Daniele Jahier Pagliari

Daniele Jahier Pagliari
Polytechnic University of Turin | polito · DAUIN - Department of Control and Computer Engineering

PhD

About

119
Publications
23,058
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
821
Citations
Introduction
Assistant Professor (RTD-B) in the EDA Group of Politecnico di Torino. Interested in Embedded Systems, Embedded Machine Learning, EDA and Low-Power Design.

Publications

Publications (119)
Article
The resource requirements of deep neural networks (DNNs) pose significant challenges to their deployment on edge devices. Common approaches to address this issue are pruning and mixed-precision quantization, which lead to latency and memory occupation improvements. These optimization techniques are usually applied independently. We propose a novel...
Preprint
Full-text available
Streamlining the deployment of Deep Neural Networks (DNNs) on heterogeneous edge platforms, coupling within the same micro-controller unit (MCU) instruction processors and hardware accelerators for tensor computations, is becoming one of the crucial challenges of the TinyML field. The best-performing DNN compilation toolchains are usually deeply cu...
Preprint
Full-text available
Analog-on-Top Mixed Signal (AMS) Integrated Circuit (IC) design is a time-consuming process predominantly carried out by hand. Within this flow, usually, some area is reserved by the top-level integrator for the placement of digital blocks. Specific features of the area, such as size and shape, have a relevant impact on the possibility of implement...
Preprint
Full-text available
Very High Resolution (VHR) geospatial image analysis is crucial for humanitarian assistance in both natural and anthropogenic crises, as it allows to rapidly identify the most critical areas that need support. Nonetheless, manually inspecting large areas is time-consuming and requires domain expertise. Thanks to their accuracy, generalization capab...
Preprint
The demand for executing Deep Neural Networks (DNNs) with low latency and minimal power consumption at the edge has led to the development of advanced heterogeneous Systems-on-Chips (SoCs) that incorporate multiple specialized computing units (CUs), such as accelerators. Offloading DNN computations to a specific CU from the available set often expo...
Preprint
Full-text available
PPG-based Blood Pressure (BP) estimation is a challenging biosignal processing task for low-power devices such as wearables. State-of-the-art Deep Neural Networks (DNNs) trained for this task implement either a PPG-to-BP signal-to-signal reconstruction or a scalar BP value regression and have been shown to outperform classic methods on the largest...
Conference Paper
Full-text available
Accurate State of Health (SoH) estimation is indispensable for ensuring battery system safety, reliability, and run-time monitoring. However, as instantaneous runtime measurement of SoH remains impractical when not unfeasible, appropriate models are required for its estimation. Recently, various data-driven models have been proposed, which solve va...
Preprint
Full-text available
The resource requirements of deep neural networks (DNNs) pose significant challenges to their deployment on edge devices. Common approaches to address this issue are pruning and mixed-precision quantization, which lead to latency and memory occupation improvements. These optimization techniques are usually applied independently. We propose a novel...
Preprint
Full-text available
This study presents a novel approach for EEG-based seizure detection leveraging a BERT-based model. The model, BENDR, undergoes a two-phase training process. Initially, it is pre-trained on the extensive Temple University Hospital EEG Corpus (TUEG), a 1.5 TB dataset comprising over 10,000 subjects, to extract common EEG data patterns. Subsequently,...
Preprint
Full-text available
Depthwise separable convolutions are a fundamental component in efficient Deep Neural Networks, as they reduce the number of parameters and operations compared to traditional convolutions while maintaining comparable accuracy. However, their low data reuse opportunities make deploying them notoriously difficult. In this work, we perform an extensiv...
Preprint
Full-text available
Optimal deployment of deep neural networks (DNNs) on state-of-the-art Systems-on-Chips (SoCs) is crucial for tiny machine learning (TinyML) at the edge. The complexity of these SoCs makes deployment non-trivial, as they typically contain multiple heterogeneous compute cores with limited, programmer-managed memory to optimize latency and energy effi...
Conference Paper
For the competitiveness of the European economy, automation techniques in the design of complex electronic systems are a prerequisite for winning the global chip challenge. Specifically, while the physical design of digital Integrated Circuits (ICs) can be largely automated, the physical design of Analog-Mixed-Signal (AMS) ICs built with an analog-...
Preprint
Full-text available
Transformer-based foundation models have become crucial for various domains, most notably natural language processing (NLP) or computer vision (CV). These models are predominantly deployed on high-performance GPUs or hardwired accelerators with highly customized, proprietary instruction sets. Until now, limited attention has been given to RISC-V-ba...
Conference Paper
Nowadays, GNSS (GNSS) receivers are embedded in a variety of electronics devices, and a growing number of users rely on them to track their position, velocity, and time. The density of Global Navigation Satellite System (GNSS) receiver has especially increased in urban areas with the advent of small-scaled IoT devices. Due to the limited GNSS signa...
Article
Transformer-based foundation models have become crucial for various domains, most notably natural language processing (NLP) or computer vision (CV). These models are predominantly deployed on high-performance GPUs or hardwired accelerators with highly customized, proprietary instruction sets. Until now, limited attention has been given to RISC-V-ba...
Preprint
Full-text available
p>Continuous Hearth Rate (HR) monitoring based on photoplethysmography (PPG) sensors is a crucial feature of almost all wrist-worn devices. However, arm movements lead to the creation of Motion Artifacts (MA), affecting the performance of PPG-based HR tracking. This problem is commonly tackled by exploiting the recorded accelerometer data to correl...
Chapter
Modern space applications impose significant challenges to the design of hardware and software platforms. Beyond traditional applications such as avionics, Attitude Orbit Control, and signal/telemetry processing, new developments increasingly leverage Machine Learning models to enhance the autonomy of spacecraft. Such AI-based functionalities promi...
Article
Full-text available
Ultra-low-resolution Infrared (IR) array sensors offer a low-cost, energy-efficient, and privacy-preserving solution for people counting, with applications such as occupancy monitoring and visitor flow analysis in private and public spaces. Previous work has shown that Deep Learning (DL) can yield superior performance on this task. However, the lit...
Preprint
Full-text available
Accurate yet efficient Deep Neural Networks (DNNs) are in high demand, especially for applications that require their execution on constrained edge devices. Finding such DNNs in a reasonable time for new applications requires automated optimization pipelines since the huge space of hyper-parameter combinations is impossible to explore extensively b...
Preprint
Full-text available
The need to execute Deep Neural Networks (DNNs) at low latency and low power at the edge has spurred the development of new heterogeneous Systems-on-Chips (SoCs) encapsulating a diverse set of hardware accelerators. How to optimally map a DNN onto such multi-accelerator systems is an open problem. We propose ODiMO, a hardware-aware tool that perfor...
Preprint
Full-text available
Modern smartwatches often include photoplethysmographic (PPG) sensors to measure heartbeats or blood pressure through complex algorithms that fuse PPG data with other signals. In this work, we propose a collaborative inference approach that uses both a smartwatch and a connected smartphone to maximize the performance of heart rate (HR) tracking whi...
Preprint
Full-text available
Ultra-low-resolution Infrared (IR) array sensors offer a low-cost, energy-efficient, and privacy-preserving solution for people counting, with applications such as occupancy monitoring. Previous work has shown that Deep Learning (DL) can yield superior performance on this task. However, the literature was missing an extensive comparative analysis o...
Preprint
Full-text available
Miniaturized autonomous unmanned aerial vehicles (UAVs) are an emerging and trending topic. With their form factor as big as the palm of one hand, they can reach spots otherwise inaccessible to bigger robots and safely operate in human surroundings. The simple electronics aboard such robots (sub-100mW) make them particularly cheap and attractive bu...
Article
Full-text available
Hand gesture recognition applications based on surface electromiographic (sEMG) signals can benefit from on-device execution to achieve faster and more predictable response times and higher energy efficiency. However, deploying state-of-the-art deep learning (DL) models for this task on memory-constrained and battery-operated edge devices, such as...
Preprint
Full-text available
Neural Architecture Search (NAS) is quickly becoming the go-to approach to optimize the structure of Deep Learning (DL) models for complex tasks such as Image Classification or Object Detection. However, many other relevant applications of DL, especially at the edge, are based on time-series processing and require models with unique features, for w...
Article
Full-text available
With the increasing popularity of Internet of Things (IoT) devices, there is a growing need for energy-efficient Machine Learning (ML) models that can run on constrained edge nodes. Decision tree ensembles, such as Random Forests (RFs) and Gradient Boosting (GBTs), are particularly suited for this task, given their relatively low complexity compare...
Article
The rapid proliferation of computing domains relying on Internet of Things (IoT) devices has created a pressing need for efficient and accurate deep-learning (DL) models that can run on low-power devices. However, traditional DL models tend to be too complex and computationally intensive for typical IoT end-nodes. To address this challenge, Neural...
Chapter
Random Forests (RFs) are popular Machine Learning models for edge computing, due to their lightweight nature and high accuracy on several common tasks. Large RFs however, still have significant energy costs, a serious concern for battery-operated ultra-low-power devices. Following the adaptive (or dynamic) inference paradigm, we introduce a hardwar...
Article
Full-text available
Human Activity Recognition (HAR) based on inertial data is an increasingly diffused task on embedded devices, from smartphones to ultra low-power sensors. Due to the high computational complexity of deep learning models, most embedded HAR systems are based on simple and not-so-accurate classic machine learning algorithms. This work bridges the gap...
Article
Full-text available
Background Since February 2020, the COVID-19 epidemic has rapidly spread throughout Italy. Some studies showed an association of environmental factors, such as PM10, PM2.5, NO2, temperature, relative humidity, wind speed, solar radiation and mobility with the spread of the epidemic. In this work, we aimed to predict via Deep Learning the real-time...
Article
Full-text available
Stratifying prognosis following coronary bifurcation percutaneous coronary intervention (PCI) is an unmet clinical need that may be fulfilled through the adoption of machine learning (ML) algorithms to refine outcome predictions. We sought to develop an ML-based risk stratification model built on clinical, anatomical, and procedural features to pre...
Preprint
Full-text available
Quantization is widely employed in both cloud and edge systems to reduce the memory occupation, latency, and energy consumption of deep neural networks. In particular, mixed-precision quantization, i.e., the use of different bit-widths for different portions of the network, has been shown to provide excellent efficiency gains with limited accuracy...
Preprint
Full-text available
Human Activity Recognition (HAR) has become an increasingly popular task for embedded devices such as smartwatches. Most HAR systems for ultra-low power devices are based on classic Machine Learning (ML) models, whereas Deep Learning (DL), although reaching state-of-the-art accuracy, is less popular due to its high energy consumption, which poses a...
Preprint
Full-text available
Neural Architecture Search (NAS) is increasingly popular to automatically explore the accuracy versus computational complexity trade-off of Deep Learning (DL) architectures. When targeting tiny edge devices, the main challenge for DL deployment is matching the tight memory constraints, hence most NAS algorithms consider model size as the complexity...
Preprint
Full-text available
Random Forests (RFs) are widely used Machine Learning models in low-power embedded devices, due to their hardware friendly operation and high accuracy on practically relevant tasks. The accuracy of a RF often increases with the number of internal weak learners (decision trees), but at the cost of a proportional increase in inference latency and ene...
Article
Photoplethysmography (PPG) sensors allow for non-invasive and comfortable heart rate (HR) monitoring, suitable for compact wrist-worn devices. Unfortunately, motion artifacts (MAs) severely impact the monitoring accuracy, causing high variability in the skin-to-sensor interface. Several data fusion techniques have been introduced to cope with this...
Preprint
Full-text available
Low-resolution infrared (IR) Sensors combined with machine learning (ML) can be leveraged to implement privacy-preserving social distance monitoring solutions in indoor spaces. However, the need of executing these applications on Internet of Things (IoT) edge nodes makes energy consumption critical. In this work, we propose an energy-efficient adap...
Preprint
Full-text available
Low-resolution infrared (IR) array sensors offer a low-cost, low-power, and privacy-preserving alternative to optical cameras and smartphones/wearables for social distance monitoring in indoor spaces, permitting the recognition of basic shapes, without revealing the personal details of individuals. In this work, we demonstrate that an accurate dete...
Preprint
Full-text available
Collaborative Inference (CI) optimizes the latency and energy consumption of deep learning inference through the inter-operation of edge and cloud devices. Albeit beneficial for other tasks, CI has never been applied to the sequence- to-sequence mapping problem at the heart of Neural Machine Translation (NMT). In this work, we address the specific...
Preprint
Full-text available
Energy-efficient machine learning models that can run directly on edge devices are of great interest in IoT applications, as they can reduce network pressure and response latency, and improve privacy. An effective way to obtain energy-efficiency with small accuracy drops is to sequentially execute a set of increasingly complex models, early-stoppin...
Preprint
Full-text available
Temporal Convolutional Networks (TCNs) are promising Deep Learning models for time-series processing tasks. One key feature of TCNs is time-dilated convolution, whose optimization requires extensive experimentation. We propose an automatic dilation optimizer, which tackles the problem as a weight pruning on the time-axis, and learns dilation factor...
Preprint
Full-text available
A wrist-worn PPG sensor coupled with a lightweight algorithm can run on a MCU to enable non-invasive and comfortable monitoring, but ensuring robust PPG-based heart-rate monitoring in the presence of motion artifacts is still an open challenge. Recent state-of-the-art algorithms combine PPG and inertial signals to mitigate the effect of motion arti...
Preprint
Full-text available
Temporal Convolutional Networks (TCNs) are emerging lightweight Deep Learning models for Time Series analysis. We introduce an automated exploration approach and a library of optimized kernels to map TCNs on Parallel Ultra-Low Power (PULP) microcontrollers. Our approach minimizes latency and energy by exploiting a layer tiling optimizer to jointly...
Preprint
Full-text available
Human-machine interaction is gaining traction in rehabilitation tasks, such as controlling prosthetic hands or robotic arms. Gesture recognition exploiting surface electromyographic (sEMG) signals is one of the most promising approaches, given that sEMG signal acquisition is non-invasive and is directly related to muscle contraction. However, the a...
Preprint
Full-text available
Hearth Rate (HR) monitoring is increasingly performed in wrist-worn devices using low-cost photoplethysmography (PPG) sensors. However, Motion Artifacts (MAs) caused by movements of the subject's arm affect the performance of PPG-based HR tracking. This is typically addressed coupling the PPG signal with acceleration measurements from an inertial s...
Article
Traffic Load Estimation (TLE) is increasingly adopted in public road infrastructures to regulate the access and limit heavy vehicles circulation. Standard approaches to TLE are based either on installing dedicated sensors such as intelligent cameras or infrared sensors or using existing smartphone sensors. However, both approaches have severe limit...
Preprint
Full-text available
Photoplethysmography (PPG) sensors allow for non-invasive and comfortable heart-rate (HR) monitoring, suitable for compact wrist-worn devices. Unfortunately, Motion Artifacts (MAs) severely impact the monitoring accuracy, causing high variability in the skin-to-sensor interface. Several data fusion techniques have been introduced to cope with this...
Article
The papers in this special section focus on applications of emerging computing technologies in smart manufacturing and Industry 4.0. Both of these paradigms are transforming factories into highly complex IT systems, generating massive amounts of data. The modeling and optimization of smart industrial processes, to support decision making, has conse...
Article
Full-text available
Neural Architecture Search (NAS) is quickly becoming the go-to approach to optimize the structure of Deep Learning (DL) models for complex tasks such as Image Classification or Object Detection. However, many other relevant applications of DL, especially at the edge, are based on time-series processing and require models with unique features, for w...
Article
Hearth Rate (HR) monitoring is increasingly performed in wrist-worn devices using low-cost photoplethysmography (PPG) sensors. However, Motion Artifacts (MAs) affect the performance of PPG-based HR tracking. This is typically addressed coupling the PPG signal with acceleration measurements from an inertial sensor. Unfortunately, most standard appro...