
Dario Lopez-Pintor- Ph.D Mechanical Engineering
- Principal Investigator at Sandia National Laboratories
Dario Lopez-Pintor
- Ph.D Mechanical Engineering
- Principal Investigator at Sandia National Laboratories
Research to improve efficiency and reduce emissions of off-road mixing-controlled combustion engines.
About
70
Publications
3,156
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
606
Citations
Introduction
Dr. Dario Lopez Pintor is responsible for research to improve efficiency and reduce emissions of off-road mixing-controlled combustion engines and advanced compression-ignition engines. His research activities include mixture formation, catalyst heating and heat transfer in off-road compression-ignition engines, combustion control and engine performance of advanced compression-ignition gasoline engines, and chemical kinetics of conventional and renewable fuels.
Current institution
Additional affiliations
September 2013 - July 2017
Education
September 2013 - September 2017
Polytechnic University of Valencia
Field of study
- Mechanical Engineering
Publications
Publications (70)
div class="section abstract"> Low Temperature Gasoline Combustion (LTGC) in compression ignition engines is controlled by chemical kinetics and the autoignition reactivity of the fuel-air mixture, which are heavily influenced by the composition of the fuel. To investigate fuel-engine interactions, experiments were performed on a single-cylinder LTG...
div class="section abstract"> Methanol is one of the most promising fuels for the decarbonization of the off-road and transportation sectors. Although methanol is typically considered an alternative fuel for spark ignition engines, mixing-controlled compression ignition (MCCI) combustion is typically preferred in most off-road and medium-and heavy-...
div class="section abstract"> Drop-in gasoline fuels that originate from renewable, low-net-carbon sources, such as methanol-to-gasoline (MTG), are an important bridge in the transition between traditional fossil fuels and electrification of the transportation sector. The composition of these fuels can be tuned by adjusting the settings of the chem...
div class="section abstract"> Minimizing the time needed to achieve light-off temperatures in diesel engine aftertreatment devices is key to mitigate pollutant emissions during the first minutes of operation. Catalyst heating operation typically includes one or multiple post-injections late during the expansion stroke aimed to increase the enthalpy...
In this study, a computational fluid dynamics (CFD) model of a single-cylinder compression ignition engine is developed and validated under motoring conditions. The engine used is the Ricardo Hydra engine at the Advanced Combustion and Energy Systems laboratory at Stony Brook University, which is highly instrumented to collect all data necessary fo...
div class="section abstract"> Sustainable Aviation Fuels (SAFs) offer great promises towards decarbonizing the aviation sector. Due to the high safety standards and global scale of the aviation industry, SAFs pose challenges to aircraft engines and combustion processes, which must be thoroughly understood. Soot emissions from aircrafts play a cruci...
div class="section abstract"> Catalyst heating operation in compression-ignition engines is critical to ensure rapid light-off of exhaust catalysts during cold-start. This is typically achieved by using late post injections for increased exhaust enthalpy, which retardability is constrained by acceptable CO and unburned hydrocarbons emissions, since...
Low-temperature gasoline combustion (LTGC) with additive-mixing fuel injection (AMFI) is a new combustion strategy that has been demonstrated to deliver 9%–25% better brake thermal efficiency than similar-sized market-leading diesel engines over the operating map. Moreover, the LTGC-AMFI engine shows near-zero smoke, and NOx emissions are 4–100 tim...
div class="section abstract"> Methanol emerges as a compelling renewable fuel for decarbonizing engine applications due to a mature industry with high production capacity, existing distribution infrastructure, low carbon intensity and favorable cost. Methanol’s high flame speed and high autoignition resistance render it particularly well-suited for...
div class="section abstract"> Ethanol blending is one method that can be used to reduce knock in spark ignition engines by decreasing the autoignition reactivity of the fuel and modifying its laminar flame speed. In this paper, the effects of ethanol blending on knock propensity and flame speed of petroleum and low-carbon gasoline fuels is analyzed...
div class="section abstract"> Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies with very low NOx and soot emissions, but rapid control of the combustion timing remains a challenge. Partial Fuel Stratification (PFS) was demonstrated to be an effective approach to control combustion in LTGC engines. PFS is produced by...
Computational Fluid Dynamics (CFD) simulations have a great potential to guide the optimization of fuel stratification strategies for internal combustion engines, but well-validated spray models are required. In this study, we aim to understand the current capability of CFD simulations, under conditions representative of partially stratified advanc...
The present work focuses on the derivation and evaluation of a chemical kinetic mechanism of primary reference fuel [(PRF, binary blends of n-heptane and isooctane)] with a homogeneous reactors approach starting from a detailed one. Results show that the optimized mechanism can replicate the results of the detailed one with high accuracy. The mecha...
div class="section abstract"> Knock in spark-ignition (SI) engines has been a subject of many research efforts and its relationship with high efficiency operating conditions keeps it a contemporary issue as engine technologies push classical limits. Despite this long history of research, literature is lacking coherent and generalized descriptions o...
Advanced Low Temperature Combustion modes, such as the Sandia proposed Additive-Mixing Fuel Injection (AMFI), can unlock significant potential to boost fuel conversion efficiency and ultimately improve the energy conversion of internal combustion engines. This is a novel improved combustion process that is enabled by supplying small (<5%) variable...
Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies with very low NOx and particulate emissions. Despite these major advantages, methods for controlling LTGC combustion timing, achieving robust autoignition, and good low-load performance have challenged the development of practical LTGC engines. A key reason is that the...
div class="section abstract"> A novel advanced combustion strategy that employs the kinetically controlled compression ignition of gasoline whose autoignition is sensitive to fuel concentration is termed Low Temperature Gasoline Combustion. The LTGC method can achieve high thermal efficiency with a commercially available fuel while generating ultra...
div class="section abstract"> To cope with regulatory standards, minimizing tailpipe emissions with rapid catalyst light-off during cold-start is critical. This requires catalyst-heating operation with increased exhaust enthalpy, typically by using late post injections for retarded combustion and, therefore, increased exhaust temperature. However,...
div class="section abstract"> Despite recent advances towards powertrain electrification as a solution to mitigate pollutant emissions from road transport, synthetic fuels (especially e- fuels) still have a major role to play in applications where electrification will not be viable in short-medium term. Among e-fuels, oxymethylene ethers are gettin...
In this study, a skeletal chemical kinetic mechanism for gasoline surrogates is developed from a detailed mechanism by applying several reduction techniques. Directed relation graph (DRG) routines and DRG-aided sensitivity analysis methods are applied with worst-case error tolerances equal to 30% and 40%, respectively. Issues with reaction dead-end...
In this study, the effects of doping a regular E10 gasoline with 2-ethlyhexyl nitrate (EHN) are investigated under homogeneous charge compression ignition conditions. Experiments are performed in a 1-liter single-cylinder engine fueled with both straight and EHN-doped E10 gasoline. Numerical studies are performed with an internal combustion engine...
A numerical and experimental investigation about the chemical kinetic interactions between 2-ethylhexylnitrate (EHN) and PRF91 was performed in this study. Rapid compression machine experiments were conducted to investigate the effect of EHN on the autoignition reactivity of the fuel, and a reduced chemical kinetic mechanism was developed including...
An experimental and numerical study of combustion of a gasoline certification fuel (‘indolene’), and four (S4) and five (S5) component surrogates for it, is reported for the configurations of an isolated droplet burning with near spherical symmetry in the standard atmosphere, and a single cylinder engine designed for advanced compression ignition o...
This work seeks to characterize the fidelity needed in a gasoline surrogate with the intent to replicate the complex autoignition behavior exhibited within advanced combustion engines, and specifically Homogeneous Charge Compression Ignition (HCCI). A low-temperature gasoline combustion (LGTC) engine operating in HCCI mode and a rapid compression m...
Diesel piston-bowl shape is a key design parameter that affects spray-wall interactions and turbulent flow development, and in turn affects the engine’s thermal efficiency and emissions. It is hypothesized that thermal efficiency can be improved by enhancing squish-region vortices as they are hypothesized to promote fuel-air mixing, leading to fast...
div class="section abstract"> Autoignition enhancing additives have been used for years to enhance the ignition quality of diesel fuel, with 2-ethylhexyl nitrate (EHN) being the most common additive. EHN also enhances the autoignition reactivity of gasoline, which has advantages for some low-temperature combustion techniques, such as Sandia’s Low-T...
div class="section abstract"> To comply with increasingly stringent pollutant emissions regulations, diesel engine operation in a catalyst-heating mode is critical to achieve rapid light-off of exhaust aftertreatment catalysts during the first minutes of cold starting. Current approaches to catalyst-heating operation typically involve one or more l...
Renewable liquid fuels have potential to greatly reduce the carbon footprint of the transportation sector while leveraging existing powertrain technologies and infrastructure. Prior studies identified a mixture of 2-methyl furan and 2, 5 dimethyl furan as one of the most promising components for formulating renewable gasoline fuel blends. Within th...
Abstract
Homogenous charge compression ignition engines have been studied as an alternative to the conventional diesel combustion to attain high efficiency with ultra-low NOx and soot emissions for a wide variety of fuels. However, its usage in real applications has been restricted due to the difficulties regarding combustion control and operating...
Partial fuel stratification (PFS) is a low temperature combustion strategy that can alleviate high heat release rates of traditional low temperature combustion strategies by introducing compositional stratification in the combustion chamber using a split fuel injection strategy. In this study, a three-dimensional computational fluid dynamics (CFD)...
Combustion of a seven-component surrogate for a research grade 87 octane gasoline mixed with 10% ethanol is investigated experimentally and numerically from the perspective of an isolated droplet burning under conditions that promote one-dimensional gas transport. The numerical analysis included a kinetic mechanism comprised of 398 species and 24,8...
This work evaluates the performance of Computational Fluid Dynamics modeling using a Reynolds Average Navier-Stokes turbulence approach and the coupling of an Eulerian diffuse-interface (Ʃ-Y) spray model and an Unsteady Flamelet Progress Variable combustion model. All models are implemented using the open-source CFD software OpenFOAM. The approach...
The development of gasoline compression ignition engines operating in a low temperature combustion mode depends heavily on robust control of the heat release profile. Partial fuel stratification is an effective method for controlling the heat release by creating a stratified mixture prior to autoignition, which can be beneficial for operation acros...
div class="section abstract"> ϕ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. However, regular gasoline is not very ϕ-sensitive at low-pressure conditions, meaning that intake boosting (typically P<sub>in</sub> ≥ 1.3 bar) is required to take adva...
The ignition characteristics of six different fuels have been correlated as a function of the temperature, pressure, equivalence ratio and oxygen molar fraction in this investigation. More specifically, the ignition delay referred to cool flames, the high-temperature ignition delay and the critical concentrations and ignition times of HO2 and CH2O...
A phenomenological explanation about the autoignition propagation under HCCI conditions is developed in this paper. To do so, diffusive effects from the burned zones to the fresh mixture, pressure waves based effects and expansion effects caused by combustion are taken into account. Additionally, different Damköhler numbers have been defined and ev...
Seven different chemical kinetic mechanisms for n-dodecane, two detailed and five reduced, have been evaluated under Engine Combustion Network (ECN) thermodynamic conditions by comparison to experimental measurements in a Rapid Compression-Expansion Machine (RCEM). The target ECN conditions are imposed at Top Dead Center (TDC), which cover a wide r...
A predictive procedure for cool flames and high-temperature ignition delays based on the accumulation and consumption of chain carriers has been validated for n-dodecane under engine conditions. To do so, an experimental parametric study has been carried out in a Rapid Compression-Expansion Machine, measuring the ignition times for different compre...
An alternative procedure to predict both high-temperature stage and cool flames ignition delays under transient thermodynamic conditions is intended to be validated in this paper. An experimental study has been carried out in a Rapid Compression-Expansion Machine (RCEM), using different iso-octane/n-heptane blends in order to cover a wide range of...
An experimental and theoretical study about the characterization of the discharge coefficient of diesel injection nozzles under non-cavitating conditions is presented in this paper. A theoretical development based on the boundary layer equations has been performed to define the discharge coefficient of a convergent nozzle. The discharge coefficient...
A new procedure to predict both high-temperature stage and cool flames ignition delays under transient thermodynamic conditions has been developed in this paper. The results obtained have been compared with those obtained from the Livengood & Wu integral method, as well as with other predictive methods and with direct chemical kinetic simulations a...
An experimental and theoretical study about the autoignition phenomenon has been performed in this article. A new procedure to predict ignition delays under transient (i.e. variable) thermodynamic conditions has been developed starting from the Müller's chemical kinetics mechanism. The results obtained have been compared with those obtained from th...
An investigation of the effects of contour conditions and fuel properties on ignition delay time under Homogeneous Charge Compression Ignition (HCCI) conditions is presented in this study. A parametric variation of initial temperature, intake pressure, compression ratio, oxygen concentration and equivalence ratio has been carried out for Primary Re...
A theoretical study about the autoignition phenomenon has been performed in this article. The hypotheses of the Livengood & Wu integral have been revised, concluding that the critical concentration of chain carriers is not constant. However, its validity under engine conditions has been justified. Expressions to characterize the temporal evolution...