Daniel Tanneberg

Daniel Tanneberg
Verified
Daniel verified their affiliation via an institutional email.
Verified
Daniel verified their affiliation via an institutional email.
  • Ph.D. in Computer Science (AI & Robotics)
  • Senior Scientist at Honda Research Institute Europe

About

30
Publications
4,315
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
330
Citations
Current institution
Honda Research Institute Europe
Current position
  • Senior Scientist

Publications

Publications (30)
Article
Full-text available
Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we p...
Article
Full-text available
A key feature of intelligent behaviour is the ability to learn abstract strategies that scale and transfer to unfamiliar problems. An abstract strategy solves every sample from a problem class, no matter its representation or complexity—similar to algorithms in computer science. Neural networks are powerful models for processing sensory data, disco...
Article
Integrating robots in complex everyday environments requires a multitude of problems to be solved. One crucial feature among those is to equip robots with a mechanism for teaching them a new task in an easy and natural way. When teaching tasks that involve sequences of different skills, with varying order and number of these skills, it is desirable...
Conference Paper
Full-text available
Despite recent progress in robot learning, it still remains a challenge to program a robot to deal with open-ended object manipulation tasks. One approach that was recently used to autonomously generate a repertoire of diverse skills is a novelty based Quality-Diversity (QD) algorithm. However, as most evolutionary algorithms, QD suffers from sampl...
Preprint
Imitation learning is a popular method for teaching robots new behaviors. However, most existing methods focus on teaching short, isolated skills rather than long, multi-step tasks. To bridge this gap, imitation learning algorithms must not only learn individual skills but also an abstract understanding of how to sequence these skills to perform ex...
Preprint
Full-text available
We introduce tulip agent, an architecture for autonomous LLM-based agents with Create, Read, Update, and Delete access to a tool library containing a potentially large number of tools. In contrast to state-of-the-art implementations, tulip agent does not encode the descriptions of all available tools in the system prompt, which counts against the m...
Preprint
This paper presents an innovative large language model (LLM)-based robotic system for enhancing multi-modal human-robot interaction (HRI). Traditional HRI systems relied on complex designs for intent estimation, reasoning, and behavior generation, which were resource-intensive. In contrast, our system empowers researchers and practitioners to regul...
Preprint
Symbolic planning is a powerful technique to solve complex tasks that require long sequences of actions and can equip an intelligent agent with complex behavior. The downside of this approach is the necessity for suitable symbolic representations describing the state of the environment as well as the actions that can change it. Traditionally such r...
Preprint
Full-text available
The current spread of social and assistive robotics applications is increasingly highlighting the need for robots that can be easily taught and interacted with, even by users with no technical background. Still, it is often difficult to grasp what such robots know or to assess if a correct representation of the task is being formed. Augmented Reali...
Preprint
Full-text available
Shared control can help in teleoperated object manipulation by assisting with the execution of the user's intention. To this end, robust and prompt intention estimation is needed, which relies on behavioral observations. Here, an intention estimation framework is presented, which uses natural gaze and motion features to predict the current action a...
Preprint
A key feature of intelligent behaviour is the ability to learn abstract strategies that scale and transfer to unfamiliar problems. An abstract strategy solves every sample from a problem class, no matter its representation or complexity -- like algorithms in computer science. Neural networks are powerful models for processing sensory data, discover...
Preprint
Full-text available
Integrating robots in complex everyday environments requires a multitude of problems to be solved. One crucial feature among those is to equip robots with a mechanism for teaching them a new task in an easy and natural way. When teaching tasks that involve sequences of different skills, with varying order and number of these skills, it is desirable...
Preprint
Full-text available
Despite recent progress in robot learning, it still remains a challenge to program a robot to deal with open-ended object manipulation tasks. One approach that was recently used to autonomously generate a repertoire of diverse skills is a novelty based Quality-Diversity~(QD) algorithm. However, as most evolutionary algorithms, QD suffers from sampl...
Preprint
Full-text available
A key feature of intelligent behavior is the ability to learn abstract strategies that transfer to unfamiliar problems. Therefore, we present a novel architecture, based on memory-augmented networks, that is inspired by the von Neumann and Harvard architectures of modern computers. This architecture enables the learning of abstract algorithmic solu...
Preprint
Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we p...
Conference Paper
Full-text available
Autonomous robots need to interact with unknown and unstructured environments. For continuous online adaptation in lifelong learning scenarios, they need sample-efficient mechanisms to adapt to changing environments, constraints, tasks and capabilities. In this paper, we introduce a framework for online motion planning and adaptation based on a bio...
Conference Paper
Full-text available
Continuous online adaptation is an essential ability for the vision of fully autonomous and lifelong-learning robots. Robots need to be able to adapt to changing environments and constraints while this adaption should be performed without interrupting the robot's motion. In this paper, we introduce a framework for probabilistic online motion planni...
Conference Paper
Full-text available
The Sake Robotics Gripper is a cheap, robust and versatile underactuated gripper that has not been simulated yet. The simulated model has to be able to interpret the same ROS messages the real gripper receives. This paper proposes a reproduction of the Sake Robotics Gripper in V-REP. We analyze the tools provided by V-REP to develop an algorithm fo...
Article
Full-text available
To learn control policies in unknown environments, learning agents need to explore by trying actions deemed suboptimal. In prior work, such exploration is performed by either perturbing the actions at each time-step independently, or by perturbing policy parameters over an entire episode. Since both of these strategies have certain advantages, a mo...
Conference Paper
Full-text available
We propose a novel bioinspired motion planning approach based on deep networks. This Deep Spiking Network (DSN) architecture couples task and joint space planning through bidirectional feedback. We show that the DSN can learn arbitrary complex functions, encode forward and inverse models, generate different solutions simultaneously and adapt dynami...
Article
Full-text available
A recurrent spiking neural network is proposed that implements planning as probabilistic inference for finite and infinite horizon tasks. The architecture splits this problem into two parts: The stochastic transient firing of the network embodies the dynamics of the planning task. With appropriate injected input this dynamics is shaped to generate...

Network

Cited By