Dariusz C Górecki

Dariusz C Górecki
University of Portsmouth · School of Pharmacy and Biomedical Sciences

PhD, MD

About

148
Publications
15,040
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,374
Citations
Citations since 2017
32 Research Items
1472 Citations
2017201820192020202120222023050100150200250
2017201820192020202120222023050100150200250
2017201820192020202120222023050100150200250
2017201820192020202120222023050100150200250
Introduction
Additional affiliations
March 2011 - June 2011
Harvard University
Position
  • Harvard University Medical School
Description
  • Fulbright Scholar
January 2001 - present
University of Portsmouth
Position
  • Principal Investigator
November 1992 - January 2000
University College London
Position
  • University College London, UK

Publications

Publications (148)
Article
Dystrophinopathy and sarcoglycanopathies are incurable diseases caused by mutations in the genes encoding dystrophin or members of the dystrophin associated protein complex (DAPC). Restoration of the missing dystrophin or sarcoglycans via genetic approaches is complicated by the downsides of personalised medicines and immune responses against re-ex...
Article
Full-text available
Altered dystrophin expression was found in some tumors and recent studies identified a developmental onset of Duchenne muscular dystrophy (DMD). Given that embryogenesis and carcinogenesis share many mechanisms, we analyzed a broad spectrum of tumors to establish whether dystrophin alteration evokes related outcomes. Transcriptomic, proteomic, and...
Article
Full-text available
Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells, causing progressive muscle degeneration and repair defects. It was unknown whether dystrophic myoblasts—the effector cells of muscle growth and regeneration—are affected. Using transcriptomic, genome-scale metabolic modelling and functional analyses, we demonstrate, for the...
Article
Full-text available
α-Dystrobrevin (α-DB) is a major component of the dystrophin-associated protein complex (DAPC). Knockout (KO) of α-DB in the brain is associated with astrocytic abnormalities and loss of neuronal GABA receptor clustering. Mutations in DAPC proteins are associated with altered dopamine signaling and cognitive and psychiatric disorders, including sch...
Article
Full-text available
The biomaterial with the highest known tensile strength is a unique composite of chitin and goethite (α-FeO(OH)) present in teeth from the Common Limpet (Patella vulgata). A biomimetic based on limpet tooth, with corresponding high-performance mechanical properties is highly desirable. Here we report on the replication of limpet tooth developmental...
Preprint
Mutations in the DMD gene, encoding dystrophins, cause Duchenne muscular dystrophy (DMD). However, loss of DMD expression impacts a broader spectrum of cells than those affected in DMD. Tumours were used as a model to investigate whether DMD loss across dissimilar tissues evokes related outcomes. Transcriptomic, proteomic, and mutation datasets fro...
Preprint
Mortality of Duchenne Muscular Dystrophy (DMD) is a direct consequence of progressive wasting of muscle fibres leading to skeletal muscle deterioration and cardiomyopathy. However pathophysiological effects of mutations in the dystrophin encoding gene, which result in improper muscle maturation are detectable in muscle precursor cells which do not...
Article
Full-text available
The extracellular matrix (ECM) of the cerebral vasculature provides a pathway for the flow of interstitial fluid (ISF) and solutes out of the brain by intramural periarterial drainage (IPAD). Failure of IPAD leads to protein elimination failure arteriopathies such as cerebral amyloid angiopathy (CAA). The ECM consists of a complex network of glycop...
Article
Full-text available
Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the DMD gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsychological impairment, and bone deformities. Amo...
Preprint
Full-text available
Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells (SC), causing progressive muscle degeneration and repair defects. It is not known whether dystrophic myoblasts - the effector cells of muscle growth and regeneration - are affected. Using a combination of transcriptomic, molecular and functional analyses we demonstrate, to ou...
Article
Full-text available
Duchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying s...
Article
Full-text available
Background: Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5000 male births. Symptoms appear in early childhood, with a diagnosis made mostly around4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventi...
Article
Full-text available
Background; Perturbation of endothelial function in people with cystic fibrosis (CF) has been reported, which may be associated with endothelial cell expression of the cystic fibrosis transmembrane conductance regulator (CFTR). Previous reports indicate that CFTR activity upregulates endothelial barrier function, endothelial nitric oxide synthase (...
Article
Colloidal systems prepared from carbohydrates are subject of intense research due to their potential to enhance drug permeability through biological membranes, however their characteristics and performance are never compared directly. Here we report the results of a comparative investigation of a series of butylglyceryl-modified polysaccharides (ch...
Chapter
Purinergic signaling involves extracellular purines and pyrimidines acting upon specific cell surface purinoceptors classified into the P1, P2X, and P2Y families for nucleosides and nucleotides. This widespread signaling mechanism is active in all major tissues and influences a range of functions in health and disease. Orthologs to all but one of t...
Article
Full-text available
Duchenne muscular dystrophy (DMD) causes severe disability and death of young men due to progressive muscle degeneration aggravated by sterile inflammation. DMD is also associated with cognitive and bone-function impairments. This complex phenotype results from the cumulative loss of a spectrum of dystrophin isoforms expressed from the largest huma...
Preprint
Full-text available
Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5,000 male births. Symptoms appear in early childhood, with a diagnosis made around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be...
Article
Duchenne muscular dystrophy (DMD) causes severe disability of children and death of young men, with an incidence of approximately 1/5,000 male births. Symptoms appear in early childhood, with a diagnosis made around 4 years old, a time where the amount of muscle damage is already significant, preventing early therapeutic interventions that could be...
Article
Full-text available
Pectin is a polysaccharide with very good gel forming properties that traditionally has found important applications in foods and pharmaceutical industries. Although less studied, chemical modifications of pectin leading to a decrease in its hydrophilicity can be useful for the development of novel drug carriers. To this aim, butylglyceryl pectins...
Article
Full-text available
The P2RX7 receptor is a unique member of a family of extracellular ATP (eATP)-gated ion channels expressed in immune cells, where its activation triggers the inflammatory cascade. Therefore, P2RX7 has been long investigated as a target in the treatment of infectious and inflammatory diseases. Subsequently, P2RX7 signaling has been documented in oth...
Article
Full-text available
Duchenne muscular dystrophy (DMD) is the most common inherited muscle disorder that causes severe disability and death of young men. This disease is characterized by progressive muscle degeneration aggravated by sterile inflammation and is also associated with cognitive impairment and low bone density. Given that no current treatment can improve th...
Article
P2X7 purinoceptor promotes survival or cytotoxicity depending on extracellular adenosine triphosphate (ATP) stimulus intensity controlling its ion channel or P2X7-dependent large pore (LP) functions. Mechanisms governing this operational divergence and functional idiosyncrasy are ill-understood. We have discovered a feedback loop where sustained ac...
Article
Full-text available
A significant problem affecting gene therapy approaches aiming at achieving long-term transgene expression is the immune response against the protein product of the therapeutic gene, which can reduce or eliminate the therapeutic effect. The problem is further exacerbated when therapy involves targeting an immunogenic tissue and/or one with a pre-ex...
Article
Duchenne muscular dystrophy (DMD) is an inherited, lethal disorder characterised by progressive muscle degeneration and associated bone abnormalities. We have previously demonstrated that P2RX7 purinergic receptors contribute to the pathogenesis of DMD, and found that P2RX7 ablation alleviated the severity of the disease. In this work we have used...
Article
Full-text available
Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease leading to severe disability and death of young men. Current interventions are palliative as no treatment improves the long-term outcome. Therefore, new therapeutic modalities with translational potential are urgently needed and abnormalities downstream from the absence o...
Article
Full-text available
Background Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease, lead- ing to severe disability and death in young men. Death is caused by the progressive degen- eration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the mutant gene also include cognitive and behavioral impairments and lo...
Article
Sarcolemma damage and activation of various calcium channels are implicated in altered Ca2+ homeostasis in muscle fibres of both Duchenne muscular dystrophy (DMD) sufferers and in the mdx mouse model of DMD. Previously we have demonstrated that also in mdx myoblasts extracellular nucleotides trigger elevated cytoplasmic Ca2+ concentrations due to a...
Article
Full-text available
P2RX7 is an ATP-gated ion channel, which can also exhibit an open state with a considerably wider permeation. However, the functional significance of the movement of molecules through the large pore (LP) and the intracellular signaling events involved are not known. Here, analyzing the consequences of P2RX7 activation in primary myoblasts and myotu...
Article
Full-text available
Duchenne muscular dystrophy (DMD) is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molec...
Article
The P2 purinergic (nucleotide) receptor super-family comprises of two families of protein. The P2X, which are channel-forming ionotropic receptors and the P2Y metabotropic receptors activating G protein-mediated signalling pathways. Members of both groups have been identified in skeletal muscle cells at different stages of differentiation. It is we...
Article
Skeletal muscle (SM) is a heterogeneous and dynamic tissue that changes significantly in its form and function in response to external and internal stimuli and throughout life, from development right through to aging. The fully differentiated SM fiber is a highly specialized, complex and metabolically active cell containing finely tuned assemblies...
Article
Full-text available
Tensin3 is a cytoskeletal regulatory protein that inhibits cell motility. Downregulation of the gene encoding Tensin3 (TNS3) in human renal cell carcinoma (RCC) may contribute to cancer cell metastatic behavior. We speculated that epigenetic mechanisms, e.g., gene promoter hypermethylation, might account for TNS3 downregulation. In this study, we i...
Article
Full-text available
Insulin-like growth factor I (IGF-1) is an important peptide synthesized in response to growth hormone stimulation. Alternative promoters and an elaborate alternative splicing regulated in a tissue- and developmentally-specific manner result in the production of several distinct isoforms of IGF-1 [reviewed in Gorecki et al. (2007); Matheny et al. (...
Article
Full-text available
The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB),...
Article
Full-text available
P2X7 receptors function as ATP-gated cation channels but also interact with other proteins as part of a larger signalling complex to mediate a variety of downstream responses that are dependent upon the cell type in which they are expressed. Receptor-mediated membrane permeabilization to large molecules precedes the induction of cell death, but rem...
Article
Duchenne muscular dystrophy (DMD) is a lethal inherited muscle disorder. Pathological characteristics of DMD skeletal muscles include, among others, abnormal Ca2+ homeostasis and cell signalling. Here, in the mdx mouse model of DMD, we demonstrate significant P2X7 receptor abnormalities in isolated primary muscle cells and cell lines and in dystrop...
Article
A series of O-substituted alkylglyceryl chitosans with systematically varied alkyl chain length and degree of grafting has been employed for the formulation of aqueous nanoparticulate systems, which were in turn investigated for their effects on a modeled blood-brain-barrier system of mouse-brain endothelial cells. Barrier function measurements emp...
Article
Full-text available
The interactions of poly(ethylene oxide)-co-poly(propylene oxide) tri-block copolymers (PEO-PPO-PEO block copolymers, Pluronics®, Synperonics®, Poloxamers) of differing chemical composition with cell membranes were systematically investigated in order to clarify the mechanisms behind their previously reported various cellular responses. Relationshi...
Article
Cited References Count:3|ELSEVIER SCIENCE BV|PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS|ISI Document Delivery No.:828ZI
Article
Full-text available
The expression of ganglioside GD3, which plays crucial roles in normal brain development, decreases in adults but is upregulated in neoplastic cells, where it regulates tumor invasion and survival. Normally a buildup of GD3 induces apoptosis, but this does not occur in gliomas due to formation of 9-O-acetyl GD3 by the addition of an acetyl group to...
Article
Splice variants of P2X7 receptor transcripts contribute to the diversity of receptor-mediated responses. Here, we investigated expression and function of C-terminal truncated (ΔC) variants of the mP2X7 receptor, which are predicted to escape inactivation in one strain of P2X7(-/-) mice (Pfizer KO). Expression in wild-type (WT) and Pfizer KO tissue...
Article
Two Rapid Resolution Liquid Chromatography (RRLC) methods have been developed and validated for simultaneous quantification of eight major ginsenosides from Panax species, namely, R1, Rg1, Re, Rf, Rb1, Rb2, Rc, and Rd, and flavonoids from Epimedium species, namely, epimedins A, B, and C and icariin. The analyses were performed using an Agilent 1200...
Article
Echinacea angustifolia and E. purpurea are commonly used in North America for their anti-bacterial effects. Flos Lonicerae, Radix Scutellaria and Fructus Forsythiae are traditional Chinese medicinal herbs commonly used for the treatment of complaints such as pneumonia, acute upper respiratory tract infection, and acute bronchitis. A reproducible, s...
Article
A simple, sensitive and reliable reversed phase Rapid Resolution Liquid Chromatography (RRLC) method was developed and validated for six biologically active compounds (salidroside, tyrosol, rosarin, rosavin, rosin and rosiridin) in Rhodiola rosea L. roots and powder extracts. The method uses a Phenomenex C18 (2)-HST column at 40 degrees C with a ne...
Article
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy, in the majority of cases caused by mutations in the MLC1 gene. MRI from MLC patients shows diffuse cerebral white matter signal abnormality and swelling, with evidence of increased water content. Histopathology in a MLC patient shows vacuolation of my...
Article
Cited References Count:0|ELSEVIER SCI LTD|THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND|ISI Document Delivery No.:693PJ
Article
A series of O-substituted alkylglyceryl chitosans with systematically varied degrees of grafting was prepared through synthetic steps that involved the protection of amino moieties via phthaloylation and employed for the formulation of aqueous nanoparticulate systems that may be capable of delivering drugs to the brain. Dynamic light scattering stu...
Article
Insulin-like growth factor-1 (IGF-1) is a multifunctional peptide of which numerous isoforms exist. The predominant form, IGF-1Ea is involved in physiological processes while IGF-1Ec (mechano-growth factor, MGF) is expressed in response to a different set of stimuli. We have identified specific changes in the expression patterns of these IGF-1 vari...
Article
Duchenne Muscular Dystrophy is characterized by severe defects in differentiated muscle fibers, including abnormal calcium homeostasis and impaired cellular energy metabolism. Here we demonstrate that myoblasts derived from dystrophic (mdx) mouse exhibit reduced oxygen consumption, increased mitochondrial membrane potential, enhanced reactive oxyge...
Article
Full-text available
The ATP-activated P2X7 receptor channel is involved in immune function and inflammatory pain and represents an important drug target. Here we describe a new P2X7 splice variant (P2X7(k)), containing an alternative intracellular N terminus and first transmembrane domain encoded by a novel exon 1 in the rodent P2rx7 gene. Whole cell patch clamp recor...
Article
Full-text available
The development of blood-brain barrier (BBB)-targeting technologies is a very active field of research: targeting therapeutic actives to the central nervous system by means of systemic administration means crossing the BBB, and this is now one of the most challenging problems in drug development. The BBB is a unique regulatory system that protects...