Daniella Goindin

Daniella Goindin
Institut Pasteur de la Guadeloupe · Laboratory of Medical Entomology

PhD Student

About

17
Publications
4,177
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
973
Citations

Publications

Publications (17)
Article
Full-text available
Aedes aegypti develop in aquatic habitats in which mosquito larvae are exposed to physicochemical elements and microorganisms that may influence their life cycle and their ability to transmit arboviruses. Little is known about the natural bacterial communities associated with A. aegypti or their relation to the biotic and abiotic characteristics of...
Preprint
Full-text available
Background: Immature stages of Aedes aegypti develop in many man-made aquatic habitats in which mosquito larvae are exposed to physicochemical elements and microorganisms that may influence their life cycle and their ability to transmit human arboviruses. Despite the omnipresence of Ae. aegypti in tropical and subtropical regions, little is known a...
Article
Full-text available
This study was aimed to identify the chemical compounds of Aedes aegypti that can be potentially used to develop pheromone-based vector control methods. In this study, we compared the chemical compounds collected from the organs of mosquitoes at different developmental stages in the life cycle. We also compared the composition and amount of extract...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Background Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technology (MALDI-TOF MS) is an innovative tool that has been shown to be effective for the identification of numerous arthropod groups including mosquitoes. A critical step in the implementation of MALDI-TOF MS identification is the creation of spectra database...
Article
Full-text available
West Nile (WN) virus has been detected in Guadeloupe since 2002. Even if no WN human cases have been detected so far, mosquitoes from Culex genus especially Culex quinquefasciatus are recognized as potential WN vectors in Guadeloupe. To evaluate the impact of local vector control activities on this mosquito species we assessed the resistance levels...
Article
Full-text available
Guadeloupe islands are threatened by several mosquito-borne viruses such as Dengue, Chikungunya, Zika and West Nile virus. It appears essential to look for alternative mosquito control methods such as the incompatible insect technique (ITT) aiming at sterilizing wild females by inundative releases of incompatible males. Before considering the imple...
Article
Full-text available
Human-driven global environmental changes have considerably increased the risk of biological invasions, especially the spread of human parasites and their vectors. Among exotic species that have major impacts on public health, the dengue fever mosquito Aedes aegypti originating from Africa has spread worldwide during the last three centuries. Altho...
Article
Full-text available
Background In the Guadeloupe and Saint Martin islands, Aedes aegypti mosquitoes are the only recognized vectors of dengue, chikungunya, and Zika viruses. For around 40 years, malathion was used as a mosquito adulticide and temephos as a larvicide. Since the European Union banned the use of these two insecticide molecules in the first decade of the...
Article
Full-text available
Background Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the...
Article
Full-text available
Background: In Guadeloupe, Aedes aegypti mosquitoes are the only vectors of dengue and chikungunya viruses. For both diseases, vector control is the only tool for preventing epidemics since no vaccine or specific treatment is available. However, to efficiently implement control of mosquitoes vectors, a reliable estimation of the transmission risks...

Network

Cited By