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A theoretical foundation is developed for relating the statistics of wave distortion to optical resolution.
The average resolution of very-long- and very-short-exposure images is studied in terms of the phase- and
log-amplitude-structure functions, whose sum we call the “wave-structure function.” Those results which
are comparable are in agreement with the findings of Hufnagel and Stanley who studied the average modula-
tion transfer function of long-exposure images. It is found that the average short-exposure resolution can
be significantly better than the average long-exposure resolution, but only if the wave distortion does not
include substantial intensity variation.
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I. INTRODUCTION

TMOSPHERIC turbulence with its associated
random refractive-index inhomogeneities dis-
turbs a light beam which propagates any significant
distance through the atmosphere. The disturbance
takes the form of distortion of the shape of the wavefront
and variations of the intensity across the wavefront. If
a collimated beam passes through the atmosphere and
is then collected by a lens and brought to focus, the
quality of the image formed is influenced by the atmos-
pherically produced disturbances. That the distortion of
the shape of the wavefront affects the image quality is
obvious. It is not quite so obvious that the intensity
variations across the wavefront affects the image
quality. That this is so can be seen by considering the
intensity variations as a form of random apodization of
the lens. The apodization, of course, affects the image
quality.
As an initial measure of image quality, we consider
the modulation transfer function! (MTF) of an optical

* Present address: Science Center, North American Aviation,
Inc., Thousand QOaks, California 91360.

1Tor the concept of MTT to be meaningful, a reasonable-size
isoplanatism patch must exist, and we so assume. Though the
MTF is conventionally defined in terms of the amplitude of the
image of a unit-amplitude sine-wave test pattern in the patch,
we work with the MTI defined in terms of the Fourier spectrum
of the image response to a unit impulse in the isoplanatism patch.
So long as the isoplanatism patch is large enough, there is, in
effect, no difference in the definitions. For the unit impulse we use
what is nominally an infinite plane wave, though we could equally

system composed of the atmosphere and a lens. We
restrict our attention to thin, diffraction-limited lenses.
In our study of the effect of wavefront distortion on the
MTF, two distinct cases are to be considered. Some
part of the distortion can be considered to be a random
tilt of the wavefront. This tilt displaces the image but
does not reduce its sharpness. If a very-short-exposure
image is recorded, the image sharpness and the MTF
are insensitive to the tilt, which can be a substantial
part of the total distortion.? If a long-exposure image is
recorded, the image is spread during the exposure by the
random variations of the tilt. Hence, the image sharp-
ness and the MTF are affected by wavefront tilt as well
as by the more complex shapes. The analytic distinction
between the two cases, which we refer to as the long-
exposure case and the short-exposure case, lies in the
manner in which the average of the MTF is taken. In
the short-exposure case, a random factor associated with
the tilt is extracted from the MTF before we take the
average. In the long-exposure case, no such factor is
removed.

II. THE UNAVERAGED MTF

Let us consider a spherical wave with radius of curva-
ture R as formed by a plane wave immediately after
passing through a thin diffraction-limited lens of focal
well use a spherical wave with an adjustment of the image plane,

or any other wavefront that should produce a point image.
2 D. L. Fried, J. Opt. Soc. Am. 55, 1427 (19655); 56, 410L (1966).
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length R. Each point of the spherical wave may be as-
sociated with a corresponding point on a plane tangent
to the lens and parallel to the plane wave. We denote
the point by a vector v (with magnitude v) which is
measured from an origin at the point of tangency of the
plane and the lens. We let D be the diameter of the lens.
If U(v) is the complex quantity which describes a wave
that deviates (not grossly) in amplitude and phase
from a spherical wave (in the same manner as the wave
collected by the lens deviates from a plane wave), then
it is well known? that #(x), the complex quantity which
describes the phase and amplitude of the image at a
point x in the focal plane of the lens, is given to a good
approximation by

2T
u(x)=AfdvU(v) exp(——i———v-x), 2.1
AR

where 4 is a normalization constant and X is the wave-
length of the light. U/(v) and #(x), though described
simply as complex quantities which specify spatial phase
and amplitude, are the electric vectors (without the
high-frequency time-dependence.) The origin in the focal
plane, i.e., x=01is the perpendicular projection (perpen-
dicular relative to the v plane) of the origin in the
v plane upon the x plane. The integration is over the
infinite v plane but U (v) =0 outside the area of the lens,
i.e., when 29> D.

The intensity of the image is #*(x)#(x). The MTT
of the image-forming optical system,* which is the
normalized two-dimensional (spatial) Fourier transform
of the intensity of the image, can be written as

7(f) =B]dxu*(x)u(x) exp (2wif-x), (2.2)

where B is a normalization constant, chosen so that

7(0)=1, (2.3)

and f is a spatial frequency vector, whose magnitude is
f. At various times, where appropriate, we switch from
r(f) to 7(f) without comment. The meaning of the
latter should be obvious in each case.

By substituting (2.1) into (2.2) we get

r(f)zAZBf//dxdvdv’U*(v’)U(v)

Xexp[2wix- {+V//AR—Vv/AR)]. (2.4)

By performing the x-integration, we obtain a delta
function which makes performance of the v'-integration

3M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon
Press Ltd., Oxford, 1964), p. 385, Equation (38).

4+ We consider the combination of turbulent atmosphere in the
propagation path and the lens itself as the image-forming optical
system,

trivial. After performing the v’-integration we have

-r(f)=A2B/dvU*(v—}\Rf)U(v). (2.5)

Now we restrict our attention to the case in which the
lens is diffraction-limited but the wave collected by the
lens deviates from a uniform-amplitude plane wave
because of random phase and amplitude perturbations.
We let ¢(v) denote the random variable which describes
the phase variation at the point v, and let /(v) denote
the random perturbations of the logarithm of the
amplitude. The zero references for measurement of
¢(v) and I(v) are chosen so that each vanishes when
there is no perturbation. Without loss of generality, we
consider the incoming wave to have unit amplitude
when there is no perturbation. We can write

Uv)=W(v) expli(v)+is(v)], (2.6)
where W (v) is an “aperture function” defined as
t if v<D/2
W(v)= [
0 if +>D/2. 2.7)

We now rewrite (2.5) as
r(f):Azdev(Wv—?\Rf)W(v)

Xexp{[(")+U(v—ARH ]+i[o(V) —o(v—ARE) J}. (2.8)

Since ¢ and / are random variables, so is 7. The
average value of 7, studied in the next two sections,
depends on how the average of (2.8) is taken. As indi-
cated in Sec. 1, there is a dependence on the nature of
the phase distortion and on the length of the exposure.

III. LONG-EXPOSURE MTF

For along exposure, ¢ and ! vary through a reasonable
portion of the ensemble average of all the values they
can possibly assume. Thus, for a single long-exposure
image, the MTF has the value

+(f)=A%B f dvIV (v—ARDW (v) {exp{[1 (v)+1(v—ARf)]
+ile(M)—e(v—ARDT}), G.1)

where the angle brackets, { ), are used to denote an
ensemble average. The average long-exposure MTF,
denoted by {r(f))1z is simply the ensemble average of the
right-hand side of (3.1). If we commute the averaging
and integrating operations, and note that the average
of the average is simply the average, we see that

(r(f))Lp=AB / dvIV (v—ARE W (v)

X (exp{[/(V)+I(v—ARD IH+i[o (V) —o (v —ARf)]}é- 2
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Based on reasoning concerning the way the atmos-
phere produces phase and log-amplitude fluctuations,
and by invoking the central limit theorem, it can be
shown that ¢(v) and !(v) have gaussian distributions.?
Further, we can show that the statistics of ¢(v) and
1(v) are locally homogeneous and isotropic. As a conse-
quence of isotropy, it follows that

Lo (M) —a(v)JO(WM)+1(v)])=0, 3.3)
so that [¢(v)—¢(v—ARE)] and [I(v)+I(v—ARf)] may

be considered to be independent gaussian random
variables. Because the statistics of ¢(v) are locally
homogeneous, the mean of [¢(v)—¢(v—ARf) ] vanishes.

We denote the mean of /(v) [and of /(v—\Rf)] by,
and use! for /(v) when the value of vis of no consequence.
The phase- and log-amplitude-structure functions,
Dy (r) and Dy(r) are defined by

De(r)={Lo(M—0 (), (3.4a)
Du(r)= QW1 P) (3.4b)
where
r=|v—v'|. 3.5)
The log-amplitude covariance C,(r) is given by
Culn)= (Lv)=10 W) —-1D), (3.6)
from which it is easy to show that
Di(r)=2[C(0)~Ci(r)]. 3.7)

We now need to evaluate . To carry this out, we now
state the following result, which we use several times in
the balance of this paper. It requires no more than a
double integration over the appropriate probability
distributions to show that if ¢ and 8 are independent
gaussian random variables, then

(exp(aa-+88))=exp{3{a*((@—a)*)+b*((6—B))]
+ (ea+0B)},

where ¢ and b are arbitrary complex coefficients and
@ and f are the mean values of @ and 8.

To evaluate I, we consider the interrelationship
between [ and C;(0) necessary to ensure conservation of
energy. Consider exp(}), the random amplitude at some
point of an infinite plane wave whose amplitude would
be unity if there were no perturbations. The average
intensity is

(3.8)

(Iy=3("). (3.9)
From energy-conservation considerations®, we know that
(I)=%1. (3.10)

5V, 1. Tatarski, Wave Propagation in a Turbulent Medium
(McGraw-Hill Book Co., New York, 1961), p. 209. This discusses
only the distribution of /, but the same argument can be easily
modified to apply to ¢.

6 Because atmospheric turbulence, or any refractive inhomo-
geneity can only redistribute radiant energy, not absorb it, for an
infinite plane wave (or spherical wave), the average irradiance
reaching any point must be independent of the strength of the
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From (3.8) and (3.6), we see that
(e2ty=exp[ 2C;(0)+21].

The necessary and sufficient condition for (3.9), (3.10),
and (3.11) to be self-consistent is that

(3.11)

[=—C3(0). (3.12)

The necessity of (3.12) for conservation of energy has
been noted, without proof, by Chase.”

We are now ready to evaluate the ensemble average
on the right-hand side of (3.2). Applying (3.8), (3.12),
(3.6), (3.7), and (3.4a), we get

(exp{[L(M)+L(v—ARE) ] +i[¢(v)—d(v—ARE) ]})
= exp{3{I(v)+I(v—ARE)— 20 )+ 2]
—3({o(V)—(v—AREH )}
= exp[C1(0)+C:(ARf)—2C:{0)— 2 D,(ARS)]

=exp[—3DARS)], (3.13)
where D(7), defined as
D(r)= Du(r)+ Dy (), (3.14)

is a quantity we call the “wave-structure function.”®
When we substitute (3.13) into (3.2), and define

ro(f)=A4B / AVW (v=ARDW (v), (3.15)

we get
(r(Nze=7o(f) exp[—3DORS)].

To obtain (3.16), we have used the fact that the ex-
ponential in (3.13) is independent of v so that it can be
removed from the integrand of the v integration. Now,
we need only note that the integral in (3.15) is simply
the area of overlap of the two circles of diameter D
whose centers are separated by a distance ARf. We
choose B, whose value should be independent of the
strength of turbulence,® to satisfy (2.3) when there is

(3.16)

turbulence. Otherwise, the average of the irradiance over a large
collecting surface would not be a constant; but it must be, since
all of the energy has to reach this surface. From Note 5, we see
that the irradiance fluctuations are distributed in a log-normal
manner. This and conservation of energy are compatible only if
the center of the distribution, determined by I, is related to the
variance of the distribution C:(0). (Of course, when there is no
turbulence, ! and C;(0) are both zero.)

7D. M. Chase, J. Opt. Soc. Am. 56, 33 (1966).

8 The derivation of (3.13) with slightly different words would
be sufficient to prove that exp[—3D(r)] is exactly equal to the
muftulaé)coherence function as used by Hufnagel and Stanley (cf.
Ref. 10).

? The general approach of Sec. 3 to compute the long-exposure
MTF has been used by E. A. Trabka, J. Opt. Soc. Am. 56, 128
(1966), but by assuming that ]=0, he had to allow the normaliza-
tion term, corresponding to B in the paper, to depend on the
strength of the turbulence, which it should not.
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no atmospheric effect. Thus we get
(2/m)[cos(\R7/D)— (\RF/ D1~ (\Rj/ DY]

if ARfSD (3.17)
0 if ARf>D.

70(f) is seen to be the MTF of a diffraction-limited lens.

If we wish, we can follow the lead of Hufnagel and
Stanley'® and consider (r(f))rLz as the product of the
lens MTF, 7o(f), and a quantity exp[—2DO\R/S)],
which we can consider to be the atmosphere’s MTF.
This separation is meaningful since we can make the
atmosphere’s MTF manifestly independent of all lens
parameters if we express our results in terms of angular
resolution rather than linear resolution. We replace the
frequency f (whose dimensions are cycles per unit
length) with f’=Rf. (The dimensions of f" are cycles
per radian-field-of-view.) Then the MTF of the
atmosphere becomes exp[ —3D(A )], which is mani-
festly independent of lens parameters. We shall see,
however, that this procedure can not be extended to the
short-exposure MTF. In that case, it is impossible to
define an atmospheric MTF which is independent of
lens parameters. For this reason, we prefer not to
assign an MTF to the atmosphere.

mo(f)=

IV. SHORT-EXPOSURE MTF

In this section, we are again concerned with the
effects of random phase and log-amplitude fluctuations.
Here, however, the exposure time used to form the
images is so short that the part of the phase fluctuation
which is associated with tilt of the isophase surface must
be treated in a special manner (A rigorous analysis of
the “shape” of a distorted wavefront, permitting us to
identify a tilt, is presented in Ref. 2.) For a very-short
exposure, tilt (as distinguished from warping of the
isophase surface) does not affect the sharpness of a
point image,! though it does produce a displacement of
the image. It, therefore, does not play a part in deter-
mining MTF.

The MTF of a single short-exposure image is just as
given in (2.8),

r(f)=42B f dviWV (v—ARDW (v) exp{[I(v)+I(v—ARf)]

+ile(M—o(v—ARD]}, (2.8)

which is to be distinguished from (3.1), in which, be-
cause of time averaging, an average of the exponential
appears. To determine the average short-exposure MTF,
(r(f))sr, we must examine the measurement procedure
and make our averaging process correspond to this
procedure. In measuring the average transfer function
for some image frequency f, we do not add the harmonic
component at frequency f from each of several images

(lwﬁR). E. Hufnagel and N. R. Stanley, J. Opt. Soc. Am. 54, 52
964).
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{i.e., we do not add the sine waves)—we add only the
amplitudes of the components. To add the harmonic
components themselves, we would need to know the
phases of the components; but the phase is unknown
since, to determine it, we would have to have an absolute
position reference on each of the images. The lack of an
absolute position reference on the image is equivalent
to the unobservability of the tilt of the isophase surface
and the displacement of the image. When we take the
short-exposure average, we first suppress the effect of
the tilt of the isophase surface on the harmonic com-
ponents and then take the ensemble average.

Consider some instant of time for which the phase
fluctuation of the wavefront is ¢(v). Let a be a random
vector related to ¢(v) in such a manner than a-v
gives the best fit to ¢(v) in terms of a least-squares
difference over the lens aperture, i.e.,

a
— [ VW (W)[(v)—a-v =0, (4.1)
8a,~

where a; is a component of a.

We now rewrite (2.8) as
r(f) =exp(—ia-ARD)A*B /a’vI/V(v-—?\Rf)PV(V)
Xexp([{(v)+i(v—ARH) J+i([¢(v)—a-v]
—[¢(v—ARf)—a-(v—ARD1}. (4.2)

We now drop the unobservable tilt information con-
tained in the factor exp(—za-\Rf), so that

#(f)=A%B / VW (v—ARDW (v)

Xexp([Z(W)+1(v—ARE) J+i{[¢(v)—a-v]

—[p(v—ARD—a-(v—ARDT}). (4.3)

#(f) is the quantity we actually measure when we

examine a single image without an absolute reference

point. The ensemble-average short-exposure MTF,
(r(8))se, is

(r(B)sp= (). (44)

To take the ensemble average of the exponential in
(4.3), we have to make the following three assumptions.

(I) the distribution of a, like that of ¢ and I, is
gaussian; (II) the distribution of [¢(v)—a-v] is in-
dependent of the distribution of a; and (III) the
distribution of {[¢(v)—a-v]—[¢(v)—a-v]} is in-
dependent of the distribution of [Z{v)+I(v")].

Assumption (I) can be justified on the basis that a
is generated in a linear manner by ¢(v), which is a
gaussian random variable. The accuracy of assumption
(IT) can be argued on the basis of symmetry: For any
given tilt, as measured by a, the probability of a given
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isophase surface warping relative to the tilt surface, as
given by [¢(v)—a-v], and the probability of the
mirror image warping about the tilt surface, as given by
—[¢(v)—a-v], are equal. Consequently, {{¢(v)—a-v]
X a-v) vanishes. This, together with assumption (I),
justifies assumption (II).! Assumption (III) can be
justified on the basis of (3.3) and the following consider-
ation. For a given log-amplitude fluctuation I(v), some
particular tilt a and its mirror image —a are equally
likely. Hence {{(v)a-v) must vanish. The fact that
{(v)a-v)=0 and (3.3) are sufficient to prove assump-
tion (III).

From assumptions (I) and (III) and by the same
manipulations as were used to treat the log-amplitude
variation in (3.13), we conclude that

{exp(LI(W)-+1(v—ARH J+i{[#(v)—a-v]
—[o(v—ARD—a(v—ARD) }}))
=exp(—3D(ARf)—5{{[6(V)—a-V]

—[p(v—ARD—a-(v—ARD]}?). (4.5)
By simple manipulation, we can show that
{[o(v)—a-v]—[p(v—ARf)—a- (v—ARf) ]}*
=[o(V)—¢(v—ARD - (a-ARf)*
+2{[¢(v)—a-v]—[o(v\RI)
—a-(v—ARf)J}a-\RE.  (4.6)

Assumption (II) implies that we can drop the curly-
bracket term on the right-hand side of (4.6) when we
take the ensemble average. Thus,

(exp({(V)+1(v—ARE) ]+i{[¢(v)—a-v]
—[¢(v—ARf)—a- (v—ARf) ]}))
=exp{— 3 Di(ARf) =3 Dy (ARf)+ 5 ((a-ARD®)}, (4.7)
so that

{(r(0))sg=AB / dvW (v—ARHW (v)

Xexp{—3[DOR/)—((a-ARE*H ]}. (4.8)

The exponential is independent of the variable of inte-
gration and so can be removed from the integrand.

When we carry out the integration and normalization
as before, we get

(r(B)se=ro(f) exp{—[DARS)— ((a-ARE) J}. (4.9)
The quantity {(a-ARf)?) can be evaluated by equat-

1 Dr. G. R. Heidbreder, of Aerospace Corp., has informed me
that he has been able to show that, at least for a one-dimensional
aperture, assumption IT must be viewed as an approximation, and
has found a weak correlation between ¢(z) —av and . As he has
shown, however, the inaccuracy in assumption II drops out in
the v-integration when assumption II is used to obtain a result like
(4.8), providing that 3{[¢(v) —a-v]—[¢(v—ARE)—a- (v—ARH ]}*
is small enough that the approximation e*~1--x can be made.
Whenever the short-exposure MTF is not too severely degraded
by atmospheric turbulence, this smallness condition is satisfied.

L. FRIED
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ing a-v with as/%:(v)+asF3(v) in Ref. 2. We see that
a-a= (64/xDY[ (a2)*+as)*]. (4.10)
From Eq. (5.8a2) of Ref. 2, we find that

64 D
(a-a)= l_;‘ f rd(Fc(r,D)— 5., D)]D4(r), (#.11)
where ‘

Fe(r,D)= (x)'[2 cos™'(v/D)

—2(/D)(1—(r/D))¥], (4.12a)
F1.(r,D)= (x)"{6 cos~'(r/D)
—[14(r/D)—8(r/D)*J(1— (r/D)*)*}. (4.12b)

Since a is an isotropically distributed random vector
and f a nonrandom vector

{(aARE®)=3(\Rf)*(a-a). (4.13)

If we substitute (4.11) into (4.13) and that into (4.9),
we have the evaluation of (r(f))sz, the short-exposure
MTE.

V. STRUCTURE FUNCTIONS

There are good theoretical and experimental rea-
sons!2™4 to believe that the wave-structure function,
D(r) can be written as

D) =P, .1

where.A is a constantwhose value depends on the propa-
gation-path length, the wavelength, the “strength” of
the turbulence along the path, and the nature of the
unperturbed wavefront. The theory, it should be noted,
is based on the Rytov approximation to solve the wave
equation and the Kolmogoroff hypothesis to provide the
statistics of atmospheric turbulence.!s (A discussion of
the calculation of 4, when the unperturbed wavefront
is an infinite plane wave is given elsewhere!®) It is
convenient to define a quantity 7o such that

re==(6.88/.4)*5, (3.2)

in terms of which
D(r)=6.88(r/70)*". (5.3)

(The significance of the factor 6.88, which is more
precisely given by 2{{24/5)T(6/5)}%, is contained in

12D, L. Fried and J. D. Cloud, “Optical Propagation in the
Atmosphere: Theoretical Evaluation and Experimental Determina-
tion of the Phase Structure Function,” presented at the Confer-
ence on Atmospheric Limitations to Optical Propagation at the
U. S. National Bureau of Standards, CRPL, 18-19 March 1965.

1Y, I. Tatarski, Ref. 5, Eq. (8.20).

14 Though previously published results prove the validity of
(5.1) for only an infinite plane wave, it can be shown that (5.1) is
equally applicable to the propagation of a spherical wave. The
coefficient 4 is different. For horizontal propagation, it can be
shown that the spherical-wave coefficient is exactly 3/8 of the
coefficient for an infinite plane wave propagating over the same

ath,

16 The Rytov approximation was introduced and so attributed
by Tatarski, Ref. 5, p. 269, though we have been unable to find
such an approximation discussed in Rytov’s rather lengthy
“‘source” paper.

18 D. L. Fried, Ref. 2. Appendix C.
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the fact that it makes the knee of curve A in Fig. 1
occur at D=r,.)

It can be shown!” that the phase-structure function
Dy (r) can be written as

De(r)=a(n) D), (5.4)

where a(r) is a function which varies from unity for
7>>(LN)} to one-half for 7<<(ZA)%, L is the length of the
propagation path through the turbulent medium. We
restrict our attention to the two extreme cases, which
we refer to as the near-field case, for which nearly all
significant values of » satisfy the inequality #>>(LA)3,
and the far-field case, for which nearly all significant
values of r satisfy the inequality »<<{ZM)} In the
problem we are studying in this paper, we may replace
the conditions on » by conditions on the lens diameter,
D, i.e., D>>(IM)? (near field) and D<<(LN)?# (far field).
Thus

De(#)~D(r) (near field),
De ()2 D(r) (far field).

(5.5a)
(5.5b)

We are now in a position to evaluate the long-
exposure MTF, (r(f))LE, and the short-exposure MTF
for the near-field and far-field cases, which we denote
by #{r(f))se and ;+{r(f))sr, respectively. (For the
long-exposure MTF, there is no distinction between the
near-field and far-field cases.) After we substitute (5.3)
into (3.16), we see that

(r(Nre=70(f) exp[—3.44(\Rf/70)*?].

If we substitute (5.5a or b) into (4.11), and utilize the
fact that

(5.6)

/ #3350 (1,1)du~=3.68 X 102, (5.7a)
/ w33 1, (u,1)du~24 73X 1072, (5.7b)
we get
1.026X 6.88(\R7/r0)**(\Rf/D)}
(near field)
((a-ARf)?) = 5.8)
(1.026/2) X 6.88 (\Rf/r0)* 3 (AR / D)}
(far field).
Thus, we obtain
i {r())sEzro(f) exp{—3.44(\R f/r0)""?
X[1—ARf/D) ]}, (5.9a)
1547 () se2ro(f) exp{—344(\Rf/r)*
X[1—3(Rf/D}]}, (5.9b)

17 An example of this for the infinite plane-wave propagation
case is provided by Tatarski, Ref. 5, Egs. (8.20), (8.21), and (8.22).
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where we have approximated 1.026 by unity in (5.9a
and b).18

If we compare (5.9a and b) with (5.6), the effect of
using a short exposure rather than a long exposure
becomes obvious. As the value of f approaches D/AR,
which is the cut-off frequency of 7¢(f), the effect of
using a short exposure becomes more and more im-
portant. Because we take the cube root of f over the
cut-off frequency, the ratio does not have to be very
close to unity for the improvement to be substantial.
This is especially true in the near-field case, where we
can recover almost all of the highest-frequency response.

An interesting measure of the performance of an
imaging system is provided by the quantity ®, which
we refer to as the resolution, and which we define as
the integral over spatial frequencies of the system’s
ensemble-average MTF.

®= f df(r (D) (5.10)

We may think of ® as one of the three standard meas-
ures of image quality,!” as proportional to the Strehl
definition of the optical system, or even, in terms with
which an electrical engineer would be more familiar,
as the bandwidth of the system. We do not attempt to
justify use of this particular measure of image quality
rather than another, as the question of the best measure
of image quality is still unsettled. The same procedure
that we use in evaluating ® can be applied equally well
to the other measures of image quality, if desired.

In anticipation of a more general treatment of the
effect of exposure time, we subscript ® with o to
denote the long-exposure resolution and with a 0 for
the short-exposure resolution. To indicate resolution
in the near-field and far-field, where necessary we
precede the ® with a subscript #f or ff, respectively.
From (3.17), (5.6), and (5.10) we get

D2 1

%:4_.__

udul cos~lu—u(1—u?)t]
AR Jo

D 5/3
Xexp[-3.44(——> um], (3.11)
7o,

If we use (5.9a or b) instead of (5.6), we get

D2 1
af®o=4— | udufcosu—u(l—u?)¥]
AR Jo
D 5/3
Xexp[—3.44<—> u5/3(1—u%):|, (5.12a)
7o

18 Dr. R. E. Hufnagel has informed me that he has arrived at a
result equivalent to (5.9a}, through an analysis differing in sub-
stantial features from that presented here.

VE. L. O'Neill, I'ntroduction to Statistical Optics (Addison-
Wesley Publishing Co.. Reading, Massachusetts, 1963), p. 106.
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TaBLE I. Dependence of normalized resolution on
normalized diameter,

D/ry R/ Rinax 7580/ Rinax 7O/ Rmax
0.1 0.00978 0.00988 0.00997
0.5 0.1852 0.208 0.237
1.0 0.445 0.586 0.844
2.0 0.699 1.048 2.36
3.0 0.797 1.202 3.32
3.5 0.826 1.217 3.49
3.8 0.837 1.225 3.50
4.0 0.848 1.234 3.48
5.0 0.878 1.249 3.20
7.0 0.913 1.253 2.52

10 0.939 1.242 2.05
15 0.960 1.222 1.780
20 0.970 1.206 1.654
30 0.980 1.183 1.524
50 1.156 1.407
100 1.124 1.298
200 1.098 1.223
500 1.156
1000 1.120
D2 1
7iRo=4— / udu cos™u—u(1— 1))
AR Jo
D\ 573
Xexp[—3.44<——) u“"‘(l—%u*):l. (5.12b)
7o

It is interesting to consider ®Ru.x, the limiting value of
@, as the lens diameter becomes arbitrarily large. We
refer to this as the “limiting resolution.”

Rumax=1im R... (5.13)
Do

When we carry out the evaluation of (5.11) in this
limit, we get
Runx= (7/4) (ro/A\R)2.

This has the dimensions of cycles squared per unit area

(5.14)

10 T T T T

»|=
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F1e. 1. Dependence of normalized resolution, ®/Gmsx, on
normalized lens diameter, D/7¢. Curve A—long exposure results,
R/ Rnax. Curve B—Short exposure far-field results, rs®o/Rimax.
Curve C—Short exposure near-field results, »sG®o/Rmux.
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(in the focal plane). If we normalize R, ny®o, and ;;®Ro
by dividing each by the “limiting resolution,” we get

R, 16/D\% !
= ——(——> [ udul cos~u—u(1—u?)¥]
Rmax ™ \ 70 0
D\ 5/8
XeXP[—3~44<—> u‘”“], (5.15)
7o
af®o  16/DN% p!
= —(—) / udu[ cos™u—u(1—u*)¥]
(Rma.x ™ \ 7o 0
D
Xexp[—3.44(~>u5’3(1—u%):l, (5.16a)
7o
/@ 167D\* !
=——(—-> / udul cos™ u—u(l—u?)¥]
Rmax 7™ \70 0

X exp[-— 3.44<£>u5/3(1 - —;-u*)} (5.16b)

7o

These three integrals have been evaluated numerically
for a range of values of D/rp and are plotted in Fig. 1.
Table I gives the values from which the graphs were
drawn.

VI. DISCUSSION OF RESULTS

Perhaps the first point to be commented on should be
the exact agreement between the long-exposure MTF,
given by (5.6) of this paper and the equivalent quantity
given by (2.5}, (7.2), and (7.6) of the paper of Hufnagel
and Stanley,” referred to in this discussion as HS. This
exact agreement may provide some insight into some
questions of accuracy that have been raised recently.
HS have questioned the accuracy of the Rytov approxi-
mation'® used by Tatarski to obtain (5.1). More recently,
Chase? has pointed out that HS inadvertently sup-
pressed what appears to be a small but unevaluated
term in the equation they derived and solved for the
propagation of mutual coherence; i.e., HS have an
unevaluated approximation in their results. The HS
and Rytov approximations are so fundamentally dif-
ferent that, before seeing the solutions they lead to,
no one could have reason to expect that they would
result in the same solution—unless the approximations
are sufficiently accurate that they both yield the exact
solution. In view of the apparent fundamental difference
between the two approximations, and in the absence of
any argument to indicate that they might be related
(except, of course, the argument that they lead to the
same result), the agreement of the results can be taken
as bolstering confidence in the accuracy of the approxi-
mations. This obviously is only a heuristic argument.
for the accuracy of the approximations.

2 D. M. Chase, J. Opt. Soc. Am. 55, 1559 (1965).
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As a second point of interest, the existence of the
limiting resolution, ®Rm.x implies that atmospheric
turbulence places an absolute upper limit on the resolu-
tion that can be obtained with a long exposure through
the atmosphere. This resolution, given in (5.14) is
exactly the same resolution that would be obtained in
the absence of the atmosphere with a diffraction-
limited lens of diameter 7,. If we examine the source of
(5.1), we find that A is inversely proportional to the
square of \, so 7 is directly proportional to the six-fifths
power of A\. From (5.14) we see that this means that
the limiting resolution should increase as the two-fifth
power of wavelength. At 16 x, the limiting resolution
(in two-dimensions) should be four-times that at one-
half micron, i.e., the angular spread of an image formed
at 16 u by very large optics should be one-half the angu-
lar spread at one-half micron, if atmospheric turbulence
is the limiting factor.

The fact that significantly better resolution may be
obtainable with a short exposure than with a long ex-
posure is obvious from Fig. 1 and hardly needs elabora-
tion here. The point to be noted is the significance of
this fact in terms of the design of optical-imagery experi-
ments for studying atmospheric effects and propagation
theories. Because it is difficult to make an exact state-
ment as to whether an experiment was carried out under
near-field or far-field conditions, it is desirable that
imaging experiments for studying propagation theory
be designed to apply to the long-exposure theory. (This
consideration may be relaxed when more comprehensive
theoretical results become available.) Because of practi-
cal considerations, many imaging experiments have been
performed in which the short-exposure theory appears
to be more applicable than the long-exposure theory. =%
In fact, HS comment that the disagreement of the data
of Djurle and Bick® with their (modified) theory is
probably due to the exposure time being too short. We
observe that the disagreement of theory and experiment
as given in Fig. 8 of HS is most pronounced at the higher
~ spatial frequencies, with the experimental data indicat-
ing a larger MTF than HS’s long-exposure theory. This
is in qualitative agreement with the results developed
here.

It is interesting to compare the results contained in
Fig. 1 with the semiquantitative predictions comparing

2 E, Djurle and A. Bick, J. Opt. Soc. Am. 51, 1029 (1961).
2 C. E. Coulman, J. Opt. Soc. Am. 55, 806 (1965).
2 C. B. Rogers, J. Opt. Soc. Am. 55, 1151 (1965).
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long- and short-exposure resolution in Ref. 2. In that
document it was estimated that the short-exposure
near-field (treated there as an assumption of no signifi-
cant intensity fluctuation) resolution would approach
its maximum value at a lens diameter of 3.4 7o, while the
long-exposure resolution would approach its maximum
value at a lens diameter of 7. The short-exposure resolu-
tion was expected to be (3.4)>~~11.4 times as much as
the long-exposure resolution. Examining Fig. 1, we see
that the estimated diameters of 3.4 7o and 7, were
reasonably accurate and that if we compare the short-
exposure resolutions at diameters 3.4 7o, and the long-
exposure resolution at diameter 7o, we get a factor of
7.8, which is in reasonable agreement with the predic-
tions. However, the prediction is seen to be misleading
in-as-much as the long-exposure resolution increases
significantly as the diameter increases from 7, to 3.4 7,.
For long- and short-exposures, both taken with a diam-
eter of 3.8 7o (where the peak short-exposure resolution
occurs), the ratio of resolutions is only 4.3, which is
significant, but significantly less than the 11.4 estimated.

Finally, it is worth commenting on the fact that the
expression given for & can be obtained in exactly the
same form, for the relative effect of atmospheric wave-
front distortion on the average signal-to-noise ratio
obtainable in an optical-heterodyne receiver. The short-
exposure results correspond to the case in which the
orientation of the local-oscillator wavefront is made to
track perfectly the instantaneous average tilt of the
wavefront of the collected-signal. The long-exposure
results correspond to the more conventional concept of
an optical-heterodyne receiver in which no tracking is
performed by the local oscillator. The results of Fig. 1
are thus applicable. It is interesting to note that Chase’
has obtained a factor of 3.4 increase in useful collector
diameter in going from a nontracking to a tracking
optical-heterodyne receiver. Because of the nature of the
approximations made, he concluded that there should
be an improvement in signal-to-noise ratio of about 11.5.
In the previous paragraph, we have discussed these
factors and their applicability. The same comments
seem called for here. To sum them up, with a collector
size selected to be as large as useful, the change from a
nontracking to a tracking heterodyne receiver achieves
about a factor-of-four improvement in signal-to-noise
(power) ratio, i.e., 6 dB. This of course applies in the
near-field. In the far-field, the improvement is almost
negligible.



