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Abstract—In this paper, we present a low-cost stereo vision
system designed for object recognition with FPFH point feature
descriptors. Image acquisition is performed using a pair of
consumer market UVC cameras costing less than 80 Euros,
lacking synchronization signal and without customizable optics.
Nonetheless, the acquired point clouds are sufficiently accurate to
perform object recognition using FPFH features. The recognition
algorithm compares the point cluster extracted from the current
image pair with the models contained in a dataset. Experiments
show that the recognition rate is above 80% even when the object
is partially occluded.

I. INTRODUCTION

The diffusion of relatively accurate 3D sensors has popu-
larized scene interpretation and point cloud processing. Motion
planning, human-robot interaction, manipulation and grasp-
ing [1] have taken advantage from these advancements in
perception. In particular, identification of objects in a scene is
a fundamental task when the robot operates in environments
with human artifacts.

The complexity of object recognition depends on the
accuracy of sensors, on the availability of shape or color
information, on specific prior knowledge of the object dataset,
and on the setup or the operating context. Although 3D per-
ception is not mandatory for object recognition, the availability
of the object shape can improve the recognition and allows
the assessment of the object pose for further operations like
manipulation. Low-cost 3D sensors broaden the application
domains of shape processing and support the development
of effective algorithms. Depth cameras and RGB-D sensors
rely either on active stereo or on time-of-flight [2] and often
provide an off-the-shelf solution for end-users that does not
require complex calibration operations. However, active stereo
devices like MS Kinect [3] or Dinast Cyclope [4] are sensitive
to environment lighting conditions, since the perception of
patterns in infrared or other domains may be noisy. A cheap
stereo vision systems can be constructed using a pair of low-
cost cameras. Such cost-effective solution requires to manually
build the setup, to calibrate the complete system and to care-
fully tune the parameters to achieve a sufficiently dense point
cloud. Moreover, a stereo system can be designed according
to the requirements of a specific application (e.g. by adapting
the baseline). Since such 3D sensor is not an active sensor, it
can be used in outdoor environments.

A common requirement for a recognition algorithm is the
identification of a region of interest (ROI) corresponding to a
candidate object. This operation can be simplified by exploiting

the specific knowledge about the setup, e.g. all the candidate
objects lie on a table. Object recognition is commonly achieved
by extracting features that represent a signature for a point
neighborhood. Several 3D features to be extracted from point
clouds or other representations have been proposed during
the years. Spherical harmonic invariants [5] are computed on
parametrized surfaces as values invariant to translation and
rotation of such surfaces. Spin images [6] are obtained by
projecting and binning the object surface vertices on the frame
defined by an oriented point on the surface. Curvature map
method [7] computes a signature based on curvature in the
neighborhood of each vertex. Scale Invariant Feature Trans-
form (SIFT) [8], which extracts points and a signature vector
of descriptors characterizing the neighborhood, has established
a standard model for several point feature descriptors and
has popularized the feature constellation method to recognize
objects. According to such approach the signature of an object
consists of a collection of features extracted from the observa-
tion. Object recognition between the current observation and
an object model is performed by matching each descriptor
extracted from the observation with its closest descriptor in the
model. If many pairs of similar points have consistent relative
position, the comparison outcome is positive. The feature
constellation method exploits both feature similarity, which is
measured by a metric in descriptor space, and feature proxim-
ity. More recently, point feature descriptors designed according
to the point descriptor paradigm like Normal Aligned Radial
Feature (NARF) [9], Point Feature Histogram (PFH) and Fast
Point Feature Histogram (FPFH) [10] have been proposed for
3D points. FPFH are computed as histograms of the angle
between the normal of a point and the normals of the points
in its neighborhood. Several features have been proposed
and implemented in Point Cloud Library (PCL) [11]. These
methods usually provide a parameter vector that describes
the local shape. Such descriptors allow object recognition of
known objects by matching a model and the observed point
cloud.

In this paper, we present a low-cost stereo vision system
designed for object recognition with FPFH point feature de-
scriptors. We show its effectiveness even in presence of occlu-
sions. This work demonstrates that this fundamental task can
be performed using state-of-art algorithms on 3D sensor data
acquired with generic consumer hardware costing less than
80 Euros, taking a different approach from RGB-D cameras.
The stereo system has been built by mounting two Logitech
C270 UVC (USB Video Class) cameras on a rigid bar. The
main limitations of such sensors lie in the lack of hardware



synchronization trigger signals and of customizable optics.
A flaw in frame synchronization may affect the accuracy of
the disparity map. However, the overall image quality and
resolution and the approximate software synchronization allow
the computation of a sufficiently dense and accurate disparity
image to perform object recognition. The calibration (intrinsic
and extrinsic) and the computation the disparity image have
been performed using the packages and libraries provided
by ROS (Robotic Operating System) framework. Since scene
segmentation is not the aim of this work, the system works
under the assumption that all the objects to be recognized lie
on a planar surface and inside a given bounded region. The
object recognition algorithm is based on comparison of FPFH
feature collections. In particular, the FPFH points extracted
from the current point cloud are compared with the FPFH point
models contained in an object dataset. The dataset consists
of 8 objects observed from about 6 viewpoints. Tests have
been performed to evaluate the recognition performance of
the stereo system. The recognition algorithm has shown good
performance with true positive rate above 80%. The effects of
occlusion on recognition rate have been assessed by showing
that the recognition performance is only slightly affected when
the occluded part of the object is less than the 40% of its visible
surface.

The paper is organized as follows. Section II illustrates the
low-cost stereo system. Section III presents the algorithm for
the identification of the region of interest where the object
lies. Section IV presents the object recognition algorithms.
Section V presents the experiments performed to assess per-
formance and section VI discusses the results.

II. HARDWARE SETUP

The stereo camera developed in this work (Figure 1)
has been designed to be as general purpose as possible so
that object recognition tasks can be performed in different
scenarios. The stereo system exploits a pair of Logitech C270
webcams which offer a relatively good flexibility and quality
compared to other low-cost consumer cameras. Logitech C270
webcams provide a high definition image sensor with a maxi-
mum available resolution of 1280x720 pixels. At the maximum
resolution, the camera can grab frames with a frequency of 10
Hz.
This image sensor is fully compliant to UVC standard and
allows the setting of some image parameters like brightness,
contrast, white balance, exposure, gain and so on. Moreover,
each webcam exposes a unique serial number that can be
used to deploy a dedicated UDEV rule to set devices. In this
way the system univocally distinguishes between left and right
cameras.

The case has been built in aluminium to ensure a good
strength to the stereo camera. Thus, the sensor can be mounted
in mobile robots, on manipulators, and in other scenarios
where it could be mechanically stressed due to vibrations or
collisions.
The internal structure of the enclosure is realized in 5 mm
thick aluminium and all parts are mounted with M2.0 precision
screws. The webcam PCBs are fixed to the internal structure
with M1.6 precision screws that use the existing holes in
the boards. Moreover, the use of grover washers between
nuts guarantees a robust fastening, without movements of the

sensors that could compromise camera calibration.
On the bottom and on the back of the enclosure there are two
1/4“ UNC nuts fully compatible with photographic supports.
The overall final dimensions are 205x44x40 mm and the total
cost, webcams included, does not exceed 80 euro.

Fig. 1. Stereo camera realized with two Logitech C270 webcams.

When using non-professional devices for stereo vision, the
key problem is the impossibility to synchronize the cameras
with an external trigger signal. The timing incoherence of left
and right frames may generate gross errors when there is a
relative movement between scene and camera (moving scene
and/or moving camera). To reduce this issue the webcams
have been driven at the maximum frame rate available for
the selected resolution which does not saturate the USB 2.0
bandwidth. In this way the inter-frame time is reduced to
the minimum according to constraints imposed by the overall
system architecture.

The Logitech C270 webcams can provide images in SVGA
resolution (800x600) at 15 frames per second without fully
occupying the USB 2.0 bandwidth.
The frame grabbing task is assigned to the ROS package
uvc camera and in particular to a slightly modified version
of the stereo node which performs the acquisition of a couple
of roughly software-synchronized frames from two different
devices.
Figure 2 shows the time in milliseconds needed by the driver
to read both the left and right frames. The mean value is
equal to 66.01 ms which corresponds to a frequency of 15Hz
and the standard deviation is 3.73 ms. In the plotted sequence
of 5000 samples, only 11 acquisitions were found to be not
well synchronized because grabbing both the frames took



Parameter Value
prefilter size 9
prefilter cap 31
correlation window size 15
min disparity 0
disparity range 128
uniqueness ratio 15
texture threshold 9
speckle size 90
speckle range 4

TABLE I. PARAMETERS OF THE STEREO RECONSTRUCTION
ALGORITHM.

approximately twice the mean time. In the end, only 184
frames (corresponding to 3.68 %) were grabbed in a time
higher than mean +1σ.

Fig. 2. Acquisition time in milliseconds for both left and right frames

III. OBJECT CLUSTER EXTRACTION

The processing pipeline starts from the acquisition of
left and right frames. Then the standard ROS package
stereo image proc performs disparity and computes the re-
sulting point cloud. Parameters of the stereo reconstruction
algorithm are shown in Table I and example results in different
scenarios are displayed in Fig.3.

(a) (b) (c)

Fig. 3. Example results of stereo reconstruction in different scenarios: (a)
working environment; (b) interior and (c) exterior/automotive.

The 3D representation of the scene is then segmented and
filtered to only preserve information on the region of interest.
In this work we did not focus on detection, so the extraction

from the overall scene point cloud relies on the assumption that
the ROI is fixed. The working environment consists of a planar
surface with a known bounded region and an ARToolKit [12]
marker that identifies the global world frame. The first step of
object extraction is the geometric transformation of the point
cloud, required to express the points with respect to the center
of the world. The rototranslation matrices are obtained from
the values of position and orientation of the ARToolKit marker.
The resulting point cloud is then segmented with a bounding
box that discards all points of table and background using
Point Cloud Library (PCL) [13]. In the end, a statistical outlier
removal filter is applied to discard the remaining isolated
points. An example of a cluster of points resulting from the
extraction process is shown in Fig.4.

Fig. 4. Final result of the scene segmentation and filtering.

IV. RECOGNITION

Cluster recognition is the last step in the described pipeline
and aims at matching a selected cluster with an entry in a
dataset of known models. The dataset consists of a variable
number of views for each object, taken from pseudo-random
points of view, as shown in Figure 5. Each model is obtained
by accumulating points from multiple frames in order to fill
gaps of the cloud produced by stereo vision. Then a voxel grid
filter is applied to achieve a uniformly-sampled point cloud.
The recognition algorithm is based on point clouds alignment.
The two clouds of the i-th model Pmod

i and the current object
Pobj in 3D space need to be registered or aligned in order to
be compared. The registration procedure computes the rigid
geometric transformation that should be applied to Pmod

i to
align it to Pobj . Registration is performed in three different
steps:

• Remove dependency on external reference frame.
Pmod
i and Pobj are initially expressed in the reference

of the respective centroids.

• Perform initial alignment.
The algorithm estimates an initial and sub-optimal
alignment between point clouds. This step is per-
formed with the assistance of a RANSAC method that



Fig. 5. Multiple models obtained from different PoV for an example object.

Algorithm 1: Registration procedure
Data:
Pmod

i : Point cloud of i-th model;
Pobj : Point cloud of the object to be recognized;
R: set of search radii in FPFH features computation;
Result:
Pmod

i,aligned: Aligned point cloud of the model;
Pobj

c ← shiftToCentroid(Pobj);1
Pmod

i,c ← shiftToCentroid(Pmod
i );2

Pmod
i,sac ← ∅;3

foreach r ∈ R do4
Fo ← computeFPFH(Pobj

c ,r);5
Fm ← computeFPFH(Pmod

i,c ,r);6

Pmod,r
i,sac ← getRANSACAlignment(Pobj

c ,Fo,Pmod
i,c ,Fm);7

if getFitness(Pmod,r
i,sac ) > getFitness(Pmod

i,sac) then8

Pmod
i,sac ← Pmod,r

i,sac ;9
end10

end11
Pmod

i,aligned ← getICPAlignment(Pmod
i,sac,Pobj);12

uses FPFH descriptors as parameters for the consensus
function. The computation of FPFH is performed
using different search radii.

• Refine the alignment.
The initial alignment is then refined with an ICP
algorithm that minimizes the mean square distance
between points.

The procedure is detailed in Algorithm 1 and an example result
is shown in Figure 6.

Recognition is then performed by computing a fitness value
that evaluates the overall quality of the alignment between
Pmod
i,aligned and Pobj . For each point of Pobj , the algorithm

calculates the square mean distance from the nearest point of
Pmod
i,aligned and retrieves the percentage of points whose distance

is below a fixed threshold δth:

Q =
{
pi ∈ Pobj : ‖pj − pi‖2 ≤ δth, pj ∈ Pmod

i,aligned

}
fitness(Pobj ,Pmod

i,aligned) =
|Q|
|Pobj | (1)

Algorithm 2: Overall recognition procedure
Data:
Pmod[·]: List of point cloud models;
Pobj : Point cloud of the object to be recognized;
Result:
name: Name of the recognized object;
Fmax ← 0;1
foreach Pmod

i ∈ Pmod[·] do2
Pmod

i,aligned ← performRegistration(Pmod
i , Pobj);3

Fi ← getFitness(Pobj , Pmod
i,aligned);4

if Fi > Fmax then5
Fmax ← Fi;6
name← name of Pmod

i ;7
end8

end9

Fig. 6. Alignment of a model after RANSAC (blue) and after ICP (green)
to the object (red).

Maximum fitness, equal to 100%, is obtained when all points
of Pobj have a neighbour in Pmod

i,aligned within δth.
The algorithm is iterated for each model in the dataset and
returns the recognized model with the higher fitness, as shown
in Algorithm 2.

V. RESULTS

This section presents the experiments performed to assess
the performance of the recognition algorithm illustrated in
the previous section. These results show the performance
afforded by a low-cost stereo system in 3D object recognition.
The object extraction and the recognition modules have been
implemented as separated components using ROS framework.
The experimental setup consists of the stereo vision system
described in this paper with one of the candidate objects
placed in front of the sensor. The experiments are designed
to assess the object recognition algorithm, in particular when
only a partial point cloud of the object is available due to
noisy segmentation and occlusions. Test set consists of a fixed
sequence of 2241 object point clouds taken from random
viewpoints. The dataset consists of 61 models representing
the 8 objects in Figure 7 (8 views for each object on average).
Table II shows the confusion matrix obtained without imposing
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horse starlet 144 2 0 0 0 0 0 0
horse 0 111 2 0 0 0 0 0
baby 1 0 128 2 0 0 0 0
big detergent 0 1 1 60 0 0 0 14
fire 5 3 3 0 111 1 0 0
woolite 2 0 6 8 0 116 0 0
chocolate 3 4 9 3 0 23 67 0
hammer 14 2 3 10 0 6 2 132

TABLE II. CONFUSION MATRIX FOR EACH CATEGORY WITHOUT OCCLUSION.

Fig. 7. Set of objects for the recognition experiment.

# dataset radius [mm]
test01 61 3,5,10,20,30,50
test02 32 3,5,10,20,30,50
test03 61 3,10,30
test04 24 3,5,10,20,30,50
test05 61 5,15
test06 32 5,15
test07 32 3,10,30

TABLE III. DIFFERENT TUNING OF ALGORITHM PARAMETERS.

a threshold on fitness. The classification results show that,
even without a threshold on fitness to detect true negatives,
correct matches largely prevail. The articulated objects (horse,
horse starlet, baby and fire) are better recognized.

The next test series takes into account parameters of the
algorithm like the number of model views in the dataset and
the search radius used to compute the FPFH (trials are called
test01, test02, etc. in Table III). The true positive and false
positive rates for the different trials are shown in Figure 8.
Experimental results show the importance of including dataset
models taken from multiple viewpoints. Keeping fixed all the
parameters while decreasing the dataset size, the percentage
of true positives decreases (see test01, test02 and test04). On
the other hand, the recognition rate is only slightly affected
by restricting the set of search radii used to compute FPFH
features when the full dataset of model views is available
(compare test01, test03 and test05 in Figure 8). The Receiver
Operating Charateristic curves in Figure 9 depict the perfor-
mance of the classifier as its discrimination threshold is varied.
To summarize, the webcam-based stereo system together with
the recognition algorithm has shown good performance, with
true positive rate above 80% provided that sufficient viewpoint
models are available.
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Fig. 8. True and false positive rates for the tests in Table III.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

tr
u
e 

p
o
si

ti
v
e 

ra
te

false positive rate

test01
test02
test03
test04
test05
test06
test07

Fig. 9. ROC curves for tests test01 to test07.

We have then evaluated the recognition algorithm with
partial and occluded objects. In order to have comparable
results, occlusions have been artificially generated with a
random procedure. The occlusion generator processes the
original test set and for each view chooses a random point
in the cloud and removes all points within a random radius.
In this way it generates a new synthetically occluded test set
with occlusions measured as percentage of removed points. Six
different tests have been performed with increasing occlusions



occl 10to20 occl 20to30 occl 30to40
Occlusions [%] 10-20 20-30 30-40

True Pos. [%] 76 70 60
False Pos. [%] 24 30 40

TABLE IV. EXPERIMENTAL RESULTS FOR TEST SET WITH
OCCLUSIONS AND RECOGNITION PARAMETERS AS TEST05 [TABLE III]
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Fig. 10. ROC curves for tests with occlusions.

from 10% to 70% of the object surface perceived from the
current viewpoint. Recognition results are shown in Table IV.
Recognition algorithm still exhibits good performance with
occlusions up to 30% with true positive rates above 70%.
Performance rapidly decreases with occlusions up to 40% and
then collapses with increasing percentage of occluded points.
Figure 10 shows Precision-Recall curves for all tests with
occlusions and a reference test without them. Performance with
occlusions up to 30% is consistent with the reference test.

VI. CONCLUSION

In this paper, we have illustrated a low-cost stereo vision
system and its application to object recognition. The hardware
consists of a pair of consumer market cameras mounted on
a rigid bar and costs less than 80 Euros. These cameras lack
hardware-synchronized trigger signals and do not allow optics
customization. In spite of such limitations, the point cloud
obtained using the ROS packages for acquisition, calibration
and disparity image computation is sufficiently accurate for
the given task. The point cloud cluster containing the object
to be recognized is identified under the hypothesis that such
object lies on a planar surface and inside a given bounded
region. The recognition algorithm is based on the extraction
and comparison of FPFH features and is robust to partial
views and to occlusions. Each candidate object is compared
with the models contained into a dataset defined a priori.
Experiments have been performed to assess the performance
of the algorithm and have shown an overall recognition rate
above 80%. The effect of occlusion on recognition rate has
been assessed by showing that recognition performance is only
slightly affected even when occlusion removes up to 30% of
the object surface perceived from the current viewpoint.

In the system described in this work, the ROI is fixed and
a single object is assumed to lie in the scene. We are currently

working on an object detection algorithm dealing with less
restrictive assumptions about the objects in the scene and the
region of interest.
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