Widespread horizontal transfer of retrotransposons

Ali Morton Walsh ${ }^{\text {a }}$, R. Daniel Kortschak ${ }^{\text {a }}$, Michael G. Gardner ${ }^{\text {b,c }}$, Terry Bertozzi ${ }^{\text {a,c }}$, and David L. Adelson ${ }^{\text {a,1 }}$
${ }^{\text {a }}$ School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; ${ }^{\text {b }}$ School of Biological Sciences, Flinders University, Adelaide, SA 5005, Australia; and ${ }^{\text {CEEvolutionary Biology Unit, South Australian Museum, Adelaide, SA 5000, Australia }}$
Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved December 5, 2012 (received for review April 6, 2012)

Abstract

In higher organisms such as vertebrates, it is generally believed that lateral transfer of genetic information does not readily occur, with the exception of retroviral infection. However, horizontal transfer (HT) of protein coding repetitive elements is the simplest way to explain the patchy distribution of BovB, a long interspersed element (LINE) about 3.2 kb long, that has been found in ruminants, marsupials, squamates, monotremes, and African mammals. BovB sequences are a major component of some of these genomes. Here we show that HT of BovB is significantly more widespread than believed, and we demonstrate the existence of two plausible arthropod vectors, specifically reptile ticks. A phylogenetic tree built from BovB sequences from species in all of these groups does not conform to expected evolutionary relationships of the species, and our analysis indicates that at least nine HT events are required to explain the observed topology. Our results provide compelling evidence for HT of genetic material that has transformed vertebrate genomes.

transposon | interspersed repeat

Repetitive DNA is abundant in metazoan genomes and is largely composed of transposable elements (TEs). Retrotransposons are a class of TEs that are able to "copy and paste" themselves within the genome via an RNA intermediate (1). Long interspersed element (LINE) retrotransposons encode an endonuclease that nicks the DNA and allows the reverse transcriptase encoded by the element to copy the RNA produced from the TE back into DNA during repair of the nick, integrating the LINE into a new genomic position (2). However, unlike retroviruses, LINEs and other TEs do not encode an envelope protein and are hence unable to disperse horizontally without a vector between species.
Horizontal transfer (HT) of TEs is largely inferred by similarity of DNA sequence; however, where the mechanism of HT has been demonstrated, a vector such as a parasite or virus was involved. For example, both P elements, between species of Drosophila (3), and the Space Invader DNA transposon, between tetrapods $(4,5)$, are transmitted by arthropod parasites $(5,6)$. The Sauria short interspersed element (SINE), has been shown to have transferred into a West African rodent poxvirus from the snake, Echis ocellatus, also supporting viruses as mechanisms for retrotransposon HT (7). HT of retrotransposons is significant because conservative estimates of their prevalence indicate that they make up between a third and a half of typical vertebrate genomes. Thus, demonstration of widespread HT for retrotransposons has significant implications for our understanding of genome structure and evolution. In this report we describe a comprehensive analysis of HT of BovB, a LINE about 3.2 kb long, which has previously been described in ruminants, marsupials, squamates, monotremes, and African mammals (8-11).

Results and Discussion

To determine the sequence conservation of BovB across taxa and examine the evidence for HT , we identified BovB sequences in all publicly available genomes and in several low coverage genomic survey (454 shotgun) sequences using RepBase (12) consensus sequences for BovB as BLAST (13) queries (SI Appendix, Tables S2-S4). The BovB sequences available in Repbase (12) include a sequence extracted from the horn-nosed viper
(Vipera ammodytes) BovB VA, that contains Chicken Repeat 1 (CR1) elements on both the 3^{\prime} and 5^{\prime} ends (SI Appendix, Fig. S4). This means that early during its colonization of the squamates, it somehow acquired the CR1 sequences now present at both ends. We used a trimmed version of BovB VA in our sequence similarity searches, noting that use of the untrimmed RepBase BovB VA sequence leads to false discovery in birds and nonsquamate reptiles, as reported in turtles and the tuatara (10) (basal to squamates), which have an abundance of CR1 elements.

Other squamates may have CR1 fragments on their BovB consensus sequences too. However, due to the abundance of CR1 in the squamate genomes and the low coverage reads from which the squamate BovBs were built, all CR1 fragments had to be removed to reliably assemble a BovB consensus from those species. Hence additional sequencing in a greater range of reptiles would be required to determine when CR1 ends were acquired by the squamate BovB lineage. Interestingly the BovB sequences for the python and the copperhead that were extracted from RepBase do not have the CR1-like ends that are present in BovB VA. This could be due to a different repeat building process used by Castoe et al. (14).

Our searches revealed that BovB is highly abundant in cow, sheep, and Afrotheria (basal mammals), with significant portions of these genomes resulting from BovB contribution (Table 1). BovB is thus capable of significantly altering genome structure and therefore function. BovB sequences contribute to more than 1% of anole, opossum, platypus, and wallaby genomes but only exist as relatively few copies in the horse, sea urchin, silkworm, and zebrafish. BovB was not found in the tuatara, turtles, birds, or other mammals. BovB was also not found in mosquitos despite the presence of an RTE element (SI Appendix, Table S3).

Within the horse genome, just 31 regions were extracted by LASTZ (15) when searched for 80% coverage of the BovB query sequence. We checked to ensure that this was not contamination by searching for 5 '-truncated BovB sequences in the genome, which we expected to find if the reverse transcription step of the copy-and-paste movement was truncated due to premature termination. We were able to find $>1005^{\prime}$-truncated BovB per

[^0]Table 1. Percentage of genome sequence contributed by BovB

Clade	Species common name	BovB Coverage
Monotreme	Platypus	1.21
Marsupial	Opossum	1.3
Ruminant	Cow	18.37
	Sheep	15.21
Equid	Horse	0.11
Afrotheria	Elephant	11.41
	Rock Hyrax	6.86
	Tenrec	8.12
Reptile	Anole	1.36

Genome Coverage: Table shows the percentage of the genome that masks as BovB using full-length BovB sequences as the library in RepeatMasker. Note that this is an underestimate of the impact on the genome, as it does not take into account sequences in BovB SINE derived from other sources. In the case of the cow, the total percentage of the genome attributable to BovB and derived SINE would be 25%.
chromosome, indicating that BovB has been undergoing transcription, reverse transcription, and insertion, but at a much more limited scale than in ruminants or afrotheria. Finally, the presence of horse-specific SINEs inserted into some of the full-length horse BovBs indicated that BovB has been present in the horse genome for some time (Fig. 1).
We constructed a consensus from the BovB sequences recovered from each species where possible and conducted phylogenetic analyses using both maximum likelihood (Fig. 2) and Bayesian methods (SI Appendix, Figs. S9 and S10). Both methodologies gave similar tree topologies varying only in the placement of the zebrafish, silkworm, and sea urchin sequences. Excluding these, the consensus sequences were resolved into two major clades of BovB (Fig. 2).
The largest clade comprised BovB consensus sequences from the marsupials, ruminants, ticks, and all but one of the squamates examined. Whereas the marsupials robustly grouped together, the resolution within the clade was too low to allow analysis of HT between marsupials. However, as no nonmarsupials are present in this clade, we have concluded that it is likely that BovB was present in the common ancestor of marsupials and potentially no HT has occurred since the divergence of marsupials from other mammals. Analyses with additional taxa will be required to test this hypothesis.

The BovB sequences constructed for the two reptile tick species (Bothriocroton hydrosauri and Amblyomma limbatum) nested within the squamate clade. Although the two tick species were collected from the same host (Tiliqua rugosa), they contributed independent BovB sequences to this analysis, neither of which clustered with the BovB sequences from the host. Both species feed on a diverse range of squamates (16) and the potential exists for contamination from the nucleated red blood cells of the lizard in their gut. For this reason, A. limbatum tick legs were sequenced to remove the potential for contamination.

Although contamination is a concern, and can come from various sources, we do not believe it affects our results. The DNA samples for 454 sequencing came from a number of different laboratories and samples were not extracted in one laboratory, or by one person. Pre-PCR and PCR steps were carried out in different laboratories to prevent contamination. Furthermore, the species where we have identified BovB were not amplified/ sequenced together but were amplified/sequenced in conjunction with samples where BovB was not detected. If contamination were an issue one would expect the pattern of occurrence to be random, not lineage specific, e.g., all marsupials, reptiles. We describe our controls for false BovB hits in SI Appendix, section 1.7.3. We have also directly tested for contamination by PCR amplifying and sequencing BovB from a subset of critical taxa: horse, both tick species, and the Lord Howe Island Gecko (Christinus guentheri). We were able to validate BovB in these species using freshly extracted DNA from independent specimens that were not sourced from the laboratories where the original samples were obtained, and we describe our methods and report representative results in SI Appendix, section 3.6. Sequences of validation samples have been deposited with GenBank.
It is also important to note that the topology seen in the squamate BovB subtree is not the topology expected from a tree built from gene orthologs or fossil records (SI Appendix, Fig. S8). This indicates that BovB has been moving horizontally among the squamates as well as between them, ruminants, and marsupials.

The second major BovB clade includes monotremes, African mammals, the horse, and one species of gecko. The Lord Howe Island gecko appeared to have two subclasses of BovB during the consensus construction process, but only one subclass was deemed of sufficient quality to use in phylogenetic analysis. To get a suitable quality sequence for phylogenetic analysis of the other subclass, significantly more data would be required to build the other BovB subclass in this gecko. There is no suggestion of a vector at present and more widespread sequencing would be required to find a parasite or virus vector that would facilitate the HT of the BovB within this clade. The BovB from the African mammals displayed the relationship expected when building a tree from orthologous sequences, which implies that BovB was present in the common ancestor of Afrotheria and has not moved horizontally between African mammals since its incorporation in the ancestral afrotherian genome.
We compared the tree constructed from BovB sequences to the tree constructed from protein orthologs in OrthoDB: Database of Orthologous Groups (17), and TimeTree of Life data (18) using the program SPRIT (19), that estimates the number of required subtree prune and regrafts (SPR) to transform one tree into another. It is apparent from the representation of SPRIT output shown in Fig. 3 that nine SPR are required to explain the observed BovB-based topology. Each SPR corresponds to at least one HT event, therefore we conclude that at least nine interspecies HT events have occurred during the evolutionary history of BovB. This is significantly more than previous estimates

Horse BovB 11
Fig. 1. SINEs inserted into BovB in the horse genome. This is a visual representation of 3 of 31 nearly fulllength horse BovBs according to RepeatMasker (31) using the RepBase (12) horse repeat library. Mid-gray rectangles indicate masking as RTE-1 EC, which is the RepBase equivalent of the horse BovB consensus sequence we constructed. Square gray boxes represent the presence of horse ERE SINE sequences.

Fig. 2. Phylogenetic tree of BovB sequences showing the distribution of BovB across taxa. Maximum likelihood tree built using FastTree (35) from the fulllength BovB sequences extracted from full genome sequence and those constructed from low coverage reads. The sequences were aligned with MUSCLE (29) and processed by Gblocks (34) to limit the effect of indels, making an alignment that was 2858 bp long. Local support values are only shown for those nodes with support less than 0.9. Branch colors indicate important BovB clades: marsupials in purple, reptiles/ruminants/ticks in green, monotremes/Afrotheria/horse in orange, and the RTE clade in maroon, used to root the tree. Taxa showing BovB are colored taxonomically, with marsupials in purple, reptiles in green, ruminants in dark blue, arthropods in yellow, Afrotheria in red, monotremes in pink, horse in blue, zebrafish in gray, sea urchin in light blue, and silkworm in orange. The RTEs are in maroon.

Fig. 3. Horizontal transfers. This is a representation of the least number of subtree prune and regrafts (SPR) required to turn the control tree built from protein orthologs (A), into the tree built from the BovB sequences (J) through intermediates $B-I$. The movement that corresponds to the SPR in the next tree is shown by the arrow and the SPR that made the current tree is shown in red. D, Danio rerio; Eq, Equus caballus; Mo, Monotremata; Ec, Echinops telfairi; Lo, Loxodonta africana; Pr, Procavia capensis; Ig, Iguanidae; Me, Metatheria; Ag, Agamidae; Ru, Ruminantia; Bt, Bothriocroton hydrosauri; Sc, Scincidae; Ge, Gekkonidae; Am, Amblyomma limbatum; Se, Serpentes; Bm, Bombyx mori; and St, Strongylocentrotus purpuratus.
of one or two $(9,20)$ and could increase with the inclusion of new taxa and higher quality data that refines the position of taxa on the BovB and protein ortholog trees.
BovB is capable of expanding within a diverse range of species including warm- and cold-blooded animals and shows a large variability in its accumulation of substitutions in different species; showing a low number of substitutions per site in the anole and a very high number in the opossum (Table 2).
The analysis of BovB HT revealed that ticks may have transferred DNA between snakes and lizards and into ruminants and marsupials. Although we cannot identify the exact tick species, it is known that species of Amblyomma and Bothriocroton infest mammals, marsupials, and monotremes, and that Amblyomma sp. are highly important parasites of domestic animals and man in Africa and America (21). Further work is needed to understand why BovB has been so successful at colonizing some genomes, for example the cow and elephant, and so unsuccessful in others, like the horse. In extreme cases such as the cow, almost a quarter of the genome is the result of BovB and derived SINE sequence retrotransposition, with one reported instance of exaptation into a protein-coding gene (22). The timing of HT for BovB is difficult to determine. HT in terrestrial animals could have occurred via a common mechanism/vector before the breakup of Gondwanaland 175-140 Mya (23). Alternatively, it could have occurred much later if migratory birds or insects were transfer partners. In this context it is worth noting that immature stages of Amblyomma sp. are found on wild birds (24). Resolution of these phylogeographic alternatives will have to await the availability of additional genome sequence data.

The frequent horizontal movement of BovB illustrates the significant impact HT has had on animal genomes; expansion of BovB in various lineages has contributed large amounts of sequence (and presumably structural variation) to the genomes of distantly related species. It is tempting to speculate that BovB is not the only retrotransposon to have jumped between species, and further investigation will be required to test this hypothesis. Despite public concern over the transfer of genetic material to create genetically modified organisms, it appears that Mother Nature has been quietly shuffling genomes for some time.

Materials and Methods

A flowchart and detailed description of methods, including perl scripts used are available in SI Appendix.

Table 2. Number of substitutions per site
Species common name
Substitutions per site (~)

Opossum	0.357 ± 0.006
Cow	0.110 ± 0.002
Sheep	0.228 ± 0.004
Horse	0.229 ± 0.003
Elephant	0.150 ± 0.003
Anole	0.076 ± 0.002
Sea Urchin	0.322 ± 0.014

MEGA was used to compute overall mean distances for the nearly fulllength BovBs of a selection of species. The Jukes-Cantor model was used due to its lack of inherent assumptions with gamma distribution and 90\% partial deletion of missing data.

Presence of BovB in GenBank Data. A list of genera, families, superfamilies, and orders to be tested for BovB was compiled from information at National Center for Biotechnology Information (NCBI) (25). A BioPerl (26) module, RemoteBlast, was used (script supplied in SI Appendix, section 2) to query the NCBI remote BLAST Nucleotide database using a file of eight BovB/RTE sequences obtained from RepBase (12) and from our own previous analyses (8). Two stringent cut off E values were used to identify significant hits ($e=0$ and $\mathrm{e} \leq 1 \mathrm{e}-10$) for further analysis.

Identification of BovB Across Taxa with Full Genome Assemblies. LASTZ (15) was used to identify BovB sequences based on our eight BovB query sequences, with at least 80% length coverage in full genome assemblies. BEDTools (27) were used to merge the LASTZ intervals to get unique BovB sequences based on hits from multiple queries. Sequences were either first clustered, using UCLUST (28), at 70% or 80% identity or directly globally aligned using MUSCLE (29). PILER (30) was then used to get a consensus sequence. If the initial clustering step produced very large clusters, e.g., $>2,000$ sequences for the elephant and >600 for the cow, the sequences were clustered at 90% and consensus sequences for these clusters were constructed. These 90% cluster consensus sequences were then clustered at 80% to construct consensus sequences that were used to build the BovB for that species. Percent identity used for clustering in various species was: No clustering for platypus, wallaby, sea urchin, zebrafish, silkworm, 70\% for opossum and tenrec, 80% for sheep, anole, horse, rock hyrax, and 90% followed by 80% for cow and elephant. For these species, RepeatMasker (31) was used to determine the amount of the genome corresponding to BovB.

Identification of BovB Across Taxa with Genome Survey Sequence Coverage. There were 65 taxa with low coverage genome survey sequence data containing BovB. A number of these species (shown in the tree in Fig. 2) yielded sufficient hits to build representative BovB sequences for phylogenetic

1. Jurka J, Kapitonov VV, Kohany O, Jurka MV (2007) Repetitive sequences in complex genomes: Structure and evolution. Annu Rev Genomics Hum Genet 8:241-259.
2. Garcia-Perez JL, Doucet AJ, Bucheton A, Moran JV, Gilbert N (2007) Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res 17(5):602-611.
3. Bartolomé C, Bello X, Maside X (2009) Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biol 10(2):R22.
4. Pace JK, 2nd, Gilbert C, Clark MS, Feschotte C (2008) Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc Natl Acad Sci USA 105(44): 17023-17028.
5. Gilbert C, Schaack S, Pace JK, 2nd, Brindley PJ, Feschotte C (2010) A role for hostparasite interactions in the horizontal transfer of transposons across phyla. Nature 464(7293):1347-1350.
6. Silva JC, Loreto EL, Clark JB (2004) Factors that affect the horizontal transfer of transposable elements. Curr Issues Mol Biol 6(1):57-71.
7. Piskurek O, Okada N (2007) Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. Proc Natl Acad Sci USA 104(29):12046-12051.
8. Adelson DL, Raison JM, Edgar RC (2009) Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome. Proc Natl Acad Sci USA 106(31):12855-12860.
9. Gentles AJ, et al. (2007) Evolutionary dynamics of transposable elements in the shorttailed opossum Monodelphis domestica. Genome Res 17(7):992-1004.
10. Kordis D (2009) Transposable elements in reptilian and avian (sauropsida) genomes. Cytogenet Genome Res 127(2-4):94-111.
11. Zhao FQ, Qi J, Schuster SC (2009) Tracking the past: Interspersed repeats in an extinct Afrotherian mammal, Mammuthus primigenius. Genome Res 19(8):1384-1392.
12. Jurka J, et al. (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110(1-4):462-467.
13. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403-410.
14. Castoe TA, et al. (2011) Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biol Evol 3:641-653.
15. Harris RS (2007) Improved Pairwise Alignment of Genomic DNA (Pennsylvania State Univ, University Park, PA).
16. Smyth M (1973) Distribution of three species of reptile ticks, Aponomma Hydrosauri (Denny), Amblyomma Albolimbatum Neumann, and Amb. Limbatum Neumann, I. Distribution and hosts. Aust J Zool 21(1):91-101.
17. Waterhouse RM, Zdobnov EM, Tegenfeldt F, Li J, Kriventseva EV (2011) OrthoDB: The hierarchical catalog of eukaryotic orthologs in 2011. Nucleic Acids Res 39(Database issue, suppl 1):D283-D288.
analysis. Sequence reads corresponding to BovB ($>60 \%$ length or $>80 \%$ length) were selected for assembly using Phrap (32). Where Phrap built many contigs for single species, the contigs were clustered using UCLUST. Contigs were then aligned and scaffolded to produce full-length BovB sequences using MUSCLE. Alignments/scaffolds were then manually curated and used to build consensus sequences.

Sequencing to Identify Additional Reptile and Monotreme BovB. Genomic DNA was isolated from Tachyglossus aculeatus, Egernia stokesii, and Tiliqua rugosa and sent to BGI (Hong Kong) for 100-bp paired end sequencing (300bp library mean insert size). One giga base pair of paired end reads for each species was then used as input for BovB consensus building as described above. These data have been submitted to the EBI Sequence Read Archive (33) under the following project accession ERP001591 and sample accessions T. rugosa (sleepy lizard) ERS195148, E. stokesii (skink) ERS195147, and T. aculeatus (echidna) ERS154930.

Phylogenetic Analyses. Consensus sequences were aligned with MUSCLE, and multiple alignments were processed with Gblocks (34) to select conserved blocks for use in phylogenetic analysis. We used three independent tree building tools to construct phylogenies from the refined multiple alignments; FastTree (35), RAxML (36), and BEAST (37). All three methods used general time reversible (GTR) model and gamma approximation on substitution rates. Sprit (19) was used to calculate the minimum subtree prune and regraft (SPR) distance between the BovB phylogeny (FastTree) and the control phylogeny based on gene orthologs (17).

ACKNOWLEDGMENTS. We thank Evgeny Zdobnov for the ortholog tree, David Chapple for providing access to Lord Howe Island Gecko sequence data, and Michael Lee for his impeccable advice.
18. Hedges SB, Dudley J, Kumar S (2006) TimeTree: A public knowledge-base of divergence times among organisms. Bioinformatics 22(23):2971-2972.
19. Hill T, et al. (2010) SPRIT: Identifying horizontal gene transfer in rooted phylogenetic trees. BMC Evol Biol 10:42.
20. Kordis D, Gubensek F (1998) Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. Proc Natl Acad Sci USA 95(18): 10704-10709.
21. Roberts FHS (1953) The Australian Species of Aponomma and Amblyomma (Ixodoidea). Aust J Zool 1(1):111.
22. Iwashita S, et al. (2006) A tandem gene duplication followed by recruitment of a retrotransposon created the paralogous bucentaur gene (bcntp97) in the ancestral ruminant. Mol Biol Evol 23(4):798-806.
23. Upchurch P (2008) Gondwanan break-up: Legacies of a lost world? Trends Ecol Evol 23(4):229-236.
24. Gonzalez-Acuña D, et al. (2004) First record of immature stages of Amblyomma tigrinum (Acari: Ixodidae) on wild birds in Chile. Exp Appl Acarol 33(1-2):153-156.
25. Sayers EW, et al. (2012) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40(Database issue):D13-D25.
26. Stajich JE, et al. (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12(10):1611-1618.
27. Quinlan AR, Hall IM (2010) BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841-842.
28. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460-2461.
29. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792-1797.
30. Edgar RC, Myers EW (2005) PILER: Identification and classification of genomic repeats. Bioinformatics 21(Suppl 1):i152-i158.
31. Smit AFA, Hubley R, Green P (1996-2004) RepeatMasker Open-3.0.).
32. Gordon D, Abajian C, Green P (1998) Consed: A graphical tool for sequence finishing. Genome Res 8(3):195-202.
33. European Nucleotide Archive (2012) Available at www.ebi.ac.uk/ena/home. Accessed November 20, 2012.
34. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540-552.
35. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3):e9490.
36. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688-2690.
37. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7(1):214.

Supplementary Information: Widespread Horizontal Transfer of Retrotransposons.

A.M. Walsh, R.D. Kortschak, M.G. Gardner, T. Bertozzi and D.L. Adelson

Contents

1 Methods 4
1.1 Software Used . 4
1.2 Presence of BovB in Genbank data . 5
1.3 Full Genomes search . 6
1.4 Annotation of BovBs . 9
1.5 Genome coverage of BovB . 10
1.6 Substitution rates and percentage identity 10
1.7 Low coverage genomic survey sequence BovB construction 10
1.7.1 Tenrec and Rock Hyrax . 14
1.7.2 Control . 15
1.7.3 PCR Verification of critical sequences 15
1.8 Trees . 17
1.8.1 Tree using BovB sequences . 17
1.8.2 Tree using orthologous sequences 18
1.8.3 BovB vs control tree comparison 18
1.9 Exaptation 18
2 Scripts 20
2.1 blastNCBI.pl 20
2.2 count_any_program.pl 22
2.3 sam_bam_bed_merge 22
2.4 strand_anole 22
2.5 reverse_comp.pl 23
2.6 muscle_helper 23
2.7 PILER 24
2.8 uclust_bash 24
2.9 get_uclusters.pl 24
2.10 get_clusters_from_db.pl 25
2.11 Concatenate, Alignment and Consensus 25
2.12 Gblocks 26
2.12.1 Gblocks consensus 26
2.12.2 Gblocks tree 26
2.13 RM_QC_for_phrap.pl 27
2.14 cons.pl 28
3 Supplementary Material 29
3.1 BovB presence across the tree of life 29
3.2 Full Genome BovB results 36
3.3 Taxa with low coverage genomic survey sequence 37
3.4 Annotation of BovB VA 41
3.5 Chicken Repeats 41
3.6 Divergence of BovB consensus sequences with respect to BovB VA 43
3.6.1 Results of consensus divergence to BovB VA 43
3.7 Validation of BovB from low coverage species and ticks 45
3.7.1 Results From Validation Sequences 46
3.8 Phylogenetic tree of BovB and orthologues 50
3.8.1 Tree built from orthologous sequences 50
3.8.2 Trees built from BovB sequences 52
3.8.3 RAxML 52
3.8.4 BEAST 54

1 Methods

1.1 Software Used

For local alignments and database searches BLAST (Basic Alignment Search Tool) version 2.2.25 ${ }^{1}$ and LASTZ (Local Alignment Search Tool, blastZ-like) version $1.02 .00^{2}$ were used. NCBI bl2seq was used for local alignments of two sequences ${ }^{3}$. Global alignments were done with MUSCLE (Multiple Sequence Comparison by Log-Expectation) version 3.8.3 ${ }^{5}$. Global alignments were refined manually and using Gblocks version $0.91 b^{6}$. RepeatMasker version open-3.2.6 ${ }^{7}$ was used to find repetitive elements and to annotate sequences.

Clustering was done with UCLUST version 4.1.93 ${ }^{8}$. Consensus sequences were extracted with PILER version $1.0{ }^{9}$, HIV sequence database Advanced Consensus Maker ${ }^{10}$ and a Perl script shown in section 2.14. Scripts were written in Perl and made use of the BioPerl modules available (Perl version 5.10.0, 5.8.8 and 5.10.1 were used) ${ }^{11}$. BEDTools version 2.11.2 were used to manipulate genomic intervals.

For genomic survey sequence short read assembly, Phrap version $1.090518{ }^{12}$ was used to built contigs. MEGA version $5{ }^{13}$ was used to calculate overall mean distances. GENSCAN ${ }^{14,15}$ was used to translate a BovB sequence into protein.

For building phylogenetic trees, FastTree version 2.1.3 ${ }^{16,17}$; RAxML (Randomized Axelerated Maximum Likelihood) version 7.0.4 ${ }^{18}$; and BEAST (Bayesian evolutionary analysis sampling trees) version 1.6.2 ${ }^{19}$ were used. Programs in the BEAST software package were also used to construct and analyse the BEAST tree, including BEAUti (Bayesian Evolutionary Analysis Utility), TreeAnnotator and Tracer version 1.5^{20}. Model generator version $0.85{ }^{21}$ was used to determine the best model for building the phylogenetic trees
and Sprit ${ }^{22,23}$ was used to compare phylogenetic trees.

1.2 Presence of BovB in Genbank data

From the NCBI (National Center for Biotechnology Information) taxonomy database ${ }^{24}$, a list was compiled of genera, families, superfamilies and orders to be screened for BovB, in order to get an overall picture of the distribution of BovB across the tree of life. Due to the limited maximum number of BLAST hits returned, smaller groups, e.g. families or genera were tested where BovB was expected, such as in ruminants, and larger groups, e.g. orders, were tested where it was not expected, such as in primates.

A BioPerl module, RemoteBlast, was used (script supplied in Section 2.1) to BLAST a file containing eight improved BovB/RTE sequences against the NCBI remote BLAST Nucleotide database. The hits corresponding to the taxon name from the list were then selected out. The eight BovB/RTE sequences in the query file were the BovB sequences from the snake (Vipera ammodytes) (BovB VA), cow (improved consensus)(Bos taurus) (BovB), opossum (Monodelphis domestica) (BovB Opos) and platypus (Ornithorhynchus anatinus) (BovB Plat); the RTE2 sequences from opossum (RTE2 MD) and wallaby (Macropus eugenii) (RTE2 ME) and RTE1 sequences from platypus (Plat RTE1) and purple sea urchin (Strongylocentrotus purpuratus) (RTE1X SP).

Two threshold e-values were used, $\mathrm{e}=0$ and $\mathrm{e} \leq 1 \mathrm{e}-10$ to identify significant hits.Significant BLAST hits were catalogued against the compiled list, seen in table 4.

In order to determine if sufficient sequence was available to infer the presence or absence of BovB in a group, the taxonomy database was queried for each of the groups and the number of available sequences ascertained.

1.3 Full Genomes search

Species where full genome data was available, shown in table 5, were searched for BovB. Scripts shown in Section 2.2-2.12 were used to generate full-length BovB consensus sequences for each species where BovB was found. A flow chart showing the pipeline for the analysis is shown in Fig. 1.

Figure 1: Pipeline to get nearly full-length BovBs from full genome data. Ellipses contain an indication of the command or script written to complete the task in the box. Scripts are shown in the appendices (2.2-2.12)

Script sam_bam_bed_merge_species_name, shown in section 2.3, was used to run LASTZ with 80% coverage.. BEDTools was used to process the LASTZ output and merge the intervals selected by LASTZ to get the unique fragments of the genome corresponding to BovB, as shown in Fig. 2.

Figure 2: Illustration of potential BovB hits on a genome using LASTZ, this shows that the different BovB sequences may hit different parts of the host BovB and hence need to be merged, using BEDTools, before the host BovB can be extracted.

Script strand_species_name, in section 2.4, was then used to convert all sequences to the same strand.

Depending on the number of sequences extracted by LASTZ, the sequences were either clustered, using UCLUST, at 70 or 80% identity or directly globally aligned with MUSCLE, Section 2.6, PILER was then used to produce a consensus sequence from the alignment, Section 2.7.

If there were a large number of sequences, scripts uclust_bash (section 2.8), get_uclusters.pl (section 2.9) and get_clusters_from_db.pl (section 2.10) were used to cluster those sequences that were most similar and construct a consensus sequence for each cluster. These cluster
consensus sequence files were then concatenated together and an overall consensus sequence for the species was constructed, Section 2.11. If the initial clustering step produced very large clusters, e.g. >2000 sequences for the elephant and >600 for the cow, the sequences were clustered at 90% and consensus sequences for these clusters were constructed. These 90% cluster consensus sequences were then clustered at 80% to construct consensus sequences that were used to build the BovB for that species. The percentage used to cluster each species is shown in table 1 .

Table 1: Clustering percentage for each of the species where BovB was found in the full genome sequence, scientific names can be found in table 5 .

Cluster percentage	Species
No clustering	Platypus, Wallaby, Sea Urchin, Zebrafish, Silkworm
70%	Opossum, Tenrec
80%	Sheep, Anole, Horse, Rock Hyrax
90% then 80%	Cow, Elephant

Gblocks was used to refine the multiple alignments of the sequences used to build the consensus sequences and used to build the phylogenetic trees.

Once consensus sequences were built for the available full genome sequences, FastTree was used to build a phylogenetic tree using maximum likelihood methods in order to determine the relationships between the BovBs of the different species. Further information on the construction of the phylogenetic trees is in the tree method section below, section 1.8.

1.4 Annotation of BovBs

RepeatMasker was used to determine the composition of BovB VA after it was noted that the ends, <600 and >4000, were overrepresented in BLAST and RepeatMasker output when searching for BovB, particularly in birds.

RepeatMasker was also used to analyse the composition of the horse BovB full-length sequences and to test the whole horse genome to determine if contamination was likely.

1.5 Genome coverage of BovB

Species where BovB was present in the full genome data used in section 1.3 were masked using RepeatMasker to determine the amount of the genome covered by BovB.

1.6 Substitution rates and percentage identity

Overall mean distances were computed for the nearly full-length BovBs using MEGA. The Jukes-Cantor model was used with gamma distribution and 90% partial deletion of missing data. Partial deletion of missing data was used because some species, such as the elephant, had so many BovB elements that global alignments produced no common sites among all sequences.

1.7 Low coverage genomic survey sequence BovB construction

Taxa: For the 65 taxa where low coverage genomic survey sequence data were available, see section 3.3, BLAST searches, using the BovB consensus sequences as the queries, were performed to identify reads that contained BovB. The species where BLAST provided sufficient hits to attempt to build a BovB were the reptile tick (Bothriocroton hydrosauri), reptile tick legs (Amblyomma limbatum), mardo (Antechinus flavipes), bilby (Macrotis lagotis), southern bandicoot (Isoodon obesulus), wallaroo (Macropus antilopinus), central pygmy possum (Burramys parvus(central ESU)), northern pygmy possum
(Burramys parvus(northern ESU)), eastern bandicoot (Perameles gunni), sugar glider (Petaurus breviceps), sea snake (Hydrophis spiralis), tree dragon (Amphibolurus norrisi), LHI skink (Oligosoma lichenigerum), Leposoma scincoides, Ca skink (Ctenotus atlas), Er skink (Eremiascincus richardsonii), Gd skink (Glaphyromorphus douglasi), G laz gecko (Gehyra lazelli), G var gecko (Gehyra variegata), and Howe Island gecko (Christinus guentheri). Due to the low coverage data and limited number of taxa, particularly reptiles, available, three additional species were sequenced. One gigabase of clean sequence data was sequenced by BGI (Beijing Genomics Institute) for the sleepy lizard (Tiliqua rugosa), which is the host of the two tick species being examined, Stoke's skink (Egernia stokesii) and the echidna (Tachyglossus aculeatus). One gigabase of sequence data represents a substantial fraction of the genomes in question, specifically about $1 / 3$ genome coverage for the Echidna. Sequence reads in this data collection were each 100bp long, hence the initial BLAST step, used for the other data was skipped. Where possible, full-length BovBs were assembled from these sequences.

RepeatMasker: First RepeatMasker was run on all the data with the compiled BovB library including the four BovB sequences from the improved BovB file and the full-length BovBs built using the full genome search method described in section 1.3. For reptiles the library was modified to be free of the CR1 repeats that are incorporated onto the end of BovB VA. This was done by removing the first 650 bp and the last 550 bp of the BovB VA sequence. This was necessary because of the difficulty in assembling BovBs when a significant proportion of the reads used for assembly belong to a different repeat sequence.

Quality Control: Once the reads had been masked using RepeatMasker, the script RM_QC_for_phrap.pl, in section 2.13, was used to select out reads that masked as BovB over a percentage of their lengths. Initially 60% coverage was used as the cut off for BovB
masking but it was increased to 80% for those sequences that required more stringent conditions to build a BovB of sufficient quality for phylogenetic analysis. Species where 80% coverage was used were the tree dragon, mardo, bilby, southern bandicoot, and the three taxa sequenced by BGI because the reads were 100bp long.

Phrap Contigs: Phrap, a program for assembling shotgun DNA sequence data, was then used to build contigs from the reads. For most of the species the default parameters for Phrap were used, but for a few, more stringent parameters were needed to built a BovB of sufficient quality for phylogenetic analysis. A BovB of sufficient quality was defined as a BovB sequence that produced a good global alignment and a robust tree position when introduced to the BovB library or tree; it was of a similar length to the other sequences and so did not increase the total length of the alignment by more than 500bp. The more stringent parameters used for Phrap were penalty -15, shatter_greedy, bandwidth 30 and minscore 100. The more stringent Phrap conditions were used in the construction of the mardo, bilby and southern bandicoot BovBs. BovBs of sufficient quality could not be constructed for the LHI skink and Leposoma scincoides.

Quality Control 2: Once contigs had been built they were masked using RepeatMasker and the RM_QC_for_phrap.pl script was run to determine if they were masking as BovB over the percentage of their length that their reads were required to, for example 60% for the sea snake and 80% for the bilby.

Clustering: If Phrap built many contigs that masked as BovB over a high percentage of their length, they were clustered using UCLUST. The percentage identity with which the contigs were clustered varied between species, according to what percentage identity was
needed to produce clusters with >1 sequence, how many gaps the BovB produced by a cluster introduced to the global alignment and how many sequences were present in clusters that had to be manually curated. The wallaroo, central pygmy possum, northern pygmy possum, eastern bandicoot, sugar glider, sea snake and G var gecko were clustered at 70% identity. Ca skink, Gd skink, Er skink and G laz gecko were clustered at 80% identity and the tree dragon was clustered at 90% identity. The Howe Island gecko, mardo, bilby, southern bandicoot and two ticks were not clustered due to the small number of contigs built.

The BGI data were not clustered. However the number of contigs used to build the consensus sequence was reduced by selecting only the long contigs. For the two skinks this was contigs $>500 \mathrm{bp}$ long and for the echidna this was contigs $>1 \mathrm{~kb}$ long.

Alignment and Scaffolding: As the contigs often masked as different regions of BovB, for example contig 1 might mask as the first 1 kb of BovB Opos and contig 2 might mask as the last 1 kb of Sheep_BovB, each sequence was aligned using MUSCLE with its corresponding BovB as a scaffold. Its corresponding BovB being the BovB used to mask it. These pairwise alignments were then aligned. The scaffolds were removed while manually curating the alignment. Alignments were also manually curated to remove short insertions present in one sequence that were absent in several others and to fix errors in the MUSCLE output, such as the one shown in Fig. 3. Insertions and deletions were an issue when consensus building particularly because we were dealing with repeats. The consensus being built was not from many sequencing runs of the same gene/region, but rather from distinct regions that have been evolving and mutating independently for some time. This process was an attempt to assemble and align them at the same time. Manual checking also ensured that the scaffold aligning process placed the contig approximately where Re-
peatMasker predicted it should be, for example if it masked as a 5^{\prime} part of BovB Opos it was not placed at the 3^{\prime} end of the alignment.

Figure 3: MUSCLE error example: One example of a misalignment found in the global alignment of sequences during consensus and tree building. These misalignments were corrected by manual curation.

Consensus Construction: Once the alignment was manually curated, consensus sequences were built in one of two ways. The first was using the HIV sequence database Advanced Consensus Maker. The other was the Perl script, cons.pl, shown in section 2.14. The HIV consensus builder was used before cons.pl was written. They use the same principle to build consensus sequences and differ only in their assignment of ambiguous bases, hence the consensus sequences built with HIV consensus builder were not rebuilt after cons.pl was written. Cons.pl was written so that it could be included in an automated pipeline.

1.7.1 Tenrec and Rock Hyrax

The tenrec and rock hyrax BovB sequences from the full genome method in section 1.3 were improved by taking the BovB sequences produced by LASTZ, RepeatMasking them, then running RM_QC_for_phrap.pl with 80% cutoff. This was done because these genomes were only partially assembled and hence produced shorter strand corrected BovB sequences than the other genomes. The sequences were then run through Phrap with the stringent conditions above. The tenrec sequences produced four contigs that masked as Elephant_BovB, these were each aligned with MUSCLE against Elephant_BovB as a scaffold, then all of
them were aligned together with MUSCLE and manually curated. From this cons.pl was used to extract a better consensus sequence than was previously constructed by the full genome BovB building method, in section 1.3. The rock hyrax sequences produced no contigs when Phrap was run, but after using RepeatMasker to filter out the poor quality sequences they were clustered at 80% identity and aligned. This alignment was manually curated and the HIV Advanced consensus builder was used to extract a consensus sequence that introduced fewer gaps into the multiple alignment used for tree building, compared to the previous rock hyrax BovB consensus sequence.

1.7.2 Control

Due to concern that the process, particularly the profile aligning of sequences, could cause a BovB to be built for a species that did not have BovB. The rat and brown toadlet BLAST hits were tested to determine if a BovB could be built. The methods described above did not produce BovB consensus sequences for these species, supporting the validity of our methodology.

1.7.3 PCR Verification of critical sequences

DNA was extracted from frozen or ethanol preserved tissue using a Puregene DNA isolation kit (Gentra Systems, Minneapolis, MN) following the manufacturers protocol for DNA purification from solid tissue. PCR was used to amplify single reads from the 5 ' and 3^{\prime} ends of a contig consensus from each of the individuals in Table 2 using primers outlined in Table 3, which were developed using Primer3 ${ }^{4}$. Each PCR was carried out in a volume of $25 \mu \mathrm{l}$ with a final concentration of 1 X GeneAmp PCR Gold buffer, $2 \mathrm{mM} \mathrm{MgCl} 2,200$ $\mu \mathrm{M}$ of each dNTP, $0.2 \mu \mathrm{M}$ of each primer and 0.5 U of AmpliTaq Gold DNA polymerase
(Applied Biosystems, Foster City, CA). Amplifications consisted of an initial denaturation step of $94{ }^{\circ} \mathrm{C}$ for 9 min , followed by 34 cycles of PCR with the following temperature profile: denaturation at $94{ }^{\circ} \mathrm{C}$ for 45 s , annealing at $55-60{ }^{\circ} \mathrm{C}$ for 45 s , and extension at 72 ${ }^{\circ} \mathrm{C}$ for 1 min , with an additional final extension at $72^{\circ} \mathrm{C}$ for 6 min . The double-stranded amplification products were visualised on 1.5\% agarose gels and purified using Multiscreen PCR clean-up pates (Millipore Corporation, MA) before cycle-sequencing in both directions using the BigDye Terminator v3.1 cycle-sequencing kit (Applied Biosystems).The cycling protocol consisted of 25 cycles of denaturation at $96^{\circ} \mathrm{C}$ for 30 s , annealing at 50 ${ }^{\circ} \mathrm{C}$ for 15 s , and extension at $60^{\circ} \mathrm{C}$ for 4 min . All samples were sequenced on an Applied Biosystems 3730xl DNA sequencer.

All primer combinations produced a single amplicon of the expected size.

Specimen no	Taxon	Tissue	GenBank
ABTC123569	Equus caballus	blood	pending
AMSR90203	Christinus guentheri	liver	pending
ABTC111481	Amblyomma limbatum	legs	pending
ABTC123615	Bothriocroton hydrosauri	legs	pending
ABTC82613	Gehyra variegata	liver	pending

Table 2: Species used for PCR verification, AMS is an Australian Museum label and ABTC is a Australian Biological Tissue Collection, South Australian Museum label.

Primer	Primer sequence	Species	Annealing ${ }^{\circ} \mathrm{C}$
G2250F	TGTGGGACGCCTGCCAAAGC	Equus caballus	60
G2251R	GTGTGGCACGCCGTGGGAC	Equus caballus	60
G2252F	GGCACATTGCGAGAAGGCAGGAC	Equus caballus	60
G2253R	AAAGCCATCACCCTTGACAGAGCCAG	Equus caballus	60
G2254F	CGCGAGACCATCCTCTCACAC	Amblyomma limbatum	55
G2255R	GGCAGAGACGCTGGAGTGAGT	Amblyomma limbatum	55
G2256F	GATAGATGGTGGAGGACAGGAAGG	Amblyomma limbatum	55
G2257R	GCATGAGGCGAAACAATGAGAA	Amblyomma limbatum	55
G2258F	CTCTCATCCTGCCCACTGACTC	Bothriocroton hydrosauri	55
G2259R	CCCCAGTAGCATAGTGGACACCTT	Bothriocroton hydrosauri	55
G2260F	AACGCCAGATTTCAAGACTGAACA	Bothriocroton hydrosauri	55
G2261R	TGGGGCGTAGGCTTGGACT	Bothriocroton hydrosauri	55
G2262F	AGCCACAGCCCTTAGTCTGC	Christinus guentheri	55
G2263R	GCTCCTCCTATTTGCCCATCTAT	Christinus guentheri	55
G2277F	AAAGGTCAGTTTACATCCCAATC	Gehyra variegata	55
G2278R	TCTCTTGAAGGACTTGCCATAG	Gehyra variegata	55

Table 3: Primers used for amplifying the BovB sequences from the species named.

1.8 Trees

1.8.1 Tree using BovB sequences

Trees were initially built with FastTree using defaults, or the general time reversible (GTR) model with gamma approximation on substitution rates. For the final tree the FastTree output was compared with the output produced from RAxML and BEAST. The trees were built from multiple alignments done by MUSCLE using the default parameters and from a version of this alignment that had been refined using Gblocks. For the final tree, FastTree was run with the GTR model using gamma approximation for substitution rates, so that all the trees could be compared using the same model. RAxML was run with 500 bootstraps using the substitution model GTRGAMMA. Model generator was used to determine that the GTR model with gamma rates was the best fit for the data when four rate categories were used. BEAUti was used to set up the BEAST MCMC (Markov chain Monte Carlo) run with the Tree Prior set to 'Speciation: Yule process'. For BEAST MCMC a chain of length $100,000,000$ was used, sampling every 10,000 to produce 10,000 trees of which the
first 1,000, or 10\%, were ignored (burnin value) when using TreeAnnotator to generate the best tree. This burnin value was verified using the program Tracer that showed that 10% burnin was sufficient to allow convergence.

1.8.2 Tree using orthologous sequences

For use as a control, a phylogenetic tree built from orthologous sequences was required. This was obtained from "OrthoDB: Database of Orthologous Groups" ${ }^{25}$, supplied to us by Dr Evgeny Zdobnov. This tree contained only one non-avian reptile, the green anole lizard, so the breakdown of reptiles was determined using the TimeTree of Life publication ${ }^{26,27}$. This publication provided the currently accepted breakdown of reptiles, which was used to replace the anole in the control tree built from orthologous sequences, to allow for analysis of the number of horizontal transfers.

1.8.3 BovB vs control tree comparison

Sprit was used to compare the control tree built from the orthologous sequences and the tree built from BovB sequences by estimating the number of horizontal transfers required to get the observed topology. Sprit calculated the minimum subtree prune and regraft (SPR) distance between phylogenies.

1.9 Exaptation

The protein sequence for BovB VA was found using GENSCAN. This sequence was used to determine if any part of the BovB repeat had been exapted into a gene in order to contribute to the protein coding content of the species. This was done by using the BLAST function on

UniProt to BLAST the BovB VA protein sequence against the SwissProt/UniProt protein sequence database ${ }^{28,29}$ in search of expressed BovB-like protein sequences.

2 Scripts

2.1 blastNCBI.pl

This script automates the identification of BovB sequences using megaBLAST. MegaBLAST requires a query to BLAST against the sequences in the subject. This script has the query set to the eight sequences in the improved BovB file and the sequences in the Nucleotide database that match the supplied taxon name as the subject. This program is currently set with its cutoff value at $\mathrm{e}=1 \mathrm{e}-10$. If there are BLAST hits with e -values $\leq 1 \mathrm{e}-10$ all BovB blast hits for that query and taxon will be written to an output file.

```
#!/usr/bin/perl -w
use Bio::Tools::Run::RemoteBlast;
use strict;
die "Useage: $0 <taxon><wordsize>\n" unless @ARGV>O;
my ($taxon, $wordsize) = @ARGV;
if ($wordsize !~ '\d+'){
    $wordsize = 16;
}
my $prog = 'blastn';
my $service = 'megablast';
my $db = 'nr';
my $e_val = '1';
my $penalty = '-1';
my $reward = '1';
my $other = '-G 5 -E 2';
my $query = '/Users/labadmin/Databases/BovB_improved.mfa';
my $entrez = '"'.$taxon.'"[Organism]';
print STDOUT "\nentrez query = ".$entrez."\n".$taxon."\n";
my @params = ( '-prog' => $prog,
    '-data' => $db,
    '-expect' => $e_val,
    '-service' => $service,
    '-word_size' => $wordsize,
    '-other_advanced' => $other,
    '-nucl_penalty' => $penalty,
    '-nucl_reward' => $reward,
    '-entrez_query' => $entrez );
my $fac = Bio::Tools::Run::RemoteBlast->new(@params);
my $v = 1;
my $r = $fac->submit_blast($query);
#code modified from http://doc.bioperl.org/releases/bioperl-1.6.1/
```

```
my $top_dir = "1_4_11";
mkdir $top_dir;
print STDERR "waiting..." if( $v > 0 );
my $dirname = $top_dir."/".$taxon;
print $dirname."\n";
while ( my @rids = $fac->each_rid ) {
        foreach my $rid ( @rids ) {
            my $rc = $fac->retrieve_blast($rid);
            if( !ref($rc) ) {
                            if( $rc < 0 ) {
                            $fac->remove_rid($rid);
                            }
                            print STDERR "." if ( $v > 0 );
                            sleep 5;
        } else {
                        my $result = $rc->next_result();
                        my $good_hit = 0;
                        my $e_cutoff = 1e-10;
                        print "\nQuery Name: ", $result->query_name(), "\n";
                        while ( my $hit = $result->next_hit ) {
                                    next unless ( $v > 0);
                                    while( my $hsp = $hit->next_hsp ) {
                                    if($hsp->evalue <= $e_cutoff){
                                    print "\thit name is ",$hit->name,"\n";
                                    print "\t\tscore is ",$hsp->score,"\n";
                                    $good_hit = 1;
                                    }
                                    }
    }
    my $filename =
    $dirname."/".$result->query_name()."_ce".$e_cutoff."_w".$wordsize."\.blast";
                        if($good_hit){
                                    mkdir $dirname;
                                    $fac->save_output($filename);
    }
    $fac->remove_rid($rid);
    }
    }
}
```


2.2 count_any_program.pl

This script was used to run any of the scripts below, where the input parameter, \$@, needs to be a range of numbers. For example when a program needs to be run on all 21 chromosomes or all 200 scaffolds.

```
#!/usr/bin/perl -w
die "Useage <start_value><end_value><program>" unless @ARGV>2;
my ($start_val, $end_val, $program) = @ARGV;
while($start_val<=$end_val){
    system("./".$program." ".$start_val);
    $start_val++;
}
```


2.3 sam_bam_bed_merge

This script uses LASTZ to identify the BovB interval locations in the genome, then merges the locations using BEDTools and selects out the unique coordinates in the genome that correspond to the BovB hits. This is the opossum version of the sam_bam_bed_merge script. This script was run on all chromosomes, e.g. use count_any_program.pl to run it from 1-8 then run it on the x chromosome and the chromosome unknown file.

```
lastz /export/genome/data/opossum/chr$@.fa[unmask] ../BovB/BovB_only.fasta[unmask]
    --chain --gapped --coverage=80 --format=sam >Opos_BovB_chr$@_80.sam
samtools view -b -o Opos_BovB_chr$@_80.bam -S Opos_BovB_chr$@_80.sam
bamToBed -i Opos_BovB_chr$@_80.bam >Opos_BovB_chr$@_80.bed
mergeBed -s -nms -i Opos_BovB_chr$@_80.bed >Opos_BovB_chr$@_80.merged.bed
fastaFromBed -fi /export/genome/data/opossum/chr$@.fa
    -bed Opos_BovB_chr$@_80.merged.bed -fo Opossum/BovB_chr$@.fasta
```


2.4 strand anole

This script selects the LASTZ hits that are on the minus strand that need to be reverse complemented and then runs the reverse complement perl script, shown below, section 2.5. This is the anole version of the program, must be run on all chromosomes or scaffolds, e.g. count_any_program.pl 16 strand_anole.

```
grep -h -w '+' Anole_hits/Anole_BovB_scaf$@_80.merged.bed |fastaFromBed
    -fi ~/anole/scaf_$@.fasta -bed stdin -fo Anole/BovB_plus_scaf$@.fasta
```

```
grep -h -w '_' Anole_hits/Anole_BovB_scaf$@_80.merged.bed |fastaFromBed
    -fi ~/anole/scaf_$@.fasta -bed stdin -fo Anole/BovB_minus_scaf$@.fasta
perl reverse_comp.pl Anole/BovB_minus_scaf$@.fasta Anole/BovB_REVCOMP_scaf$@.fasta
cat Anole/BovB_REVCOMP_scaf$@.fasta Anole/BovB_plus_scaf$@.fasta
    >Anole/strand_correct_BovB_scaf$@.fasta
```


2.5 reverse_comp.pl

This script calculates the reverse complement of a DNA strand that is passed to it as input.

```
#!/usr/bin/perl -w
use strict;
use Bio::Seq;
use Bio::SeqIO;
die "Useage: $0 <input fasta file><output>" unless @ARGV>1;
my ($in, $out) = @ARGV;
unlink $out;
my $seqin = Bio::SeqIO->new( -format => 'Fasta' ,-file => $in);
my $seqout= Bio::SeqIO->new( -format => 'Fasta', -file => '>>'.$out);
while((my $seqobj = $seqin->next_seq())) {
    if( $seqobj->alphabet eq 'dna') {
            my $rev = $seqobj->revcom;
            my $id = $seqobj->display_id();
            $id = "$id.rev";
            $rev->display_id($id);
            $seqout->write_seq($rev);
    }
}
```


2.6 muscle_helper

This script performs the initial MUSCLE alignment on the output from above when no clustering is required.

```
cat strand_correct_BovB_chr* >all_sc_BovB_$@.fasta
muscle -in all_sc_BovB_$@.fasta -out $@_BovB_aligned_sc.fasta &
muscle -in all_sc_BovB_$@.fasta -out $@_BovB_aligned_sc.clw -clw &
```


2.7 PILER

From the MUSCLE output above a consensus sequence can be generated using PILER as shown below.

```
piler -cons $@_BovB_alinged_sc.fasta -out $@_consensus.fasta -label $@_cons
```


2.8 uclust_bash

For species where there are large numbers of hits this script performs clustering on the BovB hits at 70 and 80%.

```
usearch --sort all_sc_BovB_$@.fasta --output sorted.fasta
usearch --cluster sorted.fasta --id 0.8 --seedsout seeds_8_sorted.fasta
    --uc results_8_sorted.fasta
usearch --cluster sorted.fasta --id 0.7 --seedsout seeds_7_sorted.fasta
    --uc results_7_sorted.fasta
```


2.9 get_uclusters.pl

This script selects out the ids for all the BovBs that formed clusters with more than 2 elements (it can be set to more than 1 as well) when results_\#_sorted.fasta is fed to it. Normally 80% clusters were used, $\#=8$, but sometimes other percentage identities were used. This script saves a list of ids into a folder, called cluster_No, where No is the cluster number produced by uclust, so that the sequences can be extracted by the next script, get_clusters_from_db.pl, Section 2.10.

```
#!/usr/bin/perl -w
while (<>) {
    /^(H|S|C)\t(\d+)\t(\d+)+\t[^\t]+\t[^\t] +\t[^\t]+\t[^\t] +\t [^\t] +\t([^\t]+)\t.*$/;
    if(defined($1)&&defined($2)&&defined($3)&&defined($4)&&($1 eq 'H' || $1 eq 'S')){
        my $filename = 'cluster_'.$2;
        open(FILE, ">>$filename");
        print FILE "$4\n";
        close(FILE);
    }
    if(defined($1) && defined($2) && defined($3) && defined($4) && ($1 eq 'C')){
        if($3<=2){
            system("rm cluster_$2");
            open(LEFTOVER, ">>unclustered");
            print LEFTOVER "$4\n";
```

```
                close(LEFTOVER);
        }
    }
}
```


2.10 get_clusters_from_db.pl

For this script the fasta file containing the sequence data must be formatted. The $\$ @$ parameter here is the database name in the next program, e.g. elephant or anole.

```
formatdb -p F -o T -i all_sc_BovB_$@.fasta -n $@
```

This script takes the clusters of BovB ids produced by get_uclusters.pl, Section 2.9 and selects the sequences out of the database, formed from all_sc_BovB_dbname.fasta above, and builds a consensus sequence for each cluster. This program needs to be run over all clusters, e.g. count_any_program.pl 0 biggest_cluster_number get_clusters_from_db.pl.

```
#!/usr/bin/perl -w
use strict;
die "Useage <start cluster><end cluster><database>\n"unless @ARGV>1;
my($start_val, $end_val, $database) = @ARGV;
while($start_val<=$end_val){
system("fastacmd -d ".$database." -p F -i cluster_".$start_val."
    -o cluster_".$start_val.".fasta");
system("muscle -in cluster_".$start_val.".fasta
    -out cluster_".$start_val."_mult_aligned.clw -clw");
system("muscle -in cluster_".$start_val.".fasta
    -out cluster_".$start_val."_mult_aligned.fasta");
system("piler -cons cluster_".$start_val."_mult_aligned.fasta
    -out ".$database."_cluster_".$start_val."_consensus.fasta
            -label ".$database."_cluster_".$start_val."_cons");
    $start_val++;
}
```


2.11 Concatenate, Alignment and Consensus

Next all of the consensus sequences for the clusters had to be concatenated into one file. The sequences were multiple aligned using MUSCLE and PILER was used to get a consensus sequence for the species.

```
cat database_name_cluster_*_consensus.fasta >species_all_cluster_cons.fasta
muscle -in species_all_cluster_cons.fasta
    -out species_all_cluster_cons_mult_aligned.fasta
piler -cons species_all_cluster_cons_mult_aligned.fasta -out species_consensus.fasta
    -label species_cons
```


2.12 Gblocks

2.12.1 Gblocks consensus

Gblocks was used on the cluster multiple alignments or on the cluster consensus sequence multiple alignment to get better consensus sequences.

Then the script below was used to get the consensus sequences from the Gblocks output.

```
piler -cons $@_mult_aligned.fasta-gb -out $@_gblocksHalf_consensus.fasta
    -label $@_gblocksHalf_cons
```


2.12.2 Gblocks tree

Gblocks was also used on final tree alignments.
Concatenate all the BovB sequences into one file.

```
cat *_consensus.fasta >tree1.fasta
```

Multiple aligning them with MUSCLE.

```
muscle -in tree1.fasta -out tree1_mult_aligned.fasta
```

Run Gblocks on tree1_mult_aligned.fasta to get tree1_mult_aligned.fasta-gb. Then build a tree using FastTree.

FastTree -nt tree1_mult_aligned.fasta-gb >tree1_gblocks.tree
This produced a tree where only the parts of the multiple alignment that were shared by most species were considered by the maximum likelihood tree building method.

2.13 RM_QC_for_phrap.pl

Script for extracting sequences that masked as BovB over a percentage of their length. Currently designed to select out reads that mask as something from the compiled BovB library over 60% of their length.

```
#!/usr/bin/perl -w
use strict;
use Bio::SimpleAlign;
use Bio::SeqIO;
use Bio::Seq;
use Bio::LocatableSeq;
use Bio::DB::Fasta;
die "Useage $0 <reads_file> <RepeatMasker_file> <output_file> \n" unless @ARGV >2;
my($reads_file, $RM_file, $out_file) = @ARGV;
my $out = Bio::SeqIO->new(-file => ">".$out_file, -format =>'fasta');
tie(my %sequences,'Bio::DB::Fasta',$reads_file);
#read in RM file
open (RepeatMasker_file, $RM_file) || die("Couldn't open RepeatMasker file\n");
my @RMfile = <RepeatMasker_file>;
my ($id,$start,$end,$left,$comp,$repName,$repClass,$repstart,$repend,$repleft)=0.0;
my $line;
foreach $line(@RMfile){
    if(($id,$start,$end,$left,$comp,$repName,$repClass,$repstart,$repend,$repleft)
=($line=~ m!^\s*\S+\s+\S+\s+\S+\s+\S+\s+(\S+)\s+(\d+)\s+(\d+)\s+\((\d+)\)\s+(\S)\s+
(\S+)\s+(\S+)\s+\(?(\d+)\)?\s+(\d+)\s+\(?(\d+)\)?.*$!)){
            if((($end-$start)/($end+$left) > 0.6) && $repClass eq "Unknown"){
                if($comp eq '+')){
                    my $seq_read = Bio::Seq->new( -seq => $sequences{$id}, -id =>$id);
                    $out->write_seq($seq_read);
                }else{
                    my $seq_read = Bio::Seq->new( -seq => $sequences{$id}, -id =>$id);
                    my $rev = $seq_read->revcom();
                    $rev->display_id($id.".rev");
                    $out->write_seq($rev);
                }
        }
    }
}
```


2.14 cons.pl

Perl script to build a consensus sequence that ignores gaps when choosing the best base for a position.
\#!/usr/bin/perl -w
use Bio::SimpleAlign;
use Bio::AlignIO;
die "Useage <alignment_file>" unless @ARGV >0;
my (\$infile, \$name) = @ARGV;
my \$in = Bio::AlignIO->new(-format => 'fasta', -file => \$infile);
my \$aln = \$in->next_aln();
print ">".\$name."\n".\$aln->consensus_string()."\n";

3 Supplementary Material

3.1 BovB presence across the tree of life
Table 4: Presence of BovB across the tree of life: This table shows the presence of BovB in taxa throughout the tree of life as determined by BLAST searching the data available on NCBI, approximately 430,000 taxa. "**" indicates presence of BovB with e-value of 0.0 ; "*" indicates presence of BovB with e-value $\leq 1 \mathrm{e}-10$; "?" indicates that BovB was expected in this taxa, from the literature, but not found; and "-" indicates BovB was not expected and not found. The e-value columns show which BovB/RTE sequence produced blast hits for that species at that cut off value. $\mathrm{O}=\mathrm{BovB}$ Opos; $\mathrm{V}=\mathrm{BovB} \mathrm{VA} ; \mathrm{C}=\mathrm{BovB} ; \mathrm{PB}=\mathrm{BovB}$ Plat; $\mathrm{O} 2=\mathrm{RTE} 2 \mathrm{MD} ; \mathrm{W} 2=\mathrm{RTE} 2 \mathrm{ME} ; \mathrm{PR}=\mathrm{Plat}$ RTE1; XSp = RTE1X SP; "All 8" indicates that all 8 sequences above were present; "4RTEs" indicates that O2,W2,PR and XSp were present and "4BovBs" indicates that O, V, C and PB were present. No. Nuc. seqs column is the number of nucleotide sequences available in the NCBI Nucleotide database for that group. Notes column provides additional information about the BLAST hit observed, such as which species within a large group has the BovB hit or if the hit is small or low complexity such as microsatellite DNA.

	e-value $=0.0$	e-value $\leq 1 \mathrm{e}-10$	No. Nuc. seqs	notes	
Prototheria/Monotremes					
** Ornithorhynchidae *Tachyglossidae	PB	$\begin{aligned} & 4 \mathrm{BovBs}, \mathrm{PR} \\ & \mathrm{~PB}, \mathrm{PR} \end{aligned}$	$\begin{aligned} & 267,336 \\ & 313 \end{aligned}$		
Metatheria/Marsupials					
*Dasyuromorphia **Didelphimorphia ** Diprotodontia *Microbiotheria *Notoryctemorphia ?Paucituberculata *Peramelemorphia	$\begin{aligned} & \mathrm{O}, \mathrm{O} 2 \\ & \mathrm{~V}, \mathrm{O}, \mathrm{C}, \mathrm{O} 2 \end{aligned}$	V, O, O2, W2 All 8 All 8 V, O, O2, W2 V, O, O2, W2 - O2	$\begin{aligned} & \hline 34,005 \\ & 30,851 \\ & 132,851 \\ & 192 \\ & 63 \\ & 127 \\ & 349 \end{aligned}$		
Eutheria					
Laurasiatheria					
-Insectivora *Perissodactyla -Pholidota - Chiroptera -Carnivora	-	$\mathrm{O}, \mathrm{C}, \mathrm{~PB}$	$\begin{aligned} & \hline 10,892 \\ & 70,093 \\ & 287 \\ & 76,630 \\ & 665,638 \end{aligned}$	horse	
Cetartiodactyla					
-Suina -Hippoptamidae	-		$\begin{aligned} & 493,784 \\ & 398 \end{aligned}$		ntinued

	e-value $=0.0$	e-value $\leq 1 \mathrm{e}-10$	No. Nuc. seqs	notes
-Cetacea	-	-	49,430	
-Camelidae	-	-	61,033	
Ruminantia				
**Tragulina	V, O, C	4BovBs	147	
?Moschidae	-	-	463	
**Giraffidae	V, O, C	4BovBs	318	
*Antilocapridae	-	O	125	
**Cervidae	V, O, C	4BovBs	7,665	
*Aepycerotinae	-	V	288	
*Alcelaphinae	-	V	528	
* Antilopinae	-	O, C	1,794	
*Cephalophinae	-	V, O	437	
?Hippotraginae	-	-	637	
?Peleinae	-	-	12	
*Reduncinae	-	C	287	
Bovinae				
*Bison	-	V, O, C	850	
**Bos	4BovBs	4BovBs	187,616	
**Bubalus	V, O, C	4BovBs	3,730	
*Tragelaphus	-	4BovBs	1,185	
?Other Bovinae	-	-	652	
Caprinae				
*Budorcas	-	V, O	52	microsatellite hits
**Capra	$\mathrm{V}, \mathrm{O}, \mathrm{C}$	4BovBs	7,864	
*Ovibos	-	V, C	342	microsatellite hits
**Ovis	4BovBs	4BovBs	13,663	
?Other Caprinae	-	-	1494	
Afrotheria				
*Tenrecidae	-	4BovBs	777	

e-value $=0.0$	e-value $\leq 1 e-10$	No. Nuc. seqs	notes

28,317
140
658
146,835
104
759

Continued...

	e-value=0.0	e-value $\leq 1 \mathrm{e}-10$	No. Nuc. seqs	notes
-Dipnoi	-	-	458	
*Actinopterygii	-	$\mathrm{V}, \mathrm{O}, \mathrm{PB}, \mathrm{PR}, \mathrm{O} 2, \mathrm{~W} 2$	1,062,267	Zebrafish
-Chondrichthyes	-	-	49,460	
-Hyperoartia	-	-	4,660	
*Hyperotreti	-	V, XSp	1,021	Inshore Hagfish, short gappy hit
-Cephalochordata	-	-	31,376	
-Tunicata	-	-	45,784	
-Chaetognatha	-	-	707	
*Echinodermata	-	$\mathrm{V}, \mathrm{PB}, \mathrm{XSp}$	421,219	Purple Sea Urchin and Slate Pencil Urchin
-Hemichordata	-	-	75,696	
-Xenoturbellida	-	-	60	
*Protostomia	-	All 8	4,710,139	includes silkworm and other insects
-Acoelomata	-	-	197,740	
-Pseudocoelomata	-	-	452,369	
-Bilateria incertae sedis	-	-	75	
-Cnidaria	-	-	322,198	
-Ctenophora	-	-	5,423	
-Porifera	-	-	32,173	
-Placozoa	-	-	14,849	
-Mesozoa	-	-	112	
-Fungi	-	-	2,801,399	
-Choanoflagellida	-	-	10,267	
-Nucleariidae+Fonticula	-	-	34	
-Fungi/Metazoa incertae sedis	-	-	922	
- Alveolata	-	-	421,968	
-Amoebozoa	-	-	87,348	
-Apusozoa	-	-	263	
-Centroheliozoa	-	-	178	
-Cryptophyta	-	-	3,602	
-Euglenozoa	-	-	122,883	

	$\mathrm{e}-$ value $=0.0$	$\mathrm{e}-\mathrm{value} \leq 1 \mathrm{e}-10$	No. Nuc. seqs	notes
-Fornicata	-	-	11,880	
-Glaucocystophyceae	-	-	195	
-Haptophyceae	-	-	18,044	
-Heterolobosea	-	-	78	
-Jakobida	-	-	124	43
-Katablepharidophyta	-	-	452	
-Malawimonadidae	-	-	191,299	
-Oxymonadida	-	-	10,372	
-Parabasalia	-	-	147,405	
-Rhizaria	-	-	$4,452,785$	Asian Rice, very short hit
-Rhodophyta	-	-	2454,898	
-stramenopiles	-	-		
*Viridiplantae	-	-		
-Bacteria	-			
-Archaea	-			

3.2 Full Genome BovB results

Table 5 shows which species were tested for full-length BovBs using the method described in section 1.3. The table shows in which species BovB was identified and gives an indication of how abundant it is in the genome.

Table 5: Presence of BovB in full genomes studied: Y means BovB is found in the genome, N means BovB is not found. HA means highly abundant ($>10 \%$ of the genome is covered by BovB), A means abundant ($<10 \%$ and $>5 \%$ of the genome is covered by BovB), P means present ($<5 \%$ and $>1 \%$ of the genome is covered by BovB), and R means rare ($<1 \%$ of the genome is covered by BovB).

Common Name	Species Name	BovB present	
Cow	Bos taurus	Y	HA
Elephant	Loxodonta africana	Y	HA
Sheep	Ovis aries	Y	HA
Rock Hyrax	Procavia capensis	Y	A
Tenrec	Echinops telfairi	Y	A
Anole	Anolis carolinensis	Y	P
Opossum	Monodelphis domestica	Y	P
Platypus	Ornithorhynchus anatinus	Y	P
Wallaby	Macropus eugenii	Y	P
Horse	Equus caballus	Y	R
Sea Urchin	Strongylocentrotus purpuratus	Y	R
Silkworm	Bombyx mori	Y	R
Zebrafish	Danio rerio	Y	R
Common shrew	Sorex araneus	N	
Dog	Canis familiaris	N	
European Hedgehog	Erinaceus europaens	N	
Guinea Pig	Cavia porcellus	N	
Honey Bee	Apis mellifera	N	
Mosquito	Aedes aegypti	N	
Mouse	Mus musculus	N	
Nine-banded Armadillo	Dasypus novemcinctus	N	
Pig	Sus scrofa	N	
Rat	Rattus norvegicus	N	
Tree shrew	Tupaia belangeri	N	
Wasp	Nasonia vitripennis	N	
Zebrafinch	Taeniopygia guttata	N	

3.3 Taxa with low coverage genomic survey sequence

Table 6 shows the species that had low coverage genomic survey sequence available that were tested for BovB and the number of BLAST hits returned. Although the birds had significant numbers of BLAST hits, once they were masked using RepeatMasker with the BovB library that was free of CR1 repeats, no bird had more than three hits and none of the RepeatMasker hits were more than 72 bp long. From all the marsupials, two of the four ticks and all but two, Oligosoma lichenigerum and Leposoma scincoides, of the reptiles sufficient sequence was available to reconstruct a BovB sequence long enough for phylogenetic analysis.
Table 6: This table shows the species names and common names of those taxa where genomic survey sequence was available that were tested for BovB and the number of BovB BLAST hits returned when using the improved BovB file containing the four BovBs, from cow, opossum, platypus and viper. The blue names indicate the birds, all of which show good numbers of hits. The red names indicate those species where BovB is abundant and therefore sufficient information was available in the low coverage data to confirm BovBs presence in that species and in most cases construct a nearly full length BovB sequence.

ID	Species	Taxa group	Family	Common name	BovB BLAST hits
AF34	Nyctophilus gouldi	Bat	Vespertilionidae	Gould's long-eared bat	12
AF35	Nyctophilus geoffroyi	Bat	Vespertilionidae	lesser long-eared bat	15
AF113	Vanellus miles	Bird	Charadriidae	Masked Lapwing (bird)	508
AF134	Acridotheres tristis	Bird		Indian Mynas	98
AF139	Podargus strigoides	Bird		tawny frogmouth	1155
AF18	Pelecanus conspicillatus	Bird	Pelecanidae	The Australian Pelican	418
AF23	Leipoa ocellata	Bird	Megapodidae	mallee fowl	1378
AF4	Drymodes brunneopygia	Bird	Petroicidae	southern scrub-robin	266
AF44	Phalacrocorax fuscescens	Bird	Phalacrocoracidae	cormorant (female)	460
AF47	Gallinula mortierii	Bird	Rallidae	Tasmanian native hen	434
AF50	Aquila audax	Bird	Accipitridae	wedgetail eagle	373
AF56	Epthianura albifrons	Bird	Meliiphagidae	white-fronted chat	445
AF80	Neophema chrysogaster	Bird	Psittacidae	orange bellied parrot	634
AF82	Petroica phoenicea	Bird	Petroicidae	Flame Robin	206
AF83	Petroica goodenovii	Bird	Petroicidae	red capped robin	183
AF84	Petroica boodang	Bird	Petroicidae	scarlet robin	145
AF85	Eopsaltria australis	Bird	Petroicidae	Eastern Yellow Robin	183
AF89	Artamus personatus	Bird	Corvidae	woodswallow	418
AF90	Artamus superciliosus	Bird	Corvidae	woodswallow	278
AF110	Amphiprion mccullochi	Fish	Pomacentridae	whitesnout anemone fish	73
AF111	Chaetodon tricinctus	Fish	Chaetodontidae	three-band butterflyfish	35
AF130	Galaxias fuscus	Fish		barred galaxid	25
AF147	Pastinachus atius	Fish		stingray	133
AF150	Amphiprion sandaracinos	Fish			70
AF45	Cristiceps australis	Fish	Clinidae	southern crested weedfish	12

Yellow-footed Antechinus(mardo) mountain pygmy possum eastern barred bandicoot southern brown bandicoot Greater Bilby sugar glider
redlegged earth mite reptile tick a mite species a mite species
reptile tick
mallee tree dragon skink
gecko
Common name
Mulloway
siamese mud carp
catfish
green \& golden bell frog bleating tree frog
Fleay's barred frog masked mountain frog Booroolong frog waterfall frogs Brown toad
pouched frog rat lineage III rat lineage I sea lion
Antilopine Wallaroo mountain pygmy possum Greater Bilby skink
Family
Sciaenidae
Cyprinidae
Cyprinidae
$?$
Hylidae
Hylidae
Myobatrachidae Myobatra Myobatrachidae Hylidae Hylidae Myobatrachidae Muridae Muridae Otariidae Macropodidae Burramyidae Burramyidae Dasyuridae Peramelidae Peramelidae Petauridae Penthaleidae Ixodidae Erythraeidae Ixodidae Agamidae Gekkonidae
Taxa group

Fish
Fish
Fish
Frog
Mammal Mammal Mammal Marsupial Marsupial Marsupial
Marsupial Marsupial Marsupial Marsupial Marsupial Mites \& ticks Mites \& ticks
 Mites \& ticks Reptile Reptile $\begin{array}{ll}\text { AF61 } & \text { Argyrosomus japonicus } \\ \text { AF67 } & \text { Henichorynchus siamensis } \\ \text { AF68 } & \text { Henichorychus lobatus } \\ \text { AF86 } & \text { Conorhynchos conirostris } \\ \text { AF1 } & \text { Litoria aurea } \\ \text { AF102 } & \text { Litoria dentata } \\ \text { AF104 } & \text { Mixophyes fleayi } \\ \text { AF105 } & \text { Philoria loveridgei } \\ \text { AF106 } & \text { Litoria booroolongensis } \\ \text { AF117 } & \text { Litoria nannotis } \\ \text { AF140 } & \text { Pseudophryne bibronii } \\ \text { AF21 } & \text { Assa darlingtoni } \\ \text { AF108 } & \text { Rattus rattus lll } \\ \text { AF109 } & \text { Rattus rattus 1 } \\ \text { AF22 } & \text { Neophoca cinerea }\end{array}$ AF112 Macropus antilopinus AF121 Burramys parvus(central ESU) AF122 Burramys parvus (northern ESU) Perameles gunni Antechinus flavipes Isoodon obesulus Macrotis lagotis Petaurus breviceps Halotydeus destructor Amblyomma limbatum Balaustium medicagoense Bothriocroton hydrosauri Amphibolurus norrisi Ctenotus atlas Gehyra variegata AF129 AF15 AF16 AF20 AF107 AF116 AF46 AF6 AF24 AF29

ID	Species	Taxa group	Family	Common name	BovB BLAST hits
AF30	Gehyra lazelli	Reptile	Gekkonidae	gecko	3729
AF31	Hydrophis spiralis	Reptile	Hydrophiidae	sea snake	5989
AF54	Eremiascincus richardsonii	Reptile	Scincidae	skink	
AF55	Glaphyromorphus douglasi	Reptile	Scincidae	skink	4602
AF64	Christinus guentheri	Reptile	Gekkonidae	Howe Island gecko	1304
AF65	Oligosoma lichenigerum	Reptile	Scincidae	LHI skink	1208
AF66	Leposoma scincoides	Reptile	Scincidae		
AF27	Mustelus antarcticus	Shark	Triakidae	gummy shark	811
AF70	Heterodontus potusjacksoni	Shark	Heterodontidae	Port Jackson shark	616
					125
AF48	Euperipatoides rowelli	Arthropod	Peripatopsidae	velvet worm	30

3.4 Annotation of BovB VA

RepeatMasker was used to determine the regions of BovB VA that masked as Chicken Repeat 1 (CR1), shown in Fig. 4. Table 7 shows the coordinates and orientation of the incorporated elements. These sections were removed when searching bird and reptile genomes for BovB to avoid detecting the abundant CR1 elements in sauropsids.

Figure 4: BovB VA with annotations: This image represents the RepeatMasker annotation of BovB VA when it is masked with the chicken repeat library and the BovB library containing BovB Opos, BovB and BovB Plat.

position in query				position in repeat					
query sequence	begin	end	(left)	C +	matching repeat	repeat class/family	(left) begin	end end	begin (left)
BovB VA	95	604	(4002)	+	CR1-E	LINE/CR1	3866	4378	(146)
BovB VA	4100	4584	(22)	C	CR1-Y2_Aves	LINE/CR1	(12)	3327	2821

Table 7: Shows the coordinates of the CR1 repeats that are incorporated onto the ends of the BovB VA according to RepeatMasker.

Note that the figure was generated several months before the table and in the interim the RepeatMasker database must have been updated, resulting in slightly different coordinates and annotation of CR1-Y2_Aves instead of the very similar CR1-Y4.

3.5 Chicken Repeats

Vipera ammodytes was the first squamate in which BovB was found and the BovB consensus, available from Repbase, for BovB VA is significantly longer than the other Repbase BovBs. Interestingly the BovB VA sequence has CR1 type elements on both ends of the
full-length BovB element. This means that at some point during its movement it has acquired the portions of the elements now present on both ends of the BovB for all of its future copy and paste movements around the genome. The presence of CR1 fragments at the ends of the BovB VA has made the construction of other squamate BovB consensus sequences more challenging.

The CR1 parts of BovB VA also mean that when searching bird genomes with BLAST or RepeatMasker huge numbers of hits appear. For example the low coverage genomic survey sequence from the mallee fowl had in excess of 1,000 BLAST hits to BovB VA. However, when the CR1 part of BovB VA was removed no hits were found. Indicating that CR1 like repeats are abundant in the mallee fowl, and all birds, as expected, but BovB is not present.

It is possible that other squamates have CR1 fragments on their BovB consensus sequences too. However due to the abundance of CR1 in the squamate genomes and the low coverage reads from which the squamate BovBs were built, all CR1 fragments had to be removed in order to reliably assemble a BovB consensus. Hence further work on full genome sequences or using PCR in a greater range of reptiles would be required to determine when CR1 ends were acquired by the squamate BovB lineage. Interestingly the BovB sequences for the python and the copperhead that were extracted from RepBase do not have the CR1 like ends that are present in BovB VA. This could be due to a different repeat building process used by Castoe et al. ${ }^{30}$.

3.6 Divergence of BovB consensus sequences with respect to BovB VA

Consensus sequences for BovB were masked using RepeatMasker defaults with BovB VA. Divergence values from the RepeatMasker output were averaged if there was more than one value. For many there was only one section of the repeat masked.

BovB Consensus Sequence	Average Divergence from BovB VA
BovB Amblyomma limbatum (reptile tick)	15.3
BovB Amphibolurus norrisi (tree dragon)	17.3
BovB Anolis carolinensis (green anole)	24.7
BovB Antechinus flavipes (mardo)	25.7
BovB Bombyx mori (silkworm)	32.4
BovB Bos taurus (cow)	16.9
BovB Bothriocroton hydrosauri (reptile tick)	21.6
BovB Burramys parvus (central ESU pygmy possum)	23.7
BovB Burramys parvus (northern ESU pygmy possum)	21.2
BovB Christinus guentheri (Howe Island gecko)	29.3
BovB Ctenotus atlas (skink)	16.0
BovB Danio rerio (zebrafish)	34.2
BovB Echinops telfairi (tenrec)	31.5
BovB Egernia stokesii (stokes skink)	16.2
BovB Equus caballus (horse)	30.5
BovB Eremiascincus rchardsonii (skink)	19.1
BovB Gehyra lazelli (gecko)	16.6
BovB Gehyra variegata (gecko)	21.7
BovB Glaphyromorphus douglasi (skink)	16.1
BovB Hydrophis spiralis (seasnake)	7.0
BovB Isoodon obesulus (southern brown bandicoot)	27.6
BovB Loxodonta africana (elephant)	32.7
BovB Macropus antilopinus (antilopine wallaroo)	18.9
BovB Macropus eugenii (wallaby)	23.9
BovB Macrotis logotis (greater bilby)	30.4
BovB Ovis aries (sheep)	15.5
BovB Perameles gunni (eastern barred bandicoot)	24.0
BovB Petaurus breviceps (sugar glider)	20.8
BovB Procavia capensis (rock hyrax)	32.9
BovB Strongylocentrotus purpuratus (purple sea urchin)	32.9
BovB Tachyglossu aculeatus (echidna)	32.6
BovB Tiliqua rugosa (sleepy lizard)	17.0

Table 8: Percent Divergence of Consensus Sequences vs BovB VA.

3.7 Validation of BovB from low coverage species and ticks

Sequences amplified by PCR from independent biological samples were sequenced and aligned to the contigs from which sequencing primers were designed Fig. 8. All validation samples were aligned to our contigs and BLASTed against GenBank sequences. In this fashion, we confirmed the occurrence of BovB in our original sequence samples. We also annotated the sequences using RepeatMasker and those annotations are shown below.

3.7.1 Results From Validation Sequences

```
BLASTN 2.2.27+
Reference: Stephen F. Altschul, Thomas L. Madden, Alejandro
A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and
David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs", Nucleic
Acids Res. 25:3389-3402.
RID: 5BKEG71W014
Database: All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS,
GSS, environmental samples or phase 0, 1 or 2 HTGS sequences)
    16,502,370 sequences; 42,424,746,788 total letters
Query= Bothriocroton_5'_TG235_
Length=310
```


Figure 5: BLASTN Result for Bothriocroton 5' Sequence

BLASTN 2.2.27+
Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller (2000), "A greedy algorithm for aligning DNA sequences", J Comput Biol 2000; 7(1-2):203-14.

RID: 5BKKMUCR016

Database: All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, environmental samples or phase 0, 1 or 2 HTGS sequences) 16,502,370 sequences; $42,424,746,788$ total letters
Query= Amblyomma_5'_ABTC111481_
Length=168

Figure 6: BLASTN Result for Amblyomma 5' Sequence

BLASTN 2.2.27+
Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller (2000), "A greedy algorithm for aligning DNA sequences", J Comput Biol 2000; 7(1-2):203-14.

RID: 67SYU7EE016

Database: All GenBank+EMBL+DDEJ+PDE sequences (but no EST, STS, GSS, environmental samples or phase 0,1 or 2 HTGS sequences)

16,545,181 sequences; $42,537,579,184$ total letters
Query $=$ G.variegata ABTC62613 5'
Length $=276$

Sequences producing significant alignments: (Bits) Value
gb|AF332666.1|AF332666 Boo constrictor clone BC Bov-B LINE, c... 302 1e-78
ALIGNMENTS
sgb|AF332666.1|AF332666 Boa constrictor clone BC Bov-B LINE, complete sequence Length=1767

Score $=302$ bits (163), Expect $=1 \mathrm{e}-78$
Identities $=220 / 250(88 \%)$, Gaps $=0 / 250$ (08)
Strand=Plus/Plus
Query 1 ССАAAGAAGGGCAACACCAAGGAATGYTCCAACTATCGCACAATTGCACTCATYTCACAC G日 $\|$
Sbjct 1222 CСAAAGAAGGGCAATGCCAAAGAATGTTCTAACTACCGTACAATTGCACTCATTTCACAT 1281
Query 61 gCTAGCAAGGTCATGCTCAAGATCCTACAAGCTAGGCTTCAGCAGTATGTGGACAGAGAA 120 |l|||l|l|| \|\|\|\|\|\| \| \| \|\|\|
Sbjct 1282 GCTAGCAAGGTGATGCTCAAAATCCTACAAGCTAGGCTTCAGCAGTATGTGAACCAAGAA 1341
Query 121 TtGCCAGAAGTACAAGCTGGGTTTCGAAGAGCAGAGGAACKAGAGACCAAATTGCCAAC 180
| \|\|\|\|\|\| \| \|\|\| \| \|\|\|\|\|\|
Sbjet 1342 CTACCAGAAGTGCAAGCTGGGTtTCGAAGAGGCAGAGGACTCGAGATCAGATtGCCAAC 1401

Sbjet 1402 CTTCGCTGGATCATGGAGAAGGCAAGAGAGTTCCAGAAAAACATCTACTTCTGCTTCATT 1461
Query 241 GCCTATGCTA 250
| |l| |l||
sbjet 1462 GACTACGCTA 1471

Figure 7: BLASTN Result for Gehyra 5' Sequence

Figure 8: RepeatMasker annotation of validation sequences:This figure shows the RepeatMasker .out file for the validation sequences. Sequences of amplicons from Equus caballus, Amblyomma limbatum, Bothriocroton hydrosauri, Christinus guentheri, Gehyra variegata.

3.8 Phylogenetic tree of BovB and orthologues

3.8.1 Tree built from orthologous sequences

Fig. 9 shows a tree developed using the orthologous sequences present in OrthoDB and generously provided by Dr Evgeny Zdobnov. This shows the expected phylogenetic relationships between the species and acts as a control from which to determine what HTs have occurred.

Figure 9: Tree built from orthologues: Tree provided by Dr Evgeny Zdobnov for comparison to the phylogenetic trees built from the BovB sequences. Colours indicate the taxonomic groups that have BovB.

3.8.2 Trees built from BovB sequences

RAxML tree, in Fig. 10 in section 3.8.3, shows a maximum likelihood tree built using 500 bootstraps to determine the bootstrap support for the nodes in the tree. The differences between the FastTree output, shown in the paper, and RAxML show that some of the nodes of the tree are not supported when different tree building parameters are used. For example the marsupial clade in the FastTree output is a sister group to the clade that contains reptiles, ticks and ruminants, however in the RAxML tree the marsupial clade is a sister group to the ruminant clade and together they group with the reptiles. The bootstrap support for the monophyly of marsupials is strong but the bootstrap support values within the marsupial clade are very low, as seen for the local support values in the FastTree output.

BEAST tree, in Fig. 11 in section 3.8.4, shows that the basic topology is robust, regardless of which tree building method is used. This allows conclusions about the origins of BovB elements to be inferred. There are however several differences between the BEAST tree and FastTree output. The position of the zebrafish BovB in the FastTree output and BEAST tree is not robust. In the FastTree output the zebrafish BovB has strong support for being basal to the Afrotherian/monotreme/horse clade, whereas in the BEAST tree it has strong support for being basal to the marsupial/reptile/ruminant group. The main snake clade is basal to the ruminants in the BEAST tree unlike in the FastTree output. The tree dragon BovB is also not robust across the two trees. In the FastTree output it is basal to the reptile/marsupial group but with BEAST it is sister to the skinks. Again the marsupial clade has strong support for monophyly but weak support for the resolution within the clade.

All three tree building methods group the ruminants and reptiles together, and the placement of the ticks is well supported in all trees. The marsupials and the reptiles form a clade that is robust to the tree building method, despite the weak support for some internal branches and nodes. The Afrotherian/monotreme/horse clade is well supported by all methods and shows concordance across maximum likelihood and Bayesian MCMC tree building methods.

3.8.3 RAxML

The parameters used to produce the RAxML tree in Fig. 10 are shown below.
RAxMLHPC -fa -N 500 -s tree_withRepBase_mult_aligned_gblocks.phylip
-n tree_withRepBase_faxgtrgamma -m GTRGAMMA -x 51011 -p 51011

Figure 10: RAxML tree: RAxML maximum likelihood tree with only those bootstrap values below 90% shown (500 replicates). Tree built from the full-length BovB sequences extracted from full genome sequence and those constructed from low coverage reads. The sequences were aligned with MUSCLE and processed by Gblocks to limit the effect of indels, making an alignment that was 2858bp long. Branch colours indicate important BovB clades, marsupials in purple, skinks/tick in green, gecko/snake/tick in light green, ruminants in blue and monotremes/Afrotheria/horse in orange, and the RTE clade, in maroon, used to root the tree. Taxa showing BovB are coloured taxonomically, with marsupials in purple, reptiles in green, ruminants in dark blue, arthropods in yellow, Afrotheria in red, monotremes in pink, horse in blue, zebrafish in grey, sea urchin in light blue and silkworm in orange. The RTEs are in maroon.

3.8.4 BEAST

Fig. 11 is a tree built using the BEAST software ${ }^{19}$ after the correct model was chosen using ModelGenerator ${ }^{21}$. We used the GTR with gamma model, because the Bayesian Information Criteria (BIC) ranked it best and it ranked second best for the AIC (Akaike information criterion) 1 and 2. Yule process was used for tree priors because each BovB comes from a different species and therefore each branch is a speciation event. This assumption breaks down for three of the branches, the BovB Plat vs Platypus, BovB vs Cow and BovB Opos vs Opossum but this was recognised and a test of the tree structure with yule priors and the duplicated species removed showed an almost identical topology as the tree with the duplicates included. The only difference was the position of the central pygmy possum sequence but given the low posterior support value for its placement in both the tree with and without duplicates the fact that the position of this sequence is not robust if sequences are removed is not surprising and does not provide sufficient evidence to invalidate the original tree.

Figure 11: BEAST tree: Tree built by BEAST and TreeAnotator with only those posterior probabilities that are below 0.9 shown. MCMC chain length of $100,000,000$ sampling every 10,000 ; burnin $=1000$ trees. Tree built from the full-length BovB sequences extracted from full genome sequence and those constructed from low coverage reads. The sequences were aligned with MUSCLE and processed by Gblocks to limit the effect of indels, making an alignment that was 2858bp long. Branch colours indicate important BovB clades, marsupials in purple, reptiles/ruminants/ticks in green and monotremes/Afrotheria/horse in orange, and the RTE clade, in maroon, used to root the tree. Taxa showing BovB are coloured taxonomically, with marsupials in purple, reptiles in green, ruminants in dark blue, arthropods in yellow, Afrotheria in red, monotremes in pink, horse in blue, zebrafish in grey, sea urchin in light blue and silkworm in orange. The RTEs are in maroon.

References

[1] Altschul, S., Gish, W., Miller, W., Myers, E. \& D.J., L. Basic local alignment search tool. J Mol Biol 215, 403-10 (1990).
[2] Harris, R. Improved pairwise alignment of genomic DNA. Ph.D. thesis, The Pennsylvania State University (2007).
[3] NCBI. Blast home (2011). URL http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD= Web\&PAGE_TYPE=BlastHome.
[4] Rozen, S. \& Skaletsky, HJ Primer3 (1998). URL Http://Www-Genome.Wi.Mit.Edu/ Genome_Software/Other/Primer3.Html.
[5] Edgar, R. C. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792-1797 (2004).
[6] Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540-552 (2000).
[7] Smit, A., Hubley, R. \& Green, P. Repeatmasker (1996-2011). URL http:// repeatmasker.org.
[8] Edgar, R. C. Search and clustering orders of magnitude faster than blast. Bioinformatics (2010).
[9] Edgar, R. C. \& Myers, E. W. Piler: identification and classification of genomic repeats. Bioinformatics 21, i152-i158 (2005).
[10] Los Alamos National Laboratory, . Advanced consensus maker (2011). URL http: //www.hiv.lanl.gov/content/sequence/CONSENSUS/AdvCon.html.
[11] Stajich, J. E. et al. The bioperl toolkit: Perl modules for the life sciences. Genome Research 12, 1611-1618 (2002).
[12] Gordon, D., Abajian, C. \& Green, P. Consed: A graphical tool for sequencefinishing. Genome Research 8, 195-202 (1998).
[13] Tamura, K. et al. Mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution (2011).
[14] Burge, C. \& Karlin, S. Prediction of complete gene structures in human genomic dna. Journal of Molecular Biology 268, 78-94 (1997).
[15] Burge, C. The genscan web server at mit (2011). URL http://genes.mit.edu/ GENSCAN.html.
[16] Price, M. N., Dehal, P. S. \& Arkin, A. P. Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution 26, 1641-1650 (2009).
[17] Price, M. N., Dehal, P. S. \& Arkin, A. P. Fasttree 2 - approximately maximumlikelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
[18] Stamatakis, A. Raxml-vi-hpc: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690 (2006).
[19] Drummond, A. \& Rambaut, A. Beast: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214 (2007).
[20] Rambaut, A. \& Drummond, A. Tracer v1.5 (2009). URL http://beast.bio.ed.ac. uk/Tracer.
[21] Keane, T., Creevey, C., Pentony, M., Naughton, T. \& McLnerney, J. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary Biology 6, 29 (2006).
[22] Hill, T. et al. Sprit: Identifying horizontal gene transfer in rooted phylogenetic trees. BMC Evol Biol 10, 42 (2010).
[23] Linz, S. On hill et al's conjecture for calculating the subtree prune and regraft distance between phylogenies. BMC Evolutionary Biology 10, 334 (2010).
[24] NCBI. Taxonomy browser (2011). URL http://www.ncbi.nlm.nih.gov/Taxonomy/ Browser/wwwtax.cgi.
[25] Waterhouse, R. M., Zdobnov, E. M., Tegenfeldt, F., Li, J. \& Kriventseva, E. V. Orthodb: the hierarchical catalog of eukaryotic orthologs in 2011. Nucleic Acids Research 39, D283-D288 (2011).
[26] Kumar, S. \& Hedges, S. B. Timetree2: Species divergence times on the iphone. Bioinformatics (2011).
[27] Hedges, S. B., Dudley, J. \& Kumar, S. Timetree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971-2972 (2006).
[28] The UniProt Consortium, . Ongoing and future developments at the universal protein resource. Nucleic Acids Research 39, D214-D219 (2011).
[29] Jain, E. et al. Infrastructure for the life sciences: design and implementation of the uniprot website. BMC Bioinformatics 10, 136 (2009).
[30] Castoe, T. A. et al. Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biology and Evolution 3, 641-653 (2011).

[^0]: Author contributions: A.M.W. and D.L.A. designed research; A.M.W. and T.B. performed research; A.M.W., R.D.K., M.G.G., and T.B. contributed new reagents/analytic tools; A.M.W., R.D.K., T.B., and D.L.A. analyzed data; and A.M.W., R.D.K., M.G.G., T.B., and D.L.A. wrote the paper.

 The authors declare no conflict of interest.
 This article is a PNAS Direct Submission.
 Data deposition: The survey sequence data have been deposited in the Dryad database, http://datadryad.org [doi nos.: 10.5061/dryad.f1cb2/23 (Amphibolurus norrisi), 10.5061/ dryad.f1cb2/46 (Eremiascincus richardsonii), 10.5061/dryad.f1cb2/47 (Glaphyromorphus douglasi), 10.5061/dryad.f1cb2/26 (Gehyra variegate), 10.5061/dryad.f1cb2/27 (Gehyra lazelli), 10.5061/dryad.f1cb2/6 (Bothriocroton hydrosauri), 10.5061/dryad.f1cb2/28 (Hydrophis spiralis), 10.5061/dryad.f1cb2/15 (/soodon obesulus), 10.5061/dryad.f1cb2/16 (Macrotis lagotis), and 10.5061/dryad.f1cb2/19 (Petaurus breviceps)]; and European Bioinformatics Institute Sequence Read Archive (EBI SRA), http://www.ebi.ac.uk/ena/ (accession nos. ERS195148 [Tiliqua rugosa (Sleepy Lizard) paired end reads], ERS195147 [Egernia stokesii (Skink) paired end reads], and ERS154930 [Tachyglossus aculeatus (Echidna) paired end reads], validation sequences deposited in GenBank with accession nos. KC352670, KC352671, KC352672, KC352673, and KC352674).
 ${ }^{1}$ To whom correspondence should be addressed. E-mail: david.adelson@adelaide.edu.au. This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1205856110/-/DCSupplemental.

