David Fernandez Rivas

David Fernandez Rivas
University of Twente | UT · Department of Mesoscale Chemical Systems (MCS)

PhD

About

104
Publications
36,594
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,993
Citations
Citations since 2017
63 Research Items
2707 Citations
20172018201920202021202220230100200300400500600
20172018201920202021202220230100200300400500600
20172018201920202021202220230100200300400500600
20172018201920202021202220230100200300400500600
Introduction
David Rvs currently works at the Department of Mesoscale Chemical Systems (MCS), University of Twente. David does research in Sonochemistry, Physical Chemistry and Flow Chemistry. For more details please check www.david-fernandez-rivas.com
Additional affiliations
August 2017 - present
Massachusetts Institute of Technology
Position
  • Research affiliate
August 2014 - present
University of Twente
Position
  • Professor (Assistant)
June 2004 - June 2009
Instituto Superior de Tecnologías y Ciencias Aplicadas
Position
  • Lecturer, Researcher and Radiological Protection

Publications

Publications (104)
Article
A laser pulse focused near the closed end of a glass capillary partially filled with water creates a vapor bubble and an associated pressure wave. The pressure wave travels through the liquid toward the meniscus where it is reflected, creating a fast, focused microjet. In this study, we selectively coat the hydrophilic glass capillaries with hydrop...
Preprint
Full-text available
A laser pulse focused near the closed end of a glass capillary partially filled with water creates a vapor bubble and an associated pressure wave. The pressure wave travels through the liquid toward the meniscus where it is reflected, creating a fast, focused microjet. In this study, we selectively coat the hydrophilic glass capillaries with hydrop...
Article
Hypothesis Needle-free injections using microfluidic jets could be optimized by reducing splashing and controlling injection depth. However, this is impeded by an incomplete understanding on how jet characteristics influence impact outcome. We hypothesise that exploring the relation between microfluidic jet characteristics and substrate shear modul...
Article
Full-text available
The ballistics of solid and liquid objects (projectiles) impacting on liquids and soft solids (targets) generally results in the creation and expansion of an air cavity inside the impacted object. The dynamics of cavity expansion and collapse depends on the projectile inertia as well as on the target properties. In this paper we study the impact of...
Preprint
Full-text available
Bubbles generated with lasers under confinement have been investigated for their potential use as the driving mechanism for liquid micro-jets in various microfluidic devices, such as needle free jet injectors. Here, we report on the study of bubble formation by a continuous-wave (CW) and a pulsed laser inside an open-ended microfluidic capillary. T...
Preprint
Full-text available
A gas or vapour bubble near a solid boundary collapses towards the boundary due to the asymmetry induced by the nearby boundary. High surface pressure and shear stress from this collapse can damage, or clean, the surface. A porous boundary, such as a filter, would act similarly to a solid boundary but with reduced asymmetry and thus reduced effect....
Article
Full-text available
The presence of bubbles in gas-evolving electrolytic processes can heavily alter the mass transport of gaseous products and can induce severe overpotential penalties at the electrode through the action of bubble coverage (hyperpolarization) and electrolyte constriction (Ohmic shielding). However, bubble formation can also alleviate the overpotentia...
Preprint
Full-text available
Injecting with needles causes fear, pain and contamination risks. Billions of injections every year also cause environmental burden in terms of material consumption and waste. Controlled microfluidic-jet injection systems offer a needle-free alternative. However, understanding the relation between jet parameters and resulting injection depth are ne...
Preprint
Full-text available
The impact of solid and liquid objects (projectiles) onto liquids and soft solids (targets) generally results on the creation and expansion of an air cavity inside the impacted objects. The dynamics of cavity expansion and collapse depends on the projectile inertia as well as on the target properties. In this paper we study the impact of microfluid...
Article
Full-text available
This perspective provides the conceptual basis and potentiality of a new metric in green chemistry and engineering. Called the intensification factor (IF), as initially intended in the scenario of process intensification, it serves as a decision-making parameter that can explicitly contain as many factors as available data of interest are to be con...
Article
Full-text available
An increasing number of experts considers that durable skills are needed to prepare the professionals that will tackle the challenges of the 21st century. However, a clear overview of which skills are the most relevant for specific learning outcomes has not been reached. In this work, we present a simplified conceptual framework for the training of...
Preprint
Full-text available
In gas-evolving electrolytic processes, the presence of bubbles can heavily alter the mass transport of gaseous products and can induce severe overpotential penalties at the electrode through the action of bubble coverage (hyperpolarization) and electrolyte constriction (Ohmic shielding). However, bubble formation can also alleviate the overpotenti...
Article
Who can participate in Open Science and whose interests are served? Open Science in principle holds the potential to reduce inequality, but this is not going to happen unless it operates within a consistent framework and environment that supports this goal. Unequal power and opportunities from institutional to global level constitutes a major obsta...
Conference Paper
For fast and accurate force measurements, e.g., sampling the impact of a liquid droplet, a highly sensitive high-bandwidth force sensor is required. High-sensitivity and high-bandwidth are contradictive specifications in recently published force sensors. The miniature force sensor proposed in this paper uses a novel combination of in-plane sensing,...
Article
Full-text available
Needle-free jet injectors have been proposed as an alternative to injections with hypodermic needles. Currently, a handful of commercial needle-free jet injectors already exist. However, these injectors are designed for specific injections, typically limited to large injection volumes into the deeper layers beneath the skin. There is growing eviden...
Article
Full-text available
Scientific collaborations among nations to address common problems and to build international partnerships as part of science diplomacy is a well-established notion. The international flow of people and ideas has played an important role in the advancement of the ‘Sciences’ and the current pandemic scenario has drawn attention towards the genuine n...
Article
Full-text available
High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant liquid droplet. Upon impact, an expanding cavity is...
Preprint
Full-text available
High speed microfluidic jets can be generated by a thermocavitation process: from the evaporation of the liquid inside a microfluidic channel, a rapidly expanding bubble is formed and generates a jet through a flow focusing effect. Here, we study the impact and traversing of such jets on a pendant liquid droplet. Upon impact, an expanding cavity is...
Article
Full-text available
Background The number of people within the European population having at least 1 tattoo has increased notably, and with it the number of tattoo-associated clinical complications. Despite this, safety information and testing regarding tattoo inks remains limited. Objective To assess cytotoxicity and sensitization potential of 16 tattoo inks after i...
Preprint
Despite the failures to tackle early coordinated responses at national and multinational levels, the global emergence of Coronavirus Disease 2019 (COVID-19) pandemic promoted unprecedented actions on the science-policy, science-communication, and science-diplomacy interfaces worldwide. With varying degrees of success, various actions within the rea...
Article
Full-text available
Each individual's skin has its own features, such as strength, elasticity or permeability to drugs, which limits the effectiveness of one-size-fits-all approaches typically found in medical treatments. Therefore, understanding the transport mechanisms of substances across the skin is instrumental for the development of novel minimal invasive transd...
Article
Full-text available
Advanced oxidation processes can potentially eliminate organic contaminants from industrial waste streams as well as persistent pharmaceutical components in drinking water. We explore for the first time the utilization of Cavitation Intensifying Bags (CIB) in combination with Pd/Al2O3 catalyst as possible advanced oxidation technology for wastewate...
Article
Full-text available
Process intensification (PI) has been established as a cluster of technologies able to produce more with less. While scientists around the globe advocate for new semantics that are increasingly tied to the notion of sustainability, what does the literature data say about PI? A Vosviewer bibliometric map of PI displays it as closely linked to the su...
Article
Full-text available
This is the story of a PhD project that turned into a spin-off company on ultrasonic cleaning and advanced chemical processes. The basics of sonochemistry and process intensification are also introduced.
Article
Full-text available
The collapse of a gas or vapour bubble near a solid boundary produces a jet directedtowards the boundary. High surface pressure and shear stress induced by this jet candamage, or clean, the surface. More complex geometries will result in changes in collapsebehaviour, in particular the direction of the jet. The majority of prior research hasfocused...
Article
Full-text available
Achieving the United Nations sustainable development goals requires industry and society to develop tools and processes that work at all scales, enabling goods delivery, services, and technology to large conglomerates and remote regions. Process Intensification (PI) is a technological advance that promises to deliver means to reach these goals, but...
Article
Full-text available
In 2015 all the United Nations (UN) member states adopted 17 sustainable development goals (UN-SDG) as part of the 2030 Agenda, which is a 15-year plan to meet ambitious targets to eradicate poverty, protect the environment, and improve the quality of life around the world. Although the global community has progressed, the pace of implementation mu...
Preprint
Full-text available
The collapse of a gas or vapour bubble near a solid boundary produces a jet directed towards the boundary. High surface pressure and shear stress induced by this jet can damage, or clean, the surface. More complex geometries will result in changes in collapse behaviour, in particular the direction of the jet. The majority of prior research has focu...
Article
Illuminating a water solution with a focused continuous wave laser produces a strong local heating of the liquid that leads to the nucleation of bubbles, also known as thermocavitation. During the growth of the bubble, the surrounding liquid is expelled from the constraining microfluidic channel through a nozzle, creating a jet. The characteristics...
Preprint
Full-text available
Illuminating a water solution with a focused continuous wave laser produces a strong local heating of the liquid that leads to the nucleation of bubbles, also known as thermocavitation. During the growth of the bubble, the surrounding liquid is expelled from the constraining microfluidic channel through a nozzle, creating a jet. The characteristics...
Preprint
Full-text available
Bubbles are known to influence energy and mass transfer in gas evolving electrodes. However, we lack a detailed understanding on the intricate dependencies between bubble evolution processes and electrochemical phenomena. This review discusses our current knowledge on the effects of bubbles on electrochemical systems with the aim to identify opport...
Article
Full-text available
Bubbles are known to influence energy and mass transfer in gas-evolving electrodes. However, we lack a detailed understanding on the intricate dependencies between bubble evolution processes and electrochemical phenomena. This review discusses our current knowledge on the effects of bubbles on electrochemical systems with the aim to identify opport...
Article
Full-text available
Drug diffusion within the skin with a needle-free micro-jet injection (NFI) device was compared with two well-established delivery methods: topical application and solid needle injection. A permanent make-up (PMU) machine, normally used for dermal pigmentation, was utilized as a solid needle injection method. For NFIs a continuous wave (CW) laser d...
Preprint
Full-text available
div> Bubbles are known to hinder electrochemical processes in water-splitting electrodes. In this study, we present a novel method to promote gas evolution away from the electrode surface. We consider a ring microelectrode encircling a hydrophobic microcavity from which a succession of bubbles grows. The ring microelectrode, tested under alkaline...
Preprint
Drug diffusion within the skin with a needle-free micro-jet injection (NFI) device was compared with two well-established delivery methods: topical application and solid needle injection. A permanent make-up (PMU) machine, normally used for dermal pigmentation, was utilized as a solid needle injection method. For NFIs a continuous wave (CW) laser d...
Article
Acoustically driven bubbles are nonlinear oscillators showing a wide range of behaviors such as period-doubling bifurcations, deterministic chaos, and synchronization to an external signal. Here we demonstrate that bubbles driven with a constant heat source can couple with each other and yield in-phase synchronization, even in the absence of an ext...
Article
Full-text available
We have used high speed imaging to capture the fast dynamics of two injection methods. The first one and perhaps the oldest known is based on solid needles and used for dermal pigmentation, popularly known as tattooing. The second is a novel needle-free microjet injector based on thermocavitation. Injections in agarose gel skin surrogates were made...
Article
Full-text available
The handling of solids in microreactors represents a challenging task. In this paper, we present an acoustophoretic microreactor developed to manage particles in flow and to control the material synthesis process. The reactor was designed as a layered resonator with an actuation frequency of 1.21 MHz, in which a standing acoustic wave is generated...
Article
Full-text available
The formation, growth and detachment of gas bubbles on electrodes are omnipresent in electrolysis and other gas-producing chemical processes. To better understand their role in the mass transfer efficiency, we perform experiments involving successive bubble nucleations from a predefined nucleation site which consists of a superhydrophobic pit on to...
Article
Full-text available
We report the production of bicomponent Janus filaments of miscible aqueous fluids in a microfluidic electro-flow-focusing device under the action of an AC electric field. The production of liquid filaments can lead to the generation of microfibers by adding a subsequent process of polymerization. Janus microfibers are of paramount importance in bi...
Preprint
High speed imaging was used to capture the fast dynamics of two injection methods. The first one and perhaps the oldest known, is based on solid needles and used for dermal pigmentation, or tattooing. The second, is a novel needle-free micro-jet injector based on thermocavitation. We performed injections in agarose gel skin surrogates, and studied...
Article
Full-text available
A novel swirl flow-focusing microfluidic axisymmetric device for the generation of monodisperse microbubbles at high production rates to be used as in-line contrast agents for medical applications is presented. The swirl effect is induced upstream of the discharge orifice by a circular array of microblades which form a given angle with the radial d...
Article
Full-text available
Solar-powered electrochemical production of hydrogen through water electrolysis is an active and important research endeavor. However, technologies and roadmaps for implementation of this process do not exist. In this perspective paper, we describe potential pathways for solar-hydrogen technologies into the marketplace in the form of photoelectroch...
Article
Full-text available
Aim To compare the pre-sterilization cleaning of rotary Ni-Ti files of different sizes previously used a. ex vivo and b. clinically by a washer disinfector, a regular ultrasonic bath, and the same ultrasonic bath in combination with a recently developed cavitation intensifying method. Methodology Two sets of two hundred rotary Ni-Ti files, one prev...
Article
Full-text available
The formation of gas bubbles at gas cavities located in walls bounding the flow occurs in many technical applications, but is usually hard to observe. Even though, the presence of a fluid flow undoubtedly affects the formation of bubbles, there are very few studies that take this fact into account. In the present paper new experimental results on b...
Article
Full-text available
Control over the bubble growth rates forming on the electrodes of water-splitting cells or chemical reactors is critical towards the attainment of higher energy efficiencies within these devices. This study focuses on the diffusion-driven growth dynamics of a succession of H2 bubbles generated at a flat silicon electrode substrate. Controlled nucle...
Article
Full-text available
This is a study motivated by the need to develop a needle-free device for eliminating major global healthcare problems caused by needles. The generation of liquid jets by means of a continuous-wave laser, focused into a light absorbing solution, was studied with the aim of developing a portable and affordable jet injector. We designed and fabricate...
Article
Full-text available
We report the production of droplet groups with a controlled number of drops in a microfluidic electro-flow-focusing device under the action of an AC electric field. This regime appears for moderate voltages (500–700 V peak-to-peak) and signal frequencies between 25 and 100 Hz, much smaller than the droplet production rate (\({\sim }\,{500}\) Hz)....
Chapter
Full-text available
A compact snapshot of the current convergence of novel developments relevant to chemical engineering is given. Process intensification concepts are analysed through the lens of microfluidics and sonochemistry. Economical drivers and their influence on scientific activities are mentioned, including innovation opportunities towards deployment into so...
Article
Full-text available
A method for the comparison of scenarios in the context of Process Intensification is presented, and is applied to cases reported in the literature, as well as several examples taken from selected industrial practices. A step by step calculation of different factors, all relevant in the chemical engineering and cleaning processes is also given. The...
Article
Microstructured electrodes have been shown to be effective as light harvesting structures for solar-driven water electrolysis. [1] However, a better understanding of the fundamental physicochemical aspects of the gas evolution particularly at the micro- and mesoscale, and bubble formation during the electrolysis is needed in order to improve the ef...
Article
Full-text available
Oscillating microbubbles can be used as microscopic agents. Using external acoustic fields they are able to set the surrounding fluid into motion, erode surfaces and even to carry particles attached to their interfaces. Although the acoustic streaming flow that the bubble generates in its vicinity has been often observed, it has never been measured...
Article
In this paper we report our most recent attempts to tackle a notorious problem across several scientific activities from the ultrasonics sonochemical perspective: reproducibility of results. We provide experimental results carried out in three different laboratories, using the same ingredients: ultrasound and a novel cavitation reactor bag. The mai...
Conference Paper
We successfully demonstrated and reported the highest solar-to-hydrogen efficiency with crystalline silicon cells and Earth-abundant electrocatalysts under unconcentrated solar radiation. The combination of hetero-junction silicon cells and a 3D printed Platinum/Iridium-Oxide electrolyzer has been proven to work continuously for more than 24 hours...
Article
Full-text available
Flow based electrochemical energy conversion devices have the potential to become a prominent energy storage technology in a world driven by renewable energy sources. The optimal design of these devices depends strongly on the tradeoffs between the losses associated with multiple transport processes: convection and diffusion of reactants and produc...
Article
Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developmen...
Article
Full-text available
A compact snapshot of the current convergence of novel developments relevant to chemi