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Abstract
A new method is developed for three-dimensional (3D) reconstruction of multi-material objects using
propagation-based X-ray phase-contrast tomography (PB-CT) with phase retrieval via the contrast transfer
function (CTF) formalism. The approach differs from conventional PB-CT algorithms that apply phase retrieval
on individual two-dimensional (2D) projections. Instead, this method involves performing phase retrieval to the
CT-reconstructed volume in 3D. The CTF formalism is further extended to the cases of partially-coherent illumi-
nation and strongly absorbing samples. Simulated results demonstrate that the proposed post-reconstruction CTF
method provides fast and stable phase retrieval, producing results equivalent to conventional pre-reconstruction
2D CTF phase retrieval. Moreover, it is shown that application can be highly localised to isolated objects of
interest, without a significant loss of quality, thus leading to increased computational efficiency. Combined with
the extended validity of the CTF to greater propagation distances, this method provides additional advantages
over approaches based on the transport-of-intensity equation.
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1 Introduction

We recently proposed a method for three-dimensional (3D) re-
construction of the internal structure of objects in propagation-
based X-ray phase-contrast tomography (PB-CT) [28]. This
method was based on the combination of conventional com-
puted tomography (CT) with phase retrieval using the Transport
of Intensity equation (TIE) [27]. As such, the method was ap-
plicable to the so-called near-Fresnel imaging conditions, i.e.
the cases where the Fresnel number is much larger than unity:
NF ≡ a2/(λR) >> 1, where a is the size of the imaged feature
of interest, λ is the radiation wavelength and R is the effective
free-space propagation distance between the imaged object and
the detector [15]. In the present paper, we extend this method to
the whole of the Fresnel region, including the far-Fresnel zone,
where NF << 1 . The latter imaging conditions can be encoun-
tered in practice, for example, in X-ray imaging [19] or electron
microscopy [4]. Mathematically, the principal difference be-
tween the method proposed in [28] and the one developed in the
present paper, can be explained in terms of the corresponding
approaches to the linearization (with respect to the complex
refractive index of the imaged object) of the general image inten-
sity distribution expressed by the square modulus of the Fresnel
diffraction integral. The method in [28], being based on the
TIE, uses a linearization relying on the slow spatial variation of
the refractive index. In contrast, the method developed in the
present paper is based initially on the assumption of the weak
scattering (first Born approximation), which assumes that the
deviation of the refractive index from unity is small (see details
in the next section). This approach is known as the contrast
transfer function (CTF) or Fourier optics theory [4, 25]. How-

ever, we subsequently show that, following the ideas described
in [31, 15, 9, 22, 12], the two approaches can be merged, leading
to a solution that is valid for refractive index distributions that
can be represented as a sum of a slowly varying and a small
component.

Considering another key aspect of the problem of the reconstruc-
tion of the 3D distribution of the complex refractive index inside
an object from phase-contrast images collected at different inci-
dent illumination directions (or object orientations), we note that
the conventional approach used for solution of this problem con-
sists essentially of two stages. At the first stage, the collected 2D
phase-contrast images are processed with the goal of recovering
the complex amplitude in the object plane from the registered
intensity distribution(s) [15], at each illumination direction. Dur-
ing the second stage, the distributions of the complex amplitude
in the object planes, obtained at different illumination directions,
are processed together to reconstruct the 3D distribution of the
complex refractive index in the object by means of conventional
CT techniques [20]. Some related approaches exist [2, 3, 14, 11]
that allow one to effectively merge these two stages into a single
step, which may have advantages in terms of the computational
efficiency and robustness.

In the two-stage PB-CT algorithms, typically, the phase retrieval
is applied first, in 2D, at each illumination angle, followed by
the 3D CT reconstruction. In contrast, in the 3D PB-CT methods
described in [28] and in the present paper, the 3D CT reconstruc-
tion is effectively applied to the raw phase-contrast images first
and the phase retrieval is applied in 3D after that, even though the
two operations appear as parts of a single analytical expression.
As explained in [28], the latter methodology can be substantially
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advantageous e.g. in the case of objects containing several dis-
tinct components, each spatially localized to a 3D area Ωm, with
different locally-constant ratios γm ≡ ∆(r)/β(r), r ∈ Ωm, of the
real decrement and the imaginary part of the complex refractive
index n(r) = 1 − ∆(r) + iβ(r) [1]. In this case, the computation-
ally expensive 3D CT reconstruction step can be performed only
once for the whole object volume, followed by repeated phase
retrieval operations localized to different (smaller) 3D areas Ωm.
A highly efficient and stable 3D phase retrieval method based
on the monomorphous (homogeneous) TIE (TIE-Hom) [24] can
be applied here locally in Ωm with the constant value γm. The
ability to apply phase retrieval to the CT-reconstructed volume
or to localized sub-volumes corresponding to different objects of
interest, provides useful flexibility to PB-CT processing work-
flows as demonstrated below [5, 26].

As will be described in this paper, a very similar methodology
to the one proposed in [28] can be implemented, replacing the
use of the transport-of-intensity equation with a CTF equiva-
lent. In section 2 the 3D CTF formalism is derived for weakly
scattering objects. Using this formalism, section 3 presents
reconstruction formulae for the complex refractive index, for
both general and monomorphous objects. In section 4, we fur-
ther generalise these results to the cases of strongly absorbing
objects and partially-coherent illumination. Numerically simu-
lated examples of application of the proposed CT reconstruction
techniques can be found in section 5. Finally, we summarize
the main results of the paper, together with the relevant validity
conditions, in section 6

2 3D CTF for weakly scattering objects

Consider the PB-CT imaging system schematically shown in
fig. 1. In the following, we assume that the dimensions of the
object are small compared to the source-to-object distance ρ and
ρ � R, the propagation distance, i.e. that the incident wave is
planar. Let an object be illuminated by a monochromatic plane
X-ray wave with wavelength λ and intensity Iin, I1/2

in exp(ikz′)
with k = 2π/λ. The direction z′ of the incident X-ray wave
forms an angle θ′ with the z axis of the objects coordinate system
(x, y, z), −π/2 ≤ θ′ < π/2 , and θ = θ′ + π/2. The phase-contrast
image of the object is recorded on a position-sensitive detector
located at a distance R downstream from the object. Interactions
of the X-rays and object matter are described via the spatial
distribution of the complex refractive index.

Figure 1: PB-CT experimental setup.

Also assumed is the interaction of the incident X-rays and the ob-
ject are accurately described by the complex scalar transmission
function,

qθ
(
x′, y

)
= exp

[
−Bθ(x′, y) + iϕθ(x′, y)

]
, (1)

consisting of the amplitude attenuation Bθ(x′, y) = kPθβ (x′, y)
and phase ϕθ(x′, y) = −kPθ∆ (x′, y) functions, both of which are
defined in terms of the projection operator,

Pθ f
(
x′, y

)
=

∞

∫
−∞

∞

∫
−∞

f (x, y, z) δ
(
x′ − x sin θ − z cos θ

)
dxdz, (2)

where δ represents the Dirac delta function. The evolution of a
paraxial transmitted wave in the free half-space z′ > 0 can be
described by the 2D Fresnel diffraction integral [7],

ψR
θ (x′, y) = I1/2

in
exp (ikR)

iλR

×

∞∫
−∞

∞∫
−∞

exp
{ iπ
λR

[(
x′ − x′′

)2
+ (y − y′′)2

]}
× qθ

(
x′′, y′′

)
dx′′dy′′. (3)

Utilising the 2D Fresnel free-space propagator,

PR
2
(
x′, y

)
= (iλR)−1 exp

[
iπ

(
x′2 + y2

)
/(λR)

]
. (4)

Equation (3) can be conveniently presented as a 2D convolution,

ψR
θ (x′, y) = I1/2

in exp(ikR)
(
PR

2 ∗ qθ
)

(x′, y). (5)

The 2D convolution of two functions is defined as:

( f ∗ g) (x, y) =

∞∫
−∞

∞∫
−∞

f (x′, y′) g(x − x′, y − y′) dx′dy′. (6)

The spatial distribution of the propagated intensity in the detector
plane is thus,

IR
θ

(
x′, y

)
=

∣∣∣ψR
θ (x′, y)

∣∣∣2. (7)

The Fourier transform of the image intensity is given by [8],

F2IR
θ

(
ξ′, η

)
= Iin

∞

∫
−∞

∞

∫
−∞

exp
[
−i2π

(
x′ξ′ + yη

)]
× qθ

(
x′ −

1
2
λRξ′, y −

1
2
λRη

)
× q∗θ

(
x′ +

1
2
λRξ′, y +

1
2
λRη

)
dx′dy, (8)

where the superscript asterisk denotes the complex conjugate
and the 2D Fourier transform is defined as follows,

F2g
(
ξ′, η

)
=
∞

∫
−∞

∞

∫
−∞

exp
[
−i2π

(
x′ξ′ + yη

)]
g
(
x′, y

)
dx′dy. (9)

The phase retrieval problem is that of finding a solution to the
non-linear expressions of eqs. (7) and (8) with respect to qθ. To
simplify this task, linearized approximations are generally used,
for which many methods have been derived [4, 8, 27, 25, 24, 10,
31, 15, 13].
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One linearization approach, originally developed by Guigay [8],
can be derived under the assumptions of weak object attenuation
and weak or slowly-varying phase:

Bθ(x′, y) � 1,
|ϕθ(x′ − λRξ′, y − λRη) − ϕθ (x′, y)| � 1. (10)

Applying these assumptions in addition to a uniform incident
intensity distribution Iin in the object plane, Guigay obtained the
linearized expression for the propagated intensity distribution
(extended to the 2D case), cf. [8]

F2IR
θ

(
ξ′, η

)
� Iin

×
{
δ
(
ξ′, η

)
− 2F2Bθ

(
ξ′, η

)
cos

[
πλR

(
ξ′2 + η2

)]
+2F2ϕθ

(
ξ′, η

)
sin

[
πλR

(
ξ′2 + η2

)]}
. (11)

Recall that the mathematical basis for CT can be described by
the inversion equation [20],

<F2Pθ f (x, y, z) = f (x, y, z), (12)

where< is the filtered back-projection (FBP) operator,

<h (x, y, z) =

π

∫
0

∞

∫
−∞

∞

∫
−∞

exp
{
i2π

[
ξ′ (x sin θ + z cos θ) + ηy

]}
× h

(
ξ′, η, θ

) ∣∣∣ξ′∣∣∣ dξ′dηdθ. (13)

A generalised form of the 2D Fourier derivative theorem [23] is
given by,

F2

[
∂m

∂x′m
∂n

∂yn g(x′, y)
]

(ξ′, η) =
(
2πiξ′

)m(2πiη)nF2g(ξ′, η). (14)

Using eq. (14), an explicit form of the Fourier transform of the
2D Laplacian of a function in the detector plane can thus be
expressed as the identity,

F2∇
2
⊥g(ξ′, η) = −4π2

(
ξ′2 + η2

)
F2g(ξ′, η), (15)

where ∇⊥ =
(
∂
∂x′ ,

∂
∂y

)
. Moreover, when the 3D Laplacian is

applied to both sides of eq. (12), the following equality can be
established,

<F2∇
2
⊥Pθ f (x, y, z) = ∇2 f (x, y, z). (16)

Here, ∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
.

Additionally, eqs. (15) and (16) can be generalised for any posi-
tive integer power n of the Laplacian,

F2∇
2n
⊥ g(ξ′, η) =

[
−4π2

(
ξ′2 + η2

)]n
F2g(ξ′, η), (17)

<F2∇
2n
⊥ Pθ f (x, y, z) = ∇2n f (x, y, z). (18)

Importantly, this last property, eqs. (16) and (18), demonstrates
the ability to switch the order of differentiation and filtered back-
projection, with the corresponding change of the dimensionality
of the Laplacian operator between 2D projections and the re-
constructed volume in 3D real space. A post-CT reconstruction
method for phase retrieval of monomorphous objects in the TIE
regime has been derived [28] exploiting this property.

Below, we adapt this approach for the CTF approximation
by expressing the Fresnel propagator components in terms

of a Laplacian to utilise the relationship in eq. (18). Let
KR,θ (x′, y) ∆

= 1− IR
θ (x′, y) /Iin designate the in-line contrast func-

tion, with F2Pa
2 (ξ′, η) = cos

[
πλR

(
ξ′2 + η2

)]
and F2Pp

2 (ξ′, η) =

− sin
[
πλR

(
ξ′2 + η2

)]
being the 2D Fourier transforms of the

amplitude and phase Fresnel propagators respectively [22]. Re-
arranging eq. (11) produces the expression,

F2KR,θ
(
ξ′, η

)
=

2F2Bθ
(
ξ′, η

)
F2Pa

2
(
ξ′, η

)
+ 2F2ϕθ

(
ξ′, η

)
F2Pp

2
(
ξ′, η

)
. (19)

The 2D Fourier transform of the amplitude Fresnel propagator,
F2Pa

2 (ξ′, η), when expressed as a Taylor series has the form,

F2Pa
2
(
ξ′, η

)
=

∞∑
n=0

(−1)n

(2n)!

[
πλR

(
ξ′2 + η2

)]2n
. (20)

Multiplying the expansion by the Fourier transform of the 2D
projection F2Pθ f (ξ′, η) leads to,

F2Pa
2
(
ξ′, η

)
F2Pθ f

(
ξ′, η

)
=

∞∑
n=0

(−1)n

(2n)!

[
πλR

(
ξ′2 + η2

)]2n
F2Pθ f

(
ξ′, η

)
. (21)

Using eq. (17), the right-hand side of eq. (21) can be re-written
in terms of the power series of the Laplacian of projections,

F2Pa
2
(
ξ′, η

)
F2Pθ f

(
ξ′, η

)
=

∞∑
n=0

Ca
nF2

{[
∇2
⊥

]2n
Pθ f

} (
ξ′, η

)
, (22)

where Ca
n =

(−1)n

(2n)!

[
λR
4π

]2n
.

It is worth noting that according to eq. (22) the amplitude con-
trast, corresponding to the first term in the right-hand side of
eq. (19), can be expressed as a power series of the Laplacian of
the attenuation function,

(Pa
2 ∗ Bθ)

(
x′, y

)
=

∞∑
n=0

Ca
n

[
∇2
⊥

]2n
Bθ(x′, y).

Similarly, the phase contrast, corresponding to the second term
in the right-hand side of eq. (19), can be expressed as a power
series of the Laplacian of the phase function,

(Pp
2 ∗ ϕθ)

(
x′, y

)
=

∞∑
n=0

Cp
n

[
∇2
⊥

]2n+1
ϕθ(x′, y),

where Cp
n =

(−1)n

(2n+1)!

[
λR
4π

]2n+1
.

Using eq. (18), the filtered back-projection operator applied to
the right-hand side of eq. (22) is expressed as follows,

<

 ∞∑
n=0

Ca
nF2

{[
∇2
⊥

]2n
Pθ f

} (x, y, z)

=

∞∑
n=0

Ca
n<

(
F2

[
∇2
⊥

]2n
Pθ f

)
(x, y, z)

=

∞∑
n=0

Ca
n

[
∇2

]2n
f (x, y, z). (23)
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Hence,

<
(
F2Pa

2F2Pθ f
)

(x, y, z) =

∞∑
n=0

Ca
n

[
∇2

]2n
f (x, y, z)

= (Pa,R
3 ∗ f ) (x, y, z) ,

(24)

where we introduced a 3D amplitude propagator, Pa,R
3 (x, y, z).

An equivalent treatment can be similarly applied to the
phase component of the Fresnel propagator, F2Pp

2 (ξ′, η) =

− sin
[
πλR

(
ξ′2 + η2

)]
, resulting in the equation,

F2Pp
2
(
ξ′, η

)
F2Pθ f

(
ξ′, η

)
=

∞∑
n=0

Cp
n F2

{[
∇2
⊥

]2n+1
Pθ f

} (
ξ′, η

)
. (25)

Hence,

<
(
F2Pp

2 F2Pθ f
)

(x, y, z) =

∞∑
n=0

Cp
n

[
∇2

]2n+1
f (x, y, z)

= (Pp,R
3 ∗ f ) (x, y, z) , (26)

where we introduced a 3D amplitude propagator, Pp,R
3 (x, y, z).

Applying the amplitude and phase reconstructions given by
eqs. (24) and (26) to eq. (19), with proper substitutions for β and
∆, and expressing the result in 3D Fourier space results in,

F3<F2KR,θ (ξ, η, ζ) = 2kF3β (ξ, η, ζ) F3Pa,R
3 (ξ, η, ζ)

− 2kF3∆ (ξ, η, ζ) F3Pp,R
3 (ξ, η, ζ) . (27)

Here,

F3Pa,R
3 (ξ, η, ζ) = cos

[
πλR

(
ξ2 + η2 + ζ2

)]
, (28)

F3Pp,R
3 (ξ, η, ζ) = − sin

[
πλR

(
ξ2 + η2 + ζ2

)]
, (29)

are the 3D Fourier transforms of the 3D amplitude and phase
Fresnel propagators, respectively, and F3 represents the 3D
Fourier transform operator,

F3g (ξ, η, ζ) =

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

exp
[
−i2π (xξ + yη + zζ)

]
g (x, y, z) dxdydz. (30)

3 Application of 3D CTFs for PB-CT
reconstruction

Examination of the similarity between eqs. (19) and (27) es-
tablishes an important link between 2D and 3D expressions for
propagation-based phase contrast in the CTF regime. eq. (27)
represents a generalized form of 3D CTF phase contrast that
provides a basis for phase retrieval on CT reconstructed images.

Moreover, with some algebraic manipulation, general solutions
for the Fourier transforms of both β and ∆ can be obtained for
two propagation distances R1 and R2 (the argument list (ξ, η, ς),
has been omitted for brevity):

F3β =
=R2 F3Pp,R1

3 − =R1 F3Pp,R2
3

2kF3Pp,R1−R2
3

, (31)

F3∆ =
−=R1 F3Pa,R2

3 + =R2 F3Pa,R1
3

2kF3Pp,R1−R2
3

. (32)

Here, =R (ξ, η, ζ) = F3<F2KR,θ (ξ, η, ζ) represents the 3D
Fourier transform of the reconstructed in-line contrast func-
tion at the propagation distance R, see eq. (27). Additionally,
F3Pp,R1−R2

3 = F3Pp,R1
3 F3Pa,R2

3 − F3Pp,R2
3 F3Pa,R1

3 .

The structure of eqs. (31) and (32) illustrates that both the real
and imaginary parts of the refractive index decrement in the ob-
ject plane can be retrieved by subtracting weighted 3D Fourier-
filtered FBP reconstructions of the propagated intensity at two
distances. Importantly, as the =R (ξ, η, ζ) terms are decoupled
from the associated propagator terms, absorption/phase retrieval
can be performed after conventional FBP-CT reconstructions.
Furthermore, this decoupling also implies that retrieval can be
applied to a localized CT-reconstructed sub-volume as the ap-
plied 3D propagator functions are not bound or constrained by
=R (ξ, η, ζ).

Assume that the object is monomorphous, such that a spatially
independent (but energy-dependent) proportionality constant,
γ = ∆/β, holds for the complex refractive index [24, 19]. This
assumption is valid, for example, for objects consisting of a
single material and objects composed of light elements (with
atomic numbers Z < 10) when irradiated with high-energy X-
rays (60-500 keV)[31].

Applying this property to the generalised CTF expression in
eq. (27) provides a monomorphous form of the CTF, denoted
CTF-Hom, allowing for the reconstruction of the object’s linear
attenuation coefficient, µ(x, y, z) = 2kβ(x, y, z), from a single
set of intensity measurements collected at a single propagation
distance R,

F3µ (ξ, η, ζ) =
=R (ξ, η, ζ)

F3Pa,R
3 (ξ, η, ζ) − γF3Pp,R

3 (ξ, η, ζ)

=
sgn (γ)=R (ξ, η, ζ)√

γ2 + 1 sin
[
πλRu2 + atan

(
γ−1)] ,

(33)

where u2 = ξ2 + η2 + ζ2. If required, β(x, y, z) and ∆(x, y, z) can
be easily recovered from µ(x, y, z).

Moreover, it can be shown that the CTF-Hom reconstruction
formula, eq. (33), reduces to the corresponding TIE form under
the assumption that the complex transmission function, qθ (x′, y)
is slowly varying on the length scale

√
λR at all θ whereby the in-

line contrast function KR,θ (x′, y) is band-limited to the spectral
region ξ′2 + η2 � (λR)−1. Applying these constraints to eq. (33)
results in the cosine function in eq. (28) reducing to 1 and the
sine function in eq. (29) being replaced by its argument, giving
the expression equivalent to that derived in [28],

F3µ (ξ, η, ζ) =
=R(ξ, η, ζ)

1 + πγλR
(
ξ2 + η2 + ζ2) . (34)

In its original form, the CTF approximation as derived above
does not impose constraints upon propagation distance as TIE
approximations do. However, it is quite restrictive due to the
assumption of weak absorption, limiting its usability in real-
life imaging applications. Subsequent works have extended
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the validity of the CTF by way of a slowly-varying object
approximation, allowing it to be used for absorbing objects
[31, 15, 9, 22, 12].

4 Extension to partially-coherent illumination
and strongly absorbing objects

Nesterets and Gureyev [22] developed a CTF approach for par-
tially coherent illumination, with validity extended to strongly
absorbing objects. An equivalent approach can be applied to
extend the validity of 3D CTF.

Let the attenuation function be the sum of a small (sm), and a
slowly varying (sl) components:

Bθ(x′, y) = Bθ,sm(x′, y) + Bθ,sl(x′, y). (35)

It is assumed that the small component satisfies
∣∣∣Bθ,sm(x′, y)

∣∣∣ �
1 and Bθ,sl(x′, y) varies slowly on the length scale relative to
the width of the partially-coherent free-space propagator [22].
Introducing the complex function,

Φ(x′, y) = −Bθ,sm(x′, y) + iϕθ(x′, y), (36)

and the contact intensity of the slowly varying attenuation com-
ponent,

Iθ,sl
(
x′, y

)
= exp

[
−2Bθ,sl(x′, y)

]
, (37)

the combined propagated intensity can be approximated as in
[22]:

IR
θ

(
x′, y

)
� IinIθ,sl

(
x′, y

) [
1 + 2Re

(
Φ ∗ P̃R

2

) (
x′, y

)]
. (38)

P̃R
2 (x′, y) =

(
PR

2 ∗ Psys

)
(x′, y) is the 2D partially-coherent Fres-

nel free-space propagator obtained by convolving the fully-
coherent Fresnel free-space propagator with the point-spread
function of the imaging system, Psys (x′, y). The latter takes into
account partial coherence of the incident illumination, as well
as finite resolution of the detector [22].

Rearranging eq. (38) by bringing the incident intensity to the
left-hand side and applying the negative logarithm to both sides
results in an expression representing the propagated contrast
function:

K̃R,θ
(
x′, y

)
�

2Bθ,sl(x′, y) − log
[
1 + 2Re

(
Φ ∗ P̃R

2

) (
x′, y

)]
, (39)

with K̃R,θ (x′, y) = − log
(

IR
θ (x′,y)

Iin

)
. The logarithm on the right-

hand side of eq. (39) can be linearized using the approximation
log(1 + x) � x as the contrast due to weak absorption and phase
contrast is assumed to be small relative to unity,

K̃R,θ
(
x′, y

)
�

2Bθ,sl(x′, y) + 2
(
Bθ,sm ∗ P̃a,R

2

) (
x′, y

)
+ 2

(
ϕθ ∗ P̃p,R

2

) (
x′, y

)
, (40)

where P̃a,R
2 (x′, y) =

(
Pa,R

2 ∗ Psys

)
(x′, y) and P̃p,R

2 (x′, y) =(
Pp,R

2 ∗ Psys

)
(x′, y) are the 2D partially-coherent amplitude and

phase Fresnel propagators, respectively.

Equation (40) represents a CTF approximation that is applicable
and valid for strongly absorbing (but slowly varying) objects con-
taining weakly absorbing features. Moreover, due to the above
assumption that Bθ,sl varies slowly on the length scale relative to
the width of the partially-coherent free-space propagator, the first
two terms in the right-hand side of eq. (40) may be combined,
such that Bθ,sl(x′, y) +

(
Bθ,sm ∗ P̃a,R

2

)
(x′, y) �

(
Bθ ∗ P̃a,R

2

)
(x′, y).

Applying this simplification into eq. (40) results in,

K̃R,θ
(
x′, y

)
� 2

(
Bθ ∗ P̃a,R

2

) (
x′, y

)
+ 2

(
ϕθ ∗ P̃p,R

2

) (
x′, y

)
, (41)

which is equivalent to the CTF approximation given by eq. (19).
Applying the same 3D treatment to eq. (41) as was done with
eq. (19) to derive eq. (27) provides an expression for the FBP
reconstructed 3D contrast function, which is similar to eq. (27),

F3<F2K̃R,θ (ξ, η, ζ) � 2kF3β (ξ, η, ζ) F3P̃a,R
3 (ξ, η, ζ)

− 2kF3∆ (ξ, η, ζ) F3P̃p,R
3 (ξ, η, ζ) . (42)

Here,

P̃a,R
3 (x, y, z) =

(
Pa,R

3 ∗ P3,sys

)
(x, y, z) ,

P̃p,R
3 (x, y, z) =

(
Pp,R

3 ∗ P3,sys

)
(x, y, z) ,

are the 3D partially-coherent amplitude and phase Fresnel prop-
agators, respectively, and P3,sys (x, y, z) is the point-spread func-
tion of the imaging system in the reconstructed 3D volume.

Solutions of the 3D PB-CT reconstruction problem can be ob-
tained from eq. (42) in exactly the same way as eqs. (31) to (33)
were obtained from eq. (27).

5 Numerical simulations

5.1 X-ray CT simulation framework

The 3D CTF-Hom approximation for phase and amplitude re-
trieval on post-CT reconstructed images as derived in section 3
will now be referred to as PostCTFHom. Similarly, the corre-
sponding 2D method applied to projections prior to CT recon-
struction will be referred to as PreCTFHom. In order to evaluate
the accuracy and characteristics of the PostCTFHom, a com-
putational simulation platform was developed in the form of
a web-based Jupyter Notebook [18], utilizing the Python [30]
programming language. Additionally, the Syris [6] framework
was used and extended upon with the addition of CT reconstruc-
tion via the Astra-toolbox [29] package and bespoke TIE and
CTF phase retrieval implementations to simulate conventional
absorption CT and PB-CT workflows.

The Syris framework and associated packages allowed for the
definition of a simple analytic 3D cylindrical model representing
a material defined by its complex refractive index at a given
X-ray energy. With such a model, the workflow can be used
to generate a volume image in addition to contact or PBI pro-
jections for a given number of rotation angles with specified
resolution and photon statistics. These simulated projections
can then be subsequently reconstructed, including phase retrieval
as part of the workflow, and quantified with a range of metrics.
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5.2 Numerical model

The numerical model defined for these simulations consists of a
1024 µm × 1024 µm rectangle containing a single central 50 µm
diameter circle composed of a lightweight polymer like virtual
object in vacuum. To reduce computational complexity, this
symmetric 2D model was further simplified to simulating an
equivalent set of 1D projections. The virtual materials β and ∆
values were calculated using the online database at henke.lbl.gov
[16], specifying the required energy, chemical formula and mass
density. For the simulations, a fixed X-ray energy, E = 20 keV
was used throughout. The virtual objects mass density was
adjusted to simulate variable X-ray transmission in terms of the
associated complex refractive index. For example, a density of
ρ = 0.001

(
g/cm3

)
, corresponds to µ = 3.647 × 10−2

(
m−1

)
,

β = 1.799×10−13, ∆ = 5.922×10−10 and maximum phase-shift,
φ = −0.030 (rad) over the 50 µm maximum diameter of the
object. The ratio γ = ∆/β is 3291.

5.3 Simulations

In this section, we evaluate and validate the PostCTFHom for-
malism derived above in section 2 with the numerical framework
and model defined in the previous sections. We then compare
its performance and characteristics with that of conventional
absorption CT and the PreCTFHom method.

5.3.1 Projection simulation

Distributions of transmitted intensity and phase shift were com-
puted analytically using the model definition in section 5.2 and
the following equations for transmitted phase and intensity, re-
spectively.

ϕθ(x′, y) = −kPθ∆(x′, y),
Iθ(x′, y) = Iin exp

[
−2kPθβ(x′, y)

]
,

with Iin = 1 for these simulations.

The complex amplitude of the transmitted wave was then cal-
culated over a 1D row sampled at a given resolution. In the
case of the simulations for this paper, a fine sampling inter-
val of 6.25 × 10−2 µm was chosen for the generation of initial
projections. Due to the invariance of the model along the rota-
tion y-axis, we can employ the simplification of only requiring
the generation of a single-row projection, resulting in 1D row-
projection arrays of 16384 pixels.

For PBI projections, the Fresnel propagation operator [23] im-
plemented as a 1D Fourier filter was applied to each 1D complex
amplitude, with the transfer function, FG (ξ′) = exp[−iπλRξ′2],
with R being the propagation distance. In the case of contact
projections, this propagation step was skipped.

In order to simulate finite system resolution, a discrete Gaussian
smoothing filter, with a standard deviation σ2 = 1 µm was
applied to the contact or propagated simulated projection.

Optionally, noise may be added to the simulated projection at
this point. For this work, a Poisson distribution was chosen to
model that of a photon-counting detector. The amount of noise
applied is specified by the relative average standard deviation,
which is equivalent to Npp

− 1
2 , with Npp being the number of

photons registered at the point of average intensity.

Finally, projections were re-sampled, or decimated, with a fi-
nite square aperture of, 1 µm resulting in a 1024 pixel 1D row
intensity projection. This decimation step also includes an addi-
tional application of a Gaussian smoothing filter with σ2 equal
to the full width at half maximum (FWHM) of 1 µm, in order to
account for a simulated finite detector pixel size.
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Figure 2: Simulated projection intensities, ρ = 0.003 g/cm3,
R = 0.5 m , |φ| = 0.01 rad.

Figure 2 shows an example plot of a finely-sampled (pixel size
= 6.25 × 10−2 µm) simulated 1D contact, I0, and propagated,
IR intensity projections of the cylindrical numerical model with
|φ| = 0.01 rad. IR has been propagated through a distance of
R = 0.5 m. The plot of I0 displays practically no detectable con-
trast, whereas at a propagation distance of R = 0.5 m, multiple
diffraction fringes are visible in the plot of IR.

5.3.2 Pre-reconstruction 2D CTF-Hom phase retrieval
(PreCTFHom)

For PreCTFHom, phase retrieval is applied directly to the simu-
lated intensity projections in the form of a Fourier space filter,
prior to any subsequent CT reconstruction. As described by
Nesterets and Gureyev [21], the intensity based form of 2D
CTF-Hom phase retrieval is a rearrangement and simplification
of eq. (11),

F2I0
θ

(
ξ′, η

)
�

I−1
in F2IR

θ (ξ′, η)

sgn (γ)
√
γ2 + 1 sin

[
A (ξ′, η)

] , (43)

where A (ξ′, η) = πλR
(
ξ′2 + η2

)
+ atan

(
γ−1

)
. In order to avoid

zeroes in the denominator of the sine function in eq. (43), the
following regularized form [21] has been adopted,

F2I0
θ

(
ξ′, η

)
≈

sgn (γ) I−1
in F2IR

θ (ξ′, η) sin
[
A (ξ′, η)

]√
γ2 + 1

{
sin2 [

A (ξ′, η)
]
+ ε (ξ′, η)

} . (44)

where, in the case of positive γ, the regularization parameter ε
is:

ε
(
ξ′, η

)
=

{
0, A (ξ′, η) < π/2
ε0, otherwise. (45)

Here, ε0 � 1 is a small regularization constant.

It should be noted, that in the simulations performed in this
work, the above 2D expressions were reduced and applied in 1D
to the simulated 1D projections of the cylindrical model.

https://henke.lbl.gov


Preprint – Three-dimensional contrast transfer function in phase-contrast tomography 7

5.3.3 CT reconstruction

To recover the imaginary component of the complex refractive
index from the simulated projections, the FBP CT reconstruction
algorithm, eq. (13) was applied. Again, due to the symmetrical
nature of the cylindrical numerical model, the process is signif-
icantly simplified compared with an experimental context. In
this case, it is only necessary to reconstruct a single slice of the
final 3D volume. As such, a single sinogram was constructed
by stacking a set of Npro j 1D simulated projections where Npro j
was chosen to minimally satisfy the angular Nyquist sampling
condition [17] where Npro j = Npxlπ/2, where Npxl is the width
of the projection in pixels.

For noise-free scenarios, the sinogram is constructed by sim-
ply repeatedly copying the same simulated 1D projection, after
phase retrieval is applied for PreCTFHom. In the case of sim-
ulated noise, each 1D projection of the Npro j row sinogram
requires the separate application of Poisson noise followed by
phase retrieval in the case of PreCTFHom.

A negative logarithm is then applied globally to the fully as-
sembled Npxl × Npro j pixel sinogram. The final step of FBP CT
reconstruction is applied to the sinogram, resulting in a single
Npxl × Npxl pixel 2D slice of the reconstructed linear attenuation
coefficient µ, which relates to β in eq. (33) by the simple mul-
tiplication, µ = 2kβ. The fixed h = 1 µm pixel size results in
Npxl = 1024 and Npro j = 1609, thus corresponding to an angular
step of 180/1609 ≈ 0.11◦.

To permit a full suite of comparative performance metrics to be
calculated, each CT reconstruction phase of the simulation also
generates sinograms for unpropagated contact (I0) in addition to
propagated projections with and without PreCTFHom applied.
Furthermore, noisy and noise-free versions of each are also
generated.

5.3.4 Post-reconstruction 3D CTF-Hom phase retrieval
(PostCTFHom)

As the name implies, PostCTFHom is applied to a sub-volume
of the reconstructed 3D volume. As discussed in [28], successful
application of 3D post CT reconstruction phase retrieval such as
PostTIEHom and PostCTFHom is reliant on a considered choice
of the 3D region of interest (ROI), Ωm. Firstly, Ωm should fully
contain the object under investigation. Secondly, Ωm should be
chosen to consider the width of the 3D point-spread function
(PSF) of CTF-Hom. For the simulations performed in this work,
several sizes were considered, the full reconstructed volume,
Ω1024, and sub-volumes Ω512, Ω256, and Ω128, which just en-
closed the reconstructed object. Once again, due to the inherent
symmetries of the simulated object, it was possible to simplify
the computation of PostCTFHom to that of the application of
the 2D CTF-Hom Fourier filters described in section 5.3.2 by
eqs. (43) and (44) (for the regularized version) to the recon-
structed 2D slice.

5.3.5 Evaluation metric

To quantify and compare the performance of the evaluated phase
retrieval methods, the root mean squared error (RMSE) was
used, which is defined between a target, x and reference, x′
image, by:

RMS E =

√√
1
N

N∑
i

(
x′i − xi

)2
. (46)

5.4 Results

The fixed simulation parameters, described in section 5.3 out-
lining the simulation framework have been specifically selected
to be consistent with an experimental micro-PB-CT imaging
scenario.

In addition to the fixed simulation parameters, energy (20 keV),
sample size (50 µm), material and pixel size (1 µm), a range of
variable simulation parameters can be passed to the simulation
framework. The number of potential degrees of freedom within
this parameter space presents a challenge for rigorous analysis.
Given this, for the scope of the analysis and results presented
in this research, the parameter set has been constrained to a
single specific simulated imaging scenario, namely with R = 1m,
|φ| = 0.01 rad, 1.0% noise (Npp = 10000) and ε = 0.1. The
choice of ε is examined in more detail in section 5.4.2. Finally,
for the post-reconstruction region of interest (ROI) size, Ωm, a
range of values are used and are discussed in section 5.4.3.

All phases described in section 5.3 correspond to a single sim-
ulation run for the given set of fixed and variable parameters,
producing a set of images and performance metrics as speci-
fied in section 5.3.5, allowing a direct comparison between the
PreCTFHom and PostCTFHom methods.

5.4.1 Pre-CT reconstruction phase retrieval

Figure 3 presents a series of plots and images corresponding
to simulations of the PreCTFHom method. Figure 3a shows
reference noise-free intensity profiles of, contact I0NF and prop-
agated, IRNF projections. For this configuration with R = 1m
and |φ| = 0.01 rad, multiple diffraction fringes and enhanced
contrast are clearly visible in the plot of IRNF when compared to
the intensity/contrast of I0NF . In contrast, the plot of IR, displays
no discernible object structure in the presence of 1.0% noise.

Figure 3b illustrates the result of applying CTF-Hom phase re-
trieval (PreCTFHom) to the simulated propagated projections
shown previously in fig. 3a. IPreCT FHom and IPreCT FHom∗ illus-
trates two instances of the application of CTF-Hom phase re-
trieval applied to two propagated projections, IR with different
noise profiles. Interestingly, at this noise level (1%), CTF-Hom
phase retrieval is not able to recover any recognizable structure
of the object in either example. However, it is evident that there
has been a change in the statistical properties of the noise, with
a shift from uncorrelated to correlated noise. For reference,
plots of IPreCT FHomNF with PreCTFHom phase retrieval applied
to IRNF and I0NF are displayed. As expected, in noise-free condi-
tions, the former displays an almost perfect reconstruction, thus
overlapping the plot of I0NF .

Figure 3(c-e) present a series of CT-reconstructed slices com-
puted via sinograms assembled from projections with intensity
profiles of I0NF and IPreCT FHomNF as shown in fig. 3a and fig. 3b.
The coloured horizontal line on the slice images indicates the
displayed profile. Note, a corresponding plot for I0 is not shown.
Figure 3c illustrates a CT reconstruction from noise-free contact
projections, µ0NF providing a reference image of the simulated
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object. At the other end of the spectrum, fig. 3d shows the re-
sult of reconstructing a slice using noisy contact projections,
µ0, and highlighting the inability of conventional absorption
CT to recover the weakly attenuated object from projections
with this level of noise. Figure 3e displays a CT-reconstructed
slice from projections with PreCTFHom phase retrieval applied,
µPreCT FHom demonstrating the visually successful recovery of
the object. Importantly, CTF-Hom, despite some residual noise
both within and outside the object, recovers sharp edges be-
tween the object and background without significant artefacts
introduced. The corresponding profile for this reconstruction
is shown in fig. 4e. It is quite remarkable, when visually com-
paring the images of fig. 3d and fig. 3e that projection-based
phase retrieval followed by FBP CT reconstruction is able to
reconstruct the object to such a degree when one considers the
lack of obvious structure in projections even after phase retrieval.
Specifically, in the context of this simulated scenario, much of
this recovered detail can be attributed to the large number of
projections (≈ 1600) used for CT reconstruction step, where
the now correlated noise in projections cancels out over the full
projection space.
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Figure 3: Plot a) Intensity profiles of, I0NF , IRNF and IR. b) Inten-
sity profiles of, I0NF , IPreCT FHomNF ,IPreCT FHom and IPreCT FHom∗ .
Images of CT reconstructed slices, c) µ0NF , d) µ0, e) µPreCT FHom.
See section 5.4.1 for details.

5.4.2 Post-CT reconstruction phase retrieval

Figure 4 presents results from the new PostCTFHom method.
For this set of simulations, phase retrieval using an ROI of the
full reconstructed slice, 1024 × 1024 pixels was used. This
permits a direct comparison against the full projection phase

retrieval PreCTFHom method. Variation of the PostCTFHom
ROI size is examined in section 5.4.3.

The top row of fig. 4, images a-d displays a set of reconstructed
CT slices. fig. 4a shows the reconstruction of noisy propagated
projections, µR. Unlike its corresponding noisy projection IR,
without phase retrieval, as seen in the profile plot (fig. 3a), CT
reconstruction manages to recover multiple diffraction fringes
which are subsequently exploited by PostCTFHom phase re-
trieval. A regularized form of eq. (33), with the same regular-
ization used in eq. (44), was implemented in the PostCTFHom
method. Therefore, this method also requires the selection of
an appropriate regularization parameter, ε. For the simulations
shown previously in section 5.4.1 a fixed ε = 0.1 was chosen
for application with the PreCTFHom method. The CT recon-
structed slices presented in fig. 4b, c and d demonstrate the
result of using different values of ε, namely ε = 0.01, 0.1 and 1.0
respectively. fig. 4e shows a profile plot of the central row of the
CT reconstructed slice of fig. 4c, as indicated by the overlaid red
horizontal line on fig. 4c, µPostCT FHom with ε = 0.1. Addition-
ally, fig. 4e plots profiles of the associated µPreCT FHom result and
µ0NF for reference. Finally, fig. 4f plots the CT reconstruction
error (RMSE) of µPreCT FHom and µPostCT FHom against µ0NF over
eight orders of magnitude of ε, with 1 × 10−7 <= ε <= 10. The
plot of fig. 4f demonstrates the influence of ε with CTF-Hom
phase retrieval and its effect on reconstruction quality. Aside
from a divergence at very small ε values, ε < 1 × 10−6, there is
little appreciable difference between the two methods for ε = 0.1.
PostCTFHom displays a marginally lower overall RMSE for
1 × 10−6 < ε < 1 × 10−3. Visually, for CT reconstructed slices,
this difference is imperceptible. The primary benefit of increas-
ing ε for CTF-Hom, which is clearly visible in the reconstructed
slices of fig. 4b, c and d is in the suppression of noise. In the con-
text of the given simulation parameters, ε = 0.1, corresponding
to fig. 4c, represents a good compromise of noise suppression
and retention of feature integrity. fig. 4b, where ε = 0.01 is
relatively too noisy. fig. 4d, with ε = 1.0 has suppressed noise
significantly compared to the other two, however the feature
itself now appears over smoothed and with the introduction of
faint fringes around the centre and beyond the edge, this value of
ε also corresponds to the flat region of the plot in fig. 4f where
the large regularization value of ε results in CTF-Hom closely
resembling TIE-Hom, and its inherent low-pass filter properties.

5.4.3 Effect of PostCTFHom region of interest

Figure 5 presents the results of varying the PostCTFHom ROI
size, Ωm in conjunction with the CTF-Hom regularization pa-
rameter, ε. A range of square regions for Ωm were chosen,
corresponding to widths of 1024 (full width), 512, 256 and
128 pixels respectively. Figure 5a plots the reconstruction er-
ror (RMSE) between µ0NF and the corresponding PostCTFHom
reconstruction at the four given values of Ωm. An equivalent
plot of µPreCT FHom is provided for comparison. Evident from the
plot is the relative insensitivity of the size of the chosen value of
Ωm to the overall image quality of PostCTFHom phase retrieval,
even for a relatively small 128 pixel width region which extends
only a small distance beyond the boundary of the reconstructed
object itself. Similar to the result shown in fig. 4f, again, varia-
tion in RMSE for all values of Ωm is observable only for small
values of ε ≤ 1 × 10−6. Above this, the calculated RMSE is
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Figure 4: Images of CT reconstructed slices, a) µR,
b) µPostCT FHom, ε = 0.01, c) µPostCT FHom, ε = 0.1, d)
µPostCT FHom, ε = 1.0. e) CT reconstruction profiles, µ0NF ,
µPreCT FHom and µPostCT FHom, ε = 0.1. f) Reconstruction error
(RMSE), µPreCT FHom and µPostCT FHom vs ε.

virtually identical between the PreCTFHom and PostCTFHom
for all Ωm.

Figure 5b plots PostCTFHom reconstruction profiles of the cen-
tral row of slices for the range of Ωm values with ε = 0.1. A
plot of µ0NF is also displayed for comparison. As implied by the
results shown in fig. 5a, the reconstruction profiles are almost
identical for all Ωm.

It should be noted that when applying PostCTFHom to a lo-
calised ROI, it is possible to induce a small constant shift in the
reconstructed µ value due to a potential different background
DC component within the selected ROI compared to the full
field of view. In order to compensate for this phenomenon, the
background mean value was calculated in an area outside the
object with the ROI and subtracted from the resultant phase
retrieved image.

The ability to apply PostCTHom to a localised CT reconstructed
ROI is also the source of potentially significantly reduced com-
putation costs compared to PreCTFHom and other projection-
based phase retrieval methods[28]. Essentially, for PostCTHom
the phase retrieval step is computed via a single 3D Fourier
filter operation on a localised and variably sized sub-image Ωm.
By comparison, PreCTFHom requires the fixed computation of
Npro j × Npxl

2 pixel 2D Fourier filter operations. As can be seen,
when the linear size of the ROI is less than Npxl the computa-
tional cost is reduced proportionally.
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Figure 5: Comparison of varying PostCTFHom ROI widths of
1024, 512, 256 & 128 pixels. Plot a) PostCTFHom RMSE vs ε.
b) PostCTFHom reconstruction profiles of varying Ωm

6 Conclusion

In this paper, we have developed a method for PB-CT reconstruc-
tion of the 3D distribution of the complex refractive index in
weakly scattering objects from multiple 2D transmission images
collected in the Fresnel region (at some free-space propagation
distance from the object) using coherent or partially-coherent
incident X-ray beams at different illumination directions. It is
instructive to summarize the assumptions that led to the main
results of this paper, eqs. (19), (27), (41) and (42).

In order to derive eqs. (19) and (27) the following assumptions
were made.

1. A fully-coherent incident plane wave, Uin(r) =

I1/2
in exp(ikz), was assumed

2. The projection approximation was applied for the in-
teraction of the incident wave with the object, eqs. (1)
and (2).

3. Paraxial approximation (Fresnel diffraction) was as-
sumed for the free-space propagation between the ob-
ject and the detector, eq. (3).

4. Weak absorption in the object and Guigay’s condition
(slow variation) for the phase, eq. (10), was assumed.
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In order to derive eqs. (41) and (42), the assumptions 1 and 4
have been relaxed and replaced with the following assumptions.

5. Partially-coherent illumination of the object was as-
sumed instead of the fully-coherent illumination.

6. In addition to the weak component, as in item 4 above,
the attenuation function of the object was allowed to
have a strong but slowly-varying component, eq. (35).
This latter component of the attenuation function was
assumed to be slowly varying on the length scale of the
width of the 2D partially-coherent Fresnel propagator,
P̃R

2 (x′, y) =
(
PR

2 ∗ Psys

)
(x′, y).

The PB-CT reconstruction formulae, eqs. (31) and (32), have
been derived under the above assumptions 1-4 in the case of a
generic weakly-scattering object and two images per illumi-
nation direction collected at different object-to-detector dis-
tances and a range of illumination directions. We also gave
a corresponding solution, eq. (33), for the 3D reconstruction of
monomorphous objects from a single image per illumination
direction. Similar equations can be easily derived from eq. (41)
in the case of partially-coherent illumination and strongly ab-
sorbing samples satisfying the assumptions 5-6.

The simulated results in section 5, demonstrate that the
PostCTFHom method provides a fast and stable phase re-
trieval method, producing results consistent with that of
the pre-reconstruction projection-based variant. Moreover,
PostCTFHom, being an extension (for greater propagation dis-
tances) to the PostTIEHom method [28], can be applied to a
localised sub-volume of the full CT-reconstructed volume. Re-
sults presented in section 5.4.3 indicate that the choice of dimen-
sions for Ωm, can be highly localised to just beyond the spatial
boundary of the object of interest without a significant loss of
quality whilst reducing the time and complexity of computation.
As also discussed in [28], this localised phase retrieval permits
a material specific γ local value to be applied and tuned for
optimal results. The PostCTFHom method introduces the addi-
tional CTF-Hom regularization parameter, ε which can also be
independently tuned to maximise the reconstruction quality of
localised regions. Computationally, PostCTFHom implements
a different 3D Fourier filter method from PostTIEHom but ex-
hibits the same computational performance characteristics as
described in section 5.4.3 and the Computational analysis sec-
tion of [28], whereby computational performance depends on
the size of the region of interest chosen.
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