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In a recent paper published online in Molecular Psychiatry, Skafidas
et al.1 report a classifier for identifying individuals at risk for autism
spectrum disorders (ASDs). Their classifier is based on 267 single-
nucleotide polymorphisms (SNPs) that were selected from the
results of a pathway analysis using cases from the Autism Genetic
Resource Exchange (AGRE).1 Using within-sample cross-validation,
the authors claim a classification accuracy for ASDs of 85.6%. They
subsequently applied their classifier to ASD cases from the Simons
Foundation Autism Research Initiative (SFARI) and controls
from the Wellcome Trust Birth Cohort (WTBC) and report ASD
classification accuracy of 71.7%.

We believe that the claims made by Skafidas et al.1 are
inconsistent with current knowledge of the genetics of ASDs,2 and
inconsistent with the expected precision of risk predictions for
complex psychiatric disorders. Further, as classification accuracy
depends on the size of the discovery sample, the results are also
inconsistent with the size of the sample they employed (only 123
controls were included in the discovery set).

To examine the validity of Skafidas et al.’s claims, we pursued a
range of analyses to assess the evidence for association between
ASDs and (1) the individual SNPs named in their paper as most
predictive, (2) their genetic classifier, to the extent it was described
and (3) the pathways identified in the report, from which the
predictive SNPs were selected. For each analysis, where possible,
we attempted to replicate the analytic approach of Skafidas et al.1

using data from the Psychiatric Genomics Consortium (PGC)
autism group, which includes B5400 cases, more than three times
the number used in the original report. The methodology of these
analyses is described in detail in Supplementary Information.

First, we found no evidence for single SNP associations between
any of the 30 most contributory SNPs listed by Skafidas et al.1 in
their Table 2 and ASDs in the PGC (Table 1). In the current PGC
meta-analysis, the mean P-value for these SNPs was 0.47 with a
minimum 0.007, and none are notable or survive a 30 SNP
correction for multiple testing. Further information on these
associations can be found in Supplementary Information.

Second, we examined the classification ability of the 30 SNPs
disclosed in Skafidas et al.1 (their Table 2) for ASDs in the PGC. We
wrote to the authors, asking for the complete list of 237 SNPs and
weights, but they declined to provide the complete list. We
accordingly built a classifier using the data for 30 SNPs disclosed in
Skafidas et al.,1 which the authors identify as the most influential
(explaining approximately 58% of the total predictive power of the
classifier). We constructed the classifier using two approaches. We
initially used the weights provided by Skafidas et al.1 and
examined the predictive ability of the 30 SNP classifier in the
full PGC autism sample. As described in detail in Supplementary
Information, the classifier did not differ from chance in its ability to
predict ASDs (AUC¼ 0.505, P¼ 0.22).

We then built the score using the SNP weights estimated from
the PGC data. We randomly selected a set of 732 trios to build a
classifier and then tested the predictive ability of the classifier in a

distinct set of 243 trios (these number mirror those used by
Skafidas et al.1). For all trios, we created case pseudo–control pairs
to perform model building and validation, but otherwise followed
the methods proposed in Skafidas et al.1 (for example, using 0, 1, 3
scoring against minor allele count). We repeated this procedure
across 100 random samples of the same size from the PGC autism
data. Across these replicates, we tested for a difference between
case and control risk scores using a t-test (mean risk score of
cases—mean risk score of controls) and found an average
t-statistic of 0.492 with an average P-value of 0.50 for the
validation samples. We conclude that the classifier presented by
Skafidas et al.,1 at least as constructed using the 30 top SNPs

Table 1. Meta-analytic results for the 30 most predictive SNPs in the
Skafidas classifier

SNP Chr BP A1 A2 ln(OR) P-value

rs260808 11 103 909 166 A C � 0.024 0.510
rs769052 5 138 944 433 T C � 0.042 0.422
rs876619 16 56 283 534 A C 0.044 0.398
rs905646 11 88 353 802 A G 0.062 0.167
rs968122 12 70 791 615 T C 0.001 0.974
rs984371 11 55 577 698 T C 0.018 0.594
rs1243679 14 21 093 733 A G 0.027 0.710
rs1818106 11 103 913 376 A C 0.009 0.736
rs2239118 12 2 660 753 T C 0.054 0.097
rs2240228 19 15 852 872 A G 0.083 0.007
rs2300497 14 90 865 283 T C 0.034 0.408
rs2384061 2 25 135 620 A G 0.052 0.058
rs3773540 3 55 096 928 A G � 0.085 0.273
rs4128941 17 63 531 331 A G � 0.123 0.085
rs4308342 4 71 884 205 T G � 0.107 0.142
rs4648135 4 103 536 670 A G 0.008 0.894
rs6483362 11 88 412 451 A G � 0.0335 0.513
rs7313997 12 71 265 958 A C 0.035 0.450
rs7562445 2 213 192 048 T G 0.042 0.279
rs7842798 8 131 890 170 A G 0.033 0.241
rs8053370 16 56 262 906 T C � 0.042 0.415
rs9288685 2 233 987 114 T C � 0.007 0.804
rs10193128 2 233 987 722 T C � 0.015 0.581
rs10409541 19 13 433 127 T C 0.087 0.048
rs11020772 12 70 792 582 T G 0.001 0.966
rs11145506 9 80 264 584 T C � 0.117 0.282
rs12317962 12 70 792 582 T G 0.001 0.966
rs12582971 12 18 459 387 T C � 0.001 0.981
rs17629494 10 53 560 898 T C � 0.060 0.217
rs17643974 10 126 792 798 T C 0.002 0.964

Abbreviations: BP, base pair in HG19; Chr, chromosome; OR, odds ratio; SNP,
single-nucleotide polymorphism. The SNP name, chromosome, base pair,
reference allele, alternate allele, natural log of the odds ratio and P-value
are presented from the meta-analysis of autism spectrum disorders from
the Psychiatric Genomics Consortium. This meta-analytic strategy reflects
the weighted combination of the contributing cohorts reflective of power
to detect association. None of the SNPs meet a multiple testing
significance threshold, let alone the genome-wide association threshold
of 5� 10� 8.
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named in their report, does not generalize to predict ASDs in
other samples. This result strongly suggests that the Skafidas
et al.1 results cannot be used to predict ASDs.

We repeated the set of analyses above using a case–control
design, to mirror the approach employed by Skafidas et al.1 We
used 732 cases matched with 732 population controls for
discovery, and 243 cases matched with 243 population controls
for validation, much as the authors initially reported. In these
comparisons, when principal components were included in the
analysis to control for population ancestry, we observed nearly
identical results to what we found in the family-based study
described above (see Supplementary Information). However,
without controlling for population ancestry, we observed a bias
in estimates of the AUC for the curve, suggesting that such bias
may have contributed to the results reported by Skafidas et al., as
has already been suggested.3

Finally, we evaluated the significance of the pathways identified
by Skafidas et al.1 (their Table 1), the analysis which provided the
basis for their SNP selection. We did not observe significant
evidence for a relationship between any of these pathways and
ASDs using five different pathway analysis tools in the combined
PGC ASD sample set (Table 2). This result strongly suggests that
the pathway analyses do not generalize to external samples and
therefore cannot be validly used in the development of a classifier.

To put the results reported in Skafidas et al.1 into perspective,
consider the magnitude of effects implied by the results of the
classifier. From the external validation experiment, the authors
report an area under the receiver operating characteristic curve
0.747 (Skafidas et al., Supplementary Figure S2). This result implies
that their SNP-set explains B11% of variation in liability to ASDs
(assuming a prevalence of 1% and a liability threshold model).4

For complex traits, in particular psychiatric disorders, explaining so

much variation with so few SNPs and such a small discovery
sample size (732 cases and 123 controls) is unprecedented, and
inconsistent with results from genome-wide association studies.
For example, to achieve similar levels of variance explained in
human height, sample sizes of B180 000 individuals were
required.5

We find no evidence that the implicated SNPs, the classifier or
the pathways named in Skafidas et al.1 are associated with ASDs.
We therefore conclude that the classifier, as presented, cannot be
used in a general way to predict ASDs, and consequently is
unlikely to have any translational value.

The differences between the report of Skafidas et al.1 and our
analyses are striking. We suspect that our failures to replicate their
claims originate from several issues with the original analyses and
data. In particular, the failure to control for potential population
stratification in Skafidas et al.1 has likely led to biased estimates of
allelic effects, as suggested in a recent letter.3 We detail other
technical issues in Supplementary Information, which may also
explain the differences in the results.

There are a great many challenges to the accurate interpreta-
tion of genomic data and multiple false-positive associations from
technical or study design biases have been identified in the
literature. We conclude that the classifier presented in Skafidas
et al.1 will not usefully identify individuals at risk for ASDs in the
population. Nevertheless, there are increasing numbers of robust
and replicable finding emerging in psychiatric genetics. These
findings hold great promise for understanding the biological basis
of psychiatric disorders and for translation.
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Table 2. Pathway results from the PGC meta-analysis of ASDs

KEGG pathway name FORGE INRICH MAGENTA SS ALIGATOR

Purine metabolism 0.715 0.012 0.140 0.477 0.255
Calcium signaling 0.907 0.719 0.828 0.782 0.987
Chemokine signaling
pathway

0.060 0.870 0.614 0.418 0.879

Phosphotidylinositol
signaling

0.256 0.734 0.317 0.480 0.632

Oocyte meiosis 0.986 0.522 0.743 0.771 0.301
Ubiquitin-mediated
proteolysis

0.658 0.429 0.741 0.451 0.943

Wnt signaling 0.863 0.480 0.626 0.408 0.552
Axon guidance 0.611 0.502 0.289 0.083 0.654
Focal adhesion 0.837 0.435 NA 0.685 0.374
Cell adhesion
molecules

0.278 0.472 0.963 0.054 0.255

Gap junction 0.786 0.768 0.780 0.676 0.926
LTM 0.006 0.011 0.078 0.066 0.014
Long-term
potentiation

0.937 0.883 0.961 0.742 0.969

Long-term
depression

0.727 0.450 0.643 0.230 0.422

Taste transduction 0.510 1.000 0.900 0.670 0.692
Insulin signaling
pathway

0.455 0.318 0.013 0.693 0.187

GnRH signaling 0.357 0.589 0.658 0.575 0.927
Melanogenesis 0.520 0.496 0.509 0.444 0.660

Abbreviations: ASD, autism spectrum disorder; GWAS, genome-wide
association study; LTM, leukocyte transendothelial migration; NA, not
applicable. Pathway results from the PGC Network and Pathway Analysis
(PGC-NPA) group as applied to the meta-analysis results from PGC Autism.
Five different methods are presented: FORGE, INRICH, MAGENTA, Set
Screen (SS) and ALIGATOR. These methods have been documented
elsewhere6–10 and represent some of the leading methods for pathway
analysis using GWAS data. None of the pathways identified in the Skafidas
paper survive a multiple-testing correction based on the PGC ASD meta-
analysis.
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