Research Consortium and the

Optimizing QT Initiative Taskforce should help

to create a standard method for PK-QTc analysis.

Once a standard analysis method is accepted, the

PK-QTc interval analysis may take a larger role

in the interpretation of the proarrhythmic risk.
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Contribution of Quantitative Whole-
Body Autoradioluminography to the
Early Selection and Development of
Drug Candidates

11

Alain Schweitzer

Abstract

Whole body autoradioluminography (WBA) utilizes radiolabeled com-

pounds to assess the in situ tissue distribution of new chemical entities

in laboratory animals and can be used to project dosimetry calculations

in humans. The estimate of the tissue concentrations of radioactivity,

along with the tissue distribution of radioactivity, allows for physio-

logical-based pharmacokinetic–pharmacodynamic modeling and esti-

mation of tissue half-life. This chapter provides a review of QWBA

methods, methods, data interpretation, and applications to early drug

development.

11.1 Introduction

The distribution of a radiolabeled drug and/or its

metabolites in the tissues, matrices, and organs of

a test animal is usually assessed during the course

of the pharmacokinetic studies performed prior

to the first clinical trials. Up to the early 1980s,

the tissue distribution of radioactivity has been

determined in most laboratories by dissection of

the test animals at room temperature and

subsequent processing of the organ and tissue

samples by liquid scintillation counting. This

method had the disadvantage of allowing post-

mortem diffusion of radioactive materials to

occur in the tissues. Moreover no information

was provided on the specific localization of the

radioactive materials in the tissues and organs.

Whole-body film-autoradiography, a spatial

radioactivity method which allows for the specific

localization of radioactivity in the organs and

tissues, was used only to fulfill the requirements

of some regulatory authorities for registration of

the new drug, i.e. in a very late development

phase. One of the reasons of this limited use

may have been the difficulty to obtain accurate

quantitative information on a routine basis. This

situation has started to change in the late 1980s as

new spatial radioactivity imaging methods as

well as new computer-based equipment specifi-

cally designed for the qualitative and quantitative

interpretation of whole-body autoradiographs

became available. The latter are based either on

the generation and record of photo stimulated

light (storage phosphor or autoradioluminogra-

phy, the most widely used technology nowadays)

or on direct counting of surface radioactivity

visualized electronically.
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Qualitative and quantitative whole-body film-

autoradiography, autoradioluminography and

direct nuclear counting have applications in

numerous sciences; however, the objective of

this chapter is to provide the reader with basic

information on quantitative whole-body autora-

dioluminography (QWBA), and to discuss its

typical applications, in the light of its strengths

and weaknesses, in drug candidate selection,

safety assessment, development, and life-cycle

management.

11.2 Principle and Description
of the Method

QWBA (also named phosphor-imaging or storage

phosphor technology), film-autoradiography and

direct nuclear counting are spatial radioactivity

imaging methods that record the spatial distribu-

tion and the relationships of radioactive particles

(i.e. beta particles emitted by 14C or 3H-labeled

compounds) within an animal (definition derived

from that proposed by Hahn 1983) after exoge-

nous administration of a radiotracer. In QWBA,

the most widely used method amongst the three

ones mentioned above (Schweitzer 1995), whole-

body animal sections are closely apposed to phos-

phor imaging plates, which represent the detection

media. For description below, QWBA is divided

into dosing, whole-body sectioning, imaging, and

quantification of the image files.

Of course, practical details of the method may

vary from one laboratory to another (survey by

Solon et al. 2002). Thus, for the readers who wish

a more detailed understanding of QWBA, spe-

cific courses are offered by many groups, includ-

ing the Society of Whole-Body Autoradiography

(SWBA) (http://www.autoradiography.net/) in

the USA and the European Society of Autoradi-

ography (ESA) in Europe (http://www.aopm80.

dsl.pipex.com/esa/index.html).

11.2.1 Dosing and Administration
Solution

The test compound is usually labeled with [14C]

or [3H] in order to avoid a modification of its

chemical structure; the rationale for the use of 3H

is that much higher specific activities can be

attained than with 14C, which is of key impor-

tance when very low nominal doses are selected

(as for example for PET ligand identification

studies, where the dose may be as low as

0.1 mg/kg body weight) and that the synthesis of

tritium-labeled compounds is faster and less

expensive than that of 14C-labeled ones. Of

course, other radioisotopes may also be used, as

for example 35S (Ullberg 1954) or 59Fe (Ullberg

et al. 1961). The important parameter to consider

is that the radiolabeled isotope does not modify

the physical–chemical properties of the test com-

pound, in particular its molecular structure, and

has a half-life long enough to allow QWBA

processing. In most laboratories, the typical

radioactive dose is approximately 5 MBq/kg

body weight with [14C]- and 50 MBq/kg with

[3H]-labeled compounds.

Mainly for oral and topical administrations, it

is advised to choose dosing formulations which

remain frozen at the working temperatures, gen-

erally �20�C, in order to avoid contamination of

the tissues surrounding the GIT or the application

site during sectioning.

11.2.2 Whole-Body Sectioning

Whole-body animal sections are generally

obtained according to the method of Ullberg

(1977). At a predetermined time after dosing,

the test animal is sacrificed and immediately

deep-frozen by quenching for approximately

30 min (for a 200 g rat) into an n-hexane/dry

ice mixture kept at �70�C. This “snap-freezing”
avoids further distribution and diffusion of total

radiolabeled components in the body. All

subsequent procedures are performed at tempera-

tures below �20�C to minimize diffusion of

labeled material in the tissues.

The frozen carcass is rapidly shaved and

embedded in a mold on a microtome stage by

adding an ice-cold aqueous solution of 1–3% low

or ultra-low viscosity sodium carboxymethylcel-

lulose. Complete freezing of the embedding
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block in an n-hexane/dry ice mixture at �70�C
lasts approximately 45 min and is followed by

temperature stabilization overnight in a �20�C
freezer. The sectioning plan, i.e. coronal, sagittal,

or frontal, must be predefined. For sagittal sec-

tioning, the most widely used plan (Fig. 11.1), it

is convenient to lay the animal on its right side so

that the left side is uppermost in the block and is

the first part to be sectioned. This arrangement

facilitates earlier imaging of the spleen, stomach,

and heart, since they lie toward the left side of the

body and will be thus sampled while sectioning

down to the midline. The coronal plan may be

preferred to the sagittal one when comparative

assessments in specific organs like kidney, lung,

or brain are intended. For example, it may be

preferred for evaluating the potential of a test

compound as a fibrosis imaging biomarker

when performing autoradiography studies in rat

models of unilateral lung and kidney fibrosis.

Whole-body sections 10–50 mm thick are

obtained by means of a cryomicrotome (e.g.

CM3600, from Leica Biosystems GmbH, D-Nus-

sloch, from Leica Microsystems GmbH, D-Nus-

sloch). Although rats and mice are the most

widely used species for QWBA studies in the

pharmaceutical industry, larger laboratory ani-

mals such as rabbits, dogs, and monkeys may

also be considered. The most common limitation

is that the animal’s carcass must fit into the

largest available freezing frame block for sec-

tioning (40 � 15 � 15 cm), or must be subdi-

vided accordingly (Rico et al. 1978).

Once the first region of interest has been

reached (trimming), several sections are obtained

at varying depths, based on sectioning of the

requisite organs, tissues and body fluids, by adhe-

sion to a special adhesive tape. For calibration

and further quantification, a block of 14C or 3H

radiolabeled standards prepared in blood and

assayed by liquid scintillation counting (Botta

et al. 1985), is sectioned in the same manner

and on the same day as the animals are sectioned.

Prior to returning the sections to room temper-

ature, they are dehydrated in the cryomicrotome

or with the help of an external freeze-dryer.

When dehydration is carried out in the cryomi-

crotome cabinet, its duration depends on the

selected temperature of dehydration, the number

of sections being dehydrated, their position in the

cabinet, and their thickness. Since residual water

acts as a radiation absorber, this step should be

long enough to allow for complete dehydration,

especially when quantitation is foreseen. Usu-

ally, 48 h of dehydration in the cryomicrotome

are regarded as a minimum. Using an external

freeze-dryer, this step may last only a few min-

utes, but has to be repeated if a high number of

sections have to be dried.

11.2.3 Imaging

Whole-body autoradiograms are obtained by

means of the quantitative autoradioluminography

(QWBA) method, which became commercially

available in the late 1980s and early 1990s

(Miyahara 1989; Hamaoka 1990; Shigematsu

1992; Shionoya 1992), although the physical

phenomenon on which QWBA is based had

been already discovered in 1975 (Luckey 1975).

The radioactivity containing samples to be ana-

lyzed are exposed on an imaging plate which is

scanned by a laser beam in a phosphor reader.

The imaging plate is a flexible image sensor

where very small crystals of photostimulable

Fig. 11.1 (Sectioning plan and Artifacts)

40 mm thick sagittal section through the side of a male

HanWIST rat, depicting hydronephrosis in the kidney;

this abnormality was not observed in the other animals

used in the study. The results of this rat were therefore not

considered
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phosphor of barium fluorobromide containing a

trace amount of bivalent europium are uniformly

coated 150–300 mm thick onto a polyester sup-

port film. Lattice defects are inherently present in

the crystal. The grain size of the crystal is

approximately 5 mm. Europium acts as a lumi-

nescence center. The luminescence mechanism

of the BaFBr:Eu2+ photostimulable phosphor can

be summarized as follows: part of the Eu2+ ions

become Eu3+ ions through primary excitation by

ionizing radiation with electrons being released

into the conduction band. These electrons are

trapped into the Br-ion empty lattices of the

crystal defects, and color centers of the metasta-

ble state are formed. When the photostimulated

excitation light (PSL) to be absorbed by the color

center is irradiated, the trapped electrons are

liberated again into the conduction band. The

bluish purple PSL released upon laser excitation

is collected through the light collector guide to

the photomultiplier tube and converted there to

analog electric signals in chronological order and

subsequently to digital signals. The protected

imaging plates (not for weak beta-emitters

as 3H) can be reused almost indefinitely, assum-

ing they are handled with care.

For imaging, tissue and standard sections are

placed on an overhead plastic foil or a cardboard.

The tissue and standard sections are placed under

controlled light conditions (strongly suggested

although not mandatory) in direct and close contact

with the imaging plates for typically 1–7 day(s) at

room temperature in a lead-shielded box. Expo-

sure in the latter will help to minimize the

increase of the background signal. This is espe-

cially important for long exposures over 15 days.

At the end of the exposure, the plates are first

kept for 3–5 min in the dark, as the phosphosti-

mulated light gets partly lost during the first

seconds following the separation of the section

from the imaging plate; they are then transferred

into a phosphorimager, i.e. BAS 5000 (GE

Healthcare, UK, formerly from Fuji Photo Film

Co. Ltd., J-Tokyo), or Cyclone (Perkin Elmer,

formerly from Packard, Meriden, CN, USA)

(Schweitzer and Englert 1995) and scanned to

produce an autoradiogram. Typical scanning

steps are between 10 and 100 mm, and are either

predefined by the equipment manufacturer or

freely selected by the investigator.

11.2.4 Quantification

The specificity of quantification is that it uses

image files and not the actual samples; the latter

may thus be re-exposed and/or used for other or

additional tasks. The major difficulty of quantifi-

cation is due to the fact that the radioactivity

concentrations (mol per weight unit of tissue)

are derived from photostimulated light densities

per unit of area.

The levels of radioactivity present in the tis-

sues are determined by comparative densitome-

try and digital analysis of the whole-body

autoradiogram. For quantification, calibration

standards are prepared from fresh whole rat

blood and a stock solution containing the same

isotope as the one used for labeling the test com-

pound. To assess the actual radioactivity concen-

trations in the calibration standard samples,

samples of spiked blood are counted for total

radioactivity in a liquid scintillation counter

according to the standard liquid scintillation

counting method (Botta et al. 1985). These

values are used to generate a calibration curve

during digital analysis. The background value is

determined on each plate separately in a random

manner in 10–20 areas surrounding the tissue and

standard sections. In many QWBA laboratories,

the limit of detection (LOD) is defined as the sum

of the mean background and three standard

deviations on the mean, and the quantification

limit (LOQ) as three times the LOD, and the

size of the areas used to determine the back-

ground value is normalized to that of the blood

standards used to establish the calibration curve.

The concentrations of radioactivity in the tis-

sues are calculated from the curve generated

from the calibration samples present on the

image plate. The resulting photostimulated light

data files, usually automatically corrected by

subtracting the background, are processed with

the help of an image analyzer (e.g. MCID, Imag-

ing Research, St. Catherines, Ontario, Canada).

Taking into account the numerous parameters
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influencing the efficiency in QWBA, which

mainly include the extent of the tissue self-

absorption, and the section, and image acquisi-

tion characteristics, it is essential to select an

adequate calibrator and to work under fully nor-

malized conditions in order to accurately esti-

mate the radioactivity concentrations in the

tissues. Blood samples of known radioactivity

concentrations, processed under the same condi-

tions as the samples to be analyzed, as suggested

by Schweitzer et al. (1987) are excellent calibra-

tors for all major tissues, except bone mineral

and adipose tissue; for these tissues, correction

factors are applied. In addition, the concentration

of radioactivity in blood collected from each

animal just prior to sacrifice may be used as a

“reference” value, for further validation.

As suggested by Ito and Brill (1991), quality

checks should be routinely performed. As a con-

sequence of determinations performed in the

author’s laboratory using several hundreds 40 mm
thick sections obtained in a Leica CM3600 cryo-

microtome from 3H- and 14C-labeled liver and

blood samples, the concentrations of radioactivity

in blood and liver are determined on each section

to assess the section-to-section thickness

reproducibility and thickness homogeneity,

Based on the means and standard deviations on

the means of the measured concentrations, the

variability of the section-to-section thickness

reproducibility and thickness homogeneity has

been shown to be below 3.5% (Table 11.1),

which corresponds to a thickness variation of

1.3 mm for a typical 40 mm thick section, and is

thus fourfold less than the variation needed to

impact on the results (Schweitzer, presentation at

the 2007 SWBA meeting, Charleston, SC, USA).

11.3 Data Interpretation

11.3.1 Artifacts

For interpretation of the QWBA data, one has

first to ensure that the results are not artifacts,

most of which can be quite easily detected by

skilled and experienced investigators. Artifacts

may originate from the test animal health status

(e.g. hydronephrosis, Fig. 11.1) and/or study

design (e.g. anesthesia by means of carbon diox-

ide opens the blood–brain-barrier, and thus facil-

itates the entry of the test compound into the

brain, see below).

Most artifacts however happen during the con-

duct of the study, analyses, or processing of sam-

ples. During the study they may result from

incorrect or incomplete dose administration,

drug precipitation at the blood pH value

(Fig. 11.2), leakage of blood collected via cardiac

puncture, or due to poor cannulation. Analyses

and processing-related artifacts may be associated

with undesired diffusion of the radiolabel, dam-

aged knives, incorrect knife angle, debris, sledge

speed, incomplete dehydration, due to inadequate

Table 11.1 Section thickness reproducibility and homo-

geneity

SSTR 14C

blood

SSTR 14C

liver

SSTR 3H

liver

TH 14C

blood

1.2–6.8%

(3.3%)

1.2–5.1%

(3.3%)

1.9–5.6%

(2.9%)

1.2–5.1%

(2.8%)

The section-to-section thickness reproducibility (SSTR)

and thickness homogeneity (TH) are expressed as

percents. The results were obtained with blood and liver

sections from routinely performed 14C and 3H-QWBA

studies. Ranges and mean values (in brackets) are given

Fig. 11.2 (Artifacts)

Whole-body autoradiograms of a median sagittal section

of a male HanWIST rat at 5 min after IV dosing of a 14C-

labeled drug. The white areas correspond to the high

radioactivity concentrations. The white dots indicate that
total radiolabeled components precipitated in blood

shortly after dosing
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drying duration, section stacking, thickness, tem-

perature, and/or microtome overload, to the flake

off of some tissues, and lack of image resolution

due to poor intimate contact between the sample

and the imaging plate. Contamination of the

imaging plate due to improper cleaning and/or

erasing will impair data imaging. Lastly, dark

haze or flare in high radioactivity concentration

areas has been observed, however, this was

mainly with the first generation phosphorimagers.

Some artifacts, like those produced by impu-

rities or degradation products due to a lower than

optimal radiochemical purity of the test com-

pound, are more difficult to detect. On a theoreti-

cal point of view, any radioactive side product

amounting to over 0.6% of a typical radioactive

dose may generate an autoradiogram, since

0.03 Bq/mg of tissue are routinely detectable

under typical sectioning, exposure, and scanning

conditions in 14C-QWBA, taking into account a

radioactive dose of 5 MBq/kg body weight.

Thus, concluding that a few tenths of percent of

the radioactive compound are retained in the

body or any single tissue may be incorrect and

artifactual.

11.3.2 Qualitative Results
Interpretation

From a qualitative point of view, autoradiograms

should be interpreted in the light of the strengths

and limitations of the method, and of the primary

goal of the study. Comparing the autoradio-

graphs to the original sections may facilitate the

overall interpretation of the results, at least from

an anatomical point of view. In addition, the

tissue distribution at a given time point is the

result of many different processes which

occurred in the time between dosing and sacri-

fice. Thus, autoradiograms at any given time

point post dose should be interpreted in the con-

text of the results obtained at earlier time points.

The overall objective of a QWBA study is to

provide information about uptake, distribution,

retention, and/or accumulation of total radiola-

beled components into tissues and organs.

The results obtained usually support several of

the following areas: contribution to the selection

of drug candidates, evaluation of potential toxi-

cological issues, support of regulatory submis-

sions, prediction of the radioexposure for the

human to radioactive drug (e.g. human ADME

studies), specific safety assessments including

embryo-fetal transfer, transfer into the milk, and

life-cycle management studies.

Compared to dissection of the animal fol-

lowed by liquid scintillation counting of the tis-

sue samples (another method allowing to assess

the tissue distribution), QWBA offers many

important advantages, thanks to the absence of

diffusion of radioactivity in the sample and to

optical resolution. Unlike other methods, the

distribution of radioactivity is assessed even in

the tissues and organs “contaminated” by a

biological fluid. QWBA allows for a very precise

localization of radioactivity in the organs and

tissues independent of their size, location, and

biological characteristics. Hence, the method

allows assessment of the uptake, distribution,

accumulation, and/or retention of total radiola-

beled components in different brain areas, the

ocular membranes, newly formed bone, embryos

and fetuses, blood vessel wall, lymph nodes,

collagen/elastine, etc.

QWBA also offers nearly optimal archiving

possibilities. The results are documented as an

image and a numeric data file, in contrast to the

results obtained by liquid scintillation counting,

which are in the form of numeric data files only.

A potential drawback is that as databasing and

computer imaging technology progresses, older

file formats may no longer be “readable” by

current software. Backward-compatibility of

archived data and systems must be considered

carefully when employing systems used to sup-

port drug development timelines known to span

multiple generations of computer systems

upgrades.

As with any other method, QWBA has also

several limitations to be considered. First,

QWBA provides data on the concentrations of

total radiolabeled components, not of a single

chemical entity, and does not allow for interpre-

tation of data at the microscopic level, mainly
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due to the relatively slow freezing rate which can

allow ice crystals to develop and grow. In other

words, strong statements on the relationship

between the distribution, uptake or retention in

a given tissue and the pharmacological activity of

the test compound, including on receptor locali-

zation, should be avoided, as they are not realis-

tic. Also, volatile metabolites are lost during

dehydration. Other limitations, however of less

importance, are related to the fact that QWBA is

time-consuming. This can make it difficult to

impossible to evaluate short-lived isotopes, like

those used for radiopharmaceuticals. Other lim-

itations can include the small sample sizes

employed for each study, method or equipment

limitations (e.g. minimal and maximal section

thickness), high cost of the equipment and costs

of the imaging plates, especially those for detect-

ing weak b-emitters like tritium.

11.3.3 Quantitative Interpretation

QWBA offers a wide dynamic range over five

orders of magnitude, and the response of the

phosphorimagers is almost linear over the entire

dynamic range. Thus quantification in QWBA is

rather easy and is quite accurate even when using

a limited number of internal standards. In addi-

tion, the limit of detection in QWBA is indepen-

dent of the size of the sample, which is not the

case for dissection methods. Hence, it is better for

small samples compared to liquid scintillation

counting (Schweitzer 1995). However, it is

important to keep in mind that quantification in

very small regions of interest (e.g. the ocular

membranes of the rat) is less accurate than in

large samples, due to the limited number of pixels

analyzed. Specific software (e.g. MCID, http://

www.mcid.co.uk/) provides the mean value and

standard deviation of the individual measured

pixel values, giving thus a scientific rationale to

the investigator to keep or reject the results.

The peak concentrations of radioactivity,

times of peak concentrations, and times of last

concentrations above the limit of quantification

in the time course of the study are usually

recorded as observed. The concentrations are

best expressed in molar units, as the exact nature

and composition of the total radiolabeled com-

ponents in the sample analyzed may be unknown.

The tissue exposure, expressed as the area under

the curve between time 0 and the time of last

quantifiable concentration (AUClast) is calcu-

lated using the trapezoidal rule for those tissues

and matrices where at least three data points

above LOQ are available. The half-life of elimi-

nation is taken as ln(2)/lz, where lz (terminal

elimination rate constant) is the slope of the log

linear line from at least three of the last measur-

able data points in the terminal phase. Estimated

half-lives values exceeding the time frame exam-

ined in the study should not be reported. The

ratios of tissue/organ to blood peak concentra-

tions of total radiolabeled components and of

AUClast values are reported where possible.

However, each time point assessed is “terminal,”

i.e. concentration data in the tissue are obtained

at the time point of sacrifice only. Pharmacoki-

netic evaluations are performed using results

from different animals; in addition, sufficient

data points should be planned in the study design

to allow for a realistic pharmacokinetic analysis.

Assuming steady-state has been achieved, the

accumulation factors of total radiolabeled com-

ponents in the tissues after repeated dosing are

calculated as exposure ratios from single dose

and steady-state (e.g. AUC0-24 h after the last

dose versus the AUC0-24 h after the single dose)

in those tissues where at least three concentra-

tions were greater than LOQ.

In order to estimate the overall residual radio-

activity in the body, the mean radioactivity con-

centrations over at least six sections per animal

(one per sectioning level) are determined and

converted into percent of the administered dose

by taking into account the animal weight, spe-

cific activity of the administrated formulation,

volume administered, and dose.

11.4 Typical Applications of QWBA

QWBA has been used for decades in most major

pharmaceutical companies to support regulatory

submissions, estimate radioexposures for human
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ADME studies, assess specific safety, and to pro-

file compounds once available on the market

(Shigematsu et al. 1995). These applications of

QWBA are primarily those related to the precise

information obtained with this technology, thanks

to the fact that autoradiograms are obtained with a

good resolution. Information on uptake, distribu-

tion, retention and/or accumulation of radioactive

material can be obtained in all tissues, indepen-

dent of their size. QWBA has been used to define

exposures in tissues such as spleen white and red

pulp, uveal tract, blood vessel wall, cartilage,

specific cerebral and cerebellar regions, and vari-

ous skin layers. Uptake, distribution, retention,

and/or accumulation of drug related material

within a single organ has been shown in the dif-

ferentiation between the cortex, medulla, cortico-

medullar junction, and pelvis in the kidney and in

the mottled distribution pattern of radioactivity

within the liver or testis.

In the recent years, an increasing number of

laboratories have decided to perform QWBA or

to outsource QWBA studies on a routine basis in

the very early phases of exploratory develop-

ment. Application of QWBA in this area helps

to contribute to the early selection of potential

drug candidates, based on their distribution,

uptake, and retention in specific tissues. Potch-

oiba and Nocerini (2004) described how they use
3H-QWBA to identify lead compounds early on

during the drug discovery phase. This is in line

with the statement by Solon et al. (2002), who

concluded that QWBA is quickly becoming part

of the battery of studies conducted during the

lead optimization process to select optimal drug

candidates.

11.4.1 Contribution to Early Selection
of Drug Candidates

11.4.1.1 Central Nervous System
In the nervous system disease area, the assessment

of the uptake, distribution, retention and/or accu-

mulation of a drug candidate in the different ana-

tomical regions of the brain is of particular

importance. No other method achieves the level

of detail needed for correct interpretation of the

results. In general, taking into account that blood in

brain represents 2–4% of the brain volume, and

considering experimental uncertainties, brain/

blood radioactivity AUClast ratios equal to or

higher than 0.08 indicate that the compound and/

or its metabolites passed significantly the blood–

brain barrier. It is important to keep in mind that

acidosis, as a consequence of anesthesia with car-

bondioxide (Mayhan et al. 1988), and hyperosmo-

lar mannitol (Hiesiger et al. 1986) open the blood

barrier, whose permeability may be also age-

dependant (Bake and Sohrabji 2004) and increased

by histamine (Gulati et al. 1985).

Foster et al. (2007) demonstrated that following

single and multiple oral doses, the oral immuno-

modulatory drug FTY720 and its phosphorylated

metabolite were specifically localized to the CNS

white matter, preferentially along myelin sheaths,

in similar concentrations, suggesting that FTY720

effectiveness is probably due to also to the neuro-

protective influence of the phosphorylated com-

pound in the central nervous system (Fig. 11.3).

In another example, the author investigated the

distribution of different chemical classes of orally

active AMPA receptor antagonists proposed

for the treatment of epileptic patients. As the

Fig. 11.3 (Applications)

Whole-body autoradiogram of a median sagittal section

of a male HanWIST rat at 72 h after po dosing of the 14C-

labeled oral immunomodulatory drug FTY720. The white
areas correspond to the high radioactivity concentrations.

The results show that FTY720 and its phosphorylated

metabolite were specifically localized to the CNS white

matter, preferentially along myelin sheaths
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compounds of the di-phosphonate class have

shown in the past a high and long lasting affinity

and retention to/into bone mineral, the new drug

candidates of a different structural class were

evaluated on their particular affinity to the bone

mineral. The particularity of this study is that the

assessment needed only one animal per drug can-

didate (at 24 h following i.v. dosing) (Schweitzer,

unpublished data, Fig. 11.4).

Another new interesting possible application

of QWBA in the CNS area is the selection of

potential ligands for positron emission tomogra-

phy (PET). It has however to be mentioned that

this selection is usually performed under very

different experimental conditions (thaw-

mounted sections from brain, short-living posi-

tron emitter isotope, for instance 11C) (Wyss

et al. 2007) than the ones described in this

review, although radioactivity is detected by

phosphorimaging. If using b� emitters, a chal-

lenge is the low nominal dose, often in the ng/kg

body weight range, and the subsequent very low

radioactive dose administered. In a recent study

performed by the author with [3H]ABP688, a

specific mGlu5 receptor antagonist whose uptake

into the brain after IV dosing has been shown to

be modified by pre-blocking (Wyss et al. 2007),

the IV. dose ending up with <20% receptor

occupancy was 0.5 mg/kg; the actual radioactive
dose, 4.97 MBq/kg body weight, which is 10- to

20-fold lower than tritium a typical dose, neces-

sitated 13 days of exposure.

11.4.1.2 Oncology
In oncology, the rapid and specific uptake into the

tumor and long-lasting adequate concentrations

of active compound in the tumor, combined with

the low exposure of the other tissues represent the

“basic” early selection criteria for compounds

intended to be used in oncology indications.

However, each company has its own criteria,

which of course differ depending on the pharma-

cological class of the drug candidates.

For example, the author demonstrated with

the help of QWBA that in female HsdNpa:Athy-

mic Nude-nu mice, synthetic Hsp90 ATPase

inhibitors foreseen for the treatment of solid

tumors and hematological malignancies were

rapidly and specifically taken up into the viable

tumor (human breast cancer BT-474 tumor

established from a solid, invasive ductal carci-

noma of the breast), achieving levels in the

tumor similar to that of blood at 5 min after a

30 mg/kg IV. dose; in addition, no radioactivity

was detected in any tissue except the viable

tumor (unchanged compound as demonstrated

by MALDI-MSI, see below), and GIT content

already at 24 h post dose (Schweitzer, unpub-

lished data, Fig. 11.5).

Fig. 11.4 (Applications)

Whole-body autoradiograms of median sagittal sections

of male HanWIST rats at 1 year after SC. administration

(top) and 24 h after IV dosing of 14C-labeled orally active

AMPA receptor antagonists proposed for treatment of

epileptic patients. The white areas correspond to the

high radioactivity concentrations. The compound

previously tested (di-phosphonate) (top) showed a high

and long lasting affinity and retention to/into bone min-

eral. The drug candidate (different structural class than

the previous compound) shows no retention in the bone

mineral already at 24 h after IV dosing (bottom)
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Others have shown the utility of QWBA in

oncology. Akel et al. (1986) showed that the

uptake into the tumor of rats bearing chemically

induced rhabdomyosarcoma of Ro 07-0582, a

hypoxic cell radiosensitizer, was delayed, the

tumor activity being highest as late as at 12 h

after treatment. Fand et al. (1990) investigated

the regional distribution of the 90Y-labeled anti-

carcinoembryonic antigen monoclonal antibody

NP-2 and its fragments within GW-39 colon

carcinoma xenografts, and revealed specific anti-

tumor uptake as well as significant accumulation

of 90Y in the bones. These results demonstrate

that QWBA is an effective tool for assessing the

degree of penetration of immunoglobulins in

tumors in which vascular patterns, local glucose

metabolism, protein synthesis, and rapid cell pro-

liferation indices may be characterized.

11.4.1.3 Infectious Diseases
In the infectious diseases area, blocking the

CCR5 receptor is a promising therapeutic

approach for the treatment of HIV infections; in

fact, retroviruses are surrounded by an envelope

consisting of a host cell-derived lipid bilayer and

a virus-encoded envelope glycoprotein. For the

virus to enter a target cell, the viral membrane

must fuse with the plasma membrane of the cell,

a process mediated by the envelope

glycoproteins and transmembrane chemokine

co-receptors, such as CCR5. As CCR2 can act

as a co-receptor for HIV, CCR2 blockade, in

addition to CCR5 inhibition, may provide addi-

tional benefit. Ideally, drug candidates should be

highly potent antagonist for CCR2 and CCR5.

To test this, the author first showed that a new

drug candidate was retained in the body and

concentrated in the proximal intestinal wall; a

second QWBA study was then done in CCR2/

CCR5 homozygote knock-out and wild-type

mice after po and IV dosing in order to differen-

tiate between unspecific tissue binding and

CCR2 and/or CCR5 receptor mediated tissue

binding and distribution. The distribution pat-

terns in the knock-out and wild-type mice were

similar, indicating that the CCR2/CCR5 receptor

is involved neither in the specific uptake nor

retention of total radiolabeled components in

the proximal small intestinal wall, leading to a

“NO GO” decision for the test compound

(Schweitzer, unpublished data, Fig. 11.6).

11.4.1.4 Imaging Biomarkers
QWBA is also a very promising tool for evaluat-

ing the potential of a test compound as an imag-

ing biomarker. Nearly 45% of all deaths in the

Fig. 11.5 (Applications)

Whole-body autoradiograms of median sagittal sections

of tumor bearing female HsdNpa:Athymic Nude-nu mice

female at 5 min and 24 h after IV dosing of a 14C-labeled

synthetic Hsp90 ATPase inhibitor foreseen for the treat-

ment of solid tumors and hematological malignancies.

The tumor was a human breast cancer BT-474 tumor

established from a solid, invasive ductal carcinoma of

the breast. The white areas correspond to the high

radioactivity concentrations. The whole-body autoradio-

gram at the top shows that total radiolabeled components

were rapidly and specifically taken up into the viable

tumor, achieving levels similar to that of blood already

at 5 min post dose; the whole-body autoradiogram at the

bottom shows that no radioactivity was detected in any

tissue except the viable tumor and GIT content already at

24 h post dose
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developed world are attributed to chronic fibro-

proliferative diseases; however, early response

imaging biomarkers for anti-fibrotic therapy are

missing and represent a large unmet medical

need. In this example, QWBA was performed

in the rat models of unilateral kidney fibrosis.

The UUO (unilateral ureteric obstruction)

model is an experimental hydronephrosis model

and is a widely used model for progressive renal

fibrosis that is independent of hypertension or

systemic immune disease. The obstructed kidney

after UUO mimics in an accelerated manner the

development of tubulointerstitial fibrosis, i.e. cellu-

lar infiltration, tubular proliferation and apoptosis,

epithelial-mesenchymal transition, myofibro-

blast accumulation, increased extracellular

matrix deposition, and tubular atrophy (Bascands

and Schanstra 2005; Docherty et al. 2006).

A selected autoradiogram of a coronal rat section

showing the specific uptake and distribution in

the intact and diseased kidney is depicted in

Fig. 11.7 (Schweitzer, unpublished data).

11.4.2 Support of Toxicology
and Pharmacokinetic Studies

One of the most typical applications of QWBA is

the support of regular toxicology and toxicoki-

netic studies, by investigating the tissue distribu-

tion as a function of time in the same animal

species under the same conditions as those of

the toxicology studies (Busch 1977; Ahmed

et al. 1993). The target tissues and target organs

are detected and an overall estimation of the

organ and tissue exposure is gained. In our labo-

ratory, a routine QWBA tissue distribution eval-

uates 50–60 tissues at five to six different time

points up to 168 h postdose. The data are used to

better understand the overall pharmacokinetics

and to predict the human exposure to radiation

that might occur during the administration of

radiolabeled drug in specialized clinical studies.

The maximal radioactive dose for a typical

human subject is estimated using the concentra-

tions of total radiolabeled components in the

Fig. 11.6 (Applications)

Whole-body autoradiograms of lateral sagittal sections of

female CCR2/CCR5 homozygote knock-out (KO) and

wild-type (WT) mice at 24 h after po dosing of a 14C-

labeled drug. The white areas correspond to the high

radioactivity concentrations. The similar distribution

patterns in the KO and WT mice indicate that the

CCR2/CCR5 receptor is involved neither in the specific

uptake nor retention of total radiolabeled components in

the proximal small intestinal wall

Fig. 11.7 (Sectioning plan and Applications)

Whole-body autoradiogram of a coronal section of a male

Sprague Dawley rat with unilateral kidney fibrosis at 4 h

(Cmax) after po dosing of a
14C-labeled drug candidate as a

fibrosis imaging biomarker. The white areas correspond

to the high radioactivity concentrations. The whole-body

autoradiogram shows the differential uptake and distribu-

tion of total radiolabeled compounds in the intact and

diseased kidneys
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tissues and supplied weight factors to correct for

the sensitivities to damage of the different

tissues.

In relation to the latter, the assessment of the

uptake, distribution, retention, and/or accumula-

tion of total radiolabeled components into the

melanin-containing organs is of particular impor-

tance, mainly since the toxicity studies in rodents

are performed in albino animals and thus do not

deliver exposure data in these area. QWBA is

probably the best technique currently available

to enable the evaluation of the affinity of a test

compound to melanin, which is important for

dosimetry calculations. In fact, due to the small

sample size of the pigmented uveal tract of labo-

ratory animals, tissue dissection followed by liq-

uid scintillation counting may not allow to detect

drug-derived radioactivity in this tissue. In con-

trast, as the limit of detection in phoshorimaging

is almost independent of the sample size, evalu-

ating the biodistribution of xenobiotics by

QWBA not only provides pharmacokinetic data

required for predicting the potential tissue depo-

sition of an absorbed dose of radioactivity in

man, but also allows for visual and quantitative

evaluation of radioactivity in small anatomical

structures that otherwise could not be detected or

measured by conventional tissue combustion

technology (Potchoiba et al. 1995).

The eye choroid is used to assess the potential

uptake of the drug and/or its metabolites into mel-

anin-containing structures. The presence and/or

persistence of radioactive material in this tissue

may be related to its specific uptake into the mela-

nin-containing structures as well as to its uptake

into other cells. Thus retention of radioactivity at

late time points in the eye choroid of pigmented

rats and not in albino rats indicates that there is a

specific uptake of radioactive material in the mel-

anin-containing structures (Fig. 11.8). A higher

radioactivity concentration in the eye choroid of

the pigmented rat at an early time point post dose

than in the one at a late time point dose, usually

after IV. dosing, indicates that this uptake is at least

partly reversible (Zane et al. 1990). However, no

clear relationship has been established between

high affinity and chemical structure, except for

polycyclic amines (chlorpromazine, chloroquine)

and charged compounds. Thus, fluoroquinolones

have been reported to have a high affinity for

melanin. Tanaka et al. (2004) assessed the ocular

tissue distribution and accumulation of radioactiv-

ity after repeated oral administration of 14C-levo-

floxacin and 14C-chloroquine in pigmented rats for

84 days. The melanin-containing ocular tissues,

such as iris ciliary body and stratum pigment chor-

oids sclera, showed a much higher concentration

of radioactivity than other non-pigmented ocular

Fig. 11.8 (Applications)

Whole-body autoradiograms of lateral sagittal sections of

a male HanWIST rat (top) and a male Long Evans pig-

mented rat (bottom) at 168 h after po administration of a
14C-labeled drug candidate. The white areas correspond
to the high radioactivity concentrations. Both autoradio-

grams show that residual radioactivity was observed in

the liver, kidney, cortico medullar junction, and, to some

extent in the lung and blood. The main difference between

the albino and pigmented rats is that in the latter (bottom),
total radiolabeled components are retained in the eye

choroid, suggesting a specific uptake of the drug and/or

its metabolites into the melanin-containing structures
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tissues, and gradually increased with increasing

dose number. The concentration and the extent of

accumulation of radioactivity not only in melanin-

containing ocular tissues but also in other non-

pigmented ocular tissues, such as retina, after

chronic oral administration of 14C-levofloxacin

once daily for 84 days were much lower than

those after multiple dosing with 14C-chloroquine

under the same conditions, and concluded that

based on these results levofloxacin would have a

lower risk for ocular toxicity than chloroquine

after chronic dosing. This statement might be

questioned as the ocular toxicity of chloroquine

has been shown to also be due to its retention in the

visual area in the cerebral cortex (Liss et al. 1976).

11.4.3 Support of Regulatory Studies

QWBA is also of importance in those studies

which have to be performed to fulfill the require-

ments of the regulatory authorities or agencies.

Amongst others, QWBA allows to assess the

placental transfer, distribution of radioactive

material in the embryos and fetuses, and fetal

exposure to the drug and/or its metabolites, sup-

porting thus the teratology studies. Numerous

examples of transfer into the embryo-fetal com-

partment have been published for pharmaceuti-

cals (Ullberg et al. 1967; Ullberg 1971; Waddell

1972; Hemauer et al. 2008) (Fig. 11.9).

The extent of the transfer of radioactive

material from maternal blood into the placenta

is estimated from the placenta/blood AUClast

ratio on day 13 and day 18 of gestation. A

ratio >1 indicates that the radioactive material

present in blood is transferred into the placenta.

Similarly, the extent of the transfer of com-

pound-related material from placenta into the

fetuses is estimated from the fetus/placenta

AUClast ratio. The highest ratio indicates the

highest extent of the placental transfer into the

fetuses. As much of the radioactive material in

the fetus will have bypassed the foetal liver,

total radiolabeled components in the fetus are

those present in the maternal blood and in the

placenta, two compartments rather easy to ana-

lyze. However, the extent of the embryo-fetal

transfer depends on many parameters: test spe-

cies and stage of gestation, possibility of differ-

ent pharmacokinetic profiles in the dam versus

the fetus. Accumulation in the fetus does not

necessarily mean damage to the fetus, just as the

observation of fetal damage does not mean

compound accumulation in the fetus. Other con-

siderations must be taken, including possible

contributions due to compound effects on semi-

nal fluid, spermatozoids, and male sexual

organs.

Recent examples of the use of QWBA in fetal

transfer is the recent study by Bruin et al. (2008)

which showed following oral administration of
14C-labeled deferasirox (Exjade, ICL670) to

female pregnant rats, the placental barrier was

passed to a low extent and that approximately 3%

of the dose was transferred into the breast milk.

Other examples have been published for vitamins

and chemicals; for instance, Ullberg et al.

(1967) demonstrated that water-soluble vitamins

(B12, B1, C) accumulate in the fetus by an active

placental transport mechanism. Ullberg et al.

(1961) showed also that 59Fe achieved higher

Fig. 11.9 (Applications)

Whole-body autoradiograms of a median sagittal section

of a female pregnant HanWIST rat at 8 h after po dosing

of a 14C-labeled drug. The white areas correspond to the

high radioactivity concentrations. The radioactivity

concentrations in the amnion, placenta, and fetus are

higher than in the maternal blood, and total radiolabeled

components passed the fetal blood–brain barrier
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concentrations in fetal blood than in maternal

blood already 20 min after oral dosing, and that

75% of the total radiolabeled components found

in the fetus were concentrated in the fetal liver.

Ahmed et al. (1993) demonstrated that [phenyl-

U-14C]tri-o-cresyl phosphate passed very well

the placental barrier in pregnant mice.

QWBA also represents a good means to

assess the transfer of drug related components

into the milk in lactating dams, and the exposure

of sucking pups. For estimating the fraction of

the administered dose eliminated into the milk

on day 1 post dose, a daily milk production in

lactating rats of 15 mL (Sampson and Jansen

1984) and a constant production of milk over a

24-h period are assumed. For the assessment of

the exposure of the pups, it is generally assumed

that the litter size is ten and the weight of the

pups on day 11 is 20 g (Pass and Freeth 1993),

the pups absorb the sucked milk to an extent of

100%, all pups suck the same amount of milk,

and that the produced milk is sucked by the pups

quantitatively. Bruin et al. (2008) showed that,

following oral dosing of 14C-labeled deferasirox

(Exjade, ICL670) to female lactating dams, the

sucking puppies were exposed to ICL670 and/or

its metabolites; the highest 14C concentrations

were detected in the kidney cortex, liver, lung,

skin, and GIT content; the presence of radioac-

tive milk was also evidenced in the pup stomach

content (Fig. 11.10).

11.4.4 Life-Cycle Management

Although diclofenac (Voltaren®), an inhibitor of

COX-2 and PGE-2 enzymes and a weak acid

NSAID with pronounced analgesic, anti-inflam-

matory and antipyretic properties, prescribed for

the treatment of a large variety of inflammation-

related diseases, has been on the market since

decades, its specific distribution into inflamed

tissues has been only recently assessed after single

oral administration of [14C]diclofenac sodium to

rats (Schweitzer et al. 2009). Diclofenac prefer-

entially distributed into the carrageenan-induced

inflamed tissues as early as 1 h after oral admin-

istration, which may contribute to the rapid ther-

apeutic activity of the compound, and achieved

exposures 26- and 53-fold higher in the inflamed

neck and inflamed paw, respectively, of treated

animals than in control rats. For all other tissues

the distribution and exposure were similar for

control and treated animals. Total radiolabeled

components were rapidly eliminated from saline-

injected sites (low blood flow, no inflammation,

i.e. no accumulation of plasma proteins). These

results consolidate the assumption that the blood

circulation with its high albumin content might

favor the drug uptake in well vascularized tissues

as well as an increased expression of the COX-2,

which is found in inflamed tissues, also evi-

denced by the rapid clearance of drug related

material from non inflamed nape neck and

Fig. 11.10 (Applications)

Whole-body autoradiogram of a sagittal section of a

sucking pup at 8 h after po dosing (Cmax) of
14C-defer-

asirox (ICL670) to a lactating dam. The white areas
correspond to the high radioactivity concentrations.

QWBA demonstrated that the sucking puppies were

exposed to ICL670 and/or its metabolites; the highest
14C concentrations were detected in the kidney cortex,

liver, lung, skin, and GIT content. In the autoradiogram

below, the presence of radioactive milk was also evi-

denced in the pup stomach content
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control footpad, in which blood vessels density is

low.

The bisphosphonate, zoledronic acid, was

shown to be initially rapidly eliminated from

plasma and the non calcified tissues but only

slowly from bone, whereas the terminal half-

lives of elimination from the tissues were similar,

suggesting redistribution of drug from the bone

rather than prolonged retention in the latter

(Weiss et al. 2008).

11.5 Outlook

Mass spectrometric imaging (MSI), also termed

imaging mass spectrometry, has gained new

momentum in the last couple of years with the

development of matrix assisted laser desorption/

ionization (MALDI) MSI (Caprioli et al. 1997).

As QWBA detects total radiolabeled components

and not a chemical entity, whole-body matrix-

assisted laser desorption ionization combined to

mass spectrometric imaging (WB-MALDI-MSI)

using whole-body sections obtained as described

above (with the exception of the dehydration

step, see below) has become an alternative

method in a growing number of laboratories in

charge of pharmacokinetic studies (Rohner et al.

2005; Stoeckli et al. 2007a, b). The potential

value of this technology for imaging applications

in biomedical research was recognized early on

by laboratories in academia and industry, with

first efforts focusing on mapping of potential

drug targets, disease biomarkers, and the lower

mass range of most current drugs. The interest of

MALDI MSI, although the method is only appli-

cable to molecules that are ionizable by the

MALDI process, results from the ability to

simultaneously localize multiple label-free ana-

lytes in tissues, based on their molecular weights

and fragmentation pattern, thereby providing

valuable additional ADME information.

To perform a MALDI MSI analysis, the sam-

ple has to be attached to a metal plate and coated

with matrix. Suitable sample preparation meth-

ods were developed which allow direct detection

of compound from animal tissue sections by

MALDI mass spectrometry (Stoeckli et al.

2007a). In fact, the sections are kept frozen

until just before processing, fast freeze-dried,

attached to metal plates, spray-coated with

MALDI matrix and sputter coated with a thin

film of gold. The sections prepared in this man-

ner are introduced into the mass spectrometer,

where the laser is used to raster over the tissue

section, while acquiring a mass spectrum and/or

fragmentation spectra from each laser spot.

MALDI MSI is specific and rapid. This technol-

ogy fits ideally into the field of existing technol-

ogies and will very likely expand in the future.

The major drawbacks of MALDI MSI are its

lower sensitivity as compared to QWBA, and the

difficulty to obtain accurate quantitative results,

due to the substance specific ionization yield,

tissue specific ion suppression, and dependency

of detected signal on the amount/property of the

deposited matrix. For example, as the signal sup-

pression is very specific, depending on the tissue

and substance, each substance needs to be cali-

brated in a separate experiment by spiking each

tissue and measuring the resulting MALDI sig-

nal. In addition, not all compounds can be ion-

ized equally well, limiting thus the application

possibility of MALDI MSI.

The first example in which an IV administered

unlabeled peptide has been used for MS imaging

has been published by Stoeckli et al. (2007b).

Mass spectrometric imaging was applied to

assess compound distributions on whole-body

sections of mice after IV dosing of a b-peptide
and an a-peptide control. The animals were

sacrificed at different time points after dosing,

providing simultaneous spatial and kinetic infor-

mation. No detection of the a-peptide control

was observed at 1 h post-dose, while retention

of the b-peptide was observed for longer than

24 h post-dose. Although tissue-dependent signal

suppression was not accounted for, and there

were no internal standards added for quantifica-

tion, this study allowed for a rapid (relevant data

obtained within 1 day) and cost efficient evalua-

tion of the compound behavior in the animals,

confirming that b-peptides are stable and distrib-

ute specifically in the tissues in vivo.
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Conclusion

In conclusion, QWBA has numerous applica-

tions in the pharmaceutical industry, and

represents one of the key studies performed

during the time course of the development of a

drug, from early selection up to marketing

support. Whole-body MALDI-MSI, an alter-

native powerful method providing informa-

tion on the spatial distribution of label-free

masses in sections similar to those used for

QWBA, has been shown to nicely comple-

ment the latter. However, even if further tech-

nological improvements are to be anticipated,

rendering MALDI-MSI more attractive, it is

unlikely that this new method will completely

replace QWBA in the near future in the appli-

cations described above.
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Pharmacokinetics, Modeling, and
Simulation in the Development of
Sunitinib Malate: A Case Study

12

Brett E. Houk and Carlo L. Bello

Abstract

Pharmacokinetics, modeling, and simulation are integral components of the

drug development process, with potential impact on the regulatory approval

process and approval language, aswell as the clinical use of the drug. TheUS

Food and Drug Administration and other regulatory agencies recommend

inclusion of such analyses as part of the regulatory submission process. The

pharmacokinetics, modeling, and simulation studies performed for the anti-

cancer agent sunitinib malate are presented here as a case study. Population

based pharmacokinetic and pharmacokinetic�pharmacodynamic studies

supported the sunitinib dosing schedule in the regulatory submission process

and have provided insights into optimal use of the drug. Sunitinib also

illustrates some of the practical difficulties of evaluating exposure�response

relationships in clinical trials in oncology.

12.1 Introduction

Pharmacokinetics, modeling, and simulation are

integral components of the drug development

process, with potential impact on the regulatory

approval process and approval language, as well

as the clinical use of the drug. Indeed, the US

Food and Drug Administration (FDA) and other

regulatory agencies recommend inclusion of such

analyses as part of the regulatory submission pro-

cess (FDA 1999 and 2003; International Confe-

rence on Harmonisation 1994).

We present the pharmacokinetics, modeling,

and simulation studies performed for the antican-

cer agent sunitinib malate (SUTENT®, Pfizer

Inc.) as a case study. Population based pharmaco-

kinetic and pharmacokinetic�pharmacodynamic

studies supported the sunitinib dosing schedule in

the regulatory submission process and have

provided insights into optimal use of the drug.

Sunitinib also illustrates some of the practical

difficulties of evaluating exposure�response

relationships in clinical trials in oncology.

12.1.1 Introduction to Sunitinib

Sunitinib is an oral multitargeted tyrosine kinase

inhibitor: a pyrrole-substituted 2-indolinone deriv-

ative with a molecular weight of 532.6 Da
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(Sun et al. 2003). With receptor tyrosine kinase

targets comprising the vascular endothelial growth

factor receptors, the platelet-derived growth

factor receptors, stem-cell factor receptor (KIT),

FMS-like tyrosine kinase 3 (FLT3), colony-

stimulating factor 1 receptor, and glial cell line-

derived neurotrophic factor receptor (RET),

sunitinib has demonstrated both antiangiogenic

and direct antitumor activities in preclinical

models (Pfizer Inc. 2010).

Sunitinib is approved multinationally for the

treatment of advanced renal cell carcinoma (RCC)

and gastrointestinal stromal tumor (GIST) after

disease progression or intolerance to imatinib

mesylate (Pfizer Inc. 2010). Sunitinib has also

shown antitumor activity in other types of solid

tumors, such as neuroendocrine tumors (Kulke

et al. 2008) and non-small cell lung cancer

(Socinski et al. 2008; Novello et al. 2009).

The sunitinib dosing schedule was determined

in three phase I studies: two involving patients

with advanced solid tumors and one involving

patients with imatinib-resistant/intolerant GIST

(Rosen et al. 2003; Faivre et al. 2006; Demetri

et al. 2009). The doses tested in these studies

ranged from 25 to 150mg/day, with dose-limiting

toxicities (including fatigue in all three studies)

reported at doses �75 mg/day. The maximum

tolerated dose (MTD) was therefore determined

to be 50 mg/day. The schedules that were tested

included 2 weeks on treatment followed by

1 week off (Schedule 2/1), 2 weeks on followed

by 2 weeks off (Schedule 2/2), and 4 weeks on

followed by 2 weeks off (Schedule 4/2). The 50-mg

dose on Schedule 4/2 was selected for phase II/III

testing and approved for the treatment of patients

with RCC and GIST (Pfizer Inc. 2010).

12.1.2 Sunitinib Pharmacokinetics

The pharmacokinetics of sunitinib in healthy sub-

jects and cancer patients are well described (Pfizer

Inc. 2010; Rosen et al. 2003; Faivre et al. 2006;

Bello et al. 2007). Sunitinib is well absorbed

following oral administration, with maximum

plasma concentrations (Cmax) observed within

approximately 6�12 h (tmax). Sunitinib is

metabolized primarily by cytochrome P450

(CYP) 3A4, leading to formation of the N-

desethyl metabolite SU12662, which has similar

inhibitory activity as the parent compound.

SU12662 is the primary circulating metabolite

derived from sunitinib, comprising 23�37% of

the total exposure, and is also metabolized by

CYP3A4, yielding a minor inactive metabolite.

The combination of sunitinib and SU12662 there-

fore represents the total active drug in the plasma.

In in vitro studies, binding of sunitinib and

SU12662 to human plasma protein was found to

be 95% and 90%, respectively, with no concentra-

tion-dependence between 100 and 4,000 ng/mL.

The apparent volume of distribution (Vd/F) for

sunitinib was found to be 2,230 L. With doses of

25�100 mg, the area under the plasma concentra-

tion�time curve (AUC) and Cmax increased pro-

portionately with dose. Sunitinib is eliminated

primarily via the feces, with less than 16%

excreted in urine. Total oral clearance (CL/F)

was found to be 34�62 L/h, with interpatient

variability of 40%.

Both sunitinib and SU12662 have been found

to exhibit prolonged half-lives (t1/2) of 40�60 h

and 80�110 h, respectively. With repeated daily

administration, the two compounds initially accu-

mulated three- to fourfold and seven- to tenfold.

Steady-state concentrations were achieved in

10�14 days, and no significant changes in the

pharmacokinetics of either compound were

observed with subsequent administration using

the dosing schedules tested. At steady state,

plasma concentrations of total drug (sunitinib plus

SU12662) were found to be 62.9�101 ng/mL,

corresponding well to the concentrations shown to

provide inhibition of target receptor tyrosine

kinases in preclinical studies (� 50�100 ng/mL;

Mendel et al. 2003). In these studies, sunitinib

pharmacokinetics were found to be similar,

whether healthy volunteers or patients with

solid tumors were tested.

Three pharmacokinetic studies have directly

assessed specific aspects of sunitinib administra-

tion. All three utilized an open-label, two-way

crossover design. The effect of food on the oral

bioavailability of sunitinib was tested in such

a study involving 16 healthy subjects (Bello
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et al. 2006a). Subjects received a 50-mg dose of

sunitinib after a 10-h fast in one period and a high-

fat, high-calorie meal in another period. Although

in the fed state, sunitinib exposure increased

slightly and formation/absorption of SU12662

was delayed, 90% confidence intervals (CIs) for

Cmax and AUC were within the 80�125% bio-

equivalence range, indicating the absence of a

food effect. These results showed that sunitinib

can be administered without regard to food.

Two of the two-way crossover studies evalu-

ated the impact of coadministration of inhibitors

or inducers of CYP3A4 with sunitinib in healthy

male subjects (Washington et al. 2003; Bello

et al. 2006b). The first of these, involving 27

men, compared administration of one 10-mg

dose of sunitinib alone on day 1 in one period

with coadministration of the potent CYP3A4

inhibitor ketoconazole (400 mg) for 7 days with

sunitinib on day 3 in the other period. Adminis-

tration of sunitinib plus ketoconazole resulted in

a 49% and a 51% higher mean total-drug Cmax

and AUC from time zero to infinity (AUC0�1),

respectively, than that of sunitinib alone. Like-

wise, the other study involved 28 men who

received a single 50-mg dose of sunitinib in one

period and daily 600-mg doses of the potent

CYP3A4 inducer rifampin for 17 days, with suni-

tinib coadministered on day 8, in the other

period. Rifampin reduced sunitinib mean AUC

from time zero to the last detectable concentra-

tion (AUC0�last) and AUC0�1 (both 79%), Cmax

(56%), and t1/2 (68%) and increased SU12662

AUC0�last (29%), AUC0�1 (26%), and Cmax

(137%); SU12662 t1/2 was reduced (22%).

Based on these results, the sunitinib prescribing

information (Pfizer Inc. 2010) recommends that

if sunitinib must be coadministered with a strong

CYP3A4 inhibitor or inducer, dose-reduction to a

minimum of 37.5 mg/day or dose-increase to a

maximum of 87.5 mg/day, respectively, should

be considered.

Finally, two studies have specifically evaluated

sunitinib pharmacokinetics in special patient

populations: those with impaired hepatic or renal

function (Bello et al. 2010; Khosravan et al. 2010).

Both studies employed an open-label, parallel-

group study design. The first of these enrolled

subjects with normal hepatic function or with

mild (Child-Pugh-A) or moderate (Child-Pugh-B)

hepatic impairment (eight subjects each). The

study found that after administration of a single

50-mg dose of sunitinib, systemic exposure to

sunitinib, SU12662, or total drug was not signifi-

cantly different in patients with mild or moderate

hepatic impairment than in subjects with normal

hepatic function. These results suggested that

there is no need to adjust the 50-mg starting

dose in cancer patients with mild to moderate

liver impairment. Renal impairment would not

be expected to have a significant effect on the

pharmacokinetics of sunitinib, given that urinary

elimination is a minor route of sunitinib excre-

tion. However, impaired renal function is com-

mon among patients with solid tumors, occurring

in more than 50% of patients evaluated (Launay-

Vacher et al. 2007), making this an important

parameter to test. The second study evaluated sub-

jects with normal renal function, severe renal

impairment (but not requiring hemodialysis), or

end-stage renal disease (ESRD) requiring hemodi-

alysis (eight subjects each) given a single 50-mg

dose of sunitinib. As expected, sunitinib and

SU12662 pharmacokinetics in patients with severe

renal impairment were similar to those of subjects

with normal renal function. However, exposure to

both compounds appeared to be lower in patients

with ESRD requiring hemodialysis (Cmax,

30�38% lower; AUC0�1, 31�47% lower), but

neither compound appeared to be eliminated from

the body during hemodialysis. On this basis, it was

concluded that the 50-mg dose of sunitinib may

also be used to initiate treatment in these patients,

but that tolerability should be monitored closely

in case dose-modification becomes necessary.

12.1.3 Summary

• A suite of studies were conducted to charac-

terize the basic pharmacokinetics of sunitinib

and optimize treatment administration.

• The results of most of these studies formed a

part of the sunitinib regulatory submission

package for GIST and RCC and are summar-

ized in the product prescribing information.
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12.2 Population Pharmacokinetics
of Sunitinib and SU12662
in Healthy Volunteers and
Cancer Patients

While individual studies had previously found

sunitinib pharmacokinetics to be similar

between healthy volunteers and patients with

solid tumors (Pfizer Inc. 2010), a variety of fac-

tors such as age, gender, race, body weight, and

clinical performance status might be expected to

affect sunitinib pharmacokinetics in individuals

when analyzed across multiple studies. We

therefore used a population approach to assess

the pharmacokinetics of sunitinib and SU12662

and to assess covariates that might explain varia-

bility in exposure. Since studies with other tyro-

sine kinase inhibitors had shown correlations

between high drug exposure and increased tox-

icity (Larson et al. 2008; Guo et al. 2008), a

particular focus of our analysis was the identifi-

cation of factors that increase exposure to suni-

tinib and/or SU12662 (Houk et al. 2009).

12.2.1 Patients

Data from 14 studies in which sunitinib was

administered as a single agent (summarized in

Table 12.1) involving a total of 590 patients were

used in this analysis. Four of the studies involved

healthy volunteers given a single dose of suniti-

nib of 10 or 50 mg, and one involved patients

with acute myeloid leukemia (AML) given a

single dose of 50�350 mg. The other nine were

multiple-dose studies involving patients with

metastatic RCC (mRCC), GIST, or various

solid tumors who received 25�175-mg doses of

sunitinib daily or every other day. Although

patients had received a range of doses of suniti-

nib, the majority received the approved 50-mg/

day starting dose, allowing us to evaluate the

suitability of this dose in particular patient popu-

lations. The demographic and physiologic char-

acteristics of the subjects are summarized in

Table 12.2.

12.2.2 Model Development

In order to estimate population pharmacokinetic

parameters (means and interindividual variabil-

ity) for sunitinib and SU12662 and to identify

potential covariates to explain any interindividual

variability in the parameters (Beal and Sheiner

2006), nonlinear mixed-effects modeling was

employed to analyze plasma concentration�time

data for sunitinib and SU12662, which were

modeled separately. An exponential error term

was used to model interindividual variability in

the main pharmacokinetic parameters (i.e., CL/F,

Vd/F, and the absorption rate constant [Ka]). The

estimate of interindividual variability was provided

as percentage coefficient of variation (%CV),

and residual variability was modeled as a propor-

tional error structure; interindividual variability

was also expressed as the variance (calculated as

[%CV/100]2).

Base models for sunitinib and SU12662 were

chosen using first-order conditional estimation

with interaction. A two-compartmentmodel (para-

meterized in terms of compartmental clearances

and volumes) was found to describe the pharma-

cokinetic data for both sunitinib and SU12662.

When plotted versus time after dose, observed

concentrations were consistent with the two-com-

partment model, and population-predicted values

agreedwell with observed values, as did individual

predicted concentrations. The base models

selected were analyzed for covariate influence on

the interindividual error terms.

Full models (including all potentially influen-

tial covariates that were identified) were then

built using first-order conditional estimation

with interaction. The continuous covariates eval-

uated were age, weight, and creatinine clearance

(CrCL; a measure of renal function), whereas the

categorical covariates evaluated were gender, race,

tumor type, and Eastern Cooperative Oncology

Group performance status (ECOG PS, a measure

of patients’ well-being on a scale of 0 [fully active,

able to carry on all predisease performance without

restriction] to 5 [dead]). All of these variables were

assessed for potential effect on the CL/F of suniti-

nib and SU12662; only gender and weight were
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Table 12.2 Summary of patient physiologic and demographic characteristics in the population pharmacokinetic

metaanalysis

(a) Baseline demographics

Demographic No. of PK-evaluable subjects (N ¼ 590)

Healthy volunteers 73

Cancer patients 517

Solid tumors 95

GIST 241

mRCC 152

Acute myeloid leukemia 29

Race

Caucasian 505

Asian 58

African American 14

Other 13

Gender

Male 398

Female 192

ECOG PS

0 297

1 259

2 33

3 1

(b) Summary values at screening (or first available measurement) of continuous covariates

Variable Age (years) Weight (kg) CrCL (mL/min)a

Minimum 18 34.0 32.2

1st quartile 44 64.0 74.1

Mean 53 77.6 98.2

Median 55 76.9 93.5

3rd quartile 64 88.0 118

Maximum 87 168 347

Total (N) 590 590 587

Standard deviation 15 18.8 36.7

(c) Number of subjects within a range at screening (or first available measurement)

Demographic (range at screening) Subgroup Healthy volunteers Patients All

Age, years (18–87) <40 63 36 99

40–60 10 275 285

60–75 0 180 180

>75 0 26 26

Weight, kg (34–168) �135 0 6 6

76 to <135 36 271 307

41–75 37 237 274

�40 0 3 3

CrCL, mL/min (32–347)a >80 72 318 390

50–80 1 168 169

30–49 0 28 28

<30 0 3 3

aExcludes three subjects with low CrCL values (<1 mL/min; these are thought to be an artifact of the Cockroft-Gault

estimation used)

Adapted with permission from the American Association for Cancer Research: Houk et al. (2009)
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tested for potential effect on Vd/F. Screening to

identify significant covariates was carried out using

stepwise backward elimination.

The resulting final model for the sunitinib

molecule included the effects of gender, Asian

race, and tumor type (except AML) on CL/F and

of body weight on Vd/F in the central compart-

ment (Vd/Fcentral); and that for SU12662 included

the effects of body weight, gender, Asian race,

elevated ECOG PS, and tumor type (except

AML) on CL/F and of body weight and gender

on Vd/Fcentral. Final primary parameter estimates

for both compounds are summarized in Table 12.3.

The sunitinib absorption rate constant (Ka) was

estimated to be 0.20/h (Table 12.3), corres-

ponding to an absorption t1/2 of 3.5 h. The

SU12662 absorption and formation rate constant

was 0.29/h, corresponding to a formation or

appearance t1/2 of 2.4 h. These estimates were

then used to determine CL/F and Vd/F for suni-

tinib and SU12662 (Houk et al. 2009).

The goodness of fit of the final model was

tested by plotting population-predicted versus

observed concentrations, individual-predicted ver-

sus observed concentrations, weighted residuals

versus population-predicted concentrations, and

weighted residuals versus time (Fig. 12.1).

Across the range of observations, individual pre-

dicted values agreed well with observed values.

Weighted residuals were distributed evenly

across the range of predicted concentrations and

time. In a predictive check to assess model per-

formance, the parameters from the final model

and interindividual error estimates were used to

simulate concentrations back into the observed

data set. Simulated concentrations were found to

agree well with observed concentrations, and no

systematic bias was observed.

12.2.3 Effects of Covariates
on Exposure

Of seven covariates tested, five (solid tumor, ele-

vated ECOG PS, Asian race, gender, and body

weight) described a portion of the variability in

CL/F for sunitinib and SU12662 (SU12662 only

in the case of body weight). No relationship with

age or renal function (CrCL) was found for either

sunitinib or SU12662 CL/F. Both covariates

tested (gender and body weight) explained

some of the variability in sunitinib and

SU12662 Vd/F.

Neither sunitinib nor SU12662 disposition

was influenced by having AML. However, hav-

ing a solid tumor did affect the disposition of

both compounds: the estimations suggested that

the CL/F for both sunitinib and the metabolite

was lower in patients with solid tumors than in

healthy adult volunteers. In GIST, sunitinib CL/F

was 29% lower and SU12662 CL/F 22% lower;

patients with mRCC exhibited a 26% lower suni-

tinib and SU12662 CL/F; and patients with

mixed solid tumors exhibited a 27% lower suni-

tinib CL/F and 29% lower SU12662 CL/F. The

effect of having solid tumors on CL/F was the

most influential of all the covariates tested.

Elevated ECOG PS (�2; representing patients

with more debilitating disease) was found to

have a small effect on SU12662 CL/F but not

sunitinib CL/F. In patients with an elevated

ECOG PS, CL/F for SU12662 was 7% lower.

However, the effect was imprecisely estimated

(96% CV) so that these results should be inter-

preted with caution.

The influence of Asian race on CL/F was

examined relative to all other races (>85% Cau-

casian): CL/F was found to be 13% lower for

sunitinib and 12% lower for SU12662. Compared

with men, the CL/F of sunitinib and SU12662 for

women was 9% and 26% lower, respectively, and

Vd/F for SU12662 was 24% lower.

Body weight did not appear to correlate with

sunitinib CL/F, although it correlated positively

with Vd/F for sunitinib and with both Vd/F and

CL/F for SU12662. For sunitinib, the Vd/F of a

40-kg individual was 26% lower than that of a

77-kg individual (the median body weight for

the studies included in this analysis); for a

heavier individual (100 kg), Vd/F was 13%

higher. For SU12662, Vd/F was 28% lower

and CL/F 18% lower for a 40-kg individual
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Fig. 12.1 (continued)
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than a 77-kg individual. Conversely, for a 100-

kg individual compared to a 77-kg individual,

Vd/F for SU12662 was 14% higher and CL/F

was 8% higher.

12.2.4 Simulations

Monte Carlo simulations with the final models

were performed to predict sunitinib, SU12662,

and total-drug (sunitinib plus SU12662) expo-

sures in the patient subpopulations identified

using the demographic covariates shown to

decrease CL/F and/or Vd/F. Potential differences

in exposure were expressed relative to a 77-kg

Caucasian male patient with mRCC and an

ECOG PS of �1 (patients with GIST or other

solid tumors were expected to behave similarly,

since the effect of disease on CL/F was similar

across solid tumor types). For each covariate

combination, 10,000 subjects were simulated at

steady state with 50 mg/day oral dosing. For

each simulated subject, steady-state Cavg (dose/

[simulated clearance � 24 h]), AUC (Cavg � 24 h),

and Cmax of both sunitinib and SU12662 were

calculated. Additional considerations employed

in the simulations can be found in the original

publication (Houk et al. 2009).

The results of these simulations are summar-

ized in Fig. 12.2. In Asians patients relative to

patients of other ethnicities, sunitinib and total-

drug AUC and Cmax were predicted to be 15%

higher. In female relative to male patients, suni-

tinib AUC was predicted to be 10% higher and

total-drug AUC, 17% higher, while Cmax was

predicted to be almost as high (9% higher for

sunitinib and 17% for total drug). The effects of

other covariates in the simulations were smaller.

A baseline ECOG PS �2 was predicted to

increase total-drug AUC by 2% (due solely to

lower SU12662 CL/F). In patients with

extremely low body weight (40 kg), total-drug

AUC was predicted to be 6% higher (when com-

pared with the median body weight of 77 kg),

while high body weight (100 kg) was predicted to

reduce total-drug AUC by 2%. In extreme cases,

combinations of covariates were predicted to

increase exposure levels more than any single

covariate alone. In female Asian patients, for

example, total-drug AUC was predicted to be

34% higher than in male non-Asian patients,

and in a 40-kg female patient, total-drug AUC

was predicted to be 25% higher.

In male Caucasian patients, the interindivi-

dual variability of total-drug AUC and Cmax

was estimated to be 30% (variance, 0.09), while

the predicted changes in total-drug AUC and/or

Cmax among patients as a result of the individual

covariates described above ranged from 2 to

17%. These findings indicated that the individual

covariates evaluated minimally affected suniti-

nib and SU12662 pharmacokinetics, supporting

the use of the recommended 50-mg/day sunitinib

starting dose and minimizing the necessity for

dose adjustment in these subpopulations.

12.2.5 Summary

• Separate models were developed for sunitinib

and SU12662 (two-compartment models with

first-order absorption and elimination).

• Pharmacokinetic parameters were estimated

to be CL/F, 51.8 L/h and Vd/Fcentral, 2,030 L

for sunitinib and CL/F, 29.6 L/h and Vd/Fcentral,

3,080 L for SU12662.

• Tumor type (except AML), Asian race, gender,

body weight, and elevated ECOG PS described

a portion of the variability in sunitinib and

SU12662 CL/F, while gender and body

weight explained some of the variability in

sunitinib and SU12662 Vd/Fcentral.

Fig. 12.1 (continued) Diagnostic goodness-of-fit plots
for (a) sunitinib and (b) SU12662 final models, showing
population and individual predicted versus observed
concentrations, weighted residuals versus population
predicted concentrations, and weighted residuals ver-

sus time. Solid lines represent the unity (population and
individual predicted plots) or null value (weighted
residual plots); dotted lines are Loess smooth trendlines.
Reproduced and adapted with permission from the
American Association for Cancer Research: Houk et al.
(2009)
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• The predicted differences in total drug (suni-

tinib plus SU12662) AUC and Cmax among

patients as a result of the individual covariates

ranged up to 17%.

• The magnitude of the predicted differences in

exposure due to the covariates analyzed mini-

mizes the necessity for dose adjustment in any

of these subpopulations.

12.3 Pharmacokinetic�
Pharmacodynamic
Metaanalysis: Relationship
Between Exposure to Sunitinib
and Efficacy and Tolerability
Endpoints

Building upon the population pharmacokinetic

analyses and models described in the previous

Fig. 12.2 Simulation predictions of (a) sunitinib and (b)

total drug exposures in covariate subpopulations compared

with baseline (a 77-kg Caucasian male with mRCC and

ECOG PS � 1; patients with GIST or mixed solid tumors

were expected to behave similarly). Wide bars represent

Cavg (Cavg � 24 h ¼ AUC) and thinner bars represent

Cmax. Each bar represents the fifth to 95th percentiles and

the vertical line within the bar, the 50th percentile for the

subpopulation. Reproduced and adapted with permission

from the American Association for Cancer Research:

Houk et al. (2009)
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section, we sought to characterize exposure�
response relationships for efficacy and safety

and to identify factors affecting sunitinib res-

ponse in patients with solid tumors, GIST, and

mRCC with the goal of optimizing sunitinib use

(Houk et al. 2010).

12.3.1 Patients and Methods

Data for this analysis came from six of the stud-

ies summarized in Table 12.1. The analysis

involved a total of 639 patients, 443 of whom

had evaluable pharmacokinetic data; all had solid

tumors (mRCC, GIST, and mixed solid tumors;

Table 12.4). While the majority of patients

received the approved dose of 50 mg (85%),

sunitinib doses ranged from 25 to 150 mg, and

final doses ranged from 25 to 100 mg. Sunitinib

was administered once daily or every other day

on any one of three treatment schedules: Sche-

dules 4/2 (the approved schedule), 2/2, or 2/1.

Since only trough levels were available for the

majority of patients, descriptive pharmacokinetic

models for sunitinib and SU12662 were used

(as described in the previous section) to obtain

best estimates of a variety of exposure measures

for each patient in the six studies. These included

trough plasma concentrations over time (Ctrough,

taking into account the patient’s dosing history),

the cumulative AUC over 28 days (AUCCum28;

representing the 28 days of dosing on Schedule

4/2), and mean daily AUC at steady state

(AUCss). Each parameter was calculated for

sunitinib, SU12662, and total drug (sunitinib plus

SU12662).

In exploratory analyses, measured efficacy

and tolerability endpoints were assessed for dis-

tribution and plotted against measures of expo-

sure. Potential relationships identified were

evaluated using a linear regression model, and

Pearson’s correlation coefficients were computed

and tested for statistical significance. Exposure

measures that exhibited the highest correlations

were chosen for further analysis. The potential

effects of covariates on exposure–response were

investigated by segmenting the patient popula-

tion by covariate values and testing individual

endpoint–exposure-measure relationships within

each subgroup using linear regression. The cov-

ariates that were evaluated were gender, age,

body mass index quartiles, race, baseline

Table 12.4 Patient demographics and data summary by tumor type in the population pharmacokinetic�pharmaco-

dynamic meta-analysis

Characteristic Solid tumors GIST mRCC Pooled data

Number of evaluable patients 69 401 169 639

Number of patients with PK data 69 225 149 443

Number of patient-days of PD observations 2,486 7,619 3,748 13,853

Mean number of observations per patient 36.0 19.0 22.2 21.7

Duration of study data, mean � SD (days) 189 � 174 146 � 131 181 � 117 160 � 134

Duration of study data, range (days) 14–675 1–718 1–485 1–718

Gender (n)

Male 37 257 110 404

Female 32 144 59 235

Race (n)

Caucasian 35 384 154 573

African American 3 20 3 26

Asian 2 17 6 25

Other 1 8 6 15

Mean age � SD (year) 55 � 12 56 � 12 57 � 10 56 � 12

Mean weight � SD (kg) 72 � 18 75 � 18 85 � 19 77 � 19

PD pharmacodynamic, PK pharmacokinetic, SD standard deviation

Adapted from Houk et al. (2010) with kind permission of Springer Science and Business Media
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diastolic blood pressure (DBP), dosing schedule

(Schedules 4/2, 2/2, and 2/1), and tumor type

(solid tumors, mRCC, and GIST). Models

expressing the endpoint value and/or change of

this value from baseline as a function of exposure

measure were then developed in either S-PLUS

or NONMEM using fixed- and mixed-effects

modeling.

It should be noted that there are many con-

straints to identifying an exposure–response rela-

tionship in clinical trials in oncology. These

include a frequent lack of placebo data and the

narrow dose ranges generally administered (can-

cer treatment is usually initiated at the MTD).

The latter constraint was a specific potential lim-

itation in this model given the amount of data

included from phase I studies in which patients

received the lower and upper range of sunitinib

dosing, the analysis of which may have been

more relevant to exposure�toxicity than expo-

sure�efficacy modeling. Although every effort

was made to evaluate and minimize the impact,

individual estimates of pharmacokinetic para-

meters may have been adversely impacted by

the limited sampling in some patients and influ-

enced by dose reductions or dose delays due to

adverse events (AEs). Furthermore, because of

individualized dose titration when a patient is on

study, no two patients receive exactly the same

dosing regimen throughout the entire study.

Consequently, it is not possible to perform a

dose�response analysis on parallel dose groups.

The studies included in this analysis suffered

from many of these limitations. Placebo data

were only available from a small number of

patients from one GIST study (n ¼ 59, median

of 62 days on placebo), making these the only

data available for identification of baseline

hazard rates for disease progression or AE occur-

rence. Additionally, as described above, the

range of sunitinib doses administered was small

and the vast majority of patients started treatment

at 50 mg/day with individualized dose titration.

Despite these challenges, employing fixed- and

mixed-effects modeling approaches allowed

relationships to be identified between exposure

to sunitinib and efficacy and safety endpoints.

12.3.2 Effect of Exposure on Efficacy

We assessed the effect of exposure to sunitinib on

a number of measures of efficacy. Two of these,

which are key measures of efficacy in oncology

trials, were time to tumor progression (TTP) and

overall survival (OS). TTP is defined as the time

from start of treatment to first documentation of

objective tumor progression or death due to cancer

and OS, as the time from start of treatment to

death. Exposure (AUCss) was evaluated against

both of these parameters using Kaplan–Meier

analysis, in which patients were stratified by

median AUCss (less than the median AUCss vs.

greater than or equal to the median AUCss).

Patients with the highest exposure to sunitinib

exhibited longer TTP and OS across the different

tumor types evaluated (Fig. 12.3) and similar

results were obtained using total drug concentra-

tions (sunitinib plus SU12662). Additionally, a

time-to-event analysis carried out using a Weibull

probability distribution model showed that AUCss

was significantly associated with longer TTP and

OS in GIST and mRCC.

Another key oncology efficacy measure that

we analyzed was objective response: a measure

of tumor shrinkage based on computed tomogra-

phy or magnetic resonance imaging. The stan-

dard criteria used (Response Evaluation Criteria

in Solid Tumors; Therasse et al. 2000) define this

as a complete response (CR), partial response

(PR), stable disease (SD), or progressive disease

(PD). Logistic regression was utilized to evaluate

the relationship between objective responses

(CRs and PRs) and exposure to sunitinib. Expo-

sure correlated significantly with the probability

of a PR or CR occurring in mRCC patients

(P ¼ 0.00001; Fig. 12.4). A similar trend that

did not reach statistical significance was found

for patients with GIST (P ¼ 0.06) or solid

tumors (P ¼ 0.28; Fig. 12.4). This may have

been due to the higher frequency of objective

responses observed in patients with RCC

(40�43%; Motzer et al. 2006a, b), compared

with patients with GIST (7�8%; Demetri et al.

2006, 2009) or mixed solid tumors (10�27%;

Faivre et al. 2006; Rosen et al. 2003). There
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was a significant correlation between the proba-

bility of SD and sunitinib exposure, both for

patients with mRCC (P ¼ 0.002) and patients

with GIST (P ¼ 3 � 10�9), but not patients

with solid tumors (P ¼ 1.7; Fig. 12.5). Taken

together, these data suggested a trend toward a

higher probability of tumor shrinkage (PR or CR)

or halting of tumor growth (SD) in patients with

higher exposure to sunitinib.

Tumor size changes over time were also ana-

lyzed using a tumor growth dynamics model, in

which tumor growth kinetics were described as a

function of sunitinib concentrations with a drug

effect amplifying the tumor death rate (Houk

et al. 2010). Model-based predictions of tumor

sizes compared well with the observed study

data for patients with either GIST or mRCC

(Figs. 12.6 and 12.7), although an increase in

the residuals and a larger under-prediction of

tumor size after approximately 400 days were

observed in the diagnostic plots. The increased

tumor size changes expected at doses of

25�50 mg/day on Schedule 4/2 for GIST and

mRCC were simulated using the final model

(Fig. 12.8). The simulations suggested that at a

sunitinib dose of 50 mg/day, 38% more patients

with mRCC and 23% more with GIST would be

expected to achieve a 30% reduction in tumor

size (the equivalent of a PR) than they would at a

dose of 25 mg/day.

Taken together, these analyses demonstrated

the importance of maintaining patients on a

50-mg dose of sunitinib and avoiding dosing

interruptions or reductions during treatment.

They also suggest that further analysis of alter-

native dosing schedules (e.g., Schedules 2/2 or

2/1 or a continuous daily dosing schedule) may

be warranted to determine if these would benefit

patients for whom it may not be possible to

maintain a full dose.

Fig. 12.3 Relationship between average daily exposure

(mean daily AUCss) to sunitinib and TTP/OS across

tumor types. “High AUCss” denotes AUCss � median

(0.8, 0.6, and 0.7 mg�h/mL in patients with mRCC, GIST

and solid tumors, respectively) and “low AUCss” denotes

AUCss < median. Reproduced and adapted from Houk

et al. (2010) with kind permission of Springer Science and

Business Media
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12.3.3 Effect of Exposure on
Treatment-Related AEs

In patients with solid tumors enrolled in these

studies, the most common sunitinib-related AEs

of grade 3 severity (based on National Cancer

Institute Common Terminology Criteria for

Adverse Events version 3.0) were fatigue, hyper-

tension, and neutropenia, and the most frequent

treatment-related AE of grade 4 maximum sever-

ity was asymptomatic increased lipase (Pfizer

Inc. 2007). Linear regression and Pearson’s cor-

relation coefficients were used for initial screen-

ing of these safety parameters against sunitinib

exposure. Detailed exposure–response analysis

was then carried out using the exposure measures

demonstrating the highest correlations. Since

there was less than a 5% correlation of lipase

changes with any exposure measure, these were

not evaluated further as a function of exposure.

Fatigue. Exposure (total-drug AUCss) was

found to correlate with the incidence, but not

severity, of fatigue. This relationship exhibited

a distribution consistent with the existence of two

patient sub-populations: one subpopulation that

experienced fatigue (grade �1) with a normally

distributed range of fatigue scores and another

subpopulation that did not display fatigue at any

time during the study. Analysis of between-

subject variability in an unconditional severity

Fig. 12.4 Probability of a PR or CR versus average

daily exposure (mean daily AUCss) to sunitinib.

Line represents model prediction and shaded area repre-

sents 95% CI. Modeling results are only displayed

for the relationship displaying statistical significance.

The asterisk in the AUCss value of zero reflects the

quintile of patients with GIST who received placebo

rather than sunitinib. Adapted from Houk et al. (2010)

with kind permission of Springer Science and Business

Media
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model versus fatigue incidence supported this

bimodal distribution. Based on a simulation

with 1,000 patients, the t1/2 for the appearance

of fatigue was found to be 8 days, with the

maximum level of fatigue (if experienced) there-

fore reached after one cycle of sunitinib treat-

ment (Fig. 12.9). The model demonstrated a

relationship between sunitinib exposure and the

probability of experiencing grade �1 fatigue in

all three tumor types. At daily doses of 25 mg and

50 mg, the probabilities for GIST were predicted

to be 46% and 65%; for mRCC, 57% and 74%;

and for solid tumors, 85% and 92%, respectively.

Neutropenia. When correlation coefficients

were calculated for the relationship between

estimated exposure measures and observed abso-

lute neutrophil count (ANC), the greatest corre-

lation was found between AUCCum28 for total

drug (AUCCum28Tot) and ANC. A negative rela-

tionship was found between ANC over the course

of treatment, dose (Table 12.5), and AUCcum28Tot

(Fig. 12.10). The slope of the exposure–response

relationship was also significantly greater

(P < 0.05) in patients with the highest baseline

ANC (for a 10% increase in baseline ANC,

patients had an approximately 3.5% greater

ANC reduction). Furthermore, compared with

patients with mixed solid tumors, patients with

GIST or mRCC experienced 36% or 16% greater

ANC reductions, respectively. Changes in ANC

Fig. 12.5 Probability of SD versus average daily

exposure (mean daily AUCss) to sunitinib. Lines
represent model prediction and shaded areas represent
95% CIs. Modeling results are only displayed for rela-

tionships displaying statistical significance. The aster-

isk in the AUCss value of zero reflects the quintile of

patients with GIST who received placebo rather than

sunitinib. Adapted from Houk et al. (2010) with

kind permission of Springer Science and Business

Media
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Fig. 12.6 Diagnostic plots for the GIST tumor growth

kinetics model. Lines represent the unity (population and

individual predicted plots) or null value (weighted resid-

ual plots). Reproduced and adapted from Houk et al.

(2010) with kind permission of Springer Science and

Business Media

Fig. 12.7 Diagnostic plots for the mRCC tumor growth

kinetics model. Lines represent the unity (population and

individual predicted plots) or null value (weighted residual

plots). Reproduced and adapted from Houk et al. (2010)

with kind permission of Springer Science and Business

Media
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Fig. 12.8 Simulated tumor size changes in patients with GIST or mRCC at doses between 25 and 50 mg daily on

Schedule 4/2. Adapted from Houk et al. (2010) with kind permission of Springer Science and Business Media

Fig. 12.9 Probability of

experiencing fatigue over

time based on a simulation

with 1,000 patients.

Adapted from Houk et al.

(2010) with kind

permission of Springer

Science and Business

Media

Table 12.5 Estimates of typical ANC and percent reduction from baseline by sunitinib dose for each tumor type

ANC, counts/nL (% reduction from baseline ANC value of 5 counts/nL)

Dose of sunitinib (mg) Solid tumors GIST mRCC

25 4.3 (�13) 4.1 (�18) 4.2 (�15)

50 3.7 (�26) 3.2 (�36) 3.5 (�30)

75 3.0 (�39) 2.3 (�54) 2.7 (�45)

Adapted from Houk et al. (2010) with kind permission of Springer Science and Business Media
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level occurred predominantly after one cycle of

sunitinib treatment rather than in later cycles.

Using this model, a solid tumor patient with a

baseline ANC of 5 counts/nL was predicted to

exhibit a decrease of 0.9 counts/nL at a dose of

sunitinib 25 mg/day and 1.3 counts/nL at a dose

of 50 mg/day.

Elevated DBP. DBP changes were found to

correlate positively with total-drug Ctrough

(CtroughTot), a relationship that was best described

by a nonlinear (Emax) model (Fig. 12.11), rather

than linear or power models. Baseline DBP

across the population was estimated to be

74 mmHg, with an estimated interindividual

variability (standard deviation) of approximately

10%. The maximum drug-mediated change in

DBP was estimated to be 17 mmHg, with an

interindividual variability of approximately

36% of this value. For the population on sunitinib

50 mg/day, the median Ctrough value was

0.068 mg/mL, below the estimated Ctrough value

that achieves 50% of the maximumDBP increase

(0.084 mg/mL), suggesting that a typical patient

on sunitinib 50 mg/day would be expected to

Fig. 12.10 Observed and population-predicted (solid
line) changes in ANC by sunitinib exposure (AUCcum28-

Tot) in different tumor types. Reproduced and adapted

from Houk et al. (2010) with kind permission of Springer

Science and Business Media

Fig. 12.11 Observed and model-predicted changes in

DBP by sunitinib exposure (CtroughTot) across all tumor

types. Reproduced and adapted from Houk et al. (2010)

with kind permission of Springer Science and Business

Media
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experience a maximum elevation in DBP of

8 mmHg. An estimated 5-mmHg change in

DBP was predicted for a 25-mg/day sunitinib

dose.

12.3.4 Summary and Analysis

These analyses identified tentative relationships

between sunitinib exposure and fatigue, neutro-

penia, and elevated DBP. As mentioned above,

the paucity of placebo data and narrow range of

doses limited these analyses, making it difficult to

attribute these AEs to sunitinib alone rather than

the disease process itself. Clinical experience has

shown that at a dose of 50 mg/day on Schedule

4/2, all three of these AEs are generally mild to

moderate in severity and manageable (Demetri

et al. 2006, 2009; Motzer et al. 2006a, b).

The population pharmacokinetic analysis

described in the previous section showed that cer-

tain patients in a given population treated with the

same dose/schedule may experience increased

exposure to sunitinib. In particular, these analyses

identified female gender and low body weight as

covariates that significantly increase exposure to

sunitinib. Taken together with the pharmacokine-

tic�pharmacodynamic data, the results suggest

that such patients may be at greater risk of fatigue,

DBP elevation, or neutropenia. However, with

these AEs generally being mild to moderate in

severity and clinically manageable, the poten-

tially higher risk should be balanced against the

trend toward greater efficacy observed in patients

with higher exposure to sunitinib.

Conclusions

We have described how pharmacokinetics,

modeling, and simulation have been em-

ployed within the clinical development pro-

gram for sunitinib. The following conclusions

can be drawn from these analyses:

• Increased exposure to sunitinib was asso-

ciated with longer TTP, longer OS, a higher

probability of an objective response, and

greater tumor size decreases.

• Increased exposure was also associated with

an increased risk of experiencing AEs; how-

ever, these were generally mild to moderate in

severity.

• A 50-mg starting dose of sunitinib can provide

clinical benefitwith acceptably low risk ofAEs.

While these analyses were not utilized in

the design of sunitinib clinical trials, they figured

prominently in the regulatory submission pro-

cess. Indeed, the results of most of these ana-

lyses are reflected in the sunitinib prescribing

information (Pfizer Inc. 2010), which notes,

for example, that “population pharmacoki-

netic analyses of demographic data indicate

that there are no clinically relevant effects of

age, body weight, creatinine clearance, race,

gender, or ECOG score on the pharmacokinet-

ics of SUTENT or the primary active metabo-

lite.” Moreover, they have provided valuable

guidance on the optimal use of sunitinib, high-

lighting the importance of maintaining suniti-

nib dosing to achieve maximum benefit from

the drug.
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The Clinical Significance of Drug
Transporters in Drug Disposition
and Drug Interactions

13

Thomas N. Thompson

Abstract

The field of drug transporters has exploded over the past 30 years. It is

now known that transporters are located in virtually every organ and tissue

in the body and are involved in every aspect of drug absorption, distribu-

tion, excretion, and even influence drug metabolism by regulating access

to drug metabolizing enzymes. Because of their ubiquity and function,

drug transporters profoundly influence drug pharmacokinetics and

pharmacodynamics. Moreover, factors which influence drug transporter

function, such as genetic polymorphisms or transporter based drug

interactions, can have a major impact on drug efficacy and safety. This

chapter summarizes the role of transporters in drug disposition, gives

examples of their clinical relevance, and describes the emerging role of

drug transporters in drug discovery and development.

13.1 Introduction

From the beginning of the modern era of phar-

macotherapy, it has been the goal of scientists to

rationally design, synthesize, and deliver agents

to the systemic circulation of patients whereby

they can reach their intended target, exert their

effect, and have clinical benefit. Although this is

regarded as a beneficent intervention, the human

body (as do other mammalian bodies) recognizes

our “beneficial drugs” as unwanted xenobiotics

and has evolved an elaborate system of proteins

that control systemic exposure by influencing the

absorption, distribution, metabolism, and excre-

tion (aka ADME) of said molecules.

After several decades of intense study, a fairly

sophisticated understanding of the physicochem-

ical properties necessary to gain systemic expo-

sure exists, as well as the elaborate gauntlet of

enzymes important in the metabolism and excre-

tion of drugs. However, only relatively recently

have scientists begun to recognize and under-

stand another class of proteins, the so-called

“drug transporters”, that figure prominently in

drug disposition. Drug transporters are important

for gaining and restricting access to the systemic

circulation, as well as influencing distribution

to target organs, and excretion into bile and

urine. Although transporters do not themselves

catalyze changes to molecular structure, they work

T.N. Thompson

R&D Services Pharma consulting, 663 N. 132nd St, #126,

Omaha, NE 68154, USA

e-mail: tnt@rdservkc.com

P.L. Bonate and D.R. Howard (eds.), Pharmacokinetics in Drug Development,
DOI 10.1007/978-1-4419-7937-7_13, # American Association of Pharmaceutical Scientists 2011

285



in close coordination with drug metabolizing

enzymes that do.

In addition to their role in drug and xenobiotic

disposition, transporters are also pivotal in the

uptake and distribution of key nutrients and criti-

cal endobiotics. It has been estimated that as

much as 2% of the total genes in the human

genome relate to transporters, which translates

to approximately 700 transporter genes (Choud-

huri and Klaassen 2006). Transporters are typi-

cally grouped into two broad categories known

as “solute carrier transporters (SLC)” and ATP-

binding cassette (ABC) transporters (Giacomini

and Sugiyama 2006). The SLCs are largely

responsible for uptake across many cell mem-

brane barriers, whereas the ABC transporters

are largely responsible for efflux back across

cellular membranes. The SLCs are largely

responsible for uptake across many cell mem-

brane barriers, including intestinal epithelial

cells, hepatocytes, and kidney proximal tubule

cells. In contrast, the ABC transporters are

largely responsible for efflux back across cellular

membranes and are located in intestinal epithe-

lial cells, hepatic canalicular membrane, the

blood–brain barrier (BBB) and placenta.

Although the number of presumed transpor-

ters is large, a substantial number of those have

yet to be identified and characterized, and only a

comparatively small number of drug transporters

are currently known to have clinical significance

in the disposition of drugs. A recent review arti-

cle by Giacomini et al. (2010) summarized the

results of over 2 years of meetings of the Inter-

national Transporter Consortium (ITC), a group

of scientists from across all sectors of drug dis-

covery, including academia, industry, and the

United States Food and Drug Administration.

This article lists 19 transporters as having the

greatest known significance to human drug dispo-

sition. Indeed, even of these 19, the ITC focused

their attention on a smaller subset of only seven

transporters for which there is the greatest body of

evidence for their role in human drug absorption,

disposition, and drug interactions (Table 13.1).

Two of the seven transporters in the ITC

review are in the ABC family of efflux transpor-

ters, namely P-glycoprotein (P-gp, akamulti-drug

resistance protein 1 [MDR1]; Schinkel and

Jonker 2003; Choudhuri and Klaassen 2006;

Zhou 2008) and breast cancer resistance protein

(BCRP, Schinkel and Jonker 2003; Mao and

Unadkat 2005; Choudhuri and Klaassen 2006),

both of which are located mainly in the intestinal

epithelia, canalicular membrane of hepatocytes,

and the BBB, although they are also known to be

present in many other tissues, including tumor

cells. The other five transporters are in the SLC

family. Organic cation transporter 2 (OCT2,

Koepsell et al. 2007) and the organic anion trans-

porters 1 and 3 (OAT1, and OAT3, Nigam et al.

2007) are located in the kidney proximal tubule.

Organic anion transporter proteins 1B1 and 1B3

(OATP1B1 and OATP1B3, Hagenbuch and Gui

2008) are located on the serosal membrane of

hepatocytes. Although these seven transporters

have received the most attention to date, the ITC

acknowledged that future research will reveal

major roles for other transporters in clinical

drug therapy. Of note, in addition to the reviews

cited above, the reader is referred to several

other excellent recent reviews on OCTs (Wright

2005; Ciarimboli 2008) and OATs (VanWert

et al. 2010).

13.2 Role of Transporters in Drug
Disposition

In order to exert their pharmacological effect,

orally administered drugs must transverse the

intestinal epithelium and be distributed to the

active site, which is often located in tissues

throughout the body, after which they are usually

metabolized and/or excreted. While physico-

chemical properties certainly play a significant

role in whether a drug is absorbed and distributed

throughout the body by passive diffusion, it is

now known that membrane transporters are also

important determinants of the trans-membrane

passage of drugs, including both uptake into

cells and efflux out of cells (Fig. 13.1).

Indeed, there has even been some speculation

that drug transport, rather than passive diffusion,

may play a more important role for molecules to

cross cell membranes than has generally been
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Table 13.1 Selected substrates and inhibitors of drug transporters

Transporter SAR of substrates Substrates Inhibitors Review article

P-gp Neutral and positively

charged bulky (e.g.,

molecular weight

>400)hydrophobic

compounds; with a log

partition coefficient

>1-2; substrate

specificity overlaps

with CYP3A4

Anticancer drugs (vinblastine,
vincristine, paclitaxel, docetaxel

doxorubicin, daunorubicin, and

epirubicin) HIV protease inhibitors
(Saquinavir, Ritonavir, Nelfinavir,

Indinavir, Lopinavir, Amprenavir)

Others (fexofenadine, cimetidine,

Loperamide, Itraconazole,

Ketoconazole, Atorvastatin,

Lovastatin, Cyclosporin A, and

tacrolimus

Itraconazole,

cyclosporine,

quinidine, and

elacridar

Lin (2003),

Leslie et al.

(2005),

Marchetti et al.

(2007),

Choudhuri and

Klaassen (2006)

BCRP Hydrophilic and

hydrophobic

compounds including

various conjugated

compounds

Anticancer drugs (daunorubicin,
doxorubicin, mitoxantrone,

bisantrene, topotecan, irinotecan

and it is active metabolite SN-38,

methotrexate, Nucleoside drugs
AZT, Lamivudine Antibiotics
Ciprofloxacin, Ofloxacin, and

Norfloxacin

Others Cimetidine and rosuvastatin

Estrone

GF120918

Chandra and

Brouwer (2004),

Leslie et al.

(2005)

OATP1B1 Amphipathic organic

compounds, e.g.,

organic anions, some

type II cations (bulky

molecules with

cationic groups

located near the ring;

e.g., quinidine) and

neutral steroids.

Statins (atorvastatin, cerivastatin,
Fluvastatin Pitavastatin Pravastatin,

and rosuvastatin) Others Bosentan,
fexofenadine, methotrexate ouabain;

olmesartan, rifampicin, and valsartan

Saquinovir

and

Cyclosporin A

Chandra and

Brouwer (2004),

Kalliokoski and

Niemi (2009)

OATP1B3 Statins (Fluvastatin, Pitavastatin,
and rosuvastatin)

Others Amanitin Atrasentan,

Bosentan Digoxin, Docetaxel,

Enalapril, Fexofenadine

Methotrexate Ouabain Paclitaxel

Phalloidin Rifampicin Olmesartan

Telmisartan Valsartan

Cyclosporin A Chandra and

Brouwer (2004),

Kalliokoski and

Niemi (2009)

OCT2 Polyspecific, accepts

organic cations of

different sizes and

molecular structures,

both hydrophilic (MW

< 400) and

hydrophobic.

Amantidine, amiloride, acyclovir,

cimetidine, metformin, memantine,

pindolol, procainamide, ranitidine,

oxaliplatin, and varenicline

Amantidine,

cimetidine,

memantine,

and ranitidine

Jonker and

Schinkel (2004),

Koepsell et al.

(2007),

Ciarimboli

(2008)

OAT1 Monovalent (or

selected divalent)

organic anions

(MW < 500 Da) and

some neutral

compounds

Acyclovir, adefovir, cidofovir,

cefadroxil, cefamandole, cefazolin,

and cimetidine,

Probenecid Shitara et al.

(2006)

OAT3 Benzylpenicillin captopril,

cefadroxil, cefamandole,

cefazolin, cimetidine, pravastatin,

cefoperazone, cefotaxim,

ceftriaxone, cephaloridine,

and cephalothin

Cimetidine Shitara et al.

(2006)
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accepted (Dobson and Kell 2008). The problem

with determining which is more important, diffu-

sion or transporters is that selective inhibitors of

transporters are not generally available at this

time (Giacomini et al. 2010). Nevertheless, evi-

dence from in vitro studies with human transpor-

ters, as well as inferences from drug interaction

studies and studies with populations of known

genetic polymorphisms, it is clear that drug

transporters play a significant role in all aspects

of drug disposition in humans. Figure 13.2

depicts seven key transporters involved in drug

interactions the transporters are currently viewed

as having the greatest possibility to contribute to

drug interactions and their respective locations in

the intestine (Fig. 13.2a), liver (Fig. 13.2b), kid-

ney (Fig. 13.2c) and BBB (Fig. 13.2d). These

seven transporters were recommended for study

during drug development by the ITC and this

recommendation was later endorsed the FDA

Advisory Committee for Pharmaceutical Science

and Clinical Pharmacology in their meeting of

March 17, 2010 (meeting transcript can be found

at www.fda.gov/downloads/AdvisoryCommittees/

CommitteesMeetingMaterials/Drugs/Advisory-
CommitteeforPharmaceuticalScienceandClini-

calPharmacology/UCM210803.pdf). Of course,

other transporters are located in these tissues

and throughout the body and these are mentioned

in the legends to Fig. 13.2.

Even though it is difficult to know a priori

what the role of transporters may be in the dis-

position of a given molecule, it is possible to

make some reasonable predictions based on a

molecule’s structure and physicochemical prop-

erties. Early attempts to predict mechanisms of

absorption were based on a compound’s structure

and were general in nature. For example, most

anionic drugs, some hydrophilic organic cationic

and zwitterionic drugs are believed to require

transporters for uptake into the liver and kidney

cells for their ultimate clearance. More recently,

Wu and Benet (2005) have proposed a modifica-

tion to the Biopharmaceutics and Classification

System (BCS, Amidon et al. 1995), which they

call the “Biopharmaceutics Drug Distribution

and Classification System (BDDCS)” that pro-

vides a helpful systematic framework in which

to understand the effects of drug transporters

on drug disposition and pharmacokinetics

(Fig. 13.3). For example, the bioavailability of

BCS Class 1 compounds (those with both high

permeability and solubility) is not likely to be

influenced by transporters because these com-

pounds are highly absorbed by passive diffusion.

Moreover, these compounds have free access to

intracellular intestinal and hepatic drug meta-

bolizing enzymes (DMEs) which facilitate first

pass metabolism, the other major determinant of

bioavailability. However, although BCS Class

Fig. 13.1 Impact of transport on pharmacokinetics, pharmacology, toxicology, and the variability to drug response.

Reprinted from Scherrmann (2009), Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission
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Fig. 13.2 Key transporters involved in drug interactions

and their respective organ locations. These transporters

were recommended for study during drug development by

the International Transporter Consortium and this recom-

mendation was endorsed the FDA Advisory Committee

for Pharmaceutical Science and Clinical Pharmacology.

(a) Intestine: The efflux transporters P-gp and BCRP are

currently viewed as the intestinal transporters having the

greatest possibility to contribute to drug interactions.

Other intestinal epithelial uptake transporters on the api-

cal (luminal) membrane include one or more members of

the organic anion transporting polypeptide (OATP) fam-

ily; peptide transporter 1 (PEPT1; SLC15A1); ileal apical

sodium/bile acid cotransporter (ASBT); and monocarbox-

ylic acid transporter 1 (MCT1). In addition to P-gp and

BCRP, another apical ATP-dependent efflux pumps is

multidrug resistance protein 2 (MRP2; and ABCC2).

The basolateral membrane of intestinal epithelia contains

organic cation transporter 1 (OCT1), organic solute trans-

porter (OSTa–OSTb); and MRP3 (ABCC3) (Giacomini

et al. 2010). This illustration is provided courtesy of

Optivia Biotechnology (www.optiviabio.com). (b)

Liver: The uptake transporters OATP1B1 and 1B3, and

the efflux transporters MDR1(P-gp) and BCRP are the

four hepatic transporters currently viewed as having the

greatest possibility to contribute to drug interactions.

Other human liver uptake transporters in the basolateral

(sinusoidal) membrane include sodium/taurocholate

cotransporting peptide (NTCP); OATP2B1, OAT2,

OAT7, and OCT1. Efflux pumps in the hepatocyte baso-

lateral membrane include MRP3, MRP4, and MRP6.

Other efflux transporters on the canalicular membrane

include bile-salt export pump (BSEP) and MRP2. In addi-

tion, multidrug and toxin extrusion protein 1 (MATE1) is

located in the apical hepatocyte membrane (Giacomini

et al. 2010). This illustration is provided courtesy of

Optivia Biotechnology (www.optiviabio.com). (c) Kid-

ney proximal tubules: The basolateral uptake transporters

OAT1, OAT3, and OCT2 and the apical efflux transporter

MDR1/P-gp are the four renal transporters are currently

viewed as having the greatest possibility to contribute to

drug interactions. Other transporters located on the apical

membrane include OAT4; urate transporter 1 (URAT1);

PEPT1 and PEPT2; MRP2 and MRP4; MATE1 and

MATE2-K (SLC47A2); organic cation/ergothioneine

transporter (OCTN1); and organic cation/carnitine trans-

porter (OCTN2). The other basolateral uptake transpor-

ters in proximal tubule epithelia is OATP4C1 (Giacomini

et al. 2010). This illustration is provided courtesy of

Optivia Biotechnology (www.optiviabio.com). (d)

Blood–brain barrier: The efflux transporters MDR1(P-

gp) and BCRP on the apical membrane of the brain

capillary endothelium and OAT3 on the astrocyte baso-

lateral membrane are the three transporters in the blood–

brain barrier currently viewed as having the greatest pos-

sibility to contribute to drug interactions. Other apical

(luminal) transport proteins of brain capillary endothelial

cells contributing to the function of the blood–brain bar-

rier include the uptake transporters OATP1A2 and

OATP2B1; and the efflux pumps MRP4 and MRP5 (Gia-

comini et al. 2010). This illustration is provided courtesy

of Optivia Biotechnology (www.optiviabio.com)
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2 compounds (high permeability, but low solu-

bility) freely cross the intestinal epithelial cells,

their net absorption could still be limited due to

the action of efflux transporters. For BCS Class 3

compounds (lowpermeability, but high solubility),

absorptive transporters play an important role

in transport across the intestinal epithelia, but

like Class 2 compounds, absorption may still be

limited by efflux transporters. Finally, for BCS

Class 4 compounds (both low permeability and

solubility), both absorptive and efflux transporter

effects could be important (Wu and Benet 2005,

Shugarts and Benet 2009).

With respect to drug clearance, for highly

permeable drugs of either Class 1 (high solubility)

or Class 2 (low solubility), metabolism dom-

inates the clearance because these compounds

have free access to intracellular DMEs. There-

fore, transporters would be expected to have

minimal effects on clearance for these classes

of compounds. However, for poorly permeable

drugs of either Class 3 (high solubility) or Class 4

(low solubility), renal and biliary elimination

of unchanged drug are the primary routes

of clearance and drug transporters would be

expected to have a dominant effect on these

processes.

13.2.1 Absorption

13.2.1.1 Uptake
It is has long been known that passive diffusion

cannot entirely account for absorption of all

drugs, because then absorption should be easily

predicted from physicochemical properties

alone. Yet it is known that not just lipophilic,

unionized drugs are absorbed and the fact that

hydrophilic charged or amphoteric molecules are

also absorbed implies a role for facilitative

absorption by transporters (Thompson 2005).

While these transporters most likely evolved to

facilitate absorption of essential nutrients such

as amino acids, oligopeptides, monosaccharides,

monocarboxylic acids, phosphate, bile acids, and

several water-soluble vitamins across intestinal

apical and basolateral membranes, drugs bearing

structural resemblance to these nutrients can also

be absorbed by the same carrier systems (Tsuji

and Tamai 1996, Kunta and Sinko 2004).

BDDCS Class Permeability/ 
Metabolism

Solubility Effect of drug transporters

1 High/Extensive High Transporter effects minimal

2 High/Extensive Low

Efflux transporter effects 
predominate in the gut, while 
absorptive and efflux 
transporter effects occur the in 
liver

3 Low/Poor High

Absorptive transporter effects 
predominate (but may be 
modulated by efflux 
transporters)

4 Low/Poor Low
Absorptive and efflux 
transporter effects could be 
important

Fig. 13.3 Implications of biopharmaceutics drug disposition classification system (BDDCS) for involvement of drug

transporters. Modified from Fig. 5, Shugarts and Benet 2009
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For example, large neutral amino acid trans-

porters are essential for otherwise impermeable

drugs such as amino acid-mimetic drugs like

baclofen and melphalan. Similarly, antibiotics

of the cephalosporin (e.g., cefaclor, cephalexin,

cefadroxil, cephradine, cefatrizine, cefroxadine,

cephradine) and b-lactam (amoxicillin, ampi-

cillin, cyclacillin, benzylpenicillin, phenoxy-

methyl-penicillin, and propicillin) class, as well

as other diverse drugs such as captopril, bestatin

and valacyclovir, are actively transported by the

peptide transporter, PEPT1. Monocarboxylic

acid transporters (MCT1) are known to play a

role in absorption of acids such as pravastatin

(Dobson and Kell 2008), while the Naþ/bile

acid cotransporter ASBT facilitates absorption

of acyclovir (ACV). Even drugs with some

degree of passive diffusion can be influenced by

active uptake. For example, organic ion trans-

porter proteins OATP can contribute to absorp-

tion of compounds such as fexofenadine

(Cvetkovic et al. 1999).

13.2.1.2 Efflux
In addition to active transport in the absorptive

(mucosal to serosal) direction, it is now evident

active transporters exist to limit absorption by

causing the efflux of drugs in the reverse (serosal

to mucosal) direction. For example the expres-

sion of P-gp or BCRP in the intestinal brush

border (apical) membrane of the small intestine

leads to net secretion of some drugs in the

serosal-to-mucosal direction, serving as part of

the absorption barrier in the intestine. Wu and

Benet (2005) have postulated efflux transporter

effects will predominate for BCS Class 2 com-

pounds because although the high permeability

of these compounds allows ready access into

the gut membranes, their low solubility will

limit the concentrations coming into the entero-

cytes, thereby preventing saturation of the efflux

transporters.

The clinical significance of efflux transporters

on absorption can be inferred from the effect of

rifampin, a P-gp inducer, on orally administered

digoxin, a substrate for P-gp. After concomitant

rifampin administration, which results in increased

expression of P-gp, digoxin bioavailability is

significantly decreased, even though it is known

digoxin is not metabolized in humans (Greiner

et al. 1999). Similarly, grapefruit juice, a known

inhibitor of P-gp and CYP3A4, caused a decrease

in the bioavailability of fexofenadine (Banfield

et al. 2002) despite the fact that this drug is known

to undergo little or no metabolism in humans.

Like P-gp, the clinical significance of BCRP

on absorption can be inferred from drug interac-

tion studies. The bioavailability of topotecan, a

known substrate for BCRP, but not P-gp, was

increased significantly when coadministered

with GF120918 which is an inhibitor of both a

P-gp and BCRP (Kruijtzer et al. 2002).

13.2.2 Distribution

After drugs reach the systemic circulation, they

are free to distribute outside the blood compart-

ment to total body water and into tissues. Once

thought to be a passive process, it is recognized

that transporter-mediated uptake and/or efflux

significantly influences tissue distribution. While

this is true for all tissues, the two organ systems

best studied with respect to transporter influx and

efflux are the liver and the brain.

13.2.2.1 Distribution to Liver
Distribution of drugs into liver cells is very

important to their metabolic and biliary clear-

ance. Moreover, in some cases, the liver itself is

the site of therapeutic action. While most lipo-

philic molecules may move freely from blood

and diffuse across the basolateral membrane

into the hepatocytes, amphipathic and polar

organic compounds often require uptake trans-

porter proteins to gain access (Chandra and

Brouwer 2004; Kalliokoski and Niemi 2009).

The OATP transporters, OATP1B1, OATP1B3,

and OATP2B1, are chiefly responsible for uptake

of their substrate drugs into the cytosolic com-

partment of liver cells (Kalliokoski and Niemi

2009). Once inside the hepatocytes, drug mole-

cules can be metabolized by various drug meta-

bolizing enzymes, or be secreted into bile by

transporters such as P-gp, BCRP, MRP2 or

BSEP. Alternately, there are examples of drugs
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transported in the reverse direction from cytosol

back into the blood compartment by efflux trans-

porters such as P-gp or BCRP. In addition to the

important role distribution to the liver plays in

metabolism and excretion, the liver itself is

sometimes the therapeutic target organ, as is the

case for the cholesterol lowing class of com-

pounds known as statins. Studies of genetic poly-

morphism and/or drug interactions have revealed

the important role transporter proteins play in

both the efficacy and safety of statins.

13.2.2.2 Distribution to the Brain
Pharmaceutical scientists have long known that

entry into or exclusion from the central nervous

system is controlled by the so-called BBB. At

one time the BBB was thought to be solely an

anatomical barrier, composed of a single layer of

endothelial cells lacking fenestrations, and hav-

ing few pinocytotic vesicles, connected by tight

junctions. This barrier effectively excludes any

drug either too hydrophilic or bound to plasma

proteins. While both these factors are certainly

true, it is now known that another crucial compo-

nent of the BBB is the expression of efflux trans-

porter proteins such as P-gp and BCRP in brain

endothelial cells (de Boer et al. 2003; Sun et al.

2003). While most direct evidence for transporter

expression comes from animal and in vitro stud-

ies, it is interesting to note a survey of marketed

drugs revealed 30% were shown to be P-gp sub-

strates (Mahar Doan et al. 2002). Even more

significant, however, was the observation that

the subset of drugs marketed for CNS indications

have a threefold lower incidence of being P-gp

substrates.

Examples of the importance of transporters

limiting access into the CNS include the case of

nonsedating antihistamines, such as cetirizine or

fexofenadine, which are excellent substrates for

P-gp (Mahar Doan et al. 2002; Cvetkovic et al.

1999). Another example is loperamide, which is

a potent opioid agonist with no CNS effects.

Similar to the nonsedating antihistamines, the

lack of CNS effect of loperamide is likely due

to efflux by P-gp (Sadeque et al. 2000). Finally,

imatinib, which is an anticancer drug effec-

tive for used in treating chronic myelogenous

leukemia , gastrointestinal stromal tumors and

other cancers, have been found to be effective

against glioblastomas in vitro, yet is ineffective

clinically. Insofar as imatinib is known to be a

BCRP substrate, this lack of efficacy in vivo is

most likely due to efflux from the CNS by BCRP.

13.2.2.3 Distribution to Other Tissues
Although the role of transporters in the distribu-

tion of drugs to the liver and CNS have been the

most studied organs, transporters are thought to

play important roles in distribution to other tis-

sues and organs as well. For example, efflux

transporters such as P-gp and BCRP are also

found to be located in other tissues, presumably

to protect them from environmental “toxins”.

Some of these tissues and organs include

the lung (Scheffer et al. 2002), the so-called

“privileged compartments” in the body, which

include the maternal-facing membrane of the

syncytiotrophoblasts (placental cells) presum-

ably acting to protect the fetus from xenobiotics

(Unadkat et al. 2004), and the blood–testis barrier

(Leslie et al. 2005).

In addition, drug distribution to tumors, which

in effect are invasive “organs”, are known to be

influenced by transporters such as P-gp and

BCRP. In this case, chemotherapeutic drugs are

effluxed out of the cancer cells thereby lowering

their intracellular levels and imparting drug

resistance. Indeed, it was through research on

drug resistance in tumors where P-gp was first

discovered (Juliano and Ling 1976).

13.2.2.4 Interaction of Drug Transporters
with Drug Metabolizing
Enzymes

Although drug transporters do not have any func-

tion in the metabolic transformation of drugs,

they certainly play an important role in metabolic

clearance. They exert their influence by (1)

controlling intracellular access to drug metabo-

lizing enzymes and (2) completing the elimina-

tion of Phase 1 or Phase 2 metabolites by biliary

or renal excretion. That transporters could be

the rate limiting step of organ clearance can be

shown by the following equations (Pang and
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Gillette 1978; Yamazaki et al. 1996; Shitara et al.

2006):

CLint;all ¼ PSu; influx � CLint

CLint þ PSu;efflux
:

Overall intrinsic clearance by liver or other

organs (CLint, all) is a function not only of the

inherent intrinsic clearance of organ’s metaboliz-

ing enzymes (CLint), but also the influx perme-

ability (PSu, influx). If the PSu, influx is very low in

comparison to CLint, then the equation reduces to

CLint;all ¼ PSu; influx;

andPSu, influxbecomes ratedeterminingforCLint, all.

Examples of influencing metabolism by

controlling intracellular access are provided by

several drugs of the statin class, including simva-

statin, lovastatin, atorvastatin, and cerivastatin.

These drugs are thought to be cleared primarily

by hepatic CYP3A4 or in the case of cerivastatin

by CYP2C8 metabolism. However, all are sub-

strates for the hepatic uptake transporter

OATP1B1, which is essential for their uptake

into the hepatocytes, as shown from in vitro stud-

ies (e.g., Matsushima et al. 2005) as well as

clinical studies. For example, patients who are

genetically deficient in OATP1B1 have an

increased incidence of rhabdomyolysis from

simvastatin (Link et al. 2008). Alternately,

patients who received cyclosporine A had a

nearly fivefold increase in exposure to ceriva-

statin (Muck et al. 1999), thought to be due to

inhibition of OATP1B1 (Shitara et al. 2003).

It has been suggested that, in some cases, the

interaction between transporters and DMEs is not

random, but may have evolved purposefully as a

coordinated defense against xenobiotics (Zhang

and Benet 2001; Benet and Cummins 2001). This

is perhaps the best exemplified by the special

relationship between P-gp and CYP3A4 in the

intestine (Benet and Cummins 2001). Both P-gp

and CYP3A4 share similar substrate specificity

and both are located in the small intestinal enter-

ocytes. Absorption of drugs or other xenobiotics

begins by permeation of the apical membrane.

However, the drugs that happen to be substrates

for P-gp are extruded back into the intestine and

the process begins again. Alternately, should some

drug escape efflux by P-gp, because it is also a

substrate for CYP3A4, it may bemetabolized. The

continual process of diffusion, then efflux has the

effect of lengthening the time the drug is exposed

to CYP3A4. The net effect is to limit the penetra-

tion of the intestinal barrier and thus lower bio-

availability. The notion of a coordinated defense

between P-gp and CYP3A4 is further strength-

ened by the observation that both are regulated

by the same nuclear receptor, pregnane-X receptor

(PXR, Geick et al. 2001). As was noted earlier, the

interaction between transporter and enzyme will

be most relevant for BDDCS Class 2 compounds

as transporters do not figure in the clearance of

Class 1 compounds and Class 3 or 4 compounds

are eliminated by transporter-based biliary or

renal excretion without metabolism (Shugarts

and Benet 2009).

13.2.3 Excretion

Biliary and renal excretory pathways have been

described descriptively for decades, but only

since the mid-1990s have the important role of

drug transporters in these pathways been known

(Giacomini and Sugiyama 2006). This knowl-

edge has enabled us to better understand renal

and biliary clearance and appreciate what role

genetic polymorphisms and drug interactions

may play in drug efficacy and safety with respect

to these excretory systems.

13.2.3.1 Biliary Excretion
Along with metabolism, biliary excretion is the

other pathway of hepatic clearance and transpor-

ters play a major role in this process (Ho and Kim

2005; Shitara et al. 2005; Shitara et al. 2006).

First, a drug must transverse the sinusoidal mem-

brane from blood into the hepatocytes, a process

which is facilitated by OATP1B1 and OATP1B3

and several other SLC transporters. Examples

of drugs taken up by OATP1B1 include statins

such as atorvastatin, cerivastatin, fluvastatin,

pitavastatin, pravastatin, and rosuvastatin as
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well as other miscellaneous drugs such as bosen-

tan, fexofenadine, methotrexate, ouabain, olme-

sartan, rifampicin, and valsartan. Substrates for

OATP1B3 include statins such as fluvastatin,

pitavastatin, and rosuvastatin as well as diverse

drugs such as amantidine, atrasentan, bosentan,

digoxin, docetaxel, enalapril, fexofenadine, oua-

bain, paclitaxel, phalloidin, rifampicin, olmesar-

tan, telmisartan and valsartan (Table 13.1).

Once inside the hepatocytes, one of two things

can happen to the drug. First, the drug may be

extruded back into the blood by the sinusoidal

efflux transporters MRP3, MRP4, or MRP6.

However, more likely, the drug may then be

susceptible to Phase 1 and Phase 2 metabolism

which has the effect of producing more water-

soluble metabolites. These more hydrophilic

metabolites are often substrates for efflux trans-

porters on the liver canalicular membrane such as

P-gp, BCRP, and others, which extrude them into

bile. Alternately, sufficiently polar molecules

with molecular weights exceeding 400 Da may

be substrates for these efflux transporters without

prior metabolism and thus are excreted into bile

unchanged, e.g., fexofenadine (P-gp) or prava-

statin (P-gp or BRCP).

13.2.3.2 Renal Excretion
Hydrophilic drugs of low molecular weight

(<400 Da) are likely candidates for renal excre-

tion. These drugs are first delivered to the kidney

via the renal artery where a portion of the blood

is filtered by glomerular filtration, which is a

simple diffusion process that does not involve

transporters. After drugs are filtered through the

glomerulus they pass through the proximal renal

tubule, where they may be reabsorbed into blood-

stream or be metabolized by renal DMEs. Reab-

sorption may occur by either passive diffusion

across a concentration gradient driven by absorp-

tion of water from urine back into blood (Shitara

et al. 2006) or actively secreted back into the

blood by efflux transporters like PEP1 and

OATP1A2.

The remaining portion of renal blood not

filtered through the glomerulus is presented to

the renal proximal tubule where there are sev-

eral kinds of transporters located on the sinusoi-

dal membrane. Substrates for these transporters

are taken up into the renal proximal tubule cell

and excreted into the renal tubule, ultimately

being excreted in the urine. Drugs that are

organic cations are substrates for uptake by

OCT2, and include amantidine, amiloride,

cimetidine, metformin, memantine, pindolol,

procainamide, ranitidine, oxaliplatin, and vare-

nicline, to name a few. Organic anions are also

taken up by OAT1 and include drugs such ACV,

adefovir, cidofovir, cefadroxil cefamandole,

cefazolin, and cimetidine. Substrates for the

other major organic anion transporter OAT3

include b-lactams such as benzylpenicillin,

cephalosporins such as cefadroxil, cefaman-

dole, cefazolin, cephaloridine, and other drugs

including captopril, cimetidine, methotrexate

and pravastatin (Jonker and Schinkel 2004; Shi-

tara et al. 2006; Koepsell et al. 2007; Ciarimboli

2008). Once inside the proximal renal tubule

cell they may be actively effluxed into the

lumen and ultimately the urine by efflux trans-

porters such as P-gp, MRP2 or MRP4, among

others, located on the luminal (brush border)

membrane. Hence, transporters in the kidney

can, depending on their location in the cell, act

to either increase or decrease renal clearance,

thereby decreasing or increasing total clearance,

respectively.

13.3 Effects of Transporters that
Influence Drug PK: Clinical
Examples

The previous section provided an overview of the

role transporters play in drug disposition. This

section will provide clinical examples where

transporters have been shown to impact drug

efficacy or safety. These have been grouped

into cases where (1) a drug interaction involving

a transporter or (2) a genetic polymorphism of

the transporter was responsible for the clinically

significant effect.
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13.3.1 Drug Interactions

The potential for drug interactions resulting from

interaction with drug transporters is a rapidly

emerging field and has the FDA’s full attention

(US Food and Drug Administration. Drug Devel-

opment and Drug Interactions. US FDA website

(http://www.fda.gov/Drugs/DevelopmentAppro-

valProcess/DevelopmentResources/DrugInterac-

tionsLabeling/ucm080499.htm, accessedApril 19,

2010) [online]. Transporter-based drug inter-

actions are often complex to sort out as they are

confounded by the fact that many transporters are

located in multiple tissue sites, and the putative

interacting drug may also affect drug metaboliz-

ing enzymes, or other transporters. Nevertheless,

as our understanding of human drug transporters

and their clinical relevance has progressed, more

drug interactions involving transporters have

been revealed. In many cases, the drug interaction

was shown by clinical studies years before the

involvement of transporters was sorted out. This

topic has been the subject of several recent

reviews (Lin 2003; Shitara et al. 2005; Endres

et al. 2006; Li et al. 2006; Marchetti et al. 2007;

Poirier et al. 2007; Zhang et al. 2008; Kindla

et al. 2009). A partial list of clinically significant

drug interactions involving transporters is provided

in Table 13.2.

Although any of the known transporters could

be involved in a drug interaction, the ITC identi-

fied the following seven transporters as being of

the greatest significance for drug interactions at

this time (Giacomini et al. 2010): the efflux

transporters P-gp (MDR1) and BCRP located in

the intestinal epithelia, canalicular membrane of

hepatocytes and the BBB; OCT2, OAT1, and

OAT3 located in the kidney proximal tubule,

and OATP1B1 and OATP1B3 located on the

serosal membrane of the hepatocytes.

Like interactions involving DMEs, trans-

porter-based interactions between drugs can

result from either inhibition or induction of a

given transporter, and may involve both uptake

Table 13.2 Selected examples of drug–drug interactions mediated by drug transporters

Transporter Interacting

drug

Affected

drug

Clinical affect In vivo study

Inhibition of

intestinal P-

gp efflux

Verapamil Fexofenadine " Bioavailability by 2.5x Yasui-Furukori

et al. (2005)

Inhibition of

intestinal P-

gp efflux

Quinidine Digoxin Increase in the amount of absorbed from this

jejunal segment compared with the absorption

from the other quinidine-free segment (22.4%

vs. 55.8%)

Igel et al.

(2007)

Inhibition of

BCRP efflux

GF120918 Topotecan Topotecan AUC "143% Kruijtzer et al.

(2002)

Inhibition of

uptake of

renal OAT

Probenecid Cefaclor and

cephadrin

" Cmax and AUC Welling et al.

(1979)

Inhibition of

uptake of

renal OAT

Probenecid Furosemide CLr #66% Li et al. (2006)

Inhibition of

uptake of

renal OAT

Probenecid Cefamandole CLr #75% Takeda et al.

(2002a, b, c)

Inhibition of

uptake of

renal OCT

Cimetidine Metformin AUC "50% and CLr # 27% Somogyi et al.

(1987)

Inhibition of

OATP1B1

Cyclosporin

A

Cerivastatin # Hepatic metabolism by3A4 and 2C8, "AUC
by 4-5x

Muck et al.

(1999), Shitara

et al. (2003)

Inhibition of

OATP

Cyclosporin

A

Pravastatin AUC "890% and Cmax "678% and # CLbil Neuvonen et al.

(2006)
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and efflux transporters. Also similar to DME-

based interactions, transporter-based interactions

first occur at the pharmacokinetic level, meaning

they affect the plasma concentration of drug.

Such an interaction becomes clinically signifi-

cant if it results in the plasma concentration

falling outside the therapeutic window, resulting

in lack of efficacy or adverse effects. While most

clinically significant interactions result in notice-

able changes in plasma concentrations, there are

special cases where a change in plasma concen-

trations is not evident, as is the case for tissues

with a low volume of distribution, e.g., brain,

testes, fetus etc. In these instances, a trans-

porter-based interaction could indeed occur, but

the resulting effect on tissue concentrations may

not be evident from the corresponding plasma

concentration.

13.3.1.1 Inhibition and Induction of
P-gp (MDR1)

P-glycoprotein is without a doubt the best studied

transporter to date (Fig. 13.4). Consequently,

there are by far more substrates known for P-gp

than any other transporter and more drug inter-

actions have been reported (Lin 2003; Schinkel

and Jonker 2003; Endres et al. 2006; Marchetti

et al. 2007). Many substrates known to be

involved in intestinal P-gp drug interactions,

including digoxin, loperamide, and fexofenadine

(Cvetkovic et al. 1999) just to name a few.

Because of its location in the intestinal epithelial

cells, drugs or other xenobiotics that inhibit P-gp

may block efflux of substrates back into intestine,

thereby having the apparent effect of increasing

absorption. Conversely, drugs that induce P-gp

may have the effect of further limiting absorption

(Niemi et al. 2003b). P-gp inhibitors known to

cause a clinically significant inhibitory drug

interaction on intestinal P-gp include tacrolimus,

cyclosporin A, verapamil, and quinidine (Wandel

et al. 1999), itraconazole (Fenner et al. 2009),

ritonavir (Drewe et al. 1999), while rifampin

has been shown to induce intestinal P-gp only

(Greiner et al. 1999).

Because P-gp is also located in other tissues, it

is sometimes difficult to establish that a P-gp

inhibitor affects systemic exposure only by act-

ing on intestinal P-gp and not other tissues. Per-

haps the best example of inhibition of only

intestinal P-gp is the interaction between

digoxin, a P-gp substrate, and quinidine, a P-gp

inhibitor. When digoxin was repeatedly adminis-

tered orally to steady state followed by an intra-

venous bolus dose of 3H-digoxin in the presence

of quinidine, a nearly 80% increase in the Cmax

and AUC of unlabeled digoxin and a 15%

increase in absolute bioavailability was observed

compared to controls (Pedersen et al. 1983).

Since digoxin is not metabolized, it can be

inferred that this effect was due to inhibition of

intestinal P-gp by quinidine.

The pharmacokinetics of digoxin (oral and iv)

before and after coadministration of rifampin has

also been studied (Greiner et al. 1999). The AUC

of oral digoxin was significantly lower during

rifampin treatment, although the effect was less

pronounced after intravenous administration of

digoxin. Both digoxin renal clearance and half-

life were not altered by rifampin. Duodenal

Fig. 13.4 Numbers of

published papers/patents on

major human transporters.

Presentation by SM Huang,

AAPS ISSX workshop Nov

10, 2007 San Diego CA

(http://www.fda.gov/

ohrms/dockets/ac/06/

slides/2006-4248s1-indes.

html, accessed August

2010)
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biopsies indicated that P-gp content increased

3.5-fold after rifampin treatment, which corre-

lated with the AUC after oral digoxin but not

after intravenous digoxin, indicating that the

intestine is the primary site of interaction. Given

the fact that rifampin is known to interact with the

PXR and PXR regulates expression of P-gp (vide

infra), the rifampin–digoxin interaction appears

to be mediated by induction of intestinal P-gp.

As previously mentioned, P-gp is also located

in several other tissues, leading to other possible

sites for drug interactions. For example, P-gp is

located on the canalicular membrane of the hepa-

tocytes and is important in biliary excretion. Itra-

conazole, quinidine, and ritonavir have been

shown to inhibit the biliary excretion of digoxin

(Endres et al. 2006). For example, quinidine

caused a nearly 50% reduction in the steady-

state biliary clearance of digoxin (Hedman et al.

1990) and verapamil caused a 43% in biliary

clearance of digoxin (Hedman et al. 1991).

Subsequent in vitro studies established that quin-

idine and verapamil were effective P-gp inhibi-

tors (Wandel et al. 1999).

P-gp, also located on the luminal surface of

renal proximal kidney cells, is important in the

final step of renal secretion. Itraconazole (Jalava

et al. 1997), quinidine (Hedman et al. 1990) and

ritonavir (Ding et al. 2004) have all been show to

decrease renal secretion of digoxin in vivo. Sep-

arate in vitro studies established that itraconazole

(Wang et al. 2001), quinidine (Wandel et al.

1999), and ritonavir (Drewe et al. 1999) inhibited

P-gp. P-gp is also a crucial component of the

BBB, so a drug interaction affecting P-gp might

serve to affect brain concentrations of a drug. An

example of this phenomenon is the interaction

between verapamil and CsA in which positron

emission tomography (PET) imaging was used to

indicate that brain verapamil levels increased

upon inhibition of P-gp by CsA. Because the

brain has a low volume of distribution, there

was no corresponding change in plasma concen-

trations (Sasongko et al. 2005).

13.3.1.2 Inhibition of BCRP
BCRP is another significant efflux transporter

located in the intestine, and a clinically significant

drug interaction has been observed between

topotecan, a BCRP substrate, and GF120918, a

BCRP inhibitor (Allen et al. 1999). After oral

administration of topotecan (1 mg/m2), with and

without of GF120918 (1,000 mg), the AUC

of total topotecan increased 2.4-fold, Cmax

increased 2.8-fold, and the apparent bioavaila-

bility in this cohort increased significantly from

40.0 to 97.1% (Kruijtzer et al. 2002). BCRP may

also be involved in the interaction between meth-

otrexate and pantoprazole, both known to be

BCRP substrates (Breedveld et al. 2004). Troger

et al. 2002 reported that coadministration of pan-

toprazole with methotrexate resulted in a 70%

increase in the plasma levels of the metabolite

7-hydroxy-methotrexate in a cancer patient, as

well as a greater incidence of severe myalgia.

This effect presumably results from inhibition

of renal excretion of methotrexate by panto-

prazole, which exposes methotrexate to other

routes of clearance such as metabolism to its

7-hydroxy metabolite.

13.3.1.3 Inhibition of OATP-Mediated
Hepatic Uptake

Inhibition of OATP-mediated hepatic uptake has

been demonstrated to be the mechanism for a

number of clinically significant drug interactions.

OATP1B1 has been shown to actively transport

many substrates such as the statins atorvas-

tatin, lovastatin, pravastatin, and rosuvastatin

(Schneck et al. 2004; Simonson et al. 2004), as

well as valsartan (Yamashiro et al. 2006), and

olmesartan (Yamada et al. 2007). Interactions with

these OATP1B1 substrates have been reported

for OATP1B1 inhibitors, including cyclosporine

A (Simonson et al. 2004), gemfibrozil (Schneck

et al. 2004), rifampin (Lau et al. 2007), repagli-

nide (Bachmakov et al. 2008) and ritonavir

(Hirano et al. 2006). For example, coadministra-

tion of CsA increased atorvastatin AUC by

7.4-fold (Asberg et al. 2001), for lovastatin by

20-fold (Olbricht et al. 1997), and pravastatin

by between five- and tenfold (Regazzi et al.

1993; Olbricht et al. 1997 and Hedman et al.

2004). Similarly, coadministration of gemfibrozil

increased the AUC of repaglinide by eightfold

(Niemi et al. 2003a), and coadministration of
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rifampicin increased the AUC of atorvastatin by

sevenfold (Lau et al. 2007).

The interaction of CsA and cerivastatin is

noteworthy because it is an example the com-

plexity of transporter interactions when inhibi-

tion of DMEs is also involved. CsA was shown to

cause a nearly fivefold increase of cerivastatin

AUC and Cmax (Muck et al. 1999). Later in vitro

studies demonstrated that one possible mecha-

nism was that CsA inhibited OATP1B1 (Shitara

et al. 2003). However, CsA also inhibits both

CYPs 3A4 and 2C8 as well, so this undoubtedly

contributes to the overall magnitude of the inter-

action. Similarly, coadministration of gemfibrozil,

another inhibitor of OAT1B1, also causes a

4.4-fold increase in cerivastatin (Backman et al.

2002). However, cerivastatin is metabolized by

CYP2C8 (major) and CYP3A4 (minor), and

gemfibrozil also inhibits theses DMEs (Wang

et al. 2002). Other examples of OATP drug inter-

actions can be found in several recent reviews

(Neuvonen et al. 2006; Poirier et al. 2007;

Kalliokoski and Niemi 2009; Kindla et al. 2009).

13.3.1.4 Inhibition of OAT-Mediated
Renal Excretion

There are three organic anion uptake transporters

located on the basolateral (serosal) membrane of

the kidney proximal tubule, OAT1, OAT2, and

OAT3. OAT4 is located on the luminal mem-

brane and is involved in secretion of intracellular

drug into urine. Of these, OAT1 and OAT3 have

been implicated in drug interactions that result in

increased plasma concentrations and/or reduced

renal CL. Although a comprehensive list of

renal OAT-mediated interactions will not be pro-

vided, some of the affected substrates include

cefamandole (Takeda et al. 2002a), furosemide

(Hosoyamada et al. 1999), methotrexate (Takeda

et al. 2002b), ACV, ganciclovir (GCV), and

zidovudine (AZT) (Takeda et al. 2002c). Proben-

ecid has been the most widely studied OAT

inhibitor, although salicylate, phenylbutazone,

indomethacin (Takeda et al. 2002b) have also

been established as inhibitors.

In many cases, the clinical drug interactions

have been known for years, long before the roles

of inhibition of OAT uptake transporters were

established. For example, it has been known for

years that NSAIDs inhibit renal secretion of

methotrexate (Frenia and Long 1992), sometimes

resulting in severe adverse events (Thyss et al.

1986). The interaction between probenecid and

cephalosporin antibiotics has also been known

for some time. For example, oral administration

of probenecid before a single intramuscular dose

of cefamandole resulted in a nearly twofold

increase in serum levels of cefamandole than

when cefamandole was given alone (Griffith

et al. 1977). Administration of probenecid was

shown to increase the AUC of cephadrin and

cefaclor by 2.4-fold and 2.1-fold, respectively,

and Cmax by 1.9-fold and 1.5-fold, respectively

(Welling et al. 1979).

In another study, probenecid was also found to

decrease the renal CL of nafcillin by 72% (Waller

et al. 1982). Coadministration of probenecid also

was shown to interact with AZT, causing a two-

fold increase in the mean AUC, a corresponding

decline in the apparent total clearance, and a

prolongation in the mean half-life (de Miranda

et al. 1989). Coadministration of probenecid

caused famotidine AUC to increase 1.8-fold

while both the excretion rate of unchanged famo-

tidine in urine over 24 h and the mean tubular

secretion clearance of famotidine was decreased

by nearly 90% (Inotsume et al. 1990). More

recently, it was demonstrated that probenecid

decreased renal CL by 66% for furosemide (Li

et al. 2006), and by 68% for of fexofenadine

(Yasui-Furukori et al. 2005).

In recent years, the roles of specific OAT

transporters in these interactions have begun to

be sorted out. Takeda et al. (2002b) demon-

strated that NSAIDs (salicylate, ibuprofen,

ketoprofen, phenylbutazone, piroxicam, and

indomethacin), probenecid, and penicillin G

inhibited methotrexate uptake mediated by

human-OAT1 (hOAT1), hOAT3, and hOAT4.

The same group also established that ACV and

GCV were actively taken up by hOAT1, AZT

was observed in hOAT1-, hOAT2-, hOAT3-,

and hOAT4-expressing cells, and that probene-

cid could inhibit AZT uptake by hOAT1

(Takeda et al. 2002b). The cephalosporin anti-

biotics cephalothin, cefoperazone, cefazolin,
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ceftriaxone, cephaloridine, cefotaxime, cefa-

droxil, and cefamandole significantly inhibited

organic anion uptake mediated by hOAT1, and to

a lesser extent, human-OAT3 and human-OAT4

(Takeda et al. 2002c). In studies using human

kidney slices, it was demonstrated that salicylate,

indomethacin, phenylbutazone, and probenecid

inhibited the uptake of methotrexate at concen-

trations comparable to plasma concentration

observed clinically. In particular, inhibition of

renal uptake via OAT3, along with contributions

from and efflux processes (via MRP2 and

MRP4), is the likely explanation for site of

drug–drug interaction for methotrexate with pro-

benecid and some NSAIDs (Nozaki et al. 2007).

However, to put this in perspective, according

to a recent review by Ayrton and Morgan (2008),

in terms of safety, drug–drug interactions with

OATs are generally of limited clinical conse-

quence to drug safety. Obviously this depends

on the therapeutic margin of the substrate in

question, but concern regarding OAT interac-

tions maybe limited to interactions with the

OAT substrate methotrexate and potent OAT

inhibitors (Uwai et al. 2000; Nozaki et al. 2007).

13.3.1.5 Inhibition of OCT2
In addition to OAT1, OAT2, and OAT3, OCT2 is

the other major uptake transporter on located on

the basolateral serosal membrane of the kidney

proximal tubule cells and undoubtedly contri-

butes to some drug interactions involving renal

secretion. Similar to OATs, inhibition of OCT2

would lead to increased systemic exposure and/or

decreased renal CL. Drugs known to be sub-

strates of OCT2 include cimetidine, metformin,

procainamide, and varenicline (Tsuji 2002;

Jonker and Schinkel 2004; Koepsell et al. 2007;

Ciarimboli 2008).

Reports of drug interactions involving

decreased renal CL have been reported for

years prior to investigation of OCT2 and its sub-

strates and inhibitors. For example, coadminis-

tration of cimetidine, a known inhibitor of renal

tubular secretion of organic bases via the cationic

transport system, increased the AUC of metfor-

min by 50% while decreasing renal CL by 27%

(Somogyi et al. 1987). Similarly, coadministra-

tion of cimetidine also decreased the renal CL of

procainamide by 44% (Somogyi et al. 1983) and

AZT by 56% (Fletcher et al. 1995). Coadminstra-

tion of trimethoprim decreased the renal CL of

AZT by 27%.

More recently, when dofetilide was adminis-

tered with cimetidine, the plasma AUC of dofe-

tilide increased by as much as 48% while renal

CL was reduced by 33% and nonrenal clearance

by 21% (Abel et al. 2000). This interaction is

important enough to be listed as a black box

warning on the package insert for dofetilide

(Tikosyn®). Because of overlapping substrate

specificity with the OATs, it is difficult to estab-

lish to what extent OCT2 is involved in decreased

renal secretion. Nevertheless, in vitro studies have

established that cimetidine (Motohashi et al.

2004), metformin (Kimura et al. 2005), procaina-

mide (Gorboulev et al. 1997), and varenicline

(Feng et al. 2008) are all substrates of OCT2.

13.3.2 Clinically Relevant Genetic
Polymorphisms of Drug
Transporters

As is the case for CYPs and other DMEs, genetic

polymorphisms have been identified in many

drug transporter proteins. Given the key role

transporters play in drug disposition, these var-

iants undoubtedly make a significant contribution

to interindividual variation in pharmacokinetics,

drug response (Maeda and Sugiyama 2008;

DeGorter and Kim 2009), and drug safety

(Maeda and Sugiyama 2008; Link et al. 2008).

In addition to these, there have also been recent

reviews specifically on genetic variation in many

of the important transporters, including the ABC

transporters P-gp (Cascorbi 2006; Chinn and

Kroetz 2007), BCRP (Cascorbi 2006; Maeda and

Sugiyama 2008), OATP (Maeda and Sugiyama

2008), OAT (Zair et al. 2008) and OCT (DeGorter

and Kim 2009). A comprehensive listing of

genetic polymorphisms of drug transporters is

beyond the scope of this chapter. Instead, a few

key examples will be presented on where the
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genetic variants of transporters have influenced

the pharmacokinetics of selected drugs, and in so

doing affected the efficacy and safety of these

drugs.

13.3.2.1 P-gp
Because of the importance P-gp in drug disposi-

tion, a large body of work has been published

linking genetic variants of the gene (ABCB1) for

this efflux transporter to pharmacokinetics, phar-

macodynamics, and disease susceptibility. These

studies have documented at least 100 mutations

of this gene (Maeda and Sugiyama 2008).

Unfortunately, despite this enormous body of

work, the associations of these studies have not

been consistently reproducible. For example,

using digoxin as a substrate, it has been shown

vitro that genetic variants of MDR1 decreased

intracellular digoxin accumulation, suggesting

that increased P-gp function may be found in

such subjects with these variants (Kim et al.

2001).

However, subsequent clinical investigations

have failed to establish an unequivocal relation-

ship of P-gp function with common variants such

as the G2677T and C3435T polymorphisms.

Some studies have shown decreased digoxin

exposure, some have shown increased exposure,

and others have shown no effect (Chinn and

Kroetz 2007). Fexofenadine, another well-

characterized P-gp substrate, has also been

extensively studied with respect to the influence

of the genetic variants G2677T and C3435T on

drug exposure. Yet, like digoxin, the clinical

results are mixed. Some studies have shown no

correlation between the 3435C4T polymorphism

and fexofenadine exposure (Drescher et al.

2002), while others have found increased expo-

sure as a result in 2677T/3435T homozygotes

(Yi et al. 2004). In a recent review, data for 15

P-gp substrates were summarized for the func-

tion of MDR1 by the C3435T variant. As stated

above, there were many examples in which P-gp

function increased with this variant, but there

were also reports of the opposite effect. How-

ever, the dominant trend was that there was no

difference in P-gp function as a result of this

genetic variant (Maeda and Sugiyama 2008).

Clearly, more careful, better controlled clinical

studies which control for environmental and

other nongenetic as well as genetic factors are

still needed to establish a consistent effect

between variants of MDR1 and in vivo drug

action of P-gp substrates.

13.3.2.2 OATP1B1
Genetic variants which decrease the function

of the liver uptake transporter OATP1B1 have

recently been implicated as an increased risk

factor for statin-induced myopathy. In a genome-

wide association study, at least one common vari-

ant in SLCO1B1 was identified that was strongly

associated with an increased risk of simvastatin-

induced myopathy. More than 60% of these

myopathy cases could be attributed to the C allele

of the rs4149056 polymorphism, which is also

associated with higher blood concentrations of

statins (Link et al. 2008). Similarly, a group of

Japanese workers also found that the frequency

of OATP-C*15 is significantly higher in patients

who experienced myopathy after receiving prava-

statin or atorvastatin than in patients without

myopathy (Morimoto et al. 2004).

Recently, it has been reported that after

administration of irinotecan to patients with

non-small cell lung carcinoma , plasma concen-

tration of SN-38, an active metabolite of irinote-

can, was significantly higher in those patients

withT521C mutation in SLOC1B1 compared

with nonholder of this mutation. Moreover, the

frequency of Grade 4 neutropenia was signifi-

cantly higher in this same subset of patients,

presumably due to the increased systemic expo-

sure of SN-38 (Han et al. 2008).

13.3.2.3 OCT1
OCT1 is known to play an important role in the

hepatic uptake of metformin. Thus, it is not

surprising that variants of the gene for OCT1

(SLC22A1) have been shown to have a signifi-

cant effect on metformin pharmacokinetics. Indi-

viduals carrying reduced function OCT1 alleles

had higher AUC, higher Cmax, and lower oral

volume of distribution of metformin (Shu et al.

2008). Given the importance of this transporter

to the uptake of metformin into the liver, its
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target tissue, this may explain why the effects of

metformin in glucose tolerance tests were signif-

icantly lower in subjects with reduced function

alleles of OCT1 (Shu et al. 2007).

13.3.2.4 OCT2
OCT2-mediated uptake into kidney proximal

tubule cells is the first step in the renal excretion

of metformin, so the pharmacokinetics of this

drug can also be influenced by variants in the

gene for OCT2 (SLC22A2). It has been shown

that subjects with reduced function genetic var-

iants of SLC22A2 showed significant differences

when compared with the reference genotype,

with higher metformin Cmax and AUC, and

lower renal CL (Song et al. 2008).

13.4 Evaluation of Drug
Transporters in Drug
Discovery and Development

As with CYPs and other DMEs, investigation of

the role of that transporters play in the disposi-

tion of drugs and as potential mechanisms for

drug interactions is now gaining attention in the

development of new drugs (Zhang et al. 2010).

Of course, like any applied research activity,

investigation of transporters can only be justified

to the extent that such research improves the

safety and efficacy and ultimately reduces attri-

tion of drug candidates (Kohl 2009; Ayrton and

Morgan 2008).

This section will describe transporter research

activities during the drug discovery stage, as well

as during preclinical development and clinical

development. Finally, a brief summary will be

presented of regulatory issues around drug trans-

porters that may arise during the NDA submis-

sion, approval and, ultimately, product labeling

process.

13.4.1 Discovery Stage

Any activity applied during the Discovery stage

must, of necessity, be amenable to high through-

put screening (HTS) and rapid turnaround time.

Perhaps the best example of such an evaluation is

Caco-2 screening for drug absorption. Using an

automated, transwell study design, flux of drug

candidates across a monolayer of Caco-2 cells

can be measured. Of course, this is only an indi-

rect indication of the involvement of transpor-

ters, as Caco-2 cells measure the combined effect

of passive diffusion, active uptake by transpor-

ters such as PEPT1 or MCT1, and efflux by

transporters such as P-gp or BCRP. If a more

precise definition of the role of uptake or efflux

transporters is needed, other cell lines such as

MDCK with a singly expressed transporter are

used. For example, MDR1-MDCKII cells with

active P-gp are often used as a screening tool in

programs for the discovery of CNS compounds.

It has been demonstrated that whether a com-

pound is a substrate for P-gp is a critical compo-

nent in CNS activity in that most marketed CNS

drugs are less likely to be substrates (Mahar

Doan et al. 2002).

Other high throughput screens for P-gp are

the so-called ATPase (Ishikawa et al. 2005) or

calcein-AM receptor-based assays (Mahar Doan

et al. 2002). Mahar Doan and coworkers (2002)

concluded that the interaction with P-gp

measured by efflux is a better discriminator

between CNS and non-CNS drugs than when

measured by calcein-AM. The problem with

these assays is that while they are certainly ame-

nable to high throughput, these receptor assays

cannot distinguish between whether a compound

is a substrate or inhibitor of P-gp.

Increasingly, in silico methods are being

developed for predicting transporter interaction

(Ekins et al. 2007). For example, it could be very

useful to predict based on structure alone

whether compounds in a library are substrates

for P-gp. In theory, selecting compounds with

minimal interaction with this P-gp would tend

to facilitate bioavailability and CNS permeability.

In silico screening could also be used to develop

SAR to increase interaction with PEPT1 in order

to enhance absorption of peptide like moieties. In

another important application of in silico methods,

physiologically based pharmacokinetic modeling

combined with in vitro and in vivo animal data

has recently been used to examine the effects of
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transporter activities on the systemic and liver

exposure of pravastatin (Watanabe et al. 2009).

This approach could be used at virtually any stage

of drug discovery and development, although the

reliability increases as more in vivo and in vitro

data are available later in development.

13.4.2 Preclinical Development Stage

Once a NME becomes a clinical candidate and

enters the preclinical development stage, it is

essential to begin the process of more fully char-

acterizing the routes of absorption, distribution

and clearance, and assessing the potential for

drug–drug interactions. As is the case for CYPs

and other DMEs, transporter studies at this stage

are designed to be more comprehensive and to

more fully characterize a drug as an inhibitor

and/or substrate of key transporters. There are a

multitude of nonclinical studies, both in vitro and

in vivo, that can be done to evaluate interaction

of the candidate and drug transporters.

13.4.2.1 Determination of the Potential
for a Transporter-Based Drug
Interaction

A major goal in preclinical pharmacokinetics is

to predict the likelihood of a drug interaction

between the drug in question and other likely

concomitant medications. Typically, analogous

to the scenario with CYPs, the first question

usually investigated is whether the development

candidate is an inhibitor (or less likely, inducer)

of a transporter and as such, could impact the

clearance of another drug. The second question

to investigate is whether the development candi-

date is a transporter substrate to the degree that a

transporter inhibitor or inducer could impact its

absorption, distribution, or clearance. The timing

and extent of these studies vary considerably

from compound to compound and also vary

with the development group’s budget and risk

tolerance. A general rule of thumb is that enough

information must be known to determine the

potential for a drug interaction prior to the first

clinical study where concomitant drugs will be

administered, typically Phase 2A. The FDA

issued a draft guidance to industry in 2006 that

addresses these issues for both CYPs (and other

DMEs) as well as transporters. In one of the

appendices to this guidance, an outline of an

experimental protocol for a “definitive” in vitro

transporter-based drug interaction study was

provided, along with a decision tree.

Based on the literature on drug interactions

available at the time, P-gp was the only trans-

porter mentioned in FDA’s guidance on drug

interactions for which specific studies were

recommended. The decision tree for whether a

drug candidate is an inhibitor for P-gp is depicted

in Fig. 13.5. The 2006 Guidance recommended

that bidirectional transport study design with sta-

bly expressed human P-gp (Caco-2 or MDCKII

cells) be used because only this type system

allows assessment of the true vectorial transport

reflective of the in vivo situation.

In order to determine whether a test com-

pound is an inhibitor of P-gp, the compound is

added to a system along with a known P-gp

substrate such as digoxin. If the net flux ratio,

that is, the ratio of flux in the basolateral to apical

direction (B!A) divided by the flux in the apical

to basolateral (A!B) direction is unaffected by

increasing concentrations of the test drug, then

the test drug is a not considered to be a P-gp

inhibitor and no further action is needed. How-

ever, if the net flux ratio is decreased with

increasing concentrations of the test drug then

the test drug is a probable P-gp inhibitor. At

this point, further in vitro studies are warranted

to determine the IC50 or Ki of P-gp inhibition.

If the ratio of the expected unbound plasma

concentration of the test drug divided by its

the Ki (or IC50) for P-gp inhibition is >0.1,

a clinical drug interaction study may be

warranted.

In addition, if a test drug is determined to be a

P-gp inhibitor, then it is quite possible it could

also be a substrate for P-gp and vulnerable to

interactions with known P-gp inhibitors (or indu-

cers). A decision tree for determining whether

a test drug is a P-gp substrate is depicted in

Fig. 13.6. The experimental design is similar to

the inhibitor decision tree except, in this case, the

net flux ratio of the test drug is determined first.
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A net flux ratio of <2.0 indicates the test drug

is not a P-gp substrate and no further action is

warranted. However, if the net flux ratio is >2.0,

a follow-up study is undertaken with one or more

known P-gp inhibitors such as verapamil, CsA,

ketoconazole, or erythromycin. If the net flux

ratio is decreased, the test compound is likely to

be a P-gp substrate and a follow-up clinical drug

interaction study may be warranted.

Although the 2006 draft Drug Interaction

Guidance provides a decision tree and recom-

mends studies specifically for P-gp, reports of

drug interactions mediated by other transporters

continue to accumulate in the literature. Several

recent publications have suggested situations for

when it may be appropriate to consider similar

studies with other transporters. In particular, the

2010 ITC review (Giacomini et al. 2010) depicts

several additional decision trees to test for a

compound as an inhibitor or substrate of other

transporters, such as OATs, OCTs, and OATPs.

For example, renal uptake transporters such as

OAT1, OAT3, or OCT2 might be considered if

renal CL is greater than 50% of total clearance or

if the secretory component of renal CL is more

important than glomerular filtration. If so, then

bidirectional transport studies with polarized cell

lines should be conducted determine if the test

drug is an inhibitor and/or substrate for these

transporters.

Similarly, studies with biliary uptake trans-

porters such as OATP1B1 or OATP1B3 should

be considered if the hepatic elimination of

unchanged drug is an important part of overall

CL. If hepatic CL is >30% of total CL and if the

drug’s physicochemical properties suggest poor

Fig. 13.5 FDA decision tree to determine if an investi-

gational new drug is a P-gp inhibitor. Slide adapted from

FDA’s Guidance to Industry: Drug Interactions, 2006

(http://www.fda.gov/downloads/Drugs/GuidanceCom-

plianceRegulatoryInformation/Guidances/ucm072101.

pdf, accessed August 2010)
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passive perfusion, then bidirectional transport

studies with polarized cell lines expressing

OATP1B1 or OATP1B3 should be conducted

determine if the test drug is an inhibitor and/or

substrate for these transporters.

13.4.2.2 Other Nonclinical Systems
to Understand Mechanism of
Transporter Efflux or Uptake

Apart from the use of bidirectional transport

studies with Caco-2 or MDR1/MDCKII cell

lines just described, there are often situations

in which additional information on the mecha-

nism of efflux or uptake by transporters may be

desired. While Caco-2 or MDR1/MDCKII cell

lines can also be used for mechanism studies,

there are also many other experimental techni-

ques to further elucidate the mechanism of

drug–transporter interactions. The following

information has been compiled from several

key review articles (Ghibellini et al. 2006a, b;

Ayrton and Morgan 2008; Klaassen and Lu

2008; Giacomini et al. 2010). References to

specific techniques can be found within these

reviews.

Hepatocytes. Fresh or frozen isolated hepato-

cytes in suspension have proven to be a very

useful for hepatic uptake and/or metabolism

studies. Of course, like any primary cell, isolated

hepatocytes express the full complement of drug

transporters and DMEs, which can be both an

advantage and a limitation. Hepatocytes are

ideal for getting a general overview of hepatic

uptake, and to study the interplay between uptake

and hepatic metabolism. However, it is difficult

to sort out the contribution of a single hepatic

transporter using primary hepatocytes. Recently,

this limitation has been addressed by knocking

down selected transporters by adenoviral vector-

mediated RNA interference (RNAi).

Isolated hepatocytes are limited by the lack of

normal cell polarity, so canalicular efflux cannot

be studied. To address this, sandwich-cultured

primary hepatocytes have been developed which

express functional and extensive bile canalicular

networks. These cells exhibit normal cell polarity,

and direct access to the both hepatocyte and adja-

cent biliary compartment. As such, they are useful

to study both basolateral uptake and canalicular

efflux transport processes, which make them ideal

Fig. 13.6 FDA decision tree to determine if NCE is P-

gp substrate. Slide adapted from FDA’s Guidance to

Industry: Drug Interactions, 2006 (http://www.fda.gov/

downloads/Drugs/GuidanceComplianceRegulatoryIn-

formation/Guidances/ucm072101.pdf, accessed August

2010)
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for studying the overall process of biliary excre-

tion in vitro.

Heterologous Expression in Whole Cells. As
stated above, hepatocytes express multiple uptake

and efflux transporters, as well as DMEs. In cases

where individual transporters need to be studied,

other whole cell systems for heterologous expres-

sion of individual or specific combinations of

transporters are available. An example of one

such system is the Xenopus laevis (frog) oocyte.

When transfected with the transporter of interest,

oocytes can be a useful tool for functional studies

such as the determining the kinetics of transport,

or systematically sorting out the contribution of

individual transporters. Many different transpor-

ters have been expressed in oocytes, including

OATP1B1 and OATP1B3, OCTs, OATs, and

PEPT. The main disadvantage with oocytes is

that they are a transient expression system and

need to be injected individually with cRNA of

the transporter protein of interest. This disadvan-

tage is offset, in part, because this system is

readily available commercially for certain trans-

porters.

However, for continued use, or for use with a

specific transporter or combination of transpor-

ters, stably transfected cell lines may be pre-

ferred. Many cell types are commonly used for

stable transfection of transporter genes, including

the aforementioned MDCKII cell lines, as well as

human embryonic kidney (HEK 293) or Chinese

hamster ovary (CHO) cell lines. These cell lines

can be maintained in culture for sustained

periods and can be ready for use in a specific

experiment within a few days. In addition, these

cells can be singly, doubly or even multiply

transfected to produce transporter systems of

variable complexity, depending on the experi-

mental objective. Even Caco-2 cells, which

express multiple transporters, may be useful to

study individual transporters when used in com-

bination with the previously mentioned RNAi

technique to knockdown transporters not of

interest.

Membrane Vesicles. There are occasions

where subcellular transporter preparations

might best meet the experimental objective. In

such cases, membrane vesicles isolated from

animal hepatocytes or kidney cells can be a

useful tool. For example, renal proximal tubule

membrane vesicles from either the brush border

(luminal) side or the basolateral (serosal) side of

the membrane can be isolated from kidney cells.

Similarly, hepatocyte membrane vesicles, such

as those on the basolateral side, as well as those

from the bile canalicular side, can be isolated

from hepatocytes. In addition to primary cell

lines, membrane vesicles can also be isolated

from a wide variety of cultured cell lines, includ-

ing Caco-2, and Caki-1, a proximal tubule repre-

sentative cell line, as well as custom transfected

and baculovirus-infected cell lines. Many differ-

ent transporters have been studied using mem-

brane vesicles, including both efflux transporters

(e.g., P-gp, and BCRP), as well as uptake trans-

porters (e.g., OCTs and OATs). Although mem-

brane vesicles are an important research tool,

there is an inherent limitation in their use. If the

membrane vesicles are isolated from kidney or

liver cells, or from cell lines expressing multiple

transporters (e.g., Caco-2 cells) rather than spe-

cific cell lines, they will contain several transpor-

ters isolated together. Thus, any interpretation of

the results must account for the combined effects

of multiple transporters.

In Vivo Models. Knockout mouse models are

a powerful tool in the determination of whether a

drug is a substrate or inhibitor for a given trans-

porter (Klaassen and Lu 2008). A great deal

about tissue localization sites have been learned

from experiments with transgenic mice. For

example, one of the first studies to demonstrate

the important role of P-gp in the BBB was carried

out in an Mdr1 knockout mouse model (Schinkel

et al. 1994). Pharmacokinetic studies in knockout

mouse models have been invaluable in determin-

ing the role a given transporter plays in the dis-

position of drugs and xenobiotics. Knockout

mouse models are available for many common

transporters, including Mdr1a or Mdr1a/b (P-gp),

Bcrp�/� and Abcg�/� (BCRP), Oct�/�,

Oat1�/� and Oat3�/�, Oatp1b2�/�. However,

as with all animal studies, the results must be

interpreted with caution when attempting to

extrapolate results to humans. There are definite

species differences in expression levels and tissue
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locations and even substrate specificities of drug

transporters

Transgenic mice bred to express human trans-

porters are another powerful animal model. PK

experiments in transgenic animals may be more

directly applicable to humans because the trans-

porters expressed are actually human transpor-

ters. A good example of the use of transgenic

mice comes from the study of methotrexate phar-

macokinetics in transgenic mice with liver-

specific expression of human OATP1B1 (van de

Steeg et al. 2009).

13.4.3 Clinical Development Stage

As described earlier, as recommended by the

FDA guidance on drug interactions, bidirectional

in vitro transport studies are now routinely con-

ducted to determine whether a development can-

didate is a P-gp inhibitor or inducer. Soon similar

studies may be routine for other transporters.

Should the results of such studies be positive, a

clinical drug interaction study may be warranted.

However, unlike DMEs, the role of individual

transporter activity for the PK a given drug is

still is poorly understood, in part because of

broad substrate specificity the overlaps multiple

transporters and DMEs. Further, the lack of

selective substrates makes it difficult to study

drug transporter-mediated drug interactions in

clinical pharmacokinetic setting, although this

is an area of ongoing study.

At the present time, P-gp is the only trans-

porter with a (relatively) specific substrate:

digoxin. Other potential substrates for P-gp,

such as talinolol and fexofenadine, are being

investigated, but so far the results are equivocal

(Fuhr et al. 2007). Nevertheless, digoxin is a

particularly useful substrate for determining

P-gp based drug interactions because readily

availability in both radiolabeled and nonradiola-

beled form and can be administered both orally

and intravenously. Furthermore, digoxin is not

metabolized and thus it measures only transport

and not the interplay of transport and metabo-

lism. On the other hand, while digoxin is a rela-

tively specific substrate for P-gp, there is a high

degree of intersubject variability in digoxin phar-

macokinetics, presumably due to genetic poly-

morphisms of P-gp (Fuhr et al. 2007), especially

with Cmax, which confounds interpretation of

drug interaction studies. While normally admi-

nistered alone with the test drug, digoxin is also

now being administered as part of a drug interac-

tion “cocktail”, e.g., the “Cologne cocktail”

(Fuhr et al. 2007). Furthermore, P-gp is

expressed in multiple tissues throughout the

body, which complicates interpretation of the

pharmacokinetic results. The fact that digoxin

can also be administered both orally and intrave-

nously, has been used sort out the contribution of

intestinal P-gp relative to other tissues where

P-gp is located (Rengelshausen et al. 2003; Fenner

et al. 2009). Sometimes these studies have been

accompanied by intestinal biopsies and direct

measurement of P-gp protein to see if the results

correlate with the observed pharmacokinetic

effect.

As mentioned, P-gp is located in many other

tissues, including on the luminal membrane of

the renal proximal tubule where it impacts renal

excretion and the bile canalicular membrane

which impacts biliary excretion. The urine com-

partment is readily accessible, so P-gp drug

interactions at the level of renal excretion can

be sorted out by the difference between renal

and total body clearance after intravenous

administration. However, access to the bile com-

partment is difficult, making it technically chal-

lenging to measure P-gp drug interactions at the

level of biliary excretion, at least in the healthy

volunteers frequently used in drug interaction

studies. Two clinical studies of the interaction

between digoxin and P-gp inhibitors quinidine

(Hedman et al. 1990) or verapamil (Hedman

et al. 1991) are examples of how the relative

contributions of P-gp transporter to biliary and

renal excretion can be distinguished. In these

studies, healthy volunteers were administered

digoxin orally with and without quinidine or

verapamil. Following treatment, the subjects

were catheterized with a duodenal triple-lumen

perfusion catheter to give an unambiguous

measurement of biliary clearance of digoxin.

However, such direct measurements of biliary
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excretion remain technically challenging and

infrequently utilized.

P-gp is also expressed at the BBB, which is

another technically challenging compartment to

sample. Recently, a novel noninvasive quantita-

tive imaging technique was used to measure the

contribution of P-gp activity at the BBB. In this

study, carbon-11-labeled verapamil was used as

the P-gp substrate and the effect of the P-gp

inhibitor cyclosporine was measured. Brain

PET was used to measure brain 11C-labeled

verapamil concentrations. Brain uptake of

11C-radioactivity (AUCbrain/AUCblood) was deter-

mined in the presence and absence of cyclosporine

(Sasongko et al. 2005).

13.4.4 NDA Submission Stage

It is clear from the language in the 2006 draft

guidance on drug interactions, the number of

presentations and publications originated from

FDA authors, as well their participation on

the ITC, that the FDA is keenly aware of the

pivotal role that transporters play in drug

disposition, as well as drug interactions and

other adverse effects. Increasingly, information

regarding transporters is being included in drug

labeling language in new drug applications. For

example, OATP1B1 polymorphisms associated

with adverse reactions such as liver toxicity

with certain statins are mentioned prominently

in their warning labels. Also, drug interactions

via transporters now more commonly reported

in the literature. Accordingly, warnings for

interactions on drug labels are also more com-

mon, especially for drugs with low therapeutic

index such as methotrexate and NSAIDS. Not

surprisingly, drugs that are P-gp substrates have

received the most attention as exemplified by

the fexofenadine label warning of a possible

interaction with P-gp inhibitors. Examples of

drugs with warnings for other transporters

include dofetilide and pramipexole, which are

potentially vulnerable to interactions with OCT

inhibitors, sitagliptin (Januvia®), which is vul-

nerable to interaction with OAT-3 inhibitors

and atorvastatin (Lipitor®), which is vulnerable

to interactions with OATP1B1 inhibitors.

13.5 Conclusion/Summary

Research on the class of proteins known collec-

tively as drug transporters has exploded over the

past 30 years. It is now recognized that drug

transporters join DMEs in forming a complex

gauntlet of proteins that has evolved to control

access of xenobiotics to mammalian bodies.

Transporters are located in virtually every organ

and tissue in the body and are involved in every

aspect of drug absorption, distribution, and excre-

tion. In addition, transporters even influence

metabolism of xenobiotics by controlling access

to the cellular locations of dug metabolizing

enzymes. Because of their ubiquity and function,

drug transporters profoundly influence drug phar-

macokinetics. Moreover, intrinsic and extrinsic

factors which influence drug transporter function,

such as genetic polymorphisms or transporter-

based drug interactions, can have a major impact

on drug efficacy and safety.

Because of this significant role in drug safety

and efficacy, the importance of transporters is

gaining the attention of regulatory agencies.

The revised 2006 FDA Guidance on drug inter-

actions included information on transporters for

the first time and provided a decision tree for

evaluation of drugs as substrates or inhibitors of

P-gp. Furthermore, as one activity of the US

FDA’s Critical Path Initiative, the agency has

been active in establishment of the ITC. The

recently published report from the ITC workshop

held in October 2008 has signaled the increased

regulatory interest in understanding the role that

transporter-based drug interactions and genetic

polymorphisms play in drug safety and efficacy.

Indeed, transporter information is becoming

increasing more significant in recent NDA sub-

missions. Furthermore, because earlier submis-

sions may have lacked transporter information,

in some cases, the FDA has recently asked for

postmarketing studies of potential transporter-

mediated drug–drug interactions.
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Investigation of the role that transporters play

in the disposition of drugs and as potential

mechanisms for drug interactions is now also

gaining the attention of the companies involved

in the discovery and development of new drugs.

At the present, attention given to transporters in

drug development is relatively modest compared

to CYPs and other DMEs. However, this research

will undoubtedly increase as evidence accumu-

lates that a thorough understanding of transpor-

ters can improves the safety and efficacy and

ultimately reduces attrition of drug candidates.

Research into drug transporters at the molec-

ular, preclinical, and clinical levels is a vibrant

endeavor and undoubtedly will remain well into

the future. If the past progress is any indication,

continued advancement in the knowledge of how

transporters influence drug disposition will cer-

tainly lead to discovery and development of safer

and more effective new drugs.
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