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Thicker Radial Cortex in Physically Active

Prepubertal Girls Compared to Controls

P. Nanyan

S. Prouteau
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D. Courteix

Abstract

This study was carried out to investigate the effects of physical
activity on cortical bone of the radius in a population of prepu-
bertal girls. Forty-nine healthy girls, 17 actives (10.62 +1.56
years) and 32 controls (9.84 +1.23 years) participated in this
study. The active group was involved in gymnastics, judo, and
dance on average 7.76+3.94h/week. Bone mineral content
(BMC) and density (BMD) were performed at the distal third of
the non-dominant radius using DXA. The lean mass of the non-
dominant forearm was derived from the total body analysis per-
formed with DXA. In order to obtain bone cortical thickness,
standard radiographs of the non-dominant radius were scanned
and computed using a software program based on radiogram-
metry. BMD and BMC values were higher in actives than in con-

trols. Cortical thickness at the ulnar side correlated significantly
with all the anthropometric and densitometric values as well as
the duration of training. In addition, cortical thickness at the ul-
nar side was significantly higher in the actives compared to the
controls. After adjustment for the duration of training per week,
cortical thickness of the ulnar side did not differ any more be-
tween actives and controls. The same observation was obtained
after adjustment for the forearm lean mass. In our active popula-
tion, physical practice seemed to have induced greater BMC and
higher cortical thickness than those observed in the sedentary.

Key words
Radiogrammetry - lean mass - gradient - densitometry - grey level
- cortical thickness

Introduction

Impact-loading activities have been shown to have a positive ef-
fect on bone mineral acquisition. Dual-energy X-ray absorptiom-
etry (DXA) is currently used in the evaluation of the bone mineral
content (BMC) of the human skeleton. But planar DXA measure-
ment is unable to discriminate between trabecular and cortical
components of bone known to show specific responses to me-
chanical strain [33]. Due to this limitation and in order to dis-
criminate the response of each bone compartment, quantitative
computed tomography (QCT) and magnetic resonance imaging
(MRI) appeared as alternative methods. But QCT and MRI are on-
ly available in specialised centres and QCT delivers ionising radi-

ations [7], these points give interest to other techniques such as
the radiogrammetry technique [3].

Radiogrammetry has been used for the assessment of bone ge-
ometry parameters such as, cortical thickness [3] considered as
an indice of bone strength [25]. Thanks to developments in com-
puter sciences, a new digital radiogrammetric method (DXR) has
appeared as a reproducible technique [5,6,21,30]. The reproduc-
ibility of this DXR was tested on the third distal of the radius
shown as a site having increased vulnerability to fractures [18].
It is well accepted that fracture risk can be reduced by means of
physical activity, for example by increasing cortical thickness, if
started during the growing years [2]. Nevertheless there have
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been very few investigations in children regarding the associa-
tion between cortical thickness and physical activity. In fact the
prepubertal years are an opportune period for the bone model-
ling and remodelling processes in response to mechanical load-
ing [2,29]. This study was therefore carried out to study the bone
geometry parameters in a population of prepubertal girls, taking
into account the effects of physical activity.

Subjects and Methods

Subjects

Forty-nine healthy girls, 17 actives (10.62 +1.56 years) and 32
controls (9.84 +1.23 years) participated in this study (Table 1).
The active group, in addition to the school physical education
course, participated in activities such as gymnastics and judo on
average 7.61+3.76 h/week in their club. The control group was
engaged only in physical education course and recreational ac-
tivities (non formal games e.g street basket) for no more than
3 h/week. These activities did not involve any heavy loading or
impact that could have biased the study.

Our regional Ethics Committee approved the study, and written
informed consent was obtained from the children and their pa-
rents.

Anthropometric determinations

All the subjects were healthy and had never used medication
known to affect bone properties. Body weight and height were
measured in all subjects.

Bone age was assessed by left hand and wrist radiographs and
analysed following the method of Greulich and Pyle [11], to in-
sure that there was no pathological retardation or acceleration
in bone maturity. Their puberty stage was determined according
to Tanner’s criteria [27].

The lean mass (LM, kg) of the non-dominant forearm, as repre-
sentative of the muscular mass, was determined from the total
body regional analysis on DXA using the software supplied by
the manufacturer (Hologic QDR 4500/W; Hologic, Waltham,
MA, USA).

Bone mineral measurements

Bone mineral content (BMC, g) and density (BMD, g/cm?) were
performed using DXA. Measurements were made at the total
body and at the distal third of the non-dominant radius (Fig.1).
The reproducibility of the technique was based on two repeated
measurements over two weeks in three subjects. The in vivo co-
efficient of variation (CV) was less than 0.9% at the whole body
and 1.2% at the radius in our laboratory.

Bone cortical measurements by radiogrammetry

One radiograph of the non-dominant forearm was obtained for
each subject using a standard procedure. The forearm was placed
in contact with the film using a focal-forearm distance settled at
1 m. The same X-ray tube, voltage (48 kV), and exposure condi-
tions (18 mAs for 0.08 s) were used. The effective dose radiation
was 0.13 pSv.

_________________________________________________________|
Table 1 Anthropometric data and age of the subjects

Parameter Actives Controls Differ-
n=17 n=32 ence
(gymnastics = 14
judo =3)
Chronological age 10.62£1.56 9.84+1.23 ns
(yrs)
Bone age (yrs) 10.40£2.09 9.84+1.31 ns
Height (cm) 141.41+8.64 137.2+8.71  ns
Weight (kg) 32.92+6.40 30.36£6.48 ns
Years of training 46+1.8

ns: not significant

Region of interest

(1/3 distal) Ulna

Radius

Fig.1 Selection of the radius from the radiograph.

On the radiographs, the radius was selected and digitised with a
high-resolution scanner (100 pm resolution at a 8 bits pixel grey-
scale). The resulting digitised images (Fig.1) were transferred to
a UNIX workstation. Our program, on the first step, extracted the
bone edge using the Deriche’s filter based on the gradient magni-
tude. On the second step, to separate the cortical and the trabec-
ular areas, we applied an automatic thresholding approach based
on the iterative contour detection method using the grey level
peak. The entire procedure has been described elsewhere [30].
Thus, the mean cortical thicknesses on the radial and ulnar sides
could be determined on 15 lines on both sides of a reference line
drawn automatically by our home-made program [30] at the
third distal of the radius (Fig. 2). The root mean square coefficient
of variation [22] of the technique was 1.36% in this study.

Statistical analyses

The mean and standard deviations were calculated for all anthro-
pometric data, values issued from the analysis of radiographs
and bone measurements. All data were compared between the
active and control subjects using a Student’s t-test. A t-paired
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cortical thickness of
the radial side

Reference 15 lines up RL
line (RL)

1/3 distal of

15 lines under RL the radius

cortical thickness
of the ulnar side

T e P i R o

Fig.2 Image of the radius after the process showing the cortical
thicknesses on the ulnar side and on the radial side.

test was used to assess the potential differences between cortical
thickness at the ulnar and radial sides. Radiogrammetric data
were also adjusted using analysis of covariance with duration of
training and forearm lean mass as covariates. The relationships
between radiogrammetric, anthropometric, and bone measure-
ments were examined using Pearson’s correlation test with a
limit of significance at p < 0.05.

Results

Anthropometric, age, and densitometric determinations
Physical characteristics for actives and controls are given in Table
1. There was no significant difference between groups as regards
chronological age, bone age, height, and weight.

Significant differences (p < 0.05) were observed between actives
and controls for the duration of training per week and densito-
metric values both at the non-dominant forearm and at the distal
third of the non-dominant radius (Table 2).

Radiogrammetric analyses

There was no significant difference between cortical thicknesses
at the ulnar and the radial side (3.13 vs. 3.07 mm, respectively) in
all subjects as well as in actives and controls. But as shown in Ta-
ble 2, cortical thickness at the ulnar side was significantly greater
in the actives compared to the controls. After adjustment for the
duration of training per week, cortical thickness at the ulnar side
did not any more differ significantly (p <0.05) between actives
and controls (3.24 vs. 3.12 mm, respectively). There was also no
difference when the cortical thickness at the ulnar side was ad-
justed for the forearm lean mass (3.46 vs. 2.99 mm).

Correlation between anthropometric, radiogrammetric, and
densitometric data

As shown in Table 3, the anthropometric values correlated signif-
icantly with cortical thickness at the ulnar side and cortical
thickness for both sides in all the subjects. Maturation explained
27% of the variance in cortical thickness at the ulnar side.

A significant correlation was obtained between the duration of
training per week and cortical thickness of both sides (r=0.34,
p <0.05), cortical thickness at the ulnar side (r=0.41, p<0.01)
(Table 3) as well as with the non-dominant forearm lean mass
(r=0.44,p<0.01).

Table 2 Comparison between actives and controls

Parameter Actives Controls Difference

n =17 (gymnastics = 14 n=32

judo =3) 95%Cl Significance
Cortical thickness
- radial side (mm) 3.18+£0.87 3.03+0.95 -0.46;0.72 ns
- ulnar side (mm) 3.47+0.75 3.00+0.44 0.11; 0.8 o
Non-dominant forearm
- lean mass (g) 586.91+104.63 512.82+103.91 9.11;139.8 *
- BMC(g) 22.84+7.71 16.76+5.72 2.11;10.05 o
- BMD (g/cm?) 0.60+0.05 0.55+0.05 0.01; 0.07 *
Third distal of the radius
- BMC 1.18+0.21 0.97£0.12 0.10; 0.30 e
- BMD 0.51+0.05 0.48+0.03 0.05; 0.059 *
Duration of training per week (h/w) 7.82+3.77 1.21+1.13 5.17; 8.05 e

Cl: Confidence interval; * <0.05; **<0.01; *** <0.001; ns: not significant; BMC: bone mineral content; BMD: bone mineral density
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Table 3 Correlation between anthropometric, age, densitometric,
and radiogrammetric measurements in all subjects

Table 4 Comparison of the accuracy of the measurements at the
third distal of the radius

Parameter Cortical Cortical Both sides
thickness of the  thickness of the
radial side ulnar side
Chronological age 0.44** 0.47*** 0.59***
Bone age 0.27 0.49*** 0.45***
Height 0.37** 0.43** 0.49***
Weight 0.27 0.40** 0.43**
Non-dominant 0.47*** 0.44** 0.60***
forearm lean mass
Duration of 0.21 0.41%* 0.34*
training per week
Distal third of the radius
- BMC 0.52%** 0.77%** 0.76***
- BMD 0.34% 0.48*** 0.56"**
Non-dominant forearm
- BMC 0.55*** 0.52*** 0.69***
- BMD 0.35%* 0.46*** 0.51***

*<0.05; **<0.01; ***<0.001; BMC: bone mineral content; BMD: bone mineral
density

The radiogrammetric values correlated significantly with all the
densitometric data (Table 3).

The duration of training per week, bone age, and body weight
were entered into a multiple regression analysis. The most pre-
dictable parameter for cortical thickness at the ulnar side was
duration of training per week (F=5.32, p=0.02).

Discussion

The main finding of the present study was that impact-loading
training was accompanied by a higher value in the cortical thick-
ness of the radius.

In accordance with our results, previous studies have shown a
gain in cortical thickness in femur of rat [16,17,19,20,32,36,38]
as well as in femur [1,3,7,8], humerus [14,24], radius [13], and
metacarpal [3] in human, in response to impact loading con-
straints. In the present study, active subjects had higher cortical
thickness at the ulnar side than controls. In fact, such an osteo-
genic effect on the active group was expected since the activities
included high-impact loading sports such as gymnastics and ju-
do [4,28].

Actives and controls differed only for cortical thickness at the ul-
nar side and such a difference could probably be explained by the
muscle attachments that act on the bone [9] or/and the variety of
strains undergone by the bone [12,37]. Regarding the first point,
the muscular actions are more predominant on the ulnar side of
the radius than on its radial side [31]. These actions might have
influenced the accumulation of bone mass more on the ulnar
side. Also in this study, the non-dominant forearm lean mass cor-

Authors Tech- Cortical thickness  Age of the subjects
nique (mm) (yrs)

Louis et al. [26]  pQCT 1.93-3.09" 61-85
2.3-2.94!

Haapasalo etal.  pQCT 3.36'# 30£5

[13] 3.1-3.6"

Kardinaal et al. DXA 1.7-2.2 Tanner 1

[23]

Lochmiiller et al. ~ pQCT 1.9-2.87 46-97

[25]

Our study DXR 2.26-4.22'% Tanner 0-1
2.08-3.98'

Tthreshold algorithm; 'iterative contour detection; # trained subjects; Tanner: Tan-
ner stage

related significantly with the cortical thickness suggesting thus
the predominance of the mechanical effect [10].

The second point stresses that the remodelling response to strain
varies depending on the loading conditions [12,37]. Gross et al.
[12] demonstrated that during complex loading conditions in-
volving bending, axial compression, and torsion, as during
specific sport activities, the strain distributions across the cortex
are not uniform.

Several authors have used DXA [23] or peripheral quantitative
computed tomography (pQCT) [13,25,26] in subjects of various
age, to measure cortical thickness at the distal third of the radius.
The use of different methods makes the comparisons between
studies difficult (Table 4). However, the cortical thickness values
obtained with our technique (DXR) were similar to those report-
ed by Haapasalo et al. [13] in adult subjects using pQCT. But the
absolute cortical thickness values might not be accurately meas-
urable due to the limited spatial resolution (0.2 -0.6 mm) of the
pQCT system [15,34] and the use of the threshold algorithm
method (to separate cortical bone from marrow cavity) [26]. It
was possible, in our study, to measure the cortical thickness of
the radius to the nearest 0.1 mm, based on the true shape of the
bone, without making any geometrical assumption [26].

The values reported by Kardinaal et al. [23] (1.92-2.25mm) in
prepubertal children using DXA were 22 -80% lower than ours
(2.08-4.22 mm). This difference seems to be due to inaccurate
measurements of the cortical thickness using DXA [39] with the
underestimation values reaching 64.8% [35].

The most critical point of the present study was the estimation of
the three-dimensional geometry on the basis of the two-dimen-
sional radiographic measurements. Even if the distance between
the roentgen radiation and the film is uniform, the bone projec-
tion is magnified depending on the size of the forearm. Therefore,
the cortical thickness is size-dependent. But the data obtained,
due to good reproducibility of the measurements, may insure
that the technique is able to give results considered as valid. The
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only practical valid solution, to avoid this size effect, would be
the use of the MRI or pQCT to measure the bone in a three-di-
mensional manner [35]. Due to their cost and limited availability
now, these methods might be widely used in the future. For all
the subjects, the lack of difference between cortical thicknesses
at the radial and ulnar sides, indicates a trend to symmetry in
the cortical thickness between the radial and ulnar sides of the
radius. This result seems accurate since the subject’s forearm
was positioned by the same trained technician according to a
standard fixed protocol, thus controlling rotation, parallax, and
exposure [9].

In our study, although maturation of the subjects explained 27 %
of the variance in cortical thickness at the ulnar side, the best
predictor for the cortical thickness at the ulnar side was duration
of training per week. Also, the difference in cortical thickness at
the ulnar side between actives and controls disappeared when
adjusted for duration of training. As in our study, there were no
differences in chronological age, bone age, height, and weight be-
tween active and control subjects, the difference observed in
bone geometry was more likely associated with the impact-load-
ing inherent to sport activities.

In conclusion, our findings suggest that, in prepubertal girls,
high-impact sports such as gymnastics and judo might result in
greater cortical thickness that gives the bone more resistance
and thus prevents bone fractures later in life.
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