David L Gillett

David L Gillett
Monash University (Australia) · Department of Microbiology

Bachelor of Science

About

9
Publications
1,596
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
278
Citations
Introduction
I'm a PhD candidate supervised by Chris Greening and Rhys Grinter at Monash University. I study mycobacterial persistence through the lenses of microbial physiology and biochemistry.

Publications

Publications (9)
Article
Full-text available
Mycobacteria are major environmental microorganisms and cause many significant diseases, including tuberculosis. Mycobacteria make an unusual vitamin-like compound, F 420 , and use it to both persist during stress and resist antibiotic treatment. Understanding how mycobacteria make F 420 is important, as this process can be targeted to create new d...
Preprint
Full-text available
F420 is a low-potential redox cofactor used by diverse bacteria and archaea. In mycobacteria, this cofactor has multiple roles, including adaptation to redox stress, cell wall biosynthesis, and activation of the clinical antitubercular prodrugs pretomanid and delamanid. A recent biochemical study proposed a revised biosynthesis pathway for F420 in...
Article
Full-text available
The activity of the proteasome 20S catalytic core is regulated by protein complexes that bind to one or both ends. The PA28 regulator stimulates 20S proteasome peptidase activity in vitro, but its role in vivo remains unclear. Here, we show that genetic deletion of the PA28 regulator from Plasmodium falciparum (Pf) renders malaria parasites more se...
Article
Full-text available
Increased tolerance of Plasmodium falciparum to front-line artemisinin antimalarials (ARTs) is associated with mutations in Kelch13 (K13), although the precise role of K13 remains unclear. Here, we show that K13 mutations result in decreased expression of this protein, while mislocalization of K13 mimics resistance-conferring mutations, pinpointing...
Article
Full-text available
Structure and Function of the Proteasome Activator PA28 of the Malaria Parasite Plasmodium falciparum - Volume 25 Supplement - Riley Metcalf, Eric Hanssen, Stanley C. Xie, David Gillett, Andrew Leis, Craig Morton, Michael W Parker, Wilson Wong, Michael Griffin, Leann Tilley
Article
Full-text available
The Plasmodium proteasome represents a potential antimalarial drug target for compounds with activity against multiple life cycle stages. We screened a library of human proteasome inhibitors (peptidyl boronic acids) and compared activities against purified P. falciparum and human 20S proteasomes. We chose four hits that potently inhibit parasite gr...
Article
Full-text available
Artemisinin and its derivatives (collectively referred to as ARTs) rapidly reduce the parasite burden in Plasmodium falciparum infections, and antimalarial control is highly dependent on ART combination therapies (ACTs). Decreased sensitivity to ARTs is emerging, making it critically important to understand the mechanism of action of ARTs. Here we...

Network

Cited By