
Transfer of Driving Behaviors Across

Different Racing Games

Luigi Cardamone, Antonio Caiazzo, Daniele Loiacono and Pier Luca Lanzi

Abstract— Transfer learning might be a promising approach
to boost the learning of non-player characters’ behaviors by
exploiting some existing knowledge available from a different
game. In this paper, we investigate how to transfer driving
behaviors from The Open Racing Car Simulator (TORCS) to
VDrift, which are two well known open-source racing games
featuring rather different physics engines and game dynam-
ics. We focus on a neuroevolution learning framework based
on NEAT and compare three different methods of transfer
learning: (i) transfer of the learned behaviors; (ii) transfer
of the learning process; (iii) transfer of both the behaviors
and the process. Our experimental analysis suggests that all
the proposed methods of transfer learning might be effectively
applied to boost the learning of driving behaviors in VDrift
by exploiting the knowledge previously learned in TORCS. In
particular, transferring both learned behaviors and learning
process appears to be the best trade-off between the final
performance and the computational cost.

I. INTRODUCTION

In the recent years, the computer games market is growing

fast both in the number of published titles and in the

complexity of the games. To boost the game development it is

possible to use third-party packages like graphics engines and

physics engines. In this context, it became important to have

some techniques to speed-up also the development of the

Artificial Intelligence (AI) of the game, i.e., the behaviors of

the non-player characters (NPCs). There is the need of some

sort of pluggable AI, i.e., a set of algorithms independent

from the specific game and from its representation, that can

work on different games to achieve some common tasks (e.g.

navigating a 3D environment, driving, aiming, etc.).

A first step towards a pluggable AI has been done with the

General Game Playing (GGP) competition [10]. In this com-

petition an agent has to play an unknown game described in

first order logic. Although good results have been achieved,

the agents can only play games that are deterministic and

with perfect information (like board games), where it is easy

to simulate the future states of the game given the description

of the rules. These conditions usually do not hold in many

computer games where the agent has to control continuous

outputs and the future game states cannot be predicted.

A different approach for boosting the development of the

AI of NPCs is to re-use an existing AI already developed

in a similar game. This type of problem is part of the area

Luigi Cardamone (cardamone@elet.polimi.it), Antonio Caiazzo (anto-
nio.caiazzo.work@gmail.com), Daniele Loiacono (loiacono@elet.polimi.it)
and Pier Luca Lanzi (lanzi@elet.polimi.it) are with the Dipartimento di
Elettronica e Informazione, Politecnico di Milano, Milano, Italy. Pier Luca
Lanzi (lanzi@illigal.ge.uiuc.edu) is also member of the Illinois Genetic Al-
gorithm Laboratory (IlliGAL), University of Illinois at Urbana Champaign,
Urbana, IL 61801, USA.

known as Transfer Learning (TL) [26], [23]. In this paper,

we show how transfer learning can be applied to exploit the

knowledge gathered in one source domain for accelerating

the learning in a target domain. We take into account two

racing games with many differences related to the physics

engine and the game dynamics: TORCS and VDrift. In

particular we focus on a driving behavior represented by a

neural network and evolved using neuroevolution. We study

how the knowledge already available for TORCS can be used

to accelerate the learning of a driving behavior for VDrift. In

general, transfer learning, involves the transfer of policies or

functions that represent a particular behavior. In this work,

we use the term transfer learning in a broader sense since we

study also how it is possible transfer the fitness function and

the evaluation mechanism across different domains. In our

experimental analysis we compare three different approaches

for transfer learning: (i) transfer of the learned behaviors, by

copying the existing behaviors from the source domain to

the target domain; (ii) transfer of the learning process, by

replicating in the target domain the evaluation mechanism

and the fitness designed for the source domain; (iii) transfer

of both the behaviors and the process, by replicating the

evolutionary process of the source domain and by performing

an incremental learning using the source behavior as a seed.

The results shows that all the three approaches work and the

adaptation technique has the best trade-off in term of driving

performance and evolution time. This paper is organized

as follows: in Section II, we review the related works

about racing games and transfer learning; in Section III,

we present the neuroevolutionary approach used; in Section

IV, we describe the racing games used for the experiments;

in Section V, we describe the sensors and the actuators of

the driver; in Section VI, we present three approaches for

applying transfer learning and the results achieved; finally in

Section VII, we present the conclusions of the work.

II. RELATED WORK

Some of the early works on racing games were performed

by Togelius et al. using a simple java-based 2D car racing

game. In [27], [28], Togelius et al. investigated several

schema of sensory information (e.g., first person based, third

person based, etc.) and studied the generalization capabilities

of the evolved controllers.

More recently, Cardamone et al. [6], [5] applied neu-

roevolution to evolve a driving and an overtaking behavior,

in a sophisticated 3D car racing simulator (TORCS). The

overtaking issue was consider also in [18] using a modular

fuzzy architecture and in [15] using Reinforcement Learning.

 978-1-4577-0011-8/11/$26.00 ©2011 IEEE 227

In [9] evolutionary computation is applied to find the optimal

racing line between the shortest path and the maximum

curvature path of the track. Several works, like [16] [7] [29],

applied imitation learning both to learn from human data

and to generate believable drivers, i.e., drivers with a human

driving-style. In [31] and in [8], genetic algorithms were

applied to optimize the car setup using respectively the games

Formula One Challenge and TORCS. Some of the most

recent works [19], [3], [17] on racing games originate from

the submission to the Simulated Car Racing Championship

[14], an international competition organized by Loiacono et

al. where the goal is to develop the best driver for TORCS

able to race alone and against the other competitors.

Finally, the computational intelligence techniques have

been also applied to some commercial racing games. In

Colin McRae Rally 2.0 (Codemasters) a neural network

is used to drive a rally car, thus avoiding the need to

handcraft a large and complex set of rules [11]: a feedforward

multilayer neural network has been trained to follow the

ideal trajectory, while the other behaviors ranging from the

opponent overtaking to the crash recovery are programmed.

In Forza Motorsport (Microsoft) the player, can train his own

drivatars, i.e., a controller that learns the player’s driving

style and that can take his place in the races.

In this work, we exploit the knowledge available in one

game (TORCS) to accelerate the learning in an another game

(VDrift). This type of problem belongs to the area known as

Transfer Learning (TL) [26], [23]. This area studies how the

knowledge learned on a source task can be exploited to speed

up the learning on a new target task. Several methods of

transfer learning have been specifically devised to be applied

in Reinforcement Learning (RL) or Temporal Difference

(TD) learning [21]. Such methods either focus on the transfer

of value functions (e.g., [22], [24]) or experience instances

(e.g., [13]). Only few works in the literature (see [23] for

an overview) focused on transferring the learned policies

and, thus, can be applied to the methods that perform a

search in the policy space (like NEAT [20]). One of the

earliest examples of transfer learning in on-line evolution is

due to Lanzi [12] who used populations of condition-action-

prediction rules (called classifiers) evolved for simple tasks to

seed the evolution of solutions in similar problems involving

more complex state-action spaces.

The works that are more related to our study are [25] and

[4]. In [25], Taylor et al. show that is possible to transfer

the knowledge evolved using NEAT, when the target task

has either a different state space or a different action space.

In particular, they used the population evolved by NEAT in

the source task to seed the initial population for the target

task. In [4], transfer learning is applied to transfer driving

behaviors within the racing game TORCS. In particular, a

driving policy evolved on one source track was than used to

accelerate the learning on a different target track. At the best

of our knowledge there is no work in the literature which

studies transfer learning of policies across similar computer

games.

III. NEAT

In this study, we focused on Neuroevolution with Aug-

menting Topology or NEAT [20], one of the most suc-

cessful and widely applied neuroevolution approach. NEAT

is specifically designed to evolve neural networks without

assuming any a priori knowledge on the optimal topology

nor on the type of connections (e.g., simple or recurrent

connections). NEAT is based on three main ideas. First,

in NEAT the evolutionary search starts from a network

topology as simple as possible, i.e. a fully connected network

with only the input and the output layers. Complex struc-

tures emerge during the evolutionary process and survive

only when useful. Second, NEAT deals with the problem

of recombining networks with different structures through

an historical marking mechanism. Whenever a structural

mutation occurs, a unique innovation number is assigned

to the gene representing this innovation. This mechanism

is then used to perform the recombination and to identify

similarities between the networks without the need of a

complex and expensive topological analysis. Third, NEAT

protects the structural innovations through the mechanism

of speciation. The competition to survive does not happen

in the whole population but it is restricted to niches where

all the networks have a similar topology. Therefore, when a

new topology emerges, NEAT has enough time to optimize it.

Again, the historical marking is used to identify the niches by

using the innovation numbers of the genes for measuring the

similarities between different topologies. To prevent a single

species from taking over the population, the networks in the

same niche share their fitness. Then, in the next generation

more resources will be allocated to the species with greater

fitness.

IV. OPEN SOURCE RACING GAMES

In this section we review all the open-source car racing

games currently available. We focus only on open-source

racing games because the possibility of modifying the source

code is essential for any research work. Finally, we motivate

why in this work we focus on the game VDrift.

A. TORCS

The Open Racing Car Simulator (TORCS) [1] is a state-

of-the-art open source car racing simulator which provides

a sophisticated physics engine, full 3D visualization (Fig-

ure 1), several tracks and models of cars, and different

game modes (e.g., practice, quick race, championship, etc.).

The car dynamics is accurately simulated and the physics

engine takes into account many aspects of racing cars such

as traction, aerodynamics, fuel consumption, etc. The game

distribution includes several programmed bots which can be

easily customized or extended to build new bots. TORCS

has a big community of users which contribute to the game

providing additional resources like tracks, textures, and car

models. TORCS has been used for several competitions both

in the academic [14] and non-academic [8] field.

228 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)

Fig. 1. A screenshot from TORCS.

B. VDrift

VDrift [30] is one of the best open-source car racing

game. The developments was started in 2005 by Joe Venzon.

Its main main features are represented by the high quality

3D visualization and by a good playability. For the physics

simulation it uses Bullet1, an open source physics engine

featuring 3D collision detection, soft body dynamics, and

rigid body dynamics (also used in commercial games like

for example Grand Theft Auto IV2). Thus, the physics

simulation is very accurate. Particular attention is devoted to

the simulation of the loss of traction that result in the drift.

The only aspect missing is a model for the damage suffered

by the cars. The community around VDrift is smaller that

the TORCS one and it is hard to find additional resources.

Fig. 2. A screenshot from VDrift.

C. Others

Among the other open-source car racing games we cite

Speed Dreams, RARS, and Vamos.

Speed Dreams [2] is a fork of TORCS, which aims to

implement exciting new features to make a more enjoyable

1http://bulletphysics.org/
2http://www.rockstargames.com/IV/

game for the player, as well as constantly improving visual

and physics realism. The main claim of the Speed Dreams

project is a faster release process (1 or 2 releases per year)

thanks to a more active community of users.

RARS (Robot Auto Racing Simulator) is an old 3D racing

simulator designed to enabled pre-programmed AI drivers to

race against one another. RARS was used as the base for

TORCS.

Vamos is an automotive simulation framework with an

emphasis on thorough physical modeling. It was used as a

base for developing VDrift.

D. Discussion

The goal of this work is to compare the results already

available for TORCS [6] with a similar game type but with

enough differences in the game dynamics and in the physics

simulation. We discarded RARS since its code was used as

a base for TORCS. We discarded Speed Dreams as it is a

fork of TORCS and share the same physics engine (even if

there can be some upgrades). The only remaining choices are

Vamos and VDrift. At this point, VDrift was a quite obvious

choice since it is a more sophisticated version of Vamos.

TORCS and VDrift have completely different physics en-

gines: the first one has a physics engine specifically designed

for that racing game; the latter use a general purpose 3D

physics engine (Bullet). Also the simulation granularity is

different: TORCS updates the game state 50 times every

game second while VDrift updates the game state 100 times

per seconds. These differences lead also to different game

dynamics in terms of drivability, steering sensitivity and

achievable speeds. Other differences are introduced by the

fact that the car models available in VDrift are different from

the one used in [6].

To have an idea of the differences between TORCS and

VDrift we compared the performance of the bots available

in each game driving in the same tracks. Some tracks are

available for both games since they use the same file format

(a common standard for 3D objects called AC3D 3). Table I

reports the lap times achieved by the bot Inferno in TORCS

and the bot VDrift-AI in VDrift. It is possible to see that the

lap times achieved in VDrift are higher than in TORCS with

an average overhead of 32%. Part of this overhead is due

to the different programmed policy used by the bots. The

different driving policy is not enough to justify such a big

difference. From a deeper analysis it seems that the overhead

is mainly due to the different accelerations achievable and so

to the maximum speed and the braking capabilities.

V. DRIVER MODEL

The goal of this work is to transfer a driving behavior

across two different racing games. The transfer learning

techniques applied heavily rely on the model used for repre-

senting the target behavior. In this work, we want to exploit

the results already available in TORCS from one of our

previous work [6]. Thus, in this work we will use the same

3http://www.inivis.com/ac3d/man/ac3dfileformat.html

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 229

TABLE I

COMPARISON BETWEEN THE VDRIFT-AI AND ONE OF THE BEST BOT OF

TORCS.

Track VDrift-AI(s) Torcs-AI (s) Overhead

Dirt-3 100.87 65.5 35%

Ruudskogen 92.67 65.9 29%

Suzuka-2005 170.15 114.6 33%

behavior model and the same sensors/actuators model used

[6]. In this way we can focus on the mechanism for adapting

the behavior between two games with different dynamics

rather than on the mapping between different representations

of the behavior or of the sensors model. In particular, in

[6], the driving behavior is represented through a neural

network evolved using NEAT while the sensors and the

actuators model is based on a representation already used

in many works (e.g., [28]) and in the Simulated Car Racing

Competition [14].

The sensor model is essentially based on an egocentric

representation of the track. It is implemented through a

rangefinder sensor. The rangefinder casts an array of beams,

with a range of 100m, around the car and returns the distance

from the car to the track edge (Figure 3). Each beam is

identified by the angle relative to the car axis. The available

beams range from −90o (left side of the car) to +90o (right

side of the car).

Fig. 3. A screenshot of the rangefinder sensor.

In particular the input sensors used by the neural network

are 8: (i) six rangefinder sensors to perceives the track edges

along the directions { - 90o , - 60o , - 30o , + 30o , +

60o , + 90o }; (ii) an aggregated frontal sensor computed

as the biggest value among the ones returned from the three

rangefinders along the directions {- 10o , 0o , + 10o }; (iii)

the current speed of the car.

The actuators used by the car are the usual ones: the

steering wheel, the acceleration, the braking pedal and the

gear stick. Similarly to what done in [6] the neural controller,

has two continuous outputs in the range [-1,1]. The first one

is used to control the steering wheel. The second one is used

to control the gas and brake pedals as follows. If the output

is less than zero it is assigned, as a positive value, to the

brake effector, resulting in a braking command. Otherwise it

is assigned to the throttle effector, resulting in an acceleration

command. In addition, when the car is in a straight segment

of the track, i.e., when the frontal sensor does not perceive

the track edge within 100 meters, the gas pedal is set to 1

and the brake pedal is set to 0.

Finally, to deal with the gear shifting, we used a pro-

grammed policy: while it is quite complex to develop a

good policy that controls the speed and the trajectory of

the car, an effective gear shifting policy can be quite easily

programmed. The controller is also provided with a scripted

recovery policy to be used when the car goes outside of the

track.

VI. EXPERIMENTAL RESULTS

In this section, we describe three methodologies for trans-

ferring the knowledge acquired in one domain (TORCS) for

learning a driving policy in another domain (VDrift). For

each methodology, we present the experimental results and

finally we discuss which is the approach with the best trade-

off.

A. Using an existing Driver

The simplest way for transferring the knowledge from

TORCS to VDrift is to copy the given behavior as it is, from

the source domain to the target domain. In [6] the driving

behavior is represented through a neural network that can be

easily loaded and simulated in another game. From [6] we

selected the neural network with the best driving performance

(i.e., with the highest fitness). This neural network is the

core of the driver that resulted to be one of the best entries

of the Simulated Car Racing Championship 2009 [14] and

the winner of the 2008 IEEE CIG Simulated Car Racing

competition. Thus we will refer to this particular neural

network with the name Champion2009. This driving behavior

was evolved in the track Wheel-1, depicted in Figure 4, which

is available only for TORCS. To simulate the neural network

exactly in the same way we used the same version of NEAT

employed in [6].

Fig. 4. Track Wheel-1 used in [6] to evolve the driver Champion2009 for
TORCS.

To allow this neural network to work properly, we im-

plemented in VDrift the same sensor model used in [6],

as described into Section V. To test the performance of

Champion2009 when driving in VDrift we selected 4 tracks

with increasing difficulty and the car Ferrari 360 Modena.

The 4 tracks used for the experiments of this work are

reported in Figure 5. The tracks Dirt3, Ruudskogen, Suzuka

230 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)

TABLE II

LAP TIMES OF CHAMPION2009 VERSUS VDRIFT-AI IN VDRIFT.

Track Champion2009 (s) VDrift-AI (s)

Dirt-3 106.55 100.87

Ruudskogen 117.50 92.67

Suzuka-2005 227.47 170.15

Sepang 271.47 159.37

are available both for TORCS and VDrift while the track

Sepang is available only for VDrift.

(a) Dirt-3 (b) Ruudskogen

(c) Suzuka (d) Sepang

Fig. 5. VDrift tracks used for the experiments reported in this paper.

Table II reports the performance of the Champion2009

when drives in VDrift. The performance are measured as

the lap time in seconds achieved during the second lap.

To evaluate the driver on the entire track, we added a

simple recovery policy just in case the car goes off-road.

The neural network cannot recover the car by its self since

the rangefinder sensor is not defined outside the track. As

reference, Table II reports also the lap time achieved by

the best AI available for VDrift. In the track Dirt-1, the

Champion2009 drives well and its lap time is similar to the

one achieved by VDrift-AI. In Ruudskogen, the performance

is worse but the Champion2009 is able to drive well for the

entire track. In the most difficult tracks, Suzuka and Sepang,

the car goes outside the track in some critical points. The

recovery policy is used to take the car on track. The lap

times are much higher since each time the recovery policy

is activated, it takes around 20 seconds to bring the car on

track. If we consider that there are many differences between

the dynamics of the two games (as pointed out in Section

IV), it is surprising how well the driver behaves in VDrift: it

drives well on two medium difficulty tracks and for a large

part of the two most difficult tracks.

B. Evolution From Scratch

In general, applying neuroevolution to learn a target be-

havior in a given game is not an easy task. It requires

a good knowledge of the problem in order to design an

effective evaluation process of the individuals. This usually

involves: (i) the definition of a simulation in the game to

extract some measures of the target task; (ii) the definition

of the fitness which is a combination of the extracted

features. Finally, it may be necessary to tune the parameters

of evolutionary algorithm, that in some cases can affect

drastically the final performances. This activity, is usually

a trial and error process that is quite time consuming. In

this second approach we want to exploit the knowledge

acquired in [6] for TORCS to speed-up the design of the

evolutionary process for learning a driver in VDrift. Thus,

the goal is to understand if the neuroevolutionary approach

proposed for TORCS is general enough and can be applied

to another game without any tuning. In this context, the term

Transfer Learning is overloaded since it is usually associated

to transfer a policy rather than to the design of the learning

experiment and the fitness function.

In this experiment we replicated the same experimental

setup and the same fitness used in [6] without any tuning

to the coefficient of the formula or to the parameters of

the evolutionary algorithm. To train the driving behavior we

evolved a population of 100 networks for 150 generations

with the standard C++ implementation of NEAT [20]. The

performance of each neural network is evaluated using a

simulation in VDrift. During the simulation, the neural

network is used to control the car to drive on a given track.

The evaluation ends when the a lap is completed or when

the simulation time is greater than a certain threshold. When

the simulation is over, the fitness of the neural network is

computed as follows:

F = C1 − Tout + C2 · s̄+ d,

where Tout is the number of game tics the car is outside the

track; s̄ is the average speed (meters for game tic) during the

evaluation; d is the distance (meters) raced by the car during

the evaluation; C1 and C2 are two constants introduced

respectively to make sure that the fitness is positive and to

scale the average speed term. C1 was set 1000 like in [6].

Instead C2 was set to 6000, the double of the value used in

[6], just because TORCS engine simulates 50 tics per second

while VDrift simulate 100 tics per second.

Table III reports the results of the evolution performed

in four different tracks. For each experiment we report the

performance of the best driver evolved. In particular we

report the fitness, the lap time, the seconds spent outside the

track and percentage of track covered by the driver. From the

results, it is possible to see that in every track was possible

to evolve a driver that can cover the entire track without

going outside. The lap times are generally better than the

previous case. The only exception is track Sepang where

to avoid going off-road, the evolution generated a very safe

and slow driver. Thus, the experimental design presented [6]

worked without any modification for VDrift and allowed to

avoid a trial and error activity to setup an effective learning

experiment.

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 231

TABLE III

EVOLUTION FROM SCRATCH IN VDRIFT.

Track Laptime (s) Fitness Outside (s) Raced

Dirt-3 111.96 4412.10 0.09 100%

Ruudskogen 110.60 5835.08 0.00 100%

Suzuka-2005 256.92 8167.85 1.04 100%

Sepang 403.68 7342.87 0.22 100%

TABLE IV

SEEDED EVOLUTION IN VDRIFT.

Track Champion2009 Champion Adaptation Improvement

Dirt-3 3711.16 4387.49 18%

Ruudskogen 5269.72 6005.55 14%

Suzuka-2005 4172.36 8657.21 107%

Sepang 2379.44 7742.95 225%

C. Adapting an Existing Driver

The third approach that we investigated is somehow a

combination of the previous approaches. We take the neural

network evolved in TORCS and we apply another run of

neuroevolution to adapt that behavior to the new dynamics of

VDrift. To do so, we follow the same approach outlined in the

evolution from scratch with the same experimental setup, the

same evaluation mechanism and the same fitness. While in

the evolution from scratch the initial population is random, in

this case the initial population is seeded with slightly muted

copies of the neural network of the Champion2009.

The results are reported in Table IV where we report

the fitness of the Champion2009 (the seed), the fitness of

best driver evolved and the percentage of the improvement.

The evolution is always able to improve the performance

of the Champion2009. While in the medium difficulty track

the improvement is moderate in the most difficult track the

improvement is very high.

D. Discussion

In this section we want to compare the performance of the

three approaches presented so far. Table V reports the lap

time, the average speed and the time spent outside the track

for all the drivers developed with the considered methods.

It is possible to see that the behavior of the Champion2009

is very aggressive: it drives very fast but often can go off

track. This is particularly true in the last track where its

aggressive policy drives very fast but it is not able to brake

effectively before the two narrow turns after the two main

straights (see Figure 5(c)). This can happens because of the

difference in the simulation engine between TORCS and

VDrift. On the other side the best drivers evolved from

scratch present a very cautious driving policy that never goes

off road. While in the first three tracks the drivers achieve

competitive lap times, in the last track a too cautious driving

policy results in a very high lap time: to avoid going off-road

in the two strongest turns of Sepang the driver learns a sub-

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120 140

F
it
n

e
s
s

Number of Generations

From Scratch
Adaptation

Championship2009

Fig. 6. Fitness trend of the evolutionary processes From Scratch and with
Adaptation in track Dirt-3. For comparison it is also reported the fitness of
the Champion2009.

optimal policy which drives very slow during all the straight.

The drivers evolved using adaptation show the best trade-off

between the aggressive driving policy of the Champion2009

and the cautious one of the drivers evolved from scratch.

So, the aggressive and fast policy of the Champion2009

is somehow adapted to the new dynamics generated from

the VDrift engine. The best drivers evolved with adaptation

achieve the best lap time in 3 tracks over 4 and only in one

case a driver goes off-road for more than one second.

It is also interesting to consider the evolution time for

finding a good driver. The evolution time is very important

since, each run can last from 10 to even more than 100 hours
4 depending on the length of the track and the performance of

the individuals. This happens because each fitness evaluation

requires to simulate a race of one lap which takes few

seconds, but in some cases can be longer than 10-20 seconds
5. As an example we report the performance on the track

Dirt-3. Figure 6 shows the fitness trend of the evolutionary

process From Scratch and with Adaptation in the track Dirt-

3. For comparison it is also reported the fitness of the

Champion2009. The process with Adaptation takes only 4

generations to find a competitive driver with a fitness of

4192.47. The process from scratch takes 24 generations to

find a driver with fitness 4176.88, and 37 generations for a

champion of 4191.4.

From our analysis it is possible to see that the drivers

evolved with adaptation represent the best trade-off in terms

of driving performance and learning speed (it can save

several hours of computation). Thus, adapting for few gen-

erations a pre-existing model seems to be a promising way

for transferring the knowledge across similar domains.

4The computer used for the experiments has a Core i5 and 4 GB of RAM
5The simulation is performed using a customized version of VDrift where

we disabled the graphical visualization. In this way, it was possible to get
a simulation around 10 times faster.

232 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)

TABLE V

COMPARISON BETWEEN THE CHAMPION2009 AND THE BEST DRIVERS EVOLVED FROM SCRATCH AND WITH ADAPTATION.

Track Statistics Champion2009 From Scratch Adaptation

Dirt-3

outside (s) 7.39 0.09 0.00

lap time (s) 106.55 111.96 112.64

avg speed (Km/h) 74.7 71.1 70.7

Ruudskogen

outside (s) 4.91 0.00 0.17

lap time (s) 117.50 110.60 100.91

avg speed (Km/h) 97.8 104.0 114.0

Suzuka-2005

outside (s) 28.38 1.04 0.00

lap time (s) 250.48 256.92 189.00

avg speed (Km/h) 84.1 82.0 111.5

Sepang

outside (s) 76.38 0.22 2.27

lap time (s) 271.47 403.68 268.86

avg speed (Km/h) 73.6 49.5 74.3

VII. CONCLUSIONS

In this paper we investigated how to transfer the knowl-

edge between two complex domains. In particular we took

into account two types of knowledge: (i) the behavior of

an agent represented by a neural network; (ii) the fitness

and the experimental design used to evolve the agent for a

particular task. We considered two racing games with enough

differences regarding the simulation engine: TORCS and

VDrift.

We investigated three different methodologies for trans-

ferring knowledge. The first one consists in copying directly

the behavior evolved in TORCS to VDrift. The second one

consists in replicating in VDrift the same fitness and the

same experimental setup used to evolve a driver for TORCS.

In this case we do not transfer a behavior, but the process for

evolving the desired behavior. The third one is a combination

of the previous methods: the behavior evolved in TORCS, is

adapted in VDrift applying another run of neuroevolution.

In this way the original behavior is adapted to the different

dynamics of the target game.

For the experiments we used 4 tracks: two with medium

difficulty and two with very high difficulty. Three of these

tracks are available for both games while one is available

only for VDrift. The results show that all the three methods

work. The behaviors obtained using the three techniques

are quite different: (i) the first method yields a very fast

and aggressive driver that in the most difficult tracks can

go off-road; (ii) the second one evolves very safe drivers

that in some tracks can be much slower; (iii) the third one

generates drivers that are both fast and safe. The third method

shows a good trade-off in terms of performance and evolution

time, since only few generations are necessary to obtain a

good driver. In conclusion, adapting an existing solution is

a promising method for transferring knowledge between two

similar domains.

This work can be extended in several ways. A first exten-

sion can be to consider other types of game like for example

First Person Shooters (FPS). A second extension can involve

pairs of different game types: for example transferring a

driving behavior to a FPS for navigating a 3D environment.

In this case, different sensors and actuators can be involved

and it can be necessary to learn also the mapping between

the source and the target input/output model. Finally, a

very interesting extension is to study the transfer knowledge

problem with different representations of the behavior (fuzzy,

RL, etc.).

REFERENCES

[1] The open racing car simulator. http://torcs.sourceforge.

net/.
[2] Wolf-Dieter Beelitz, Xavier Bertaux, Brian Gavin, Eckhard M. Jaeger,

Kristf Kly-Kullai, Gbor Kmetyk, Enrico Mattea, Jean-Philippe Meuret,
Haruna Say, and Andrew Sumner. Speed dreams - a free open
motorsport sim and open source racing game. http://www.

speed-dreams.org/.
[3] Martin V. Butz and Thies D. Lonneker. Optimized sensory-motor

couplings plus strategy extensions for the torcs car racing challenge.
In Computational Intelligence and Games, 2009. CIG 2009. IEEE

Symposium on, pages 317–324, Sept. 2009.
[4] L. Cardamone, D. Loiacono, and P. L. Lanzi. Learning to drive in the

open racing car simulator using online neuroevolution. Computational

Intelligence and AI in Games, IEEE Transactions on, 2(3):176 –190,
sep. 2010.

[5] Luigi Cardamone. On-line and off-line learning of driving tasks for
the open racing car simulator (torcs) using neuroevolution. Master’s
thesis, Politecnico di Milano, 2008.

[6] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. Evolving
competitive car controllers for racing games with neuroevolution. In
GECCO ’09: Proceedings of the 11th Annual conference on Genetic

and evolutionary computation, pages 1179–1186, New York, NY,
USA, 2009. ACM.

[7] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. Learning
drivers for torcs through imitation using supervised methods. In Com-

putational Intelligence and Games, 2009. CIG 2009. IEEE Symposium

on, pages 148–155, Sept. 2009.
[8] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. Applying

cooperative coevolution to compete in the 2009 torcs endurance world
championship. In Evolutionary Computation (CEC), 2010 IEEE

Congress on, pages 1 –8, jul. 2010.
[9] Luigi Cardamone, Daniele Loiacono, Pier Luca Lanzi, and Alessan-

dro Pietro Bardelli. Searching for the optimal racing line using genetic
algorithms. In Computational Intelligence and Games (CIG), 2010

IEEE Symposium on, pages 388 –394, aug. 2010.

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 233

[10] Michael Genesereth and Nathaniel Love. General game playing:
Overview of the aaai competition. AI Magazine, 26:62–72, 2005.

[11] Jeff Hannan. Interview to jeff hannan, 2001.
http://www.generation5.org/content/2001/hannan.asp.

[12] Pier Luca Lanzi. Extending the Representation of Classifier Conditions
Part I: From Binary to Messy Coding. In Wolfgang Banzhaf, Jason
Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark
Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO 99), pages 337–344,
Orlando (FL), July 1999. Morgan Kaufmann.

[13] Alessandro Lazaric. Knowledge transfer in reinforcement learning.
PhD thesis, Politecnico di Milano, 2008.

[14] D. Loiacono, P.L. Lanzi, J. Togelius, E. Onieva, D.A. Pelta, M.V.
Butz, T.D. Lonneker, L. Cardamone, D. Perez, Y. Saez, M. Preuss,
and J. Quadflieg. The 2009 simulated car racing championship.
Computational Intelligence and AI in Games, IEEE Transactions on,
2(2):131 –147, jun. 2010.

[15] Daniele Loiacono, Alessandro Prete, Pier Luca Lanzi, and Luigi
Cardamone. Learning to overtake in torcs using simple reinforcement
learning. In Evolutionary Computation (CEC), 2010 IEEE Congress

on, pages 1 –8, jul. 2010.
[16] Jorge Munoz, German Gutierrez, and Araceli Sanchis. Controller for

torcs created by imitation. In Computational Intelligence and Games,

2009. CIG 2009. IEEE Symposium on, pages 271–278, Sept. 2009.
[17] E. Onieva, D. A. Pelta, J. Alonso, V. Milanes, and J. Perez. A modular

parametric architecture for the torcs racing engine. In Computational

Intelligence and Games, 2009. CIG 2009. IEEE Symposium on, pages
256–262, Sept. 2009.

[18] Enrique Onieva, Luigi Cardamone, Daniele Loiacono, and Pier Luca
Lanzi. Overtaking opponents with blocking strategies using fuzzy
logic. In Computational Intelligence and Games (CIG), 2010 IEEE

Symposium on, pages 123 –130, aug. 2010.
[19] J. Quadflieg, M. Preuss, O. Kramer, and G. Rudolph. Learning the

track and planning ahead in a car racing controller. In Computational

Intelligence and Games (CIG), 2010 IEEE Symposium on, pages 395
–402, aug. 2010.

[20] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary Computation, 10(2):99–
127, 2002.

[21] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An

Introduction. MIT Press, Cambridge, MA, 1998.
[22] Matthew E. Taylor and Peter Stone. Behavior transfer for value-

function-based reinforcement learning. In Frank Dignum, Virginia
Dignum, Sven Koenig, Sarit Kraus, Munindar P. Singh, and Michael
Wooldridge, editors, The Fourth International Joint Conference on

Autonomous Agents and Multiagent Systems, pages 53–59, New York,
NY, July 2005. ACM Press.

[23] Matthew E. Taylor and Peter Stone. Transfer learning for reinforce-
ment learning domains: A survey. Journal of Machine Learning

Research, 10(1):1633–1685, 2009.
[24] Matthew E. Taylor, Peter Stone, and Yaxin Liu. Value functions for

RL-based behavior transfer: A comparative study. In Proceedings of

the Twentieth National Conference on Artificial Intelligence, July 2005.
[25] Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Transfer

via inter-task mappings in policy search reinforcement learning. In
The Sixth International Joint Conference on Autonomous Agents and

Multiagent Systems, pages 156–163, May 2007.
[26] Sebastian Thrun. Is learning the n-th thing any easier than learning the

first? In Advances in Neural Information Processing Systems, pages
640–646. The MIT Press, 1996.

[27] J. Togelius and S.M. Lucas. Evolving robust and specialized car racing
skills. pages 1187–1194, 0-0 2006.

[28] Julian Togelius and Simon M. Lucas. Evolving controllers for
simulated car racing. In Proceedings of the Congress on Evolutionary

Computation, 2005.
[29] N. van Hoorn, J. Togelius, D. Wierstra, and J. Schmidhuber. Robust

player imitation using multiobjective evolution. In Evolutionary

Computation, 2009. CEC ’09. IEEE Congress on, pages 652–659, May
2009.

[30] Joe Venzon. Vdrift: a cross-platform, open source driving simulation.
http://vdrift.net/.

[31] Krzysztof Wloch and Peter J. Bentley. Optimising the performance of
a formula one car using a genetic algorithm. In Proceedings of Eighth

International Conference on Parallel Problem Solving From Nature,
pages 702–711, 2004.

234 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)

