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Abstract. The impact of the values of the most meaningful parame-
ters on the behavior of MAX–MIN Ant System is analyzed. Namely,
we take into account the number of ants, the evaporation rate of the
pheromone, and the exponent values of the pheromone trail and of the
heuristic measure in the random proportional rule. We propose an an-
alytic approach to examining their impact on the speed of convergence
of the algorithm. Some computational experiments are reported to show
the practical relevance of the theoretical results.
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1 Introduction

The assignment of values to the parameters of ACO algorithms is analyzed for the
first time in [1]. In the following, a growing number of papers have been produced
for finding the optimal values, or more in general for identifying the influence of
the parameters on the behavior of the algorithms. These studies can be divided
into two groups: the ones that propose a method for finding suitable parameter
settings, and the ones that propose experimental analysis from which a sort of
general trend can be deduced. Among others, we can locate in the first group the
works by Botee and Bonabeau [2], Pilat and White [3], and Zaitar and Hiyassat
[4] who use genetic algorithms for setting the parameters of ACO algorithms, and
Randall [5] who uses an ACO algorithm itself. In the second group we can include
Gaertner and Clark [6], who try to find a correlation between the structure of a
problem instance and the optimal values of the parameters, and Socha [7] and
Solnon [8], who propose computational studies concerning some parameters.

Another branch of the literature has considered the problem of tuning the
parameters of metaheuristics, more in general. Among others, these include:
Adenso-Dı́az and Laguna [9] and Coy et al. [10] whose approaches are based
on the response surface methodology. Bartz-Beielstein and Markon [11] propose
a method to determine relevant parameter settings, based on statistical design
of experiments, classical regression analysis, tree based regression and DACE
(design and analysis of computer experiments) models. Birattari et al. [12] pro-
pose a procedure based on the Friedman two-way analysis of variance by ranks.



Finally, Battiti and Tecchioli [13] propose to tune the parameters while solving
an instance, and Lau et al. [14] present a methodology called the Visualizer for
Metaheuristics Development Framework (V-MDF).

Following this interest in the configurations of the parameters, the objective
of this paper is to formalize the impact of the value chosen for the parameters of
MAX–MIN Ant System [15, 16] on the speed of convergence to the best solution
ants are able to find. In the following the term convergence will be used with
this meaning.

Gaining understanding in this sense is important for two main reasons. First
of all we want to stress the fact that it is not possible to define an optimal set
of values for the parameters. While in general it is accepted that the values to
assign depend from the problem and from the particular instances, it is not so
infrequent to observe that some parameters are considered either good or bad
(in terms of the average quality of the solution achieved) in absolute, without
any reference to the computational time (t). The problem with this approach is
that the optimal speed of convergence depends both on the instance and on the
computational time available: If the solution is needed very fast, one might prefer
a configuration of the parameters that reaches a local optimum, with respect to
one that keeps exploring the search space and that probably in a longer time
would reach a better local minimum. In this sense, analyzing the influence of
each parameter on the searching behavior of the algorithm can be a way for
emphasizing this element.

On the other hand, by gaining a deeper understanding of the dynamics un-
derlying the algorithm, one might focus on a range of values of the parameters
for the tuning phase. In this way, a finer choice would be possible.

For this analysis we consider a problem that can be represented on a graph
G = (N,A) with N set of nodes (|N | = n) and A set of arcs. For representing
the time available we use an approximation: we suppose that the pheromone
update is not time consuming. In other words, we consider the time in terms of
number of solutions that can be built (T ).

The paper is organized as follows. In Section 2 the relevant formulas charac-
terizing MAX–MIN Ant System are presented. In Sections 3, 4 and 5 the pa-
rameters of the algorithm are studied. Finally in Section 6 some computational
results are presented. The well known traveling salesman problem is considered
as case study.

2 MAX–MIN Ant System

InMAX–MINAnt System the pheromone update is performed after the activity
of each colony of ants according to τij = (1− ρ)τij +∆τb

ij , where ∆τb
ij = 1/Cb if

arc (i, j) belongs to the best solution b, and ∆τb
ij = 0 otherwise. Cb is the cost

associated with solution b, and solution b is either the iteration-best solution
or the best-so-far solution. Intuitively, if the iteration-best solution is used, the
level of exploration is greater. The schedule according to which the solution to
be exploited is chosen, is described by Dorigo and Stützle [17].



Another element characterizing ACO algorithms is the random-proportional
rule. In particular, ant k being in node i and not having visited the nodes belong-
ing to the set Nk ⊂ N , randomly chooses node j ∈ Nk to move to. Each node
j ∈ Nk has a probability of being chosen described in the random proportional
rule: pij = [τij ]

α [ηij ]
β

/(
∑

h∈Nk
[τih]α [ηih]β), where ηij is a heuristic measure

associated with arc (i, j) [17]. It is important to notice that this probability
depends on the set of nodes not yet visited.

Finally, it is important to remember that the pheromone trail in MAX–
MIN Ant System is bounded between τMAX and τmin . Following [17], we use
the following values: τMAX = 1/(ρCbest−so−far ), and τmin = [τMAX (1− n

√
0.05)]/

[(n
2 − 1) n

√
0.05]. At the beginning of a run, the best solution corresponds to the

one found by the nearest neighbor heuristic (NN ).

3 Number of ants m

Let us first of all analyze the effect of the number of ants on the behavior of
the algorithm. One thing to notice is that, given a certain number of solutions
T that can be built in the available run time, the number of ants m determines
the number of iterations S that can be performed as S = T/m. A part from
this element, the value of m affects the behavior of the algorithm for what is
concerned the level of exploration. Given the pheromone update rule and the
update schedule, the level of exploration mainly decided by the solutions used
for the update. This is due to the fact that if only few solutions are used, after
few iterations, only the arcs belonging to them will have a significant probability
of being chosen. If the variation of the iteration best solution is small, then, the
convergence will be fast. Let brs be the iteration best solution at iteration s,
and BR = {r1, r2, ..., r|BR|} the set of previous iteration best solutions. If a
solution has been the iteration best more than once, obviously it will be inserted
in BR only the first time. Let us analyze the probability of having as iteration
best solution at iteration s a solution belonging to BR. Note that, given the
solution construction procedure, we can easily associate to each feasible solution
r a probability of being built (p̄r).

Let Ω be the set of all the possible solutions and Rr = {q ∈ Ω : Cq ≥ Cr}.
The probability of having as iteration best solution at iteration s a solution r is:

p(brs = r) = p̄r

(∑
q∈Rr

p̄q

)(m−1)

. It is the product of the probability of having
one ant constructing exactly r and all the other ants constructing solutions
q ∈ Rr. In the following we consider all the solutions as having different costs,
so that the ordering of the solutions is not ambiguous. Since

∑
q∈Rr

p̄q ≤ 1 (the
case of equality is true only if r is the global optimum), p(brs = r) is decreasing
in m. The meaning of this conclusion is that the higher the number of ants,
the lower the probability of selecting as iteration best solution a specific one.
This reasoning can be extended considering that at iteration s, |BR| solutions
(ri, i = 1, ..., |BR|) have already been selected. In particular, the probability of



selecting as iteration best at iteration s a solution in BR is equal to:

p(brs ∈ BR) =
∑

r∈BR

p̄r

( ∑

q∈Rr

p̄q

)(m−1)

. (1)

This value is decreasing in m and increasing in |BR|. For the first property
it is sufficient to observe that

∑
q∈Rr

p̄q < 1 (we do not consider the global
optimum). For the property related to |BR|, it is clear that the result of a sum
of non negative terms is increasing in the number of addends, the probabilities
p̄r being equal. Obviously |BR| is non decreasing in s.

The conclusion of this reasoning is that the higher the number of ants, the
greater the exploration. On the other hand, the higher the number of iterations,
the greater the exploitation of the cumulated knowledge. Moreover, given the
available computational time, the greater the number of ants, the smaller the
number of total iterations. It is clear, then, that there is a trade-off to be solved.
Remark that this reasoning is independent from the probability of choice of any
particular solution p̄, if this probability is not null for all the solutions. This
property is ensured by MAX–MIN Ant System through the imposition of a
positive lower bound of the pheromone.

4 Evaporation rate ρ

The parameter ρ is present in the pheromone update rule. It fixes how much
pheromone evaporates. The relevance of this parameter is related to the level of
exploration of the search space performed: If ρ is high, the pheromone on the
arcs belonging to solutions built a few iterations before will be roughly equal to
the one on the arcs that have never been selected. In this way, the search will
not be much biased toward the already visited areas.

On an arc (i, j) which has never been used, the pheromone at iteration s̄ is
equal to (1− ρ)τij = (1− ρ)s̄τ0 = (1− ρ)s̄/(ρCNN ). Clearly this is a decreasing
function of ρ. What we are interested in is the influence of the value of this
parameter on the level of exploration. In particular, we want to know what are
the conditions for having the minimum probability of choosing, after s̄ iterations,
an arc that has never been part of an iteration best solution, and is then supposed
to be of bad quality. This objective is achieved by setting the pheromone in arc
(i, j) equal to τmin . As an approximation for this value we use τmin at iteration
0, i.e. [1/(ρCNN )(1− n

√
0.05)]/[(n

2 −1) n
√

0.05] . The investigation is then referred
to the value of ρ such that τij ≤ τmin :

(1− ρ)s̄ 1
ρCNN

≤
1

ρCNN
(1− n

√
0.05)

(n
2 − 1) n

√
0.05

⇒ ρ ≥ 1− s̄

√
(1− n

√
0.05)

(n
2 − 1) n

√
0.05

. (2)

In this way, it is possible to fix a relation between ρ, the number of nodes of the
graph (n) and the number of iterations (s̄) after which an arc that has never
been part of a solution used for the pheromone update has the minimum possible
probability of being chosen.



Proposition 1. If, given n, s̄ is such that ρ ≥ 1 − s̄

√
(1− n√0.05)

( n
2−1) n√0.05

, then ρ ≥

1− s̄′
√

(1− n√0.05)

( n
2−1) n√0.05

, ∀ s̄′ ≥ s̄ .

Proof. ρ ≥ 1− s̄

√
(1− n√0.05)

( n
2−1) n√0.05

, 0 < ρ < 1 ⇒ (1− ρ)s̄ ≥ (1− ρ)s̄′ , ∀ s̄′ ≥ s̄ ⇒

(1− ρ)s̄′ ≤ (1− n√0.05)

( n
2−1) n√0.05

⇒ ρ ≥ 1− s̄′
√

(1− n√0.05)

( n
2−1) n√0.05

, ∀ s̄′ ≥ s̄. ut

Proposition 2. If, given s̄, n is such that ρ ≥ 1 − s̄

√
(1− n√0.05)

( n
2−1) n√0.05

, then1 ∀n′

such that 3 ≤ n′ ≤ n, ρ ≥ 1− s̄

√
(1− n′√0.05)

( n′
2 −1) n′√0.05

.

Proof. ρ ≥ 1− s̄

√
(1− n√0.05)

( n
2−1) n√0.05

⇒ n
√

0.05
[
(1− ρ)s̄

(
n
2 − 1

)
+ 1

] ≤ 1.

n
√

0.05 is an increasing function of n, then

n′√0.05
[
(1− ρ)s̄

(n

2
− 1

)
+ 1

]
≤ n
√

0.05
[
(1− ρ)s̄

(n

2
− 1

)
+ 1

]
. (3)

Moreover, ∀n′ ≤ n

n′√0.05
[
(1− ρ)s̄

(
n′

2
− 1

)
+ 1

]
≤ n′√0.05

[
(1− ρ)s̄

(n

2
− 1

)
+ 1

]
, (4)

from which the thesis is verified. ut

Given propositions 1 and 2, it is quite easy to fix a lower bound for the value
of ρ, both in a quite general case and in a specific one. For the first observation,
one can compute the value of ρ which allows the algorithm to neglect the bad
arcs (in terms of the average quality of the solutions they belong to) after a
small number of iterations when dealing with a very big instance. To this aim,
let s̄ = 100 and n = 1000, which implies ρ ∼ 0.1. If one sets ρ = 0.1, after s̄′ > s̄
iterations, for sure the algorithm will have neglected the bad arcs. In the same
way, if n decreases, ρ = 0.1 will imply that after s̄ iterations, the algorithm will
have neglected the bad arcs.

In addition to this general purpose observation, if one needs to tackle in-
stances of equal (or similar) size, one can fix a meaningful value for ρ after
estimating s̄. Clearly this estimate will depend on the available computational
time. Figure 1 represents the trend followed by the value of this parameter when
s̄ and n vary. It is easy to see that the number of iterations is the leading force,
at least until a certain threshold. Nonetheless, the number of nodes has a re-
markable impact as well.

1 If n < 3 the value of τmin is not defined.



(a) 3 ≤ s̄ ≤ 500 (b) 100 ≤ s̄ ≤ 500

Fig. 1. Value of ρ necessary for having τij = τmin on a never reinforced arc (i, j).

5 Exponent values α and β

The last parameters we are going to consider for MAX–MIN Ant System are
α and β. They represent the exponent of the pheromone level and the heuristic
measure in the random proportional rule, respectively. Their main role consists
in emphasizing the differences between arcs.

Instead of studying the trend of the probability of choosing the single arc, we
consider the ratio between the probability of choosing two arcs (i, j) and (i, k).
By analyzing this element it is possible not to consider the set of nodes still to
visit. Let us write β as cα, with c ≥ 0. The ratio we want to study, then, is
reported in formula (5).

pij

pik
=

[τij ]
α [ηij ]

cα

[τik]α [ηik]cα =
[

τij

τik

]α [
ηij

ηik

]cα

=
[

τij

τik

(
ηij

ηik

)c]α

= f(α, c). (5)

Remark that being the pheromone limited by a positive lower bound, and being
the length of the arcs a finite number, τ(·) and η(·) are always strictly posi-
tive. Then, the sign of the first partial derivative with respect to α depends on
ln [(τij/τik) (ηij/ηik)c]. This quantity is positive if and only if (τij/τik) (ηij/ηik)c

>
1. On the other hand, the sign of the first partial derivative with respect to c

(a)
τij

τik
> 1,

ηij

ηik
> 1 (b)

τij

τik
< 1,

ηij

ηik
> 1 (c)

τij

τik
> 1,

ηij

ηik
< 1 (d)

τij

τik
< 1,

ηij

ηik
< 1

Fig. 2. Ratio of the probabilities related to the choice to arc (i, j) and arc (i, k).

depends on ln [ηij/ηik], which is positive if and only if ηij/ηik > 1. A graphical
representation of its trend is shown in Figure 2. The value of c determines both



the magnitude of the variation, and the increase or decrease of the function.
Then, let us have a look at function g(c) = (τij/τik) (ηij/ηik)c

. In particular we
are interested in knowing in which cases the function is greater than 1.

g(c) > 1 ⇒ ln
τij

τik
+ c ln

ηij

ηik
> 0 ⇒ c

{
> − ln τij/τik

ln ηij/ηik
if ηij > ηik

< − ln τij/τik

ln ηij/ηik
if ηij < ηik

(6)

Following the literature we consider only α, β ≥ 0. Let us first of all analyze the
first inequality of (6). If τij > τik, then ln [τij/τik] > 0 and the whole quantity
on the right hand side of the inequality is negative, so there is no restriction on c
for having g(c) positive. If τij < τik, instead, there is a meaningful lower bound
for c. A similar and opposite reasoning holds for the second inequality of (6):
if τij < τik, then ln [τij/τik] < 0 and the whole quantity on the right hand side
of the inequality is negative, so there is no possible value of c such that g(c) is
positive. If τij > τik, instead, there is a meaningful upper bound for c.

Clearly the ratios between τ(·)’s and between η(·)’s depend on the arcs we
choose as (i, j) and (i, k). Moreover, as for what τij/τik is concerned, it depends
on the behavior of the algorithm. Figure 3 represents the variation of g(c) as a
function of τ and η. In particular, we keep constant through the graphics the
value of ηij/ηik and we vary the ratio between the pheromone levels. This schema
follows the behavior of ACO algorithms in cases the heuristic measure is static.
The values selected are ηij/ηik = 1.1 for Figure 3(a) and ηij/ηik = 0.9 for Figure
3(b). As it can be seen, there is an interval in which, even if the position with
respect to 1 of τij/τik and ηijηik are opposite, for a while g(c) keeps on following
the sign of 1− (ηij/ηik). The greater c, the wider this interval. This observation
is robust with respect to the value of ηij/ηik.

(a)
ηij

ηik
> 1 (b)

ηij

ηik
< 1

Fig. 3. Ratio of the probabilities related to the choice of arc (i, j) and arc (i, k).

To sum up the reasoning on α and β, α amplifies the differences between the
good and the bad arcs. The value of c = β/α, instead, tells us how to distinguish
the good from the bad arcs in case the heuristic information and the pheromone
values lead to discordant orders. In particular, the higher the value of c, the
more the order is driven by the heuristic information.



6 Experiments

The experimental analysis proposed is based on the traveling salesman problem
(TSP). We consider the ACOTSP program implemented by Thomas Stützle as
a companion software for [17]. The code has been released in the public domain
and is available for free download on www.aco-metaheuristic.org/aco-code/. The
TSP has been object of many studies, both practical and theoretical (see for
example [18–20]). We consider this problem as a case study.

The experiments proposed aim at showing that the implications of the pre-
vious sections are clearly detectable in practise. In this sense, we need a method
for identifying good combinations of values of the parameters when the compu-
tational time available changes. We will read the configurations selected in terms
of the speed of convergence they imply.

We chose the F-Race procedure [21, 12] for selecting the values of the pa-
rameters. F-Race is a racing algorithm for choosing a combination of values (a
candidate configuration) from a predefined range. A racing algorithm consists
in generating a sequence of nested sets of candidate configurations to be consid-
ered at each step. The set characterizing a specific step is obtained by possibly
discarding some configurations that appear to be suboptimal on the basis of the
information available. This cumulated knowledge is represented by the behavior
of the algorithm for which the tuning is performed, when using different candi-
dates configurations. For each instance (each representing one step of the race)
the ranking of the results obtained using the different configurations is computed
and a statistical test is performed for deciding whether to discard some candi-
dates from the following experiments. F-Race is based on the Friedman two-way
analysis of variance by ranks [22].

The range of values considered for each parameter is the one that in our
eyes one would test after the analysis of the literature. In particular the can-
didate configurations are 192. They are all those obtainable from combining
the following values: m ∈ {50, 100, 200, 300}, ρ ∈ {0.02, 0.04, 0.06, 0.08}, α ∈
{1, 2, 3}, β ∈ {2, 3, 4, 5}. Two sets of 220 instances are used. In one set each
instance includes 300 customers. In the other one 600 customers are considered.
The instances are generated through portgen, the instance generator adopted in
the DIMACS TSP Challenge. In particular, the ones we consider here consist of
two dimensional integer-coordinate cities grouped in clusters that are uniformly
distributed in a square of size 106 × 106. They are available on the web page
www.paola.pellegrini.it. On each set of instances, the F-Race is applied six times,
varying the computational time available t in the set {5, 10, 30, 60, 90, 120} sec-
onds. The experiments are run on a processor AMD Athlon 1000 Mhz, 772 MB
of memory, running GNU/Linux 2.4.20. No local search is applied, due to the
fact that we want to investigate the relation between the values of the param-
eters and the speed of convergence, and we are not interested in the absolute
quality of the solution. The candidate configuration chosen by F-Race for each
set of instances/computational time are reported in Table 1. Beside the values of
the parameters selected, the table reports the approximate number of tours that
can be built in the available time (T ), the total number of iterations performed



(S), and the value of c = β/α. The heuristic measure we consider is the typical
one used for the TSP, i.e. the inverse of the length of arcs.

Table 1. Configurations chosen by F-race with different computational time available.

n t m ρ β α ⇒ T S = T/m c

300 5 100 0.08 5 2 7000 70 2.5
300 10 100 0.08 4 2 14000 140 2
300 30 100 0.08 4 1 42000 420 4
300 60 100 0.08 3 1 84000 840 3
300 90 200 0.08 3 1 126000 630 3
300 120 200 0.08 3 1 168000 840 3

600 5 50 0.08 5 3 1700 34 1.66
600 10 50 0.08 5 3 3400 68 1.66
600 30 100 0.08 5 2 10200 102 2.5
600 60 200 0.08 4 2 20400 102 2
600 90 200 0.08 4 2 30600 153 2
600 120 200 0.08 4 2 40800 204 2

The trend followed by the values of the parameters are clear. They respect
the expectations coming from the previous analysis. In particular it can be ob-
served that the value of m increases with the increase of the computational time
available. According to Section 3 this can be read as an increase of the level of
exploration of the search space. The values of m are quite different through the
cardinality of the set of nodes n. This is due to the fact that given the time
available, the number of tours that can be constructed is noticeably different.
Moreover, when considering different computational times which lead to the con-
struction of a similar number of solutions, one can observe that the number of
ants increases with n (see for example n = 300, T = 42000 ⇒ m = 100 and
n = 600, T = 20400 ⇒ m = 200). This can be read as a greater need of explo-
ration in case of a greater number of nodes. The explanation for this phenomenon
can be found in the fact that the greater the number of nodes, in general the
more complex the search space, and so the greater the risk of being entrapped
in a local minimum.

The trend followed by the values of α mimics the prediction of Section 5.
In fact, it is decreasing with the time available, reflecting the postposition of
the need of convergence. For what concerns c, we can observe that, α being
equal, its value is inversely correlated with the number of solutions that can be
constructed. When α varies, the value of c changes in the opposite direction.
When the value of α is high, the convergence is fast even if we do not consider
the value of c. As a consequence, keeping c quite low is a way for smoothing the
trend. On the other hand, speeding up the convergence is not the only role of
c. As discussed in Section 5, it implies whether it is the heuristic information or
the pheromone trail to state the distinction between the good from the bad arcs



in case the respective indications are discordant. The higher the value of c, the
more the decision is driven by the heuristic information. When we consider this
element with the negative correlation between c and T , we can deduce that the
earlier the algorithm needs to converge, the more it has to give importance to the
heuristic measure, which has a more immediate link with the instance than the
pheromone trail. In a similar way, let us consider the relation of c with the value
of α. If the latter implies a very fast convergence, in general the algorithm will
be reluctant to accept the indications of previous ants (and so of the pheromone
trail) in case they are in contrast with the ones of the heuristic information. This
is due to the fact that if they are misleading it will not be able to neglect them
very soon.

Finally, it is not possible here to observe the trend followed by the value of ρ.
The value selected, in fact, is always the same (ρ = 0.08), and it corresponds to
the maximum value in the range set. Nonetheless, the choice has been motivated
by the analysis of the literature and in particular of Dorigo and Stützle [17],
where a value of 0.02 is proposed. By considering formula (2) it is possible
to compute the number of iterations after which the pheromone on bad arcs
becomes equal to τmin with ρ = 0.08 and instances of 300 and 600 nodes. This
quantity is equal to 116 and 132, respectively. These values are probably quite
good when the total number of iterations is higher than 400-500, while it may
be too low for shorter runs.

Figure 4 represents the trends followed by the values of the best solutions
(Cb) found by MAX–MIN Ant System with the configurations of parameters
reported in Table 1 as function of the computational time (t). As it can be seen,
the configurations selected by F-Race are the best performing up to the time
available for the respective runs.
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Fig. 4. Value of (Cb) found by the different configurations depending on t.



7 Conclusion

The relevance of the values of the parameters when dealing with metaheuris-
tics is recognized in the literature. In this paper we analyze MAX–MIN Ant
System: Theoretical aspects of the impact of the values of the parameters on
its behavior are investigated. Some relations between the values chosen and the
speed of convergence of the algorithm are proposed. Computational experiments
are reported to show the practical reflections of the theoretical results.

Once fixed the constraints that one must satisfy, such as the characteristics of
the instances to tackle and the computational time available, the comprehension
of the impact of the parameters can give some indications about the range to
use for the tuning phase. Further possible developments of this study can be the
analysis of different problems and other ACO algorithms.
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