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Abstract. Alzheimer’s disease (AD) impairs memory and causes significant cognitive deficits. The disease course is pro-
longed, with a poor prognosis, and thus exacts an enormous economic and social burden. Over the past two decades, genetically
engineered mouse models have proven indispensable for understanding AD pathogenesis, as well as for discovering new
therapeutic targets. Here we highlight significant studies from our laboratory that have helped advance the AD field by
elucidating key pathogenic processes operative in AD and exploring a variety of aspects of the disease which may yield novel
therapeutic strategies for combatting this burdensome disease.
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INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of
dementia among the elderly, and it is projected that,
by 2050, 1 in 3 seniors will develop this insidious dis-
ease [1]. Despite immense efforts within academia
and the pharmaceutical industry, as of today, there
are no effective treatments available [2, 3]. More-
over, the course of the disease is prolonged and the
prognostics are poor and a definitive diagnosis of
AD is only established when the presence of amyloid
plaques and neurofibrillary tangles are confirmed in
the postmortem brain from the suspected patient [4].

Neuropathologically, AD is characterized by the
abnormal accumulation of extracellular deposits
composed primarily of the amyloid-! protein (A!),
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known as plaques, and intracellular aggregates
consisting of hyperphosphorylated forms of the
microtubule-associated protein, tau, known as neu-
rofibrillary tangles [3]. A! is a heterogeneous mixture
of peptides ranging from 37 to 43 amino acids
in length produced through the sequential cleav-
age of a type-I membrane-spanning protein known
as the amyloid-! protein precursor (A!PP), with
40- and 42-amino acid peptides being the predom-
inant species. A!PP can be cleaved at three different
sites, by proteolytic activities referred to as "-,
!-, and #-secretases. A! peptides are produced when
A!PP is processed first by !-secretase, then by
#-secretase. Cleavage by !-secretase results in the
secretion of the large amino (N)-terminal ectodomain
of A!PP, known as sA!PP!, into the extracellular
space. The resulting carboxy (C)-terminal fragment
is retained in the membrane and subsequently pro-
cessed by #-secretase. The vast majority of A!PP is,
in fact, processed by an alternative pathway, being
cleaved first by "-secretase, resulting in the secretion
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of an N-terminal ectodomain known as sA!PP",
followed by #-secretase-mediated processing of the
membrane-bound C-terminal fragment. Notably, "-
secretase activity cuts at a site located within the A!
sequence, thus precluding the creation of A! [5].

Once formed, A! peptides have a strong tendency
to self-aggregate, something that is especially true
for the longer species of A! like A!42. A! peptides
coalesce to form a number of higher-order aggregates
characterized by a beta-sheet conformation, includ-
ing soluble, low-molecular-weight species, including
dimers, trimers, and dodecamers, known collectively
as oligomers. A! can also form a variety of high-
molecular-weight aggregates, which are generally
insoluble, including protofibrils, fibrils and, ulti-
mately, plaques.

Tau is a microtubule-associated protein that has
a role in stabilizing neuronal microtubules and,
hence, in regulating axonal transport [6–10]. When
released into the extracellular space, tau can modu-
late the signaling of synaptic receptors and, due to its
interactions with scaffolding proteins, tau may also
regulate receptors present in postsynaptic sites. Also,
recent findings demonstrated that tau is involved in
long-term depression in the hippocampus [11, 12].
Altogether, these mechanisms demonstrate a key
role of tau in controlling the normal functioning of
synapses, which can be severely affected in AD.

For the past few decades, genetically engineered
mouse models have been the gold stars of basic
AD research and have proven invaluable for under-
standing how AD pathology develops in the brain
and to evaluate and discover new therapeutic tar-
gets and disease-modifying strategies. Our research
group helped advance our collective understanding of
the interrelationship between A! and tau pathology
in AD by developing a mouse model that develops
both amyloid plaques and neurofibrillary tangles. We
accomplished this by generating a mouse model that
harbors disease-causing mutations in three separate
genes, A!PP, tau, and presenilin-1 [13]. Known as
the triple-transgenic model of AD, or 3xTg-AD, this
approach made it possible not only to investigate the
two major pathological hallmarks within the same
animal, but also to shed a light into the interaction
between A! and tau.

In this chapter, we will focus on how our research
group has ultimately changed and helped the AD
field move forward through the understanding of key
pathological mechanisms in AD such as neuroinflam-
matory processes, synaptic changes, comorbidities
associated with AD and stem cell-related research.

NEUROINFLAMMATION: BUILDING UP
TO THE STORM

Among the factors associated with aging that
reduce the quality of life for the elderly are the
alterations that affect the immune system. As we
age, the innate immune system becomes dysregu-
lated and is characterized by persistent inflammatory
responses [14, 15]. Although inflammation is a fun-
damental protective response, age-related changes in
the immune system can contribute to the increased
susceptibility of the elderly to innumerous diseases
including AD. More insight into the molecular patho-
genesis of the disease is required to better translate
basic biological discoveries into safe and effective
clinical applications.

We have been particularly interested, over the
past few years, in understanding how inflamma-
tion impacts A! and tau pathology (Fig. 1). Elderly
individuals are susceptible to viral and bacterial infec-
tions, and these microbial agents could exacerbate the
existing inflammatory condition in the brain, accel-
erating the cognitive decline. It is now well accepted
that chronic inflammation mediated by inflamma-
tory receptors such as IL-1R1, Toll-like receptor 4
(TLR4), and tumor necrosis receptor (TNFR) rep-
resents a key mechanism by which A! drives the
development of tau pathology and cognitive decline
in AD [16–18]. One important receptor implicated
in AD, TLR4, is responsible for detecting microbial
products and inducing innate and adaptive immu-
nity [19]. Studies conducted by our group in the
3x-Tg-AD mouse model demonstrated that stimula-
tion of TLR4 by Escherichia coli lipopolysaccharide
(LPS) exacerbates tau pathology, via a glycogen syn-
thase kinase-3! (GSK-3!)–dependent mechanism,
with chronic inflammation leading to impairments
in spatial memory [20]. The activation of TLR4
by pathogen-associated molecular patterns leads to
the expression of proinflammatory cytokines, which
will then start specific immune responses. Indeed,
the brains of 3xTg-AD mice presented signifi-
cant increased levels of interleukin-1! (IL-1!) after
chronic LPS treatment.

There is a growing body of evidence showing
that IL-1! turns synaptic plasticity, learning and
memory more susceptible to impairment, especially
with age [21–23]. Aged animals present specific
deficits for long-term potentiation (LTP) [24, 25]
and hippocampal-dependent memory [26, 27] after
a systemic immune activation, and all of these
impairments are blocked by brain infusion of the
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Fig. 1. Inflammatory mechanisms linked to Alzheimer’s disease (AD). The activation of inflammatory receptors like IL1-R1 and TLR4
is a key mechanism by which A! leads to tau pathology and cognitive decline in AD. Stimulation of TLR4 leads to the expression of
proinflammatory cytokines, via a glycogen synthase kinase-3! (GSK-3!)–dependent mechanism, converging on cognitive impairments and
pathology progress. Inhibition of IL-1! signaling, by an IL-1R1 antibody, reduces the activation of tau kinases and p38, alleviating cognitive
deficits and partly reducing some fibrillar and oligomeric forms of A!. During aging and in AD, there is a reduction of lipoxin A4 production,
an endogenous pro-resolving mediator. Restoring its levels leads to an alternative activation of microglia, a reduction of overall inflammation,
and the promotion of increased phagocytosis and A! clearance.

IL-1 receptor antagonist, IL-1ra. In this regard, we
demonstrated that inhibition of IL-1 signaling, by
chronically treating 3xTg-AD mice with an IL-1R
blocking antibody, reduced the activity of several
tau kinases in the brain, including cdk5/p25, GSK-
3!, and p38-MAPK, also reducing phosphorylated
tau levels. Moreover, the treatment significantly
altered brain inflammatory responses through the
reduction of nuclear factor κB (NF-κB), alleviated

cognitive deficits and partly reduced some fibril-
lar and oligomeric forms of A! [17]. Recently, it
was demonstrated that IL-1! impairs LTP directly
at the synapse and that sensitivity to IL-1! is aug-
mented in aged hippocampal synapses, through an
IL-1 receptor subunit reconfiguration [18]. Thus,
ours and other studies provide evidence that mod-
ulation of IL-1! signaling may offer therapeutic
benefit to AD patients, and it has been a con-
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stant target of investigation within our research
group.

Immune responses need to be tightly regulated
in terms of intensity, class, and duration to pre-
vent molecular, cellular, and organ damage. Despite
the fact that its neuropathological involvement and
consequence in AD still remains to be elucidated,
it has been suggested that inflammation plays a
dichotomous role in the disease. In young individuals,
inflammation is self-limited and resolves by means of
an active termination program known as inflamma-
tory resolution [28]. The discovery of this active and
highly coordinated process controlled by endogenous
pro-resolving mediators modified our understand-
ing of diseases caused by chronic inflammation
[29, 30]. In older subjects, however, disturbances in
the immune system result in a state of low-grade
chronic inflammation. In the brain, persistent and
unresolved inflammation has been implicated, with
a variable degree of importance, in almost all age-
related neurodegenerative disorders. In AD, chronic
inflammation, that is characterized by activation of
microglia and astrocytes and excessive production
of pro-inflammatory mediators, may lead to disease
progression and neuronal loss [31–33]. Therefore,
new approaches aimed to modulate the inflamma-
tory response in AD might prove efficacious. To this
end, we evaluated the role of an endogenous lipid
mediator, lipoxin A4 (LXA4), generated during the
resolution phase. Through agonistic actions at the G-
protein coupled LXA4 receptor ALX/FPR2, lipoxins
reduce neutrophil recruitment and activation, leuko-
cyte migration, and cytokine production [34, 35]. In
the central nervous system (CNS), LXA4 protects
neurons against stroke, the development of neuro-
pathic pain after spinal cord injury [36], and A!42
toxicity [37]. During aging and in Tg2567 mice,
there is a significantly impairment of LXA4 produc-
tion. Notably, restoration of this mediator signaling
led to an alternative activation of microglia, with a
reduction of overall inflammation, and the promotion
of phagocytosis and A! clearance. All these effects
were also accompanied by upregulation of synaptic
proteins and cognitive improvement [38]. Addition-
ally, aspirin-triggered lipoxin A4 (ATL) also reduced
A! and phosphorylated tau enhancing the cogni-
tive performance of 3xTg-AD mice [39]. Recently,
it was demonstrated the reduction on the levels of
LXA4 both in the cerebrospinal fluid (CSF) and
hippocampus of AD patients, with a strong correla-
tion with cognitive function [40]. Also, the ability
to measure these important mediators in the CSF

also provides incentive to explore their potential as
diagnostic markers.

Altogether, these data suggest that the inflamma-
tory resolution process is altered by AD, playing a
role of great significance in brain homeostasis.

SYNAPTIC LOSS: THE BEGINNING OF
THE END

AD is currently an important public health issue,
leading to an increased effort over the past years
to better understand the causes of it. Several epi-
demiological studies have demonstrated that synaptic
loss has been strongly associated with the cognitive
deficits observed in AD. Notably, these impairments
are better correlated with the synaptic pathology than
either plaques or tangles, therefore suggesting synap-
tic changes as a central factor for the disease process
and progression [8, 13]. Several animal models and
clinical studies utilizing familial forms of AD have
widely documented the importance of A! and tau
pathology in the progression of AD.

In this section, we will highlight research findings
from our group on how A! and tau affects synap-
tic loss and cognitive deficits in animal models of
AD. The idea of A! oligomers as toxins responsi-
ble for synapse dysfunction and cognitive deficits
in AD has aided our understanding of the mecha-
nisms of the disease [41]. However, new evidence
has demonstrated that tau also regulates other impor-
tant processes related to the synaptic function and it
is also detected in the dendrites, as well as in pre- and
postsynaptic components of normal healthy neurons
[42, 43]. Nevertheless, in AD and several other neu-
rodegenerative diseases, known as tauopathies, tau
develops post-translational changes that will affect
its affinity to microtubules. This process leads to
neurofibrillary tangles, which may alter the axonal
transport. Moreover, calcium signaling is essential for
learning and memory processes; however, its dysreg-
ulation may be related to pathological tau changes
[6, 7]. Our research group has previously demon-
strated that calpain-active cdk5 and ERK1/2 kinases
can phosphorylate tau and induce innumerable down-
stream tau-dependent and independent pathogenic
effects, including impairments of synaptic plasticity
and cognition [44].

The development of the 3xTg-AD mice by our
research group have greatly advanced the AD field,
as these mice together promote the development of
A! and tau pathology and exhibit deficits in synaptic
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plasticity, including LTP that occurs before extracel-
lular A! deposition and formation of tangles. Such
finding demonstrates that synaptic transmission and
LTP deficits precedes plaque and tangle formation
in the 3xTg-AD mice and implies that synaptic dys-
function is an early manifestation of AD and that
extracellular A! deposition is not the only factor
underlying the synaptic dysfunction [13].

A question that still needs to be addressed in the AD
field is how the molecular relationship between A!
and tau affect the integrity of synaptic function and
lead to profound and irreversible cognitive deficits.
Bearing this in mind, there are multiple mechanisms
by which A! and tau can impair synaptic func-
tion and lead to severe cognitive deficits (Fig. 2).
It has been demonstrated that A! promotes tau and
its misplaced localization in dendritic projections,
and that overexpression of both toxic proteins accel-
erates synaptic and cognitive impairments [45–47].
Given that A! and tau coexist and interact directly
between themselves within the synaptic compart-
ment, both proteins may have a synergic role in
affecting normal synaptic functions [8]. Our research
group has demonstrated that 3xTg-AD mice high-

light the importance of intraneuronal soluble A! as
the initial mediator of tau pathology. A! induces tau
pathology by altering the levels of the C terminus
of heat shock protein 79-interacting protein (CHIP),
a known tau ubiquitin ligase responsible for facil-
itating degradation of hyperphosphorylated tau and
caspase-3-cleaved tau [48]. In addition, extracellular
A! is also involved in the development of tau pathol-
ogy. As it will be demonstrated in another section
of this chapter, studies using induced neuronal-
derived pluripotent stem cells (iPSCs) have shown
that extracellularly generated A! increased tau lev-
els in familial AD neurons and that extracellular A!
has an important role in tau pathology mediated by
inflammation.

Further studies suggest that tau targets the tyro-
sine kinase Fyn, a member of the Src family, in
the postsynaptic density and induces aberrant glu-
tamatergic synaptic transmission via overactivation
of NMDARs [49]. Moreover, the reduction in solu-
ble A! oligomers is accompanied by a decrease in
human tau pathology, including reduced association
of tau with PSD-95, and a rescue of learning and
memory deficits. Our data therefore indicate that sol-

Fig. 2. Formation and mechanisms of synaptic toxicity of tau and A! oligomers. During tauopathies, there is a reduction in the number of
dendritic spines. Tau does not enter the nucleus of the neuron, resulting in DNA damage. There is a reduction in the number of mitochondria
and also in the number of presynaptic vesicles, which leads to synaptic loss. Such loss is also due to the entrance of tau into dendrites and
postsynaptic areas. Tau also aggregates extracellularly, enabling it to be captured by other neurons. A! oligomers may decrease the number
of surface glutamate "-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs); there is a decrease the synaptic strength
via an NMDA-dependent pathway. The prion protein-containing oligomer receptor complex (PrPC) interacts with mGluR5, spreading the
toxic effect of A! oligomers. Moreover, oligomers can interact with a variety of receptors on the pre- and postsynaptic membrane of neurons.
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Fig. 3. Comorbidities in Alzheimer’s disease (AD). Diabetes, osteoporosis, renal disease, obesity, hypertension and hypercholes-
terolemia/dyslipidemia, stroke, and seizure are the main comorbidities affecting the onset and progression of AD, adding intricacy to
the pathogenesis of the disease. The mechanisms underlying this relationship are assorted and complexes and are highlighted in the blue
square, including insulin resistance, inflammation, and oxidative stress. BBB, blood-brain barrier.

uble A!, particularly soluble A! fibrillar oligomers,
facilitate wild-type tau pathology in vivo [47].

In summary, these findings highlight the complex-
ity of A! and tau relationship and demonstrate how
our research group has led to a better understanding
of how tau impacts synaptic function and is related
to the pathological role of A! in synapses.

DIABETES, STRESS, AND AD: THE
CHICKEN AND EGG QUESTION

Despite intensive research efforts over the past few
decades, the mechanisms underlying the etiology of
sporadic AD (sAD), which represents the most com-
mon form of the disease, remains unknown. This is
due, at least in part, to the fact that the majority of
sAD patients are elder subjects that commonly suffer
from a variety of co-morbidities (e.g., stroke, stress,
diabetes, seizures, osteoporosis, and renal disease).
On average, people living with dementia who are
over 65 years old have four comorbidities (Fig. 3).
These comorbidities add complexity to the patho-

genesis of sAD, affecting its onset and progression
[50, 51]. Over the past decade, multiple studies have
been performed in animal models to understand the
impact of these co-morbid medical conditions on AD
pathogenesis [52, 53]. Here, we describe the most rel-
evant studies in the last years and those in which our
research group has been working on.

Among the variety of co-morbidities one of the
most prevailing conditions is diabetes (Fig. 4). Inter-
estingly, recent epidemiological studies indicate that
diabetes significantly increases the risk of developing
AD, suggesting that diabetes may play a causative
role in the development of AD pathogenesis [54].
Moreover, AD and diabetes share several clinical and
biochemical features, suggesting common molecu-
lar pathways underlying these two diseases [55–58].
The presence of insulin receptors (IRs) in the brain
provides important evidence that the brain is a tar-
get organ for insulin. Specifically, IRs in the CNS
are highly expressed in cognition-related regions,
indicating that insulin signaling influence memory,
neural plasticity, and cognition [59–66]. Recent evi-



Corr
ec

ted
 P

roo
f

A.C. Martini et al. / Animal Models: What They Have Taught us About AD 7

Fig. 4. The role of impaired brain insulin signaling in tau pathology. Disturbance of brain insulin signaling has been suggested to be a key
causative event underlying sporadic AD pathogenesis. In type 1 and type 2 diabetes, insulin deficiency and resistance, respectively, lead to an
altered insulin signaling pathway in brain tissue. Impaired insulin/insulin receptor signaling leads to decreased insulin-mediated activation
of PI3k/Akt signaling activity, resulting dephosphorylation (activation) of GSK-3!. Consequently, GSK-3! activation directly promotes tau
hyperphosphorylation and formation of neurofibrillary tangles. Brain insulin signaling dysfunction culminates, then, in synaptic failure and
memory decline. IR, insulin receptor; IRS, insulin-receptor substrate; PI3k/Akt, phosphatidylinositol 3 kinase/protein kinase B; GSK-3!,
glycogen synthase kinase 3!.

dence reveals that aberrant brain insulin signaling
contributes to the pathogenesis of AD [67, 68], and
brain insulin resistance is an early common feature
of AD [62, 69, 70]. Interestingly, data obtained from
human [71] and animal models have shown that
diabetes could induce A! pathology [72, 73] and pro-
mote aberrant tau modifications [74–76]. However,
the underlying molecular mechanisms connecting
these two disorders are still not well understood.
Elucidating these mechanisms is crucial because the
number of diabetic and AD patients is expected to
increase exponentially in the next decades.

Specifically, our group has focused on understand-
ing how diabetes can alter tau pathology and affect the
cognitive and synaptic function. Interestingly, several
preclinical studies have shown that modeling type 1
(T1D) or type 2 (T2D) diabetes in rodents results
in an increase in tau phosphorylation versus normal
controls animals [52, 77]. Using streptozotocin (STZ)
treatment, a glucosamine-nitrosourea compound that

is toxic to the insulin-producing !-cells of the pan-
creas inducing hyperglycemia and insulin deficiency
in mice, rendering them a valuable model to study
T1D [78], we have demonstrated that depletion of
endogenous tau mitigates behavioral and synaptic
deficits induced in T1D-like mice [52]. In this sense,
although induction of T1D in non- transgenic (Ntg)
mice led to cellular and behavioral deficits, it did not
do so in tau- knockout (tauKO) mice. We showed that
STZ treatment causes hyperphosphorylation of tau in
Ntg mice through activation of GSK-3!. These incre-
ments on hyperphosphorylated tau correlate with
spatial cognitive deficits and changes in synaptic pro-
teins. Notably, tauKO mice treated with STZ show no
cognitive or synaptic deficits. Overall, our data indi-
cate that T1D impairs cognition via tau-dependent
mechanisms, and genetic deletion of endogenous tau
gene prevents the synaptic degeneration and cognitive
impairment. Hence, these data indicate that tau pro-
teins are crucial downstream targets of the insulin
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pathway and mediators of cognitive deficits in a con-
dition of insulin deficiency, representing a potential
therapeutic target for patients with diabetes and AD.
We are now investigating the role of tau mediating the
cognitive/synaptic deficits in T2D, which represents
the most common form of the disease.

Current epidemiological evidence indicates that
life experiences, including chronic stress, are a risk
for AD [79, 80]. In fact, hypothalamic-pituitary-
adrenal axis dysfunction as well as elevated levels
of cortisol in plasma and CSF are found in
AD patients [81], and multiple key studies indi-
cate that stress modulates synaptic plasticity and
memory processes [82, 83]. Furthermore, recent
studies in animal models have found that stress
and stress hormones, including glucocorticoids and
corticotrophin-releasing hormone, play a crucial role
in AD pathogenesis by modulating A! production
and degradation [84–86], and impairs tau pathol-
ogy by modulating key kinases involved in tau
phosphorylation or by mislocalizing tau protein
to the somatodendritic compartment [85, 87, 88].
Together, these findings suggest that stress and sev-
eral stress mediators play key roles in modulating AD
pathogenesis.

Our group has investigated the impact of short-
term, multi-modal modern-life like stress, which
often last for hours, on AD progression and its impli-
cation in synaptic plasticity and cognitive function.
Several lines of evidence support the importance of
stress duration and modalities on cognitive function
[82, 83, 89]. This matter is extremely important,
because modern-life stress often involves multi-
ple concurrent psychological, social, and physical
stresses [90]. Therefore, it is fundamental to elu-
cidate the effect of multiple concurrent stresses on
the onset and progress of AD pathogenesis. We
found that short-term multimodal stress, lasting for
5 hours, severely reduced the number of the spines
in 3xTg-AD mice. In addition, this form of stress
increased A! oligomers by modulation of A!PP
processing via upregulation of beta-site amyloid pre-
cursor protein-cleaving enzyme 1 (BACE1) steady
state levels without altering A! degradation. This
increase of A! oligomers might impact the synap-
tic plasticity and induce robust synaptic loss in the
3xTg-AD mice [53]. Overall, our data suggest that
short-term, complex (multimodal) stress, recapitulat-
ing salient features of modern-life conditions, is a
key factor that triggers AD pathogenesis and severely
affects memory and synaptic plasticity in 3xTg-AD
mice.

In agreement with these results, we sought to
evaluate if blocking the effects of glucocorticoids
could help reduce pathology and cognitive decline in
3xTg-AD mice. With this purpose, we used the gluco-
corticoid receptor antagonist mifepristone (RU486).
Mifepristone treatment leads to robust reductions in
A! levels and plaques through the induction of a 17
kDa cleavage of A!PP, and reduces tau hyperphos-
phorylation via reduction in p25 levels [91]. Hence,
our results show that compounds targeting the glu-
cocorticoid system could be useful for the treatment
of AD. However, further studies will be necessary to
determine the long-lasting effect of this short-term
multimodal stress event in AD pathogenesis.

Owing to the rapid growth in the number of both
diabetic and AD patients, and the current impact of
a stressful modern life, identifying the clinical asso-
ciations between those disorders and elucidating the
molecular mechanism that mediate their associations
could provide protection from the profound medi-
cal and economic impact that AD will have over the
ensuing decades.

STEM CELL THERAPY IN AD: BACK TO
THE FUTURE

The timing for the development of therapeutic
strategies that turn in real opportunities for AD
patients is really critical, especially due to the lack
of effective drugs to cure AD. Currently there are
over 100 trials and about 80 drugs in the pipeline,
and 99.6% of clinical trials have failed to translate
into approved treatments [92, 93]. These disappoint-
ing results have encouraged an increased focus on
the development of alternative novel and innovative
methods. Over the past decade, the potential use of
stem cells to treat neurodegenerative diseases, such
as AD, Parkinson’s disease, and amyotrophic lateral
sclerosis have received more attention because of its
promising capacity as a regenerative and replacement
therapy. With these lines, multiple different stud-
ies have shown that using murine neural stem cells
have provided compelling evidence of their beneficial
effects in motor and cognitive function after differ-
ent models of brain injuries [94–96], thus the use of
stem cell therapy may be a potential treatment for
neurodegenerative diseases such as AD [97].

We have conducted pioneer preclinical studies in
the 3xTg-AD mice, which develop amyloid plaques,
tangles, and important synaptic and cognitive deficits
[97], to determine whether neuronal stem cells (NSC)
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Fig. 5. Underlying mechanisms to potential stem cells therapeutic effects. A) Hippocampal neural stem cells injection lead to an increase in
BDNF production and a restoration of cognitive and synaptic deficits in 3xTg-AD mice. B) Stem cells can exhibit anti-inflammatory properties
interacting with microglia and astrocytes. Among these effects, NSC might reduce microgliosis and the expression of proinflammatory
cytokines such as TNF", IL1!, or IL6, through CD40 or toll-like receptor 4 (TLR4) signaling pathways. C) The hippocampal injection of
NSCs delivering neprilysin lead to a reduction in A! pathology in addition to the improvement in synaptic connectivity described in A.
NSC, neural stem cell; BDNF, brain-derived neurotrophic factor; CD, cluster of differentiation; TNF", tumor necrosis factor alpha.

transplantation may offer symptomatic or disease-
modifying effects in AD (Fig. 5). Our laboratory
demonstrated for the first time that bilateral transplan-
tation of mouse NSC in aged 3xTg-AD mice restored
cognitive and synaptic deficits without modifying
either plaques or tangle pathology. Among the possi-
ble molecular mechanisms underlying these benefits,
we found that NSCs produces high levels of brain
derived neurotrophic factor (BDNF) and a reduction
of BDNF via shRNA-mediated mechanism prevent
the cognitive benefit and reduces the effect in the
synaptic density [98]. Similar findings were observed
in a following study using a different AD transgenic
model, the A!PP/PS. In this model, the restoration
of both cognitive and synaptic deficits was associ-
ated with elevated levels of BDNF and its receptor

TrkB. Interestingly, they also found that NSCs treat-
ment did not affect A! pathology in APP/PS1 mice
[99]. Therefore, these compelling preclinical findings
suggest that this therapeutic approach may provide
important benefits in patients with advanced existing
pathology via improving multiple cognitive-related
proteins.

However, for a successfully transition of stem
cell-based approach into a clinical application, a
suitable human stem cell line is necessary to be iden-
tified and tested in preclinical AD models in order to
assess its efficacy and safety. Along with this idea we
have used a human CNS stem cell line (HuCNS-SC)
derived from fetal brain tissue to determine whether
cognitive impairment could be restored in two rel-
evant models of AD that exhibit either A! and tau
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pathology (3xTg-AD) and extensive neuronal loss
(CaM/Tet-DTA). Our study demonstrated a robust
therapeutic efficacy of clinically relevant human CNS
stem cells in these two complementary models of
AD [100]. Specifically, we observed that HuCNS-SC
cells recover the cognitive function in both 3xTg-
AD and CaM/Tet-DTA models via improving the
synaptic connectivity as evidenced by an increase
of synaptic levels and growth-associated proteins.
Interestingly, our study also revealed that HuCNS-SC
transplantation has no effect on A! and tau pathol-
ogy suggesting that the mechanism of action occurs
downstream from these pathologies and probably in
a similar way to our previous study by using allo-
geneic murine NSCs, since HuCNS-SC also produces
high levels of the neurotrophin BDNF [98]. Over-
all, our findings suggest that the mechanisms by
which NSCs treatment improve AD cognitive symp-
toms is mediated via neuroprotection and trophic
support rather than neuronal replacement, although
we cannot discard that other possible mechanisms
can take place. For example, certain stem cell popu-
lation exhibits robust anti-inflammatory properties.
In particular, several studies have shown impor-
tant anti- inflammatory effect of mesenchymal stem
cells through the production of anti- inflammatory
mediators such as interleukin-10 and prostaglandin
E2, or via stimulation of microglial phagocytosis or
microglia production of the A!-degrading enzyme
neprilysin and also by modulation of CD40 sig-
naling [101–105]. Likewise, the effect of NSC in
the immune system is currently under intensive
research and new evidence suggests that NSCs could
reduce microgliosis and the expression of proinflam-
matory cytokines such as tumor necrosis factor-"
[106]. Another mechanism is via suppression of glial
and TLR4 activation and its downstream signaling
pathways [107]. Although these studies suggest an
important role of stem cell in the modulation of the
inflammatory response further studies remain nec-
essary to determine the molecular mechanisms by
which stem cell transplantation modulate inflamma-
tion in AD pathology. Moreover, another aspect to
clarify is to determine if stem cell transplantation
alters inflammation directly or simply as a result of
tissue injury or xenotransplantation-associated arti-
facts.

Previously, we have indicated that NSCs can
improve cognitive defects in an AD preclinical model
through the improvement of synaptic connectivity,
although they appear to have no effect on A! or tau
pathology [98, 100]. Given the complex nature of

this disease and the multiple pathways and regions
affected, a single small molecule approach may not
provide substantial benefit, and the NSC benefits
may loss efficacy as pathology continues to develop.
Therefore, a combinatory intervention may be a more
realistic approach to treat AD patients. For exam-
ple, supplementing NSC transplantation with A!
and/or tau-targeting therapies could provide addi-
tional long-term benefits. In addition, NSCs could
themselves be used to deliver therapeutic proteins
due to its capacity to migrate throughout the brain
and localize to areas of brain pathology [96, 108].
In this regard, we have tested whether NSCs that
deliver disease-modifying proteins such as the A!-
degrading enzyme, neprilysin (NEP) could provide
more effective means. Our findings critically demon-
strated that sNEP-expressing NSCs survive for a
long period of time and secrete sNEP leading to a
markedly reduction of A! pathology and enhancing
the synaptic connectivity in two transgenic AD mod-
els (3xTgAD and Thy1-APP transgenic mice) [109].
Thus, sNEP-expressing NSCs represent a promising
therapeutic approach that combines the neurotrophic-
mediated benefits of stem cell transplantation with
the widespread delivery of a disease-modifying pro-
tein and further studies will be needed to determine
whether such approach can be translated to an
eventual clinical application.

CONCLUDING REMARKS

We discussed in this chapter findings from our lab-
oratory that illustrate critical factors to initiate AD
pathology, co-morbidities that contribute to disease
progression and cognitive decline, and potential cell-
based treatments. The majority of our understanding
on AD mechanisms has come from transgenic mice
such as the 3xTg-AD model; however, improved
models should be created, especially focusing on
sporadic AD, in order to maximize the discovery
and development of new therapies. Now more than
ever, it is crucial to understand the exact pathological
mechanisms of disease progression, with the broader
purpose of sharply reducing the number of people
suffering and dying from AD.
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